继电保护的基本原理和继电保护装置的组成

合集下载

电力系统继电保护教案

电力系统继电保护教案

电力系统继电保护教案章节一:继电保护概述1.1 继电保护的定义和作用1.2 继电保护的基本原理1.3 继电保护装置的基本组成1.4 继电保护的分类及其特点章节二:电流互感器和电压互感器2.1 电流互感器的工作原理和接线方式2.2 电压互感器的工作原理和接线方式2.3 互感器的主要参数和选用依据2.4 互感器在继电保护中的应用章节三:继电保护装置的构成及功能3.1 继电保护装置的构成要素3.2 继电保护装置的功能及其实现方式3.3 继电保护装置的主要性能指标3.4 继电保护装置的分类及特点章节四:常用的继电保护装置4.1 电流速断保护装置4.2 过电流保护装置4.3 差动保护装置4.4 接地保护装置4.5 距离保护装置章节五:电力系统继电保护的整定计算5.1 继电保护整定计算的基本原理5.2 继电保护整定计算的方法5.3 继电保护装置的调试与验收5.4 继电保护装置的运行维护与管理章节六:继电保护装置的继电器6.1 继电器的分类和工作原理6.2 继电器的电气特性及其参数6.3 继电器在继电保护中的应用6.4 继电器的选择和整定章节七:数字化继电保护技术7.1 数字化继电保护的基本原理7.2 数字化继电保护装置的构成和功能7.3 数字化继电保护的优势和应用前景7.4 数字化继电保护技术的发展趋势章节八:电力系统继电保护的配合与选择8.1 继电保护配合的原则和方法8.2 继电保护装置的选择依据8.3 继电保护装置的配合案例分析8.4 继电保护装置的选择和配合在实际工程中的应用章节九:电力系统继电保护的运行与维护9.1 继电保护装置的运行管理9.2 继电保护装置的故障处理与维修9.3 继电保护装置的定期检查与试验9.4 继电保护装置的性能评估与优化章节十:继电保护在电力系统中的应用案例分析10.1 继电保护在电力系统中的关键作用10.2 继电保护装置在电力系统中的应用案例10.3 继电保护装置在电力系统运行中的常见问题及解决方案10.4 继电保护技术在电力系统发展中的未来趋势重点和难点解析章节一:继电保护概述难点解析:理解继电保护在电力系统中的重要性,掌握不同类型继电保护的特点及应用场景。

(完整word版)继电保护教材(超实用)

(完整word版)继电保护教材(超实用)

第一章绪论第一节电力系统继电保护的作用一、电力系统的故障和不正常运行状态1.电力系统的故障:三相短路f (3)、两相短路f (2)、单相短路接地f (1)、两相短路接地f (1,1)、断线、变压器绕组匝间短路、复合故障等。

2. 不正常运行状态:小接地电流系统的单相接地、过负荷、变压器过热、系统振荡、电压升高、频率降低等。

二、发生故障可能引起的后果是:1、故障点通过很大的短路电流和所燃起的电弧,使故障设备烧坏;2、系统中设备,在通过短路电流时所产生的热和电动力使设备缩短使用寿命;3、因电压降低,破坏用户工作的稳定性或影响产品质量;破坏系统并列运行的稳定性,产生振荡,甚至使整个系统瓦解。

事故:指系统的全部或部分的正常运行遭到破坏,以致造成对用户的停止送电、少送电、电能质量变坏到不能容许的程度,甚至毁坏设备等等。

三、电保护装置及其任务1.继电保护装置:就是指反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

2.它的基本任务是:(1)发生故障时,自动、迅速、有选择地将故障元件(设备)从电力系统中切除,使非故障部分继续运行。

(2)对不正常运行状态,为保证选择性,一般要求保护经过一定的延时,并根据运行维护条件(如有无经常值班人员),而动作于发出信号(减负荷或跳闸),且能与自动重合闸相配合。

第二节继电保护的基本原理和保护装置的组成一、继电保护的基本原理继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。

1、利用基本电气参数的区别发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护。

(1)过电流保护:反映电流的增大而动作,如图1-1所示,(2)低电压保护:反应于电压的降低而动作。

(3)距离保护(或低阻抗保护):反应于短路点到保护安装地之间的距离(或测量阻抗的减小)而动作。

2、利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差别。

继电保护课后习题答案第二版张保会尹项根

继电保护课后习题答案第二版张保会尹项根
故障分析:通过继电保护装置的动作行为和故障录波图,分析短路故障对 电力系统的影响
保护配置:介绍该线路的继电保护配置,包括主保护和后备保护
动作行为:分析继电保护装置在故障发生时的动作行为,包括断路器的跳 闸和重合闸等
输电线路的继电保
05

输电线路的故障类型与保护方式
输电线路的故障类 型:相间短路、接 地短路、断线故障 等。
继电保护的基本算法
距离保护算法:根据故障点 到保护装置的距离来决定动 作时间
差动保护算法:通过比较线 路两侧的电流来检测故障
零序保护算法:利用零序电 流分量来检测接地故障
突变量保护算法:利用电流 电压的突变量来快速检测故

04
电力系统故障分析
短路故障的类型
相间短路
对地短路
匝间短路
不同电源系统之 间的短路
短路故障的危害
设备损坏:短路 电流会产生高温 和电动力,可能 造成设备严重损 坏或火灾。
停电影响:短路 故障可能导致大 面积停电,影响 生产和生活。
运行稳定性:短 路故障可能破坏 电力系统的稳定 运行,导致电压 波动、频率不稳 等问题。
经济损失:短路 故障可能导致停 电、设备损坏等, 造成巨大的经济 损失。
递能量
继电器的工作原理
继电器由输入电 路、中间机构和 输出电路三部分 组成。
工作原理基于电 磁感应原理,通 过控制输入电路 的电流和电压, 实现输出电路的 通断控制。
继电器具有隔离 作用,能够将控 制电路和被控电 路隔离,提高电 路的安全性。
继电器具有保护 作用,当被控电 路出现异常时, 能够快速切断输 出电路,防止故 障扩大。
YOUR LOGO
20XX.XX.XX

继电保护培训资料

继电保护培训资料

~ 1.3
动作时间: TdzI= 0 s
三相短路电流:
I
(3) d
E Zs Zd
E
Z s Z1ld
设计院计算公式:Idz.j=Kk*Kjx*I"3k3.max/nl
算例
计算电流速断保护1的动作电流、时限以及最小保护范围。已知:
Kk=1.2,线路阻抗Z1=0.4 /KM,系统最小运行方式等值电抗为最大Zsmax=18 Ω,系 统最大运行方式等值电抗为最小Zsmin=12 Ω
保护配置
第一节 电力系统继电保护的作用
一、电力系统的故障和不正常运行状态
➢电力系统的故障:三相短路f(3)、两相短路f(2) 、 单相短路接地f(1)、两相短路接地f(1,1)、断线、变 压器绕组匝间短路、复合故障等。
➢不正常运行状态:小接地电流系统的单相接地、 过负荷、变压器过热、系统振荡、电压升高、频 率降低等。
保护装置电流为最小的 运行方式。系统等值阻 抗的大小与投入运行的 电气设备及线路的多少 等有关。(Zs.max)
4、最小短路电流:在最小运
行方式下两相短路时,通过保护 装置的短路电流为最小,称之为 最小短路电流。
1、整定值计算及灵敏性校验
2保护装置的起动值
1 )对因电流升高而动作的电流保护来讲,使起动保护装置的最小电流 值称为保护装置的起动电流。 保护装置的起动值是用电力系统的一次侧参数表示的,当一次侧的短路 电流达到这个数值时,安装在该处的这套保护装置就能够起动
本章基本要求
➢了解电力系统的故障和不正常运行状态及引起 的后果;
➢掌握继电保护装置概念、继电保护的任务(作 用)、原理及组成;
➢熟练掌握对继电保护的基本要求。
第一章
第一节 电力系统继电保护的作用

