2.1 二次函数 教学设计

合集下载

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。

二次函数教案(3篇)

二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

最新完整版二次函数教学设计

最新完整版二次函数教学设计

22.1.1二次函数一、教学设计1、知识与技能(1)理解并掌握二次函数的概念和一般形式。

(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。

(3)会列二次函数表达式解决实际问题。

2、过程与方法学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义。

3、情感态度与价值观使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。

二、教学重点理解并掌握二次函数的概念和一般形式。

三、教学难点会列二次函数表达式解决实际问题。

四、教学方法引导法五、学习方法小组合作交流探讨得出二次函数的一般形式六、教学准备多媒体课件七、教学过程(一)复习引入1、一元二次方程的一般形式是什么?2、什么叫函数?3、什么是一次函数?正比例函数?追问:一次函数和正比例函数的图像是什么形状?生:一条直线教师用多媒体展示几张有关二次函数的图像的图片,问同学们这还是我们学过的一次函数和正比例函数的图像吗?学生很容易的回答说不是,接着教师很自然的告诉学生这将是我们本节课要学习的二次函数的图像,我们首先来学习二次函数的定义。

(引出本节课课题)(二)提出学习目标(1)理解并掌握二次函数的概念和一般形式。

(重点)(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。

(3)会列二次函数表达式解决实际问题。

(难点)(三)探究新知问题1 正方体六个面是全等的正方形,设正方体棱长为x,表面积为y,则y 关于x 的关系式为。

问题2n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?教师引导:每个球队n要与其他个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛时同一场比赛,所以比赛的场次数。

问题3某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?教师引导:这种产品的原产量是20件, 一年后的产量是件,再经过一年后的产量是件,即两年后的产量y=________。

2.1二次函数教学设计.1二次函数教学设计

2.1二次函数教学设计.1二次函数教学设计

2.1二次函数教学设计一、学习目标1、探索并归纳二次函数的定义;2、能够表示简单变量之间的二次函数关系.教学重点:二次函数的概念教学难点:经历探索,分析和建立两个变量之间的二次函数关系的过程二、教学过程分析本节课设计了七个教学环节:课前准备、创设问题情境引入新课、自主学习、合作探究、归纳总结、课堂检测、课堂小结、延伸迁移。

第一环节课前准备活动内容:引导学生复习函数的概念及已经学习过的几种函数:1..函数的定义2.回忆函数的形式活动目的:从学生已有的知识经验出发,学习新的内容,注重知识之间的联系,调动学生学习的积极性与主动性,也为接下来的学习作好铺垫。

实际教学效果:通过“温故”又可重新唤起学生对变量、自变量、因变量、函数等概念的理解,在回顾以前学习过的具体实例中能更好的帮助学生了解“函数”本质所在。

第二环节创设问题情境,引入新课活动内容:活动内容1、利用投影片出示课本中的引例某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,且增加的橙子树不超过20棵.请大家先独立思考,再互相交流后回答活动目的:设计问题由简单到复杂,逐步推进,同时也可让学生初步体会到问题中所蕴涵着的函数关系。

探究橙子的数量与橙子树之间的关系、及用关系式表示这一关系的过程,为引出二次函数的概念作铺垫,使学生感受二次函数与生活的密切联系。

实际教学效果:问题的设置由浅入深,问题中的变化过程也恰好反映了函数本质所在,学生在不知不觉中也在复习函数的表示方法中的解析式法。

活动内容2、:利用投影片出示课本中的引例2,银行的储蓄利率问题活动目的:通过解决生活中数学问题,进一步熟悉用函数解析式反映变化过程,实际教学效果:学生对本金、利息、利率、本息和等到概念不是很熟悉,需要老师的指引,加之有了上面的学习,之后学生则能够较容易列出函数解析式。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

九年级数学初三下册:2.1 二次函数2教案 教学设计

九年级数学初三下册:2.1 二次函数2教案  教学设计

2.1 二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。

形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。

将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。

通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。

但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。

三. 教学目标1.理解二次函数的一般形式和图象特点。

2.掌握二次函数的顶点坐标、开口方向和判别式的概念。

3.能够运用二次函数的性质解决一些实际问题。

四. 教学重难点1.二次函数的一般形式和图象特点。

2.二次函数的顶点坐标、开口方向和判别式的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。

2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。

3.注重数学语言的训练,引导学生规范表达。

六. 教学准备1.多媒体课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。

例如,抛物线运动、物体抛掷等。

从而引出二次函数的概念。

2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。

引导学生观察并总结二次函数的性质。

3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。

同时,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。

教师及时批改并给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。

数学《二次函数》优秀教案

数学《二次函数》优秀教案

数学《二次函数》优秀教案数学《二次函数》优秀教案(通用11篇)作为一名默默奉献的教育工作者,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