《电力系统继电保护(第二版)》读书笔记

《电力系统继电保护(第二版)》读书笔记

《电力系统继电保护》读书笔记1. 绪论1.1 电力系统的正常工作状态、不正常工作状态和故障状态一般将电能通过的设备称为电力系统的一次设备,对一次备的运行状态进行监视、测量、控制和保护的设备称为二次设备。

一般正常状态下的电力系统,其发电、输电和变电设备还保持一定的备用容量,能满足负荷随机变化的需要,同时在保证安全的条件下,可以实现经济运行;能承受常见的干挠,从一个正常状态和不正常状态、故障状态通过预定的控制连续变化到另一个正常状态,而不致于进一步产生有害的后果。

不正常运行状态指部分参量超过安全工作限额但又不是故障的工作状态,如因负荷潮流超过电气设备的额定上限造成的电流升高(又称为过负荷),系统中出现功率缺额而引起的频率降低,发电机突然甩负荷引起的发电机频率升高,中性点不接地系统和非有效接地系统中的单相接地引起的非接地相对地电压的升高,以及电力系统发生振荡等。

电力系统的故障状态最常见同时也是最危险的故障是发生各种类型的短路,包括三相短路、两相短路、两相短路接地和单相接地短路,其中以单相接地短路为主,其次为两相短路。

电力系统自动化(控制):为保证电力系统正常运行的经济性和电能质量的自动化技术与装备,主要进行电能生产过程的连续自动调节,动作速度相对缓,调节稳定性高,把整个电力系统或其中的一部分作为调节对象。

为了在故障后迅速恢复电力系统的正常运行,消除故障,保证持续供电,常采用以下的自动化措施:输电线路自动重合闸,备用电源自动投入,低电压切负荷,按频率自动减负荷,电气制动、振荡解列以及为维持系统的暂态稳定而配备的稳定性紧急控制系统,完成这些任务的自动装置统称为电网安全自动装置。

继电保护装置就是指能反应电力系统中电气设备发生故障或不正常运行状态,并动作于断路器跳闸或发生信号的一种自动装置。

1.2 继电保护的基本原理及构成实现继电保护需区分电力系统在不同运行状态下的差异,具有明显差异的电气量有:流过电力元件的相电流、序电流、功率及其方向;元件运行相电压幅值、序电压幅值;元件的电压与电流的比值即“测量阻抗”等。

系统继电保护实验报告(3篇)

系统继电保护实验报告(3篇)

第1篇一、实验目的1. 理解电力系统继电保护的基本原理和作用。

2. 掌握继电保护装置的组成、工作原理及调试方法。

3. 熟悉继电保护装置在实际电力系统中的应用和运行维护。

二、实验原理电力系统继电保护是一种自动装置,用于检测电力系统中的故障,并在故障发生时迅速切断故障电路,以保护电力系统的安全稳定运行。

继电保护装置由测量元件、执行元件和逻辑元件组成。

1. 测量元件:测量元件用于检测电力系统中的电流、电压、功率等参数,并将测量结果传递给执行元件。

2. 执行元件:执行元件根据测量元件传递的信号,实现对断路器等设备的控制,从而切断故障电路。

3. 逻辑元件:逻辑元件用于对测量元件传递的信号进行处理,实现对保护装置的协调和优化。

三、实验内容1. 继电保护装置的组成与原理- 学习继电保护装置的组成和各部分的功能。

- 理解继电保护装置的工作原理,包括测量、执行和逻辑处理过程。

2. 继电保护装置的调试- 学习继电保护装置的调试方法,包括调试步骤、调试参数设置等。

- 通过实际操作,掌握继电保护装置的调试技巧。

3. 继电保护装置的运行与维护- 了解继电保护装置的运行过程,包括启动、运行、停止等环节。

- 学习继电保护装置的维护方法,包括定期检查、故障排除等。

4. 实验操作- 根据实验指导书,进行继电保护装置的安装、接线、调试和运行。

- 观察实验现象,分析实验结果,总结实验经验。

四、实验步骤1. 准备工作- 检查实验设备是否完好,包括继电保护装置、电源、测试仪器等。

- 熟悉实验指导书,了解实验目的、原理和步骤。

2. 安装与接线- 按照实验指导书的要求,将继电保护装置安装在实验台上。

- 按照电路图进行接线,确保接线正确、牢固。

3. 调试- 根据实验指导书的要求,设置继电保护装置的参数。

- 进行调试,观察实验现象,分析实验结果。

4. 运行与维护- 启动实验装置,观察继电保护装置的运行情况。

- 定期检查继电保护装置,发现故障及时排除。

继电保护简答题.

继电保护简答题.
(2) 两相不完全星接线(2TA,2KA,3引线)——中性点补直接接地系统
特点:串联线路:2/3几率切除原理电源的故障
并联线路:2/3几率只切除一条线路
(3) 两相三哥继电器接线(1TA,3KA,4引线)——Y/角11发生两相短路
9方向性保护基本原理
在原有电流保护基础上加装功率方向判别元件,反方向故障时保护闭锁,不致出现保护勿动的问题
②转子故障 励磁贿赂一点 两点接地 失磁故障
不正常运行状态:定子绕组过电流 三项对称过负荷 负序过电流 定子绕组过电压 转子绕组过负荷 逆功率 失步 低频 过励磁
电流II段:要求能以较小时限快速切除全线故障
电流III段:保护本线路和相邻线路的全长,起后备保护作用
8电流保护的接线方式及特点
(1) 三相完全星接线(3TA,3KA,4引线)——中性点直接接地系统
特点:串联线路:100%切除运力电源的故障
并联线路:100%切除两条线路,相当于扩大了停电范围
1. 继电保护装置的概念?
答:能反映电力系统中电气设备发生故障或不正常运行状态,并作用于断路器跳闸或发出信号的一种装置。
2继电保护的任务?
答:故障时自动 迅速 优选择性的切除元件。
不正常状态时 发信号或跳闸
3. 继电保护的基本原理?
答:继电保护主要利用电力系统中发生短路或异常情况是的电气量的变化,构成继电保护动作的原理。
不正常运行状态:①过电流 ②过负荷 ③过电压 ④油面降低 ⑤过热现象
保护配置: 主保护:①瓦斯保护 ②纵差保护
后备保护:①相间短路后备保护 a过电流保护 b低电压启动的过电流保护 c复合电压启动的过电流保护 ②接地短路后备保护 ③过负荷保护 ④过励磁保护 ⑤过热保护

继电保护基本知识培训教程pdf

继电保护基本知识培训教程pdf

02 继电保护装置的构成与分 类
继电保护装置的构成
01
02
03
测量元件
用于检测被保护设备的故 障情况,如电压、电流等 电气量。
逻辑元件
根据测量元件的输出,按 照一定的逻辑关系判断是 否发生故障。
执行元件
在逻辑元件判断出故障后, 执行相应的动作,如跳闸、 报警等。
继电保护装置的分类
按被保护对象分类
校核保护装置的灵敏度
在整定计算完成后,应对保护装置的灵敏 度进行校核,以确保其在最小运行方式下 发生三相短路时能够可靠动作。
配合其他保护装置
考虑过渡电阻的影响
在整定计算时,应充分考虑与其他保护装 置的配合关系,避免出现保护盲区或误动 、拒动的情况。
在整定计算时,应考虑过渡电阻的影响, 以确保保护装置在各种故障情况下都能可 靠动作。
THANKS FOR WATCHING
感谢您的观看
继电保护是指在电力系统发生异常或故障时,通过特定的装置和设备,自动地、 迅速地、有选择性地切除故障设备,以防止事故扩大,保证电力系统的安全稳 定运行。
继电保护的基本原理
总结词
继电保护基于电流、电压、功率等电气量的变化进行工作, 通过比较正常与异常时的电气量差异来判断是否发生故障。
详细描述
继电保护装置通过实时监测电力系统的电流、电压、功率等 电气量,并比较正常与异常时的电气量差异,来判断是否发 生故障。一旦检测到故障,装置会根据预设的保护策略,自 动地、迅速地切除故障设备。
保护定值的设定与调整
根据电网运行方式和设备参数的变化,及时调整保护定值,确保装 置的正确动作。
继电保护的定期检验
检验周期的确定
01
根据继电保护装置的重要性和运行状况,确定合理的检验周期。