那么问题来了,教案应该怎么写?下面是小编精心整理的数学《二次函数》优秀教案,欢迎阅读与收藏。

数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、3、通过学生共同观察和讨论,培养大家的合作交流意识、(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、2、具有初步的创新精神和实践能力、教学重点1、体会方程与函数之间的联系、2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、教学难点1、探索方程与函数之间的联系的过程、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、教学方法讨论探索法、教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、数学《二次函数》优秀教案篇2教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根、2、进一步发展估算能力、(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验、2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想、(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力、教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、能够利用二次函数的图象求一元二次方程的近似根、教学难点利用二次函数的图象求一元二次方程的近似根、教学方法学生合作交流学习法、教具准备投影片三张第一张:(记作§2、8、2A)第二张:(记作§2、8、2B)第三张:(记作§2、8、2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可、但是在图象上我们很难准确地求出方程的解,所以要进行估算、本节课我们将学习利用二次函数的图象估计一元二次方程的根、数学《二次函数》优秀教案篇3一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

22.1 二次函数(第1课时)教学设计(一等奖)

22.1 二次函数(第1课时)教学设计(一等奖)

22.1二次函数(第1课时)教学设计一、教学目标:知识技能:1.探索并归纳二次函数的定义;2.能够表示简单变量之间的二次函数关系.数学思考:1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法;2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.解决问题:1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。

情感态度:1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.二、教学重点、难点:教学重点:1.经历探索和表示二次函数关系的过程,获得二次函数的定义。

2.能够表示简单变量之间的二次函数关系.教学难点:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.三、教学方法:教师引导——自主探究——合作交流。

四、教具:小黑板五、教学过程:1.温故知新,引出课题。

1、大家还记得我们学过哪些函数吗?2、它们是如何定义的?3、我们分别从哪些方面对它们进行了研究?2. 实际问题,列出函数关系式,探究新知问题1:已知正方体粉笔盒的棱长x,粉笔盒的表面积为y,探讨y与x有什么关系?问题2:多边形的对角线数d与边数n有什么关系?[1]问题3:某工厂一种产品的年产量是20 件,计划今后两年增加产量。

如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量将随计划所定的x的值而确定,y与x之间的关系应怎样表示?[2]学生活动:学生自主学习教材第4-5页,发现书中显性问题,找出隐含问题,提出新问题,并尝试解决,记录解决问题的方案。

二次函数2.1,2.2学案

二次函数2.1,2.2学案

2.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学设计:一、创设情境,导入新课问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?二、合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系:(1)面积y (cm2)与圆的半径x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、 先个体探求,尝试写出y 与x 之间的函数解析式。

(二)上述三个函数解析式具有哪些共同特征?1113x教师归纳总结:上述三个函数解析式经化简后都具y=ax ²+bx+c (a,b,c 是常数, a ≠0)的形式.板书:我们把形如y=ax ²+bx+c(其中a,b,C 是常数,a ≠0)的函数叫做二次函数称a 为二次项系数, b 为一次项系数,c 为常数项,请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项 (二)做一做1、 下列函数中,哪些是二次函数? (1)2x y = (2) 21xy -= (3) 122--=x x y (4))1(x x y -= (5))1)(1()1(2-+--=x x x y2、分别说出下列二次函数的二次项系数、一次项系数和常数项: (1)12+=x y (2)12732-+=x x y (3))1(2x x y -=三、例题示范,了解规律例1、已知二次函数 q px x y ++=2当x=1时,函数值是4;当x=2时,函数值是-5。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