《电力系统继电保护》

《电力系统继电保护》

《电力系统继电保护》《电力系统继电保护》第一章绪论一,电力系统的正常工作状态,不正常工作状态和故障状态电力系统在运行中可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是各种类型的短路.发生短路时可能产生以下后果:1)通过故障点的短路电流和所燃起的电弧使故障设备或线路损坏.2)短路电流通过非故障设备时,由于发热和电动力的作用,引起电气设备损伤或损坏,导致使用寿命大大缩减.3)电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响产品的质量.4)破坏电力系统并列运行的稳定性,引起系统振荡,甚至导致整个系统瓦解.继电保护装置的基本任务是:1)自动地,迅速地和有选择地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行.2)反应电气元件的不正常运行状态,并根据运行维护的条件(如有无经常值班人员)而动作于信号的装置. 二, 继电保护的基本原理及其组成1,继电保护的基本原理电力系统发生故障后,工频电气量变化的主要特征是:1)电流增大. 短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流.2)电压降低. 当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低.3)电流与电压之间的相位角改变. 正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°;三相短路时,电流与电压之间的相位角是由线路的阻抗角决定,一般为60°~85°;而在保护反方向三相短路时,电流与电压之间的限额将则是180°+(60°~85°).4)不对称短路时,出现相序分量, 如单相接地短路及两相接地短路时,出现负序和零序电流和电压分量.这些分量在正常运行时是不出现的.利用短路故障时电气量的变化,便可构成各种原理的继电保护.例如,据短路故障时电流的增大,可构成过电流保护;据短路故障时电压的降低,可构成电压保护;据短路故障时电流与电压之间相角的变化,可构成功率方向保护;据电压与电流比值的变化,可构成距离保护;据故障时被保护元件两端电流相位和大小的变化,可构成差动保护; 据不对称短路故障时出现的电流,电压相序分量,可构成零序电流保护,负序电流保护和负序功率方向保护等.2, 继电保护的组成及分类模拟型继电保护装置的种类很多,它们都由测量回路,逻辑回路和执行回路三个主要部分组成.3,对继电保护装置的基本要求(l) , 选择性选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒绝动作时,应由相邻设备或线路的保护将故障切除.(2),速动性速动性就是指继电保护装置应能尽快地切除故障.对于反应短路故障的继电保护,要求快速动作的主要理由和必要性在于1 )快速切除故障可以提高电力系统并列运行的稳定性.2 )快速切除故障可以减少发电厂厂用电及用户电压降低的时间,加速恢复正常运行的过程.保证厂用电及用户工作的稳定性.3 )快速切除故障可以减轻电气设备和线路的损坏程度.4 )快速切除故障可以防止故障的扩大,提高自动重合问和备用电源或设备自动投人的成功率.对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号.3 , 灵敏性灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力.所谓系统最大运行方式,就是在被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大的运行方式;系统最小运行方式,就是在同样的短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式.保护装置的灵敏性用灵敏系数来衡量.灵敏系数表示式为:l )对于反应故障参数量增加(如过电流)的保护装置:保护区末端金属性短路时故障参数的最小计算值2 )对于反应故障参数量降低(如低电压)的保护装置:保护区末端金属性短路时故障参数的最小计算值4,可靠性可靠性是指在保护范围内发生了故障该保护应动作时,不应由于它本身的缺陷而拒动作;而在不属于它动作的任何情况下,则应可靠地不动作.以上四个基本要求是设计,配置和维护继电器保护的依据,又是分析评价继电保护的基础.这四个基本要求之间,是相互联系的,但往往又存在着矛盾.因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一.第二章,电网的电流保护一, 单侧电源网络相间短路的电流保护输电线路发生相间短路时,电流会突然增大,故障相间的电压会降低.利用电流会这一特征,就可以构成电流保护.电流保护装置的中心环节是反应于电流增大而动作的电流继电器.电流继电器是反应于一个电器量而电阻的简单继电器的典型.1,继电器(1)电磁型继电器电磁继电器的基本结构形式有螺管线圈式, 吸引衔铁式和转动舌片式三种,如图2.1 所示. 电流继电器在电流保护中用作测量和起动元件, 它是反应电流超过一整定值而动作的继电器. 电磁继电器是利用电磁原理工作的,以吸引衔铁式继电器例进行分析,在线圈1 中通以电流,则产生与其成正比的磁通,通过由铁心,空气隙和可动舌片而成的磁路,使舌片磁化于铁心的磁极产生电磁吸力,其大小于成正比,这样由电磁吸引力作用到舌片上的电磁转距可表示为( 2.1 )式中比例常数;电磁铁与可动铁心之间的气隙.( a )螺管线圈式; (b) 吸引衔铁式; (c) 转动舌片式图2.1 电磁型继电器的结构原理1 —线圈;2 —可动衔铁;3 —电磁铁;4 —止挡;5 —接点;6 —反作用弹簧正常工作情况下,线圈中流入负荷电流,继电器不工作,这是由于弹簧对应于空气隙产生一个初始力矩 .由于弹簧的张力与伸长量成正比,因此,当空气长度由减小到时,弹簧产生的反作用力矩为式中比例常数.另外,在可动舌片转动的过程中,还必须克服摩擦力力矩 .因此1 )继电器动作的条件.为使继电器动作,必须增大电流,通过增大电流来增大电磁电磁转矩,使其满足关系式:2 ) 动作电流 .能够满足上述条件,使继电器动作的最小电流值称为继电器的动作电流(起动电流),记作 .3 )继电器的返回条件.继电器动作后,当减小时,继电器在弹簧的作用下将返回.为使继电器返回,弹簧的作用力矩必须大于电磁力矩及摩擦力矩之和,即或4 ) 返回电流. 满足上述条件,使继电器返回原位的最大值电流称为继电器的返回电流,记为,5 )返回系数. 返回电流和起动电流的比值成为继电器的返回系数,可表示为6 ) 动作电流的调整方法:①改善继电器线圈的匝数;②改变弹簧的张力;③改变初始空气隙的长度.7 ) 剩余力矩 .在继电器的动作过程和返回过程中,随着气隙的变化,都将出现一个剩余力矩,从而使继电器的动作过程和返回过程都雪崩式的进行,继电器要么动作,要么返回,它不可能停留在某一个中间状态,具有明显的"继电特性".同时,该力矩还有利于继电器的触点可靠的接触与断开.2,几个基本概念1 )系统最大运行方式在被保护线末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式.2 )最小运行方式在同样短路条件下,系统等值阻抗最大,而通过保护装置的电流为最小的运行方式.系统等值阻抗的大小与投入运行的电气设备及线路的多少等有关.3 )最小短路电流与最大短路电流在最大运行方式下三相短路时通过保护装置的电流为最大,称之为最大短路电流.而在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流.4 )保护装置的起动值对因电流升高而动作的电流保护来讲,使起动保护装置的最小电流值称为保护装置的起动电流,记作 .保护装置的起动值是用电力系统的一次侧参数表示的,当一次侧的短路电流达到这个数值时,安装在该处的这套保护装置就能够起动.5 )保护装置的整定所谓整定就是根据对继电保护的基本要求,确定保护装置的起动值(一般情况下是指电力系统一次侧的参数),灵敏性,动作时限等过程.3,无时限电流速断保护根据对保护速动性的要求,在满足可靠性和保护选择性的前提下,保护装置的动作时间,原则上总是越快越好.因此,各种电气元件应力求装设快速动作的继电保护.仅反应电流增大而能瞬时动作切除故障的保护,称为电流速断保护,也称为无时限流速断保护.(1),工作原理无时限速断保护是为了保证其动作的选择性,一般情况下速断保护只保护被保护线路的一部分,具体工作原来如图2.6 所示.对于单侧电源供电线路,在每回电源侧均装有电流速断保护.在输电线上发生短路时,流过保护安装地点的短路电流可用下式计算( 2.4 )图2.06 电流速断保护的动作特性分析Ⅰ—最大运行方式下三相短路电流;Ⅱ—最小运行方式下两相短路电流由式( 2.4 )和( 2.5 )可看出,流过保护安装地点的短路电流值随短路点的位置而变化,且与系统的运行方式和短路类型有关. 和与的关系如图2.6 中的曲线Ⅰ和Ⅱ所示.从图可看出,短路点距保护安装点愈远,流过保护安装地点的短路电流愈小.(2),整定计算1 )动作电流为了保证选择性,保护装置的起动电流应按躲开下一条线路出口处(如点即B 变电所短路时,通过保护的最大保护电流(最大运行下的三相短路电流)来整定.即可靠系数对保护1 ( 2.6 )把起动电流标于图2.6 中,可见在交点M 与保护 2 安装处的一段线路上短路对2 能够动作.在交点M 以后的线路上的短路时,保护2 不动作.因此,一般情况下,电流速断保护只能保护本条线路的一部分,而不能保护全线路.2 )保护范围(灵敏度)计算(校验)规程规定,在最小运行方式下,速断保护范围的相对值为15%~20% ,即式中——最小保护范围;当系统为最大运行方式时,三相短路时保护范围最大;当系统为最小运行方式时,两相短路时保护范围最小.求保护范围时考虑后者.由图2.6 可知( 2.7 )其中, 代入式( 2.7 )整理得( 2.8 )(3)动作时限无时限电流速断保护没有人为延时,只考虑继电保护固有动作时间.考虑到线路中管型避雷器放电时间为0. 04~0.06s ,在避雷器放电时速断保护不应该动作,为此在速断保护装置中加装一个保护出口中间继电器,一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作.