《2.1 二次函数》优秀教案

《2.1 二次函数》优秀教案

《2.1 二次函数》教学设计一、教学目标1.通过三种情境探究,对比理解二次函数的概念和一般形式;2.能尝试结合生活实际,确定二次函数自变量的取值范围;3.通过课堂问题探究,能举出生活中有关二次函数的例子.二、教学重难点1.教学重点:通过情境探究,对比理解二次函数的概念和一般形式;2.教学难点:通过问题探究,能举出生活中有关二次函数的例子.三、教学流程教学程序教学活动学生活动设计意图(一)课题引入1.观看篮球比赛视频,视频中显示姚明命中三分球;2.视频结束,显现篮球的运动轨迹在一个平面直角坐标系中的图象.教师发问:在篮球运动过程中,h与t之间的关系是函数吗?学生回答以后,教师继续追问,你能说出函数的定义吗?它是一次函数吗?它是反比例函数吗?3.通过褚时健波折的一生引出本节课关于二次函数的问题情境.学生观看视频.学生自主思考教师提出的问题,并回顾已学的函数知识.让学生从视频中感受数学源于生活,而高于生活.一系列的追问可以让学生充分的思考,唤醒已有的认知.次函数。

a为二次项系数,ax2叫做二次项;b为一次项系数,bx叫做一次项;c为常数项。

思考:判断2233y x x=-+-的二次项,一次项系数和常数项。

学生充分感受知识的生成过程.(三)知识应用例1.下列函数中哪些是二次函数?为什么?(x是自变量)①2y ax bx c=++;②232s t=-;③2y x=;④21yx=;⑤2325y x x=++;⑥22(3)y x x=+-教师追问:判定一个函数是否为二次函数,有哪些注意事项?变式:1.27(3)my m x-=+(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是二次函数?例2.已知某一片“褚橙”果园为矩形,且该矩形的周长为400m,如果设该矩形果园的其中一边长为x米,请表示出这个矩形的面积s与这一边长x的关系.教师追问:在这个问题情境中,x的取值范围有何限制?二次函数自变量的取值范围是所有实数,但在实际问题中,它的自变量的取值范围会有一些限制.教师追问:对于最初的三个问题情境,自变量x的取值范围为多少?问题解决:我们知道2y ax bx c=++(a,b,c是常数,a≠)叫做二次函数的一般式,请举出生活中有关二次函数的例子。

2.1二次函数教案

2.1二次函数教案
学生小组讨论的环节,大家的表现还是不错的,能够围绕主题展开讨论,并提出自己的观点。但在引导和启发学生思考方面,我觉得自己还可以做得更好,比如可以设计一些更具挑战性的问题,让学生在解决问题的过程中锻炼思维。
总的来说,这次教学还是有所收获的,但也暴露出了一些问题。在今后的教学中,我会努力改进,尝试更多元化的教学方法,激发学生的学习兴趣,提高他们的实践能力。同时,关注每一个学生的成长,给予他们更多的关心和指导,让每个学生都能在数学学习中找到乐趣,不断提升自己。
举例:如何将实际问题转化为二次函数模型,并求解。
(4)二次函数图像与性质的综合应用:学生需要将所学的图像、性质等知识综合运用,解决较为复杂的问题;
举例:结合图像和性质,解决二次函数的交点、距离等综合问题。
在教学过程中,教师应针对这些重点和难点内容进行有针对性的讲解和练习,确保学生能够透彻理解并掌握二次函数的相关知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax²+bx+c(a≠0)的函数。它在数学和物理学中有着广泛的应用,如抛物线运动、优化问题等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次函数在物理学中的应用,以及它如何帮助我们解决抛物线运动的问题。
2.1二次函数教案
一、教学内容
2.1二次函数教案
本节课我们将深入探讨二次函数的相关概念及其性质。根据教材第二章第一节的内容,主要教学内容包括:
1.二次函数的定义:y=ax²+bx+c(a≠0);
2.二次函数图像的开口方向和顶点坐标;
3.二次函数的对称轴;
4.二次函数的增减性;
5.二次函数的最值问题。

初中数学《二次函数》课程教学设计以及思维导图

初中数学《二次函数》课程教学设计以及思维导图

初中数学《二次函数》课程教学设计以及思维导图1. 教学目标1.1 知识与技能- 理解二次函数的定义及其一般形式;- 学会用顶点式、标准式表示二次函数;- 掌握二次函数的图像特征,如开口方向、对称轴等;- 能够运用二次函数解决实际问题。

1.2 过程与方法- 通过实例认识二次函数的图像特点;- 学会利用配方法、公式法求解二次方程;- 学会利用二次函数的性质解决实际问题;- 培养学生的逻辑思维能力和解决问题的能力。