由于动作时间较小,可认为t=0 .( 4 )电流速断保护的接线图1 )单相原理接线图电流继电器接于电流互感器TA 的二次侧,它动作后起动中间继电器,其触点闭合后,经信号继电器发出信号和接通断路器跳闸线圈.(5),对电流速断保护的评价优点:简单可靠,动作迅速.缺点:①不能保护线路全长.②运行方式变化较大时,可能无保护范围.如图2.9 所示,在最大运行方式整定后,在最小运行方式下无保护范围.③在线路较短时,可能无保护范围.4, 限时电流速断保护由于电流速断保护不能保护本线路的全长,因此必须增设一套新的保护,用来切除本线路电流速断保护范围以外的故障,作为无时限速断保护的后备保护,这就是限时电流速断保护.( 1 )对限时电流速断保护的要求增设限时电流速断保护的主要目的是为了保护线路全长,,对它的要求是在任何情况下都能保护线路全长并具有足够的灵敏性,在满足这个全体下具有较小的动作时限.( 2 )工作原理1 ) 为了保护本线路全长,限时电流速断保护的保护范围必须延伸到下一条线线路去,这样当下一条线路出口短路时,它就能切除故障.2 ) 为了保证选择性,必须使限时电流速断保护的动作带有一定的时限.3 ) 为了保证速动性,时限尽量缩短.时限的大小与延伸的范围有关,为使时限较小,使限时电流速断的保护范围不超出下一条线路无时限电流速断保护的范围.因而动作时限比下一条线路的速断保护时限高出一个时间阶段 .( 3 )整定计算1 )动作电流动作电流按躲开下一条线路无时限电流速断保护的电流进行整定( 2.9 )2 )动作时限 .为了保证选择性,时限速断电流保护比下一条线路无时限电流速断保护的动作时限高出一个时间阶段,即( 2.10 )当线路上装设了电流速断和限时电流速断保护以后,它们联合工作就可以0.5s 内切除全线路范围的故障,且能满足速动性的要求,无时限电流速断和限时速断构成线路的"主保护".3 )灵敏度校验. 保护装置的灵敏度(灵敏性),是只在它的保护范围内发生故障和不正常运行状态时,保护装置的反应能力.灵敏度的高低用灵敏系数来衡量, 限时电流速断保护灵敏度为( 2.11 )式中——被保护线路末端两相短路时流过限时电流速断保护的最小短路电流;当时,保护在故障时可能不动,就不能保护线路全长,故应采取以下措施:①为了满足灵敏性,就要降低该保护的起动电流,进一步延伸限时电流一条线路限时电流速断保护的保护范围).②为了满足保护选择性,动作限时应比下一条线路的限时电流速断的时限高一个,即速断保护的保护范围,使之与下一条线路的限时电流速断相配合(但不超过下( 4 )限时电流速断保护的接线图1 )单相原理接线如图2.11 所示,( 5 )对限时电流速断保护的评价限时电流速断保护结构简单,动作可靠,能保护本条线路全长,但不能作为相邻元件(下一条线路)的后备保护(有时只能对相邻元件的一部分起后备保护作用).因此,必须寻求新的保护形式.5,定时限过电流保护( 1 )工作原理过电流保护通常是指其动作电流按躲过最大负荷电流来整定,而时限按阶梯性原则来整定的一种电流保护.在系统正常运行时它不起动,而在电网发生故障时,则能反应电流的增大而动作,它不仅能保护本线路的全长,而且也能保护下一条线路的全长.作为本线路主保护拒动的近后备保护,也作为下一条线路保护和断路器拒动的远后备保护.如图2.13 所示,( 2 )整定计算1 )动作电流.按躲过被保护线路的最大负荷电流,且在自起动电流下继电器能可靠返回进行整定( 2.12 )2 )灵敏系数校验.要求对本线路及下一条线路或设备相间故障都有反应能力,反应能力用灵敏系数衡量.本线路后备保护(近后备)的灵敏系数有关规程中规定为( 2.13 )作为下一条线路后备保护的灵敏系数(远后备),〈〈规程〉〉中规定( 2.14 )当灵敏度不满足要求时,可以采用电压闭锁的过流保护,这时过流保护自起动系数可以取13 )时间整定.由于电流Ⅲ段的动作保护的范围很大,为保证保护动作的选择性,其保护延时应比下一条线路的电流Ⅲ段的电阻时间长一个时限阶段为( 2.15 )( 3 )灵敏系数和动作时限的配合过电流保护是一种常用的后备保护,实际中使用非常广泛.但是,由于过电流保护仅是依靠选择动作时限来保证选择性的,因此在负责电网的后备保护之间,除要求各后备保护动作时限相互配合外,还必须进行灵敏系数的配合(即对同一故障点而言越靠近故障点的保护应具有越高的灵敏系数).( 4 )对定时限过电流的评价定时限过电流结构简单,工作可靠,对单侧电源的放射型电网能保证有选择性的动作.不仅能作本线路的近后备(有时作主保护),而且能作为下一条线路的远后备.在放射型电网中获得广泛的应用,一般在35kv 及以下网络中作为主保护.定时限过电流保护的主要缺点是越靠近电源端其动作时限越大,对靠近电源端的故障不能快速切除.6, 阶段式电流保护的应用及评价电流速断保护只能保护线路的一部分,限时电流速断保护能保护线路全长,但却不能作为下一相相邻的后备保护,因此必须采用定时限过电流保护作为本条线路和下一段相邻线路的后备保护.由电流速断保护,限时电流速断保护及定时限过电流保护相配合构成一整套保护,叫做三段电流保护.实际上,供配电线路并不一定都要装设三段式电流保护.比如,处于电网末端附近的保护装置,,当定时限过电流保护的时限不大于0.5~0.7s 时,而且没有防止导线烧损及保护配合上的要求的情况下,就可以不装设电流速断保护和限时电流速断保护,而将过电流保护为主要保护.在某些情况下,常采用两段组成一套保护, ( 2 )阶段式电流保护的时限阶段式电流保护的时限特性是指各段电流保护的保护范围与动作时限的关系曲线.电流三段式保护的保护特性及时限特性如图2.14 所示.图2.14 电流三段式保护特性及时限特性分析图继电保护的接线图一般可以用原理图和展开图形式来表示.电流三段式保护单相原理接线图如图2.15 所示,( 3 )阶段式保护的选择性电流速断保护是通过选择动作电流保证选择性的,定时限过电流保护通过选择动作时限来保证选择性的,而限时电流速断保护则是通过同时选择动作电流和动作时限来保证选择性的.这是应当重点理解的环节. ( 4 )对阶段式电流保护的评价三段式电流保护的优点是简单,可靠,并且一般情况下都能较快切除故障,一般用于35kv 及以下电压等级的单侧电源电网中.缺点是它的灵敏度和保护范围受系统运行方式和短路类型的影响,此外,它只在单侧电源的网络中才有选择性.7,电流保护接线方式电流保护的接线方式就是指保护中电流继电器与电流互感器二次绕组之间的连接方式.( 1 )三相完全星型接线主要接线方式1 )三相完全星型接线方式如图2.17 所示,三个电流互感器与三个电流继电器分别按相连接在一起,形成星型.三个继电器触点并联连接,相当于"或"回路.三相星型接线方式的保护对各种故障,如三相,两相短路,单相接地短路都能动作.图2.17 完全星型接线图图 2.18 不完全星形接线图2 )相不完全星型接线方式两相不完全星型接线方式如图 2.18 所示.它与三相星形的保护的区别是能反应各种相间短路,但B 相发生单相短路时,保护装置不会动作.( 2 )各种接线方式在不同故障时的性能分析1 )中性点直接接地或非直接接地电网中的各种相间短路.前述三种接线方式均能反应这些故障(除两相电流接线不能保护变压器外),不同之处在于动作的继电器数目不同,对不同类型和相别的相间短路,各种接线的保护装置灵敏度有所不同.2 )中性点非直接接地电网中的两点接地短路图2.20 串联内线路上两点接地的示意图在中性点非直接接地电网(小接地电流)中,某点发生单相接地时,只有不大的对地电容电流流经故障点,一般不需要跳闸,而只要给出信号,由值班人员在不停电的情况下找出接地点并消除之,这样就能提高供电的可靠性.因此,对于这种系统中的两点接地故障,希望只切除一个故障.①串联线路上两点接地情况,如图2.20 所示,在和点发生接地短路,希望切除距电源远的线路.若保护1 和保护2 均采用三相星形接线时,如果它们的整定值和时限满足选择性,那么,就能保证100%地只切除BC 段线路故障.如采用两相星形接线,则保护就不能切除B 相接地故障,只能由保护2 切除BC 线路,使停电范围扩大.这种接线方式在不同相别的两点接地组合中,只能有2/3 的机会有选择地后面的一个线路.②放射性线路上两点接地情况如图2.21 所示,图2.21 放射性线路上两点接地的示意图在点发生接地短路时,希望任意切除一条线路即可.当采用三相星型接线时,两套保护(若时限整定相同)均将起动.如采用两相星型接线,则保护有2/3 的机会只切除任一线路.因此,在放射性的线路中,两相星型比三相星型应用更广泛.( 3 )各种接线方式的应用三相星形接线方式能反应各种类型的故障,保护装置的灵敏度不因故障相别的不同而变化.主要应用如下方面:1 )广泛用于发电机,变压器,大型贵重电气设备的保护中.2 )用在中性点直接接地电网中(大接地电流系统中),作为相同短路的保护,同时也可保护单相接地(对此一般都采用专门的零序电流保护).3) 在采用其它更简单和经济的接线方式不能满足灵敏度的要求时,可采用这种接线方式.两相星形接线方式较为经济简单,能反应各种类型的相同短路.主要应用于如下方面:1 )在中性点直接接地电网和非直接接地电网中,广泛地采用它作为相间短路保护在10kv 以上,特别在3 5kv非直接接地电网中得到广泛应用.2 )在分布很广的中性点非直接接地电网中,两点接地短路常发生在放射型线路上.在这种情况下,采用两相星形接线以保证有2/3 的机会只切除一条线路(要使保护装置均安装在相同的两相上,一般为AC 相).如在6 ~ 10kv 中性点不接地系统中对单相接地可不立即跳闸,允许运行2 小时,因此在6~10kv 中性点不接地系统中的过流保护装置广泛应用两相星形接线方式.两相电流差接线方式具有接线简单,投资较少等优点,但是灵敏性较差,又不能保护Y/ -11 接线变压器后面的短路,故在实际应用中很少作为配电线路的保护.这种接线主要用在6 ~ 10kv 中性点不接地系统中,作为馈电线和较小容量高压电动机的保护.二,双侧电源网络相间短路的方向性电流保护1,方向性电流保护的工作原理在单侧电源网络中,各个电流保护线路靠近电源的一侧,在发生故障时,它们都是在短路功率的方向从母线流向线路的情况下,有选择性地动作,但在双侧电源网络中,如只装过电流保护是不能满足选择性要求.( 2 )几个概念1 ) 短路功率:指系统短路时某点电压与电流相乘所得到的感性功率.。