1.3 情感态度与价值观- 培养学生对数学的兴趣和自信心;- 培养学生积极思考、合作探讨的学习态度;- 培养学生运用数学知识解决实际问题的能力。

2. 教学内容2.1 二次函数的定义与一般形式- 二次函数的定义:形如`y=ax^2+bx+c(a≠0, a, b, c为常数)`的函数称为二次函数;- 二次函数的一般形式:`y=a(x-h)^2+k`,其中`(h, k)`为顶点坐标。

2.2 二次函数的图像特征- 开口方向:当`a>0`时,开口向上;当`a<0`时,开口向下;- 对称轴:直线`x=h`;- 顶点:坐标为`(h, k)`;- 增减性:当`a>0`时,`x<h`时函数值递减,`x>h`时函数值递增;当`a<0`时,`x<h`时函数值递增,`x>h`时函数值递减。

2.3 二次函数的性质- 顶点式与标准式的转化;- 开口方向、对称轴、顶点坐标之间的关系;- 图像与x轴的交点:解方程`ax^2+bx+c=0`。

2.4 实际问题举例- 利用二次函数解决生活中的最优化问题;- 利用二次函数解决几何问题。

3. 教学过程3.1 导入- 通过实例引入二次函数的概念,引导学生思考二次函数的特点;- 引导学生利用二次函数的一般形式和顶点式进行函数表达。

3.2 新课讲解- 讲解二次函数的图像特征,如开口方向、对称轴等;- 讲解二次函数的性质,如顶点式与标准式的转化等;- 结合实例讲解利用二次函数解决实际问题。

高效课堂《二次函数教案 (省一等奖)

高效课堂《二次函数教案 (省一等奖)

22.1 二次函数的图象和性质一、内容和内容解析1.内容二次函数的概念.2.内容解析本章是在学习了一次函数的根底上,继续进行函数的学习,是对函数知识的完善与提高,为高中继续学习函数作准备.学习一种函数包括以下根本内容:(1)通过具体实例认识这种函数;(2)探索这种函数的图象和性质;(3)利用这种函数解决实际问题;(4)探索这种函数与相应方程等的关系.本章“二次函数〞的学习也是从以上几个方面展开的.二次函数的概念是通过具体问题引入的,从现实生活或具体情境中抽象出数学问题,用数学符号建立函数中的数量关系和变化规律.这些内容的学习有助于学生初步形成建模思想,提高学习数学的兴趣和应用意识.基于以上分析,确定本节课的教学重点是:理解二次函数的定义.二、目标和目标解析1.目标(1)通过对实际问题的分析,体会二次函数的意义.(2)通过探索实际问题中两个变量之间的关系的过程,向学生渗透类比思想、建模思想,让学生体会数学与生活之间的联系.2.目标解析达成目标(1)的标志是:学生能够通过实例列出函数解析式,通过观察解析式的共同点归纳出二次函数的定义,并知道表示二次函数的解析式中字母的意义,能根据给出的函数解析式判断一个函数是不是二次函数.目标(2)表达在学生达成目标(1)的活动的过程中,达成的标志是:学生在正确描述出函数解析式的过程中,积极类比、思考,以自身的实际经验为根底,体会二次函数与生活之间的联系.三、教学问题诊断分析学生在思考y =6x 2,m =221n -n 21,y =20x 2+40x +20的共同特征时,发现函数的特征不容易统一,所以引导学生先回忆一次函数的定义,比照一次函数与以上等式的异同,发现以上等式右边为自变量的二次式,并发现二次项系数a ≠0是必要条件,而b ,c 为常数即可. 基于以上分析,本节课的教学难点是:从实例中归纳出二次函数的定义及二次函数的辨析.四、教学过程设计1.由实际生活引入二次函数多媒体显示第二十二章章前图等图片.问题1 花园的喷水池喷出的水,河上架起的拱桥都会形成一条曲线,这些曲线是否能用函数关系式来表示?它们的形状是怎样画出来的?师生活动:学生观察图片,并阅读章引言的内容.这些都是实际生活中经常见到的,这些都将在本章——二次函数中学习.设计意图:通过实际问题说明二次函数存在于生活中以及学习二次函数的必要性.2.通过实例,归纳二次函数的定义问题2 正方体的棱长为x ,那么正方体的外表积y 与x 之间有什么关系?师生活动:学生独立思考,正方体共有六个面,它们都是全等的正方形,边长为x ,一个面的面积为x 2,那么它们的具体关系为y =6x 2.设计意图:让学生体会引入二次函数概念的实际背景,并感受其学习的意义.问题3 n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系?师生活动:学生独立思考,并在组内交流,每一个队要和其他(n -1)个球队各比赛1场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数为m =n 21(n -1),即m =221n -n 21. 设计意图:让学生体会引入二次函数概念的实际背景,并感受其学习意义.问题4 某种产品现在的年产量是20 t ,方案今后两年增加产量.如果每一年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随方案所定的x 的值而确定,y 与x 之间的关系应该怎样表示?师生活动:学生独立思考,并在组内交流,这种产品的原产量是20 t ,一年后的产量是20(1+x ) t ,再经过一年后的产量是20(1+x )(1+x ) t ,即两年后的产量为y =20(1+x )2,即y=20x 2+40x +20.设计意图:让学生体会引入二次函数概念的现实背景,感受其学习意义,激发学生的学习兴趣.问题5 比照这三个函数关系式,能否发现这三个函数关系式的共同特点?师生活动:学生独立思考并发现:这三个函数都是用自变量的二次式表示的.师生共同总结出二次函数的概念:形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a ,b ,c 分别是函数解析式的二次项系数、一次项系数和常数项.如果有学生提出:形如y =ax 2+bx +c 的函数叫做二次函数,可追问:a ,b ,c 是否有限制?a ,b ,c 可否为0?学生独立思考,然后小组交流,最后达成共识:二次函数中的a ≠0,b ,c 可以为0.当a =0,b ≠0时,表示一次函数.设计意图:通过辨析,使学生更深刻地认识二次函数的概念,看一个函数是否为二次函数的关键是看二次项是否为0.3.稳固二次函数的定义例 某小区要修建一块矩形绿地,设矩形的长为x m ,宽为y m ,面积为S m 2(x >y ).(1)如果用18 m 的建筑材料来修建绿地的边缘(即周长),求S 与x 的函数关系,并求出x 的取值范围.(2)根据小区的规划要求,所修建的绿地面积必须是18 m 2,在满足(1)的条件下,矩形的长和宽各为多少米?师生活动:(1)学生独立思考并分析解题思路,通过矩形的周长和长,可以表示出矩形的宽,进而可以表示矩形的面积;当面积为18时,即S =18时,通过解方程即可求出长和宽.(2)学生独立完成解题过程,一名学生板书;(3)师生共同分析板书学生的解题过程.设计意图:提高学生分析问题、解决问题的能力,让学生在独立思考的根底上,参与对问题的讨论,锻炼学生的表达能力,培养学生的合作意识,引导学生感受数学的价值. 练习1.函数y =(m -2)x 2+mx -3(m 为常数).(1)当m __________时,这个函数为二次函数;(2)当m __________时,这个函数为一次函数.2.填空:(1)一个圆柱的高等于底面半径,那么它的外表积S 与半径r 之间的关系式是__________;(2)n支球队参加比赛,每两队之间进行两场比赛,那么比赛场次数m与球队数n之间的关系式是________________.师生活动:学生在练习本上完成,教师巡视,指导.然后小组交流并评价.设计意图:第1题是对函数概念认识的稳固.第2题是让学生在实际问题中感知二次函数存在的价值,提高学生分析问题、解决问题的能力.4.小结教师与学生一起回忆本节课所学主要内容,并请学生答复以下问题:(1)一个函数是否为二次函数的关键是什么?(2)实际问题中列二次函数解析式需要考虑什么?设计意图:通过小结,让学生梳理本节课所学内容,把握本节课的核心——二次函数的概念.5.布置作业教科书习题第1,2题.五、目标检测设计1.以下函数中,是二次函数的是( ).A.y=x2-1 B.y=x-1 C.y=8xD.y=28x设计意图:考查学生对二次函数概念的掌握.2.假设函数y=(a-1)x2+2x+a2-1是二次函数,那么a___________.设计意图:考查学生对二次函数概念的掌握.3.在一定条件下,假设物体运动的路段s(单位:m)与时间t(单位:s)之间的关系为s=5t2+2t,那么当t=4 s时,该物体所经过的路程为__________.设计意图:考查学生对二次函数概念的掌握.4.一个长方形的长是宽的2倍,这个长方形的面积与宽之间的函数关系式是_______.设计意图:考查学生对二次函数实际应用的掌握.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章二次函数
《二次函数》教学设计
白银市第二中学杜艳霞
本节通过对具体情境的分析,概括出二次函数的表达形式,明确二次函数的概念.通过例题和学生列举的实例可以丰富对二次函数的认识,理解二次函数的意义.
一、学习目标
1、结合具体实际问题和已有函数知识,发现并归纳出两个变量之间的关系;说出二次函数的表达式及其限制条件的必要性;
2、能根据一些具有实际意义的问题,确定二次函数表达式;能辨析、区分一个函数是不是二次函数;
3、结合例子说出表达式及自变量的范围并解决变式练习.
重难点:会叙述二次函数的定义及一般形式,并作出正确的判断;能用数学符号表示简单变量之间的二次函数关系.
二、学习过程
(一)知识准备
说说什么是函数?
我们学习过的函数