继电保护的基本原理及其组成

继电保护的基本原理及其组成

第二节继电保护的基本原理及其组成参看图1-1至图1-6及其讲解,了解本章对继电保护装置对正常与故障或不正常状态的区分以及继电保护基本原理,并且通过对继电保护装置基本组成的学习深入了解各部分工作内容。

一、继电保护装置对正常与故障或不正常状态的区分通过对继电保护装置正常运行状态与故障或不正常状态的学习,初步理解继电保护装置的原理。

1. 为完成继电保护所担负的任务,应该要求它能够正确区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。

图1-1 正常运行情况在电力系统正常运行时,每条线路上都流过由它供电的负荷电流,越靠近电源端的线路上的负荷电流越大。

同时,各变电站母线上的电压,一般都在额定电压±5%-10%的范围内变化,且靠近于电源端母线上的电压较高。

线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数角和线路的参数。

由电压与电流之间所代表的“测量阻抗”是在线路始端所感受到的、由负荷所反应出来的一个等效阻抗,其值一般很大。

图1-2 d点三相短路情况当系统发生故障时(如上图所示),假定在线路B-C上发生了三相短路,则短路点的电压降低到零,从电源到短路点之间均将流过很大的短路电流,各变电站母线上的电压也将在不同程度上有很大的降低,距短路点越近时降低得越多。

设以表示短路点到变电站B母线之间的阻抗,则母线上的残余电压应为此时与之间的相位角就是的阻抗角,在线路始端的测量阻抗就是,此测量阻抗的大小正比于短路点到变电站B母线之间的距离。

2. 一般情况下,发生短路之后,总是伴随着电流的增大、电压降低、线路始端测量阻抗减小,以及电压与电流之间相位角的变化。

故利用正常运行与故障时这些基本参数的区别,便可以构成各种不同原理的继电保护:(1)反应于电流增大而动作的过电流保护;(2)反应于电压降低而动作的低电压保护;(3)反应于短路点到保护安装地点之间的距离(或测量阻抗的减小)而动作的距离保护(或低阻抗保护)等。

华北电力大学国家级精品课《电力系统继电保护

华北电力大学国家级精品课《电力系统继电保护

由于要求切除故障的速度要很快,只能通过自动的继电保护 装置来完成。
3. 继电保护装置的基本任务 (1) 自动、迅速、有选择性地将故障元件从电力系统中 切除,使故障元件免于继续遭到损坏,保证其它无故障 部分迅速恢复正常运行。 即内部故障时发出跳闸命令。 (2) 反应电气元件的不正常运行状态,根据运行维护的 具体条件(例如有无经常值班人员)和设备的承受能力, 发出警报信号、减负荷或延时跳闸。 即不正常工作时发出告警信号。
反应数值上升的保护: 反应数值下降的保护:
4、可靠性
定义:当保护范围内部故障时必须动作(不拒动), 当外部故障时不动作(不误动)。 包括两个方面: (1)不拒动,即可信赖性
(2)不误动,即安全性
影响可靠性的因素: 内在:装置本身的质量,包括元件好坏、结构设计
的合理性、制造工艺水平、内外接线简明, 触点多少等;
正常运行: 电流:为负荷电流,两侧电流大小相等,方向相反(即相位相差 180)。 内部d1短路: 电流:线路BC两侧电流大小一般不等,方向相同(即相位相同); 差动保护原理
基本原理的总结
电流 I : 故障时增大 - 过电流保护 正常状态时 两侧电流相位相同 内部故障时 两侧电流相位相反 电压U :故障时降低 -低电压保护 阻抗Z :Z模值减小 -阻抗(距离)保护 -差动保护
远后备保护:位于其它变电站、发电厂中的后备保护; 近后备保护:位于本变电站、发电厂中的的后备保护;
2、速动性(迅速性)
定义:继电保护装置要以尽可能短的时间将故障从电网中切除。 优点: (1)提高电网的稳定性; (2)加快非故障部分的恢复供电; (3)减轻故障设备的损坏程度。 故障切除时间=保护装置动作时间+断路器动作时间 保护装置的动作时间为: 微机保护最快:0.01~0.04秒,即0.5~2个周期就动作;

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成继电保护是电力系统中重要的安全保障措施之一,用于保护电力设备和电力系统免受故障和过电流的损害。

本文将介绍继电保护的基本原理以及继电保护装置的组成。

一、继电保护的基本原理继电保护的基本原理是依靠电力系统中的电流、电压等参数的异常变化来判断设备是否发生故障,并对故障设备进行隔离和保护。

其基本原理包括故障检测、信号传输、故障判断和动作执行等环节。

1. 故障检测:继电保护装置通过检测电力系统中的电流、电压等参数,以确定是否存在设备异常。

常见的故障包括过电流、过电压、短路、接地故障等。

2. 信号传输:一旦检测到异常信号,继电保护装置会将信号传输给中央控制室或操作人员,以便进一步判断和采取相应的措施。

3. 故障判断:中央控制室或操作人员会根据接收到的异常信号进行故障判断,通过比对设备的工作状态和理论模型,确定具体的故障类型和位置。

4. 动作执行:一旦故障类型和位置确定,继电保护装置将发送信号给断路器或其他隔离设备,使其迅速切断故障电路,并保护其他设备免受影响。

二、继电保护装置的组成继电保护装置是实现继电保护原理的关键设备,其主要组成包括输入电路、测量元件、比较元件、判别元件和动作元件。

1. 输入电路:输入电路是继电保护装置的基础,充当了信息采集的作用。

输入电路包括电流互感器、电压互感器等,用于采集电力系统中的电流、电压等参数,并将信号传递给后续的测量元件。

2. 测量元件:测量元件是用来对输入电路中采集的信号进行精确的测量和转换。

常见的测量元件包括电流变压器、电压变压器等,能够将采集到的电流、电压等参数转换为标准的模拟量或数字量信号。

3. 比较元件:比较元件用于将测量得到的参数与事先设定的保护参数进行比较。

当测量参数超过或低于设定的保护参数范围时,比较元件会发出警报信号,通知判别元件进行下一步判断。

4. 判别元件:判别元件负责对比较元件发出的信号进行进一步的判断和分析,以确定是否存在故障。

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成绪论继电保护在电力系统中扮演着至关重要的角色,它是保障电力系统安全运行的关键组成部分。

本文将探讨继电保护的基本原理以及继电保护装置的组成,以便更好地理解其在电力系统中的作用和重要性。

第一部分:继电保护的基本原理继电保护是电力系统中用于检测异常情况并采取措施来保护电力设备和系统不受损害的技术。

其基本原理包括以下几个关键要素:1. 电流和电压测量:继电保护装置通过监测电流和电压的变化来识别电力系统中的异常情况。

这些测量值提供了关于电流负载、电压水平和频率等信息。

2. 比较与判据:继电保护装置将测量值与预设的标准或判据进行比较。

如果测量值超出了允许的范围,继电保护系统将判定系统存在故障或异常情况。

3. 快速反应:一旦继电保护系统检测到异常情况,它会立即采取行动,例如切断电源或发出警报信号,以防止电力设备受到损害或电力系统发生故障。

4. 信号传输:继电保护系统需要将检测到的异常情况信息传输给相关设备或操作人员,以便采取适当的措施。

5. 稳定性和可靠性:继电保护系统必须具备高度的稳定性和可靠性,以确保不会误判正常操作并及时响应真正的故障情况。

第二部分:继电保护装置的组成继电保护装置是实现继电保护功能的关键工具,其组成部分通常包括以下要素:1. 传感器:传感器用于测量电流、电压、频率和其他电力参数。

电流变压器(CT)和电压变压器(VT)是常用的传感器类型,用于将高电压和电流降低到安全水平进行测量。

2. 保护继电器:保护继电器是继电保护系统的核心组件。

它们根据传感器提供的输入信号进行逻辑运算,并根据事先设定的保护方案判断是否需要采取措施。

3. 控制单元:控制单元负责继电保护系统的操作和控制。

它通常包括微处理器或微控制器,用于处理输入信号、执行保护逻辑和与其他系统通信。

4. 输出设备:输出设备包括断路器、接触器和报警器等,用于根据继电保护装置的决策来切断电源、分离故障设备或发出警报。

继电保护知识问答

继电保护知识问答

继电保护知识问答1.什么是继电保护装置?答:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。

2.继电保护在电力系统中的任务是什么?答:继电保护的基本任务: (1)当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。

(2)反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。

反应不正常工作情况的继电保护装置允许带一定的延时动作。

3.简述继电保护的基本原理和构成方式。

答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。

大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。

4.电力系统对继电保护的基本要求是什么?答:继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。

(1)可靠性是指保护该动体时应可靠动作。

不该动作时应可靠不动作。

可靠性是对继电保护装置性能的最根本的要求。

(2)选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。

电力系统继电保护原理(仅供参考)

电力系统继电保护原理(仅供参考)

电力系统继电保护原理课目录绪论0.1 继电保护的作用0.2 对电力系统继电保护的基本要求0.3 继电保护的基本原理及保护装置的组成第1章电网的电流电压保护1.2 电网相间短路的方向性电流保护1.3 大接地电流系统的零序电流保护2.1 距离保护的基本原理2.2 阻抗继电器2.3 影响距离保护 确工作的因素及防 方法第3章输电线路的纵联保护3.1 概述3.2 输电线的纵联差 保护3.3输电线路的高频保护3.4 高频闭锁方向保护3.5 高频闭锁负序方向保护3.6 高频闭锁距离保护和零序保护3.7 高频相差 保护3.8 光纤差 保护第4章输电线路的自 重合闸4.1 自 重合闸概述4.2 相自 重合闸4.3 综合自 重合闸第5章电力 压器的保护5.1 电力 压器的故障异常 行状态及 保护方式5.2 压器内部故障的差 保护5.3 压器零序保护5.5 高压厂用 压器保护第6章发电机保护6.2 相间短路的纵联差 保护6.3 发电机定子绕组匝间短路保护6.5 发电机 励失磁保护6.6 励磁回路一点接地保护6.8 转子表层过热(负序电流)保护6.9 发电机的逆功率保护6.10 发电机失步异常 行保护6.11 定子绕组对称过负荷保护6.12 发电机 压器组公用继电保护7.2 带制 特性的母线差 保护7.3 JMH—1型母线差 保护装置的基本原理7.4 电流相 比较式母线保护第8章异步电 机和电容器的保护8.1 异步电 机的保护8.2 电力电容器的保护第9章继电保护装置的整定计算9.1 概述9.3 110~220 kV中性点直接接地电网线路保护的配置 整定计算9.4 330~550 kV中性点直接接地电网线路保护的配置 整定计算9.5 发电机保护的配置 整定计算9.6 压器保护的配置 整定计算9.7 母线保护及断路器失灵保护的配置 整定第10章继电保护装置的基本元 电路10.2 换器10.3 对称分量滤过器10.4 综合器第11章模拟型继电保护装置11.1 模拟型继电保护装置总论第12章微机保护装置原理12.2 微机保护的硬 构成原理12.3 数字滤波器12.4 微机保护的算法12.5 微机保护的抗干扰措施第13章 电站综合自 化技术13.3 电站综合自 化系统的结构参考文献0.1 继电保护的作用电力系统的 行要求安全可靠 电能质量高 经济性好 自然条 设备及人 因素的影响,可能出现各种故障和 常 行状态 故障中最常见 危害最大的是各种形式的短路•0.2 对电力系统继电保护的基本要求0.2.1 选择性图0-1 电网保护选择性 作(1) 保护(2)后备保护1)远后备图0-2 后备保护的构成方式(a)远后备保护(b) 后备保护2) 后备(3)辅 保护0.2.2 速 性0.2.3 灵敏性0.3 继电保护的基本原理及保护装置的组成图0-3 应一端电气量的保护及 行工况(a) 常 行状态(b)故障状态0.3.2 应两端电气量的保护0.3.3 应非电气量的保护图0-4 应两端电气量的保护的 行工况图0-5 继电保护装置组成方框图第1章电网的电流电压保护1.1 单侧电源网 的相间短路的电流电压保护1.1.1 电流继电器返回系数:即继电器的返回电流 作电流的比值1.1.2 无时限电流速断保护(电流 段)图1-1 电流速断保护 作特性的分析相短路电流可表示图1-2 无时限电流速断保护的单相原理接线图图1-3 系统 行方式的 化对电流续断保护的影响图1-4 被保护线路长短 同对电流速断保护的影响图1-5 线路- 压器组的电流速断保护图1-6 电流电压联锁速断保护的单相原理接线图图1-7 电流电压联锁速断保护的 作特性分析电流继电器的 作电流• 电压继电器的 作电压应• 1.1.3 限时电流速断保护(电流 段)•(1)工作原理和整定计算的基本原则图1-8 单侧电源线路限时电流速断保护的配合整定图(3)保护装置灵敏性的校验•(4)限时电流速断保护的单相原理接线图图1-9 限时电流速断保护的单相原理接线图1.1.4 定时限过电流保护(电流 段) (1)工作原理和整定计算的基本原则图1-10 定时限过电流保护起 电流和 作时限的配合图1-11 最大负荷说明图(2)按选择性的要求整定定时限过电流保护的 作时限图1-12 单侧电源串联线路中各过电流保护 作时限的确定•(3)过电流保护灵敏系数的校验• 1.1.5 段式电流保护的应用图1-13 阶段式电流保护的配合和实际 作时间的示意图图1-14 有电流速断 限时电流速断和过电流保护的单相原理接线图•1.2 电网相间短路的方向性电流保护1.2.1 方向性电流保护的基本原理图1-15 侧电源供电网 (a) f 1点短路时的电流分布(b) f 2点短路时的电流分布(c)各保护 作方向的规定(d)方向过电流保护的阶梯形时限特性1-15.tif图1-16 方向过电流保护的单相原理接线图1.2.2 功率方向继电器的工作原理图1-17 方向继电器工作原理的分析(a)系统网 接线图(b) f 1点短路(c) f 2点短路图1-18 功率方向继电器的工作原理图1-19 相短路的相量图• 1.2.3 对方向性电流保护的评图1-20 侧电源线路 电流速断保护的整定(1) 增电流的影响图1-21 有 增电流时,限时电流速断保护的整定•(2)外汲电流的影响图1-22 有外汲电流时,限时电流速断保护的整定。