(二)研讨交流
1、研讨问题1:
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
(独立思考)
①说一说问题中有哪些变量?其中哪些是自变量?哪些因变量?
②设果园增种x棵橙子树,则果园共有棵橙子树,
这时平均每棵树结个橙子
③如果果园橙子的总产量为y个,请写出y与X之间的关系式:
y= .化简得:
y=
2、研讨问题2
银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储存转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)
(合作交流)
①本金:;
②一年到期后,利息:;本息和;
③两年到期后,本金;利
息:;
本息和;
④请写出y与x之间的关系式:
试试身手:
请用适当的函数解析式表示下列问题中的两个变量 y 与 x 之间的关系:
①某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为y= 即:y=
②用总长为60 m 的篱笆围成矩形场地,矩形面积y (m 2)与矩形一边长x (m)
之间是函数关系y = 即:
y =
③设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自
动按一年定期储蓄转存.如果存款是210元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).
3、研讨问题3:
上面三个问题中的函数解析式具有哪些共同的特征?
说一说二次函数的定义及一般形式呢?
一般地形
如 的函数叫做x 的二次函数.
友情提示: 二次函数的特点
(1)y=ax 2 --- (a ≠0,b=0,c=0).
(2)y=ax ²+c --- (a ≠0,b=0,c ≠0)
(3)y=ax ²+bx ---(a ≠0,b ≠0,c=0
再试身手:下列函数中哪些是二次函数?
( )
①y=ax ²+bx+c ②y=2x ² ③y=-5x ²+6
④ y=(x+1)(x-2) ⑤y=2x(x+1)²-2x ²
⑥y=232--x x ⑦x y 2=
⑧26x
y = 活学活用:
【例2】底面为正方形的长方体,已知底面边长是a ,长方体的高为5,体积
为v ,
(1)求v 与a 之间的函数表达式: , v 是a 的______函数,
其中二次项系数为: 一次项系数为: 常数
项为:
(2)当a=2时,v=
套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场每
件提价x 元,请你得出每天销售利润y 与售价的函数表达式:
化为一般式为: ,y 是x 的 函数.
(三)课堂练习
1.下列函数中,不是二次函数( )
A.162+=x y
B.26
1x y -= C.12+=x y )2)(1(-+=x x y D.
2 .函数 y=(m-n)x 2+mx+n 是二次函数的条件是( )
A .m 、n 为常数,且m ≠0
B .m 、n 为常数,且m ≠n
C .m 、n 为常数,且n ≠0
D .m 、n 可以为任何常数
3.如果函数1232++=+-kx x y k k 是二次函数,则k 的值是______
变式训练如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______
(四)全课小结
(五)课堂检测
1下列函数中:①y=3; ②y=2x ; ③y=22+x 2-x 3; ④m=3-t -t 2
⑤y=(x -1)(x+2) ⑥y= (x+1)2 ⑦y=2(x+3)2-2x 2 ⑧y=1-x 2是
二次函数的是_____
2若y =(m 2+m) 是二次函数,则m 的值为
3若函数y=(a —b )x 2+ a x+ b 是关于x 的二次函数,则( )
A.a ,b 为常数且a ≠0
B. a ,b 为常数且
b ≠0
C. a ,b 为常数且a ≠b
D. a ,b 可为任何实

套.据市场调查发现,这种服装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x元/套,请你得出每天销售利润 y 与售价x的函数表达
式:.
(六)能力提升
1.一个菱形的边长为xcm,它的面积为ycm .
(1)当一个内角为60°时,则y与x之间的函数关系式
(2)当一个内角为45°时,则 y与x之间的函数关系

2已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.。

相关文档
最新文档