南昌大学继保简答题

南昌大学继保简答题

1.什么是故障?什么是不正常运行方式?什么是事故?什么是继电保护装置?什么是继电保护系统?答:电力系统运行中,电气元件发生短路、断线时的运行状态均视为故障状态。

当电力系统中电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。

当电力系统发生故障和不正常运行方式时,若不及时处理或处理不当,将引发系统事故。

事故是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。

继电保护系统是指当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

继电保护装置是指反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

2.短路会产生什么后果?答:(1)通过故障点很大的短路电流和所燃起的电弧使故障元件损坏。

(2)由于发热和电动力的作用,短路电流通过非故障元件时引起其损坏或缩短其使用寿命。

(3)电力系统中部分地区的电压大大降低,破坏用户用电的稳定性或影响工厂产品的质量。

(4)破坏电力系统并列运行的稳定性,引起系统振荡,甚至使整个系统瓦解。

3.继电保护装置的基本任务?答:(1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行。

(2)反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号、减负荷或跳闸。

4.简述继电保护的基本原理和保护装置的组成。

继电保护装置由测量部分、逻辑部分和执行部分组成,测量部分又由数据采集、数据处理、保护判据运算等组成。

5.简述对电力系统继电保护的基本要求。

答:继电保护装置的基本要求是满足“四性”,即选择性、速动性、灵敏性和可靠性。

选择性是指电力系统有故障时,应由距故障点最近的保护装置动作,仅将故障元件从电力系统切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成继电保护装置的主要组成部分有输入电路、判断逻辑电路、输出电路、电源和操纵装置。

输入电路主要作用是采集被保护系统的电流、电压等信号,并将其转化为继电保护装置能够处理的模拟量信号。

输入电路通常由互感器、电流互感器和电压互感器等组成。

判断逻辑电路是继电保护装置的核心部分,它根据输入信号的大小和特征,采用相应的电路和算法进行信号处理和判断。

判断逻辑电路通常包括电流、电压、功率、频率和相位等各种保护量的比较、计算和判别电路。

输出电路是继电保护装置的反馈和控制部分,它将判断逻辑电路的输出信号转化为动作电流或动作电压,通过控制开关或触发器实现对保护设备的动作。

电源为继电保护装置提供所需的电能,一般需要直流电源或交流电源。

电源还可以具备电压稳定、过压过流保护和断电记录等功能。

操纵装置是继电保护装置的人机交互部分,一般包括控制按钮、指示灯、双点按钮、微调旋钮等。

通过操纵装置,操作人员可以对继电保护装置进行选择、设定、复位和监控等操作。

继电保护装置还可以根据需要配置额外的功能模块,如通信模块、数据记录模块、故障指示模块和远程调试模块等,以满足不同的保护需求。

继电保护装置的运行过程通常分为三个阶段:监测阶段、判断阶段和动作阶段。

在监测阶段,继电保护装置通过输入电路获取被保护系统的工作量信号,并进行实时监测。

在判断阶段,判断逻辑电路对输入信号进行处理和判别,并根据预设的保护规则,判断是否需要进行动作。

在动作阶段,输出电路控制开关或触发器,并根据判断结果对被保护系统采取相应的保护措施。

总之,继电保护的基本原理是实时监测、判断和动作,通过合理配置输入电路、判断逻辑电路、输出电路、电源和操纵装置等组成部分,能够有效保护被保护系统的正常运行,提高电力系统的可靠性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们把它统称为电力系统。

一般将电能通过的设备成为电力系统成为电力电力系统的一次设备,如发电机、变压器、断路器、输电电路等,对一次设备的运行状态进行监视、测量、控制和保护的设备,被称为电力系统的二次设备。

继电保护装置就属于电力系统的二次设备。

一、继电保护装置的基本原理
为了完成继电保护的任务,继电保护就必须能够区别是正常运行还是非正常运行或故障,要区别这些状态,关键的就是要寻找这些状态下的参量情况,找出其间的差别,从而构成各种不同原理的保护。

1.利用基本电气参数的区别
发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护:
(1)过电流保护。

单侧电源线路如图1-1所示,若在BC段上发生三相短路,则从电源到短路点k之间将流过很大的短路电流I k,可以使保护2反应这个电流增大而动作于跳闸。

(2)低电压保护。

如图1所示,短路点k的电压U k降到零,各变电站母线上的电压都有所下降,可以使保护2反应于这个下降的电压而动作。

图1:单侧电源线路
(3)距离保护。

距离保护反应于短路点到保护安装地之间的距离(或测量阻抗)的减小而动作。

如图1所示,设以Z k表示短路点到保护2(即变电站B母线)之间的阻抗,则母线
上的残余电压为:
U B=I k Z ko Z B
就是在线路始端的测量阻抗,它的大小正比于短路点到保护2之间的距离。

2.利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差

两侧电流相位(或功率方向)的分析如下。

图2:双侧电源网络
a——正常运行情况;b——线路AB外部短路情况;c——线路AB内部短路情况
正常运行时,A、B两侧电流的大小相等,相位相差180°;当线路AB外部故障时,A、B两侧电流仍大小相等,相位相差180°;当线路AB内部短路时,A、B两侧电流一般大小不相等,在理想情况下(两侧电动势同相位且全系统的阻抗角相等),两侧电流同相位。

从而可以利用电气元件在内部故障与外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别构成各种差动原理的保护(内部故障时保护动作),如纵联差动保护、相差高频保护、方向高频保护等。

3.序分量是否出现
电气元件在正常运行(或发生对称短路)时,负序分量和零序分量为零;在发生不对称短路时,一般负序和零序都较大。

因此,根据这些分量的是否存在可以构成零序保护和负序保护。

此种保护装置具有良好的选择性和灵敏性。

4.反应于非电气量的保护
反应于变压器油箱内部故障时所发生的气体而构成气体(瓦斯)保护;反应于电动机绕组的温度升高而构成过负荷保护等。

二、继电保护装置的组成
继电保护的种类虽然很多,但是在一般情况下,都是有三个部分组成的,即测量部分、逻辑部分和执行部分。

其原理结构如图3所示。

图3:继电保护装置的原理结构图
1.测量部分
测量部分是测量被保护元件工作状态(正常工作、非正常工作或故障状态)的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该启动。

2.逻辑部分
逻辑部分的作用是根据测量部分各输出量的大小、性质、出现的顺序或它们的组合,使保护装置按一定的逻辑程序工作,后传到执行部分。

3.执行部分
执行部分的作用是根据逻辑部分送的信号,后完成保护装置所担负的任务。

如故障时,动作于跳闸;不正常运行时,发出信号;正常运行时,不动作。

相关文档
最新文档