2004年福建省福州市中考数学试卷
历年福建省福州市中考数学试题(含答案)
2016 年福州市初中毕业会考、高级中等学校招生考试数学试题 (全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A .0.7B .21 C .π D .-8 2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 2 5.不等式组⎩⎨⎧>->+0301x x 的解集是 A .x >-1 B .x >3 C .-1<x <3 D .x <36.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是第2题A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10.下表是某校合唱团成员的年龄分布 年龄/岁 13 14 15 16 频数 5 15 x 10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0 .20.(7分)化简:a -b -ba b a ++2)( 21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .x y O x yO x y O x y O22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN的面积;(3)当射线BN 交线段CD 于点F 时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。
2005--2011年福建省福州市中考数学试题及答案(7套)
新世纪教育网精选资料 版权所有 @新世纪教育网深圳市 2007 年初中毕业生学业考试数学试卷说明: 1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4 页.考试时间 90分钟,满分 100 分.2.本卷试题,考生一定在答题卡上按规定作答;凡在试卷、底稿纸上作答的,其答案一律无效.答题卡一定保持洁净,不可以折叠.3.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的地点上,将条形码粘贴好.4.本卷选择题 1- 10,每题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案;非选择题11- 23,答案(含作协助线)一定用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.5.考试结束,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共 10 小题,每题 3 分,共 30 分.每题给出4 个选项,此中只有一个是正确的)1. 2 的相反数是( )A.1 B. 21 D. 22C.2457302.今年参加我市初中毕业生学业考试的考生总数为人,这个数据用科学记数法表示为( )A. 0.4573 105B. 4.573 104C.4.573 104D. 4.573 1033.认真察看图 1 所示的两个物体,则它的俯视图是()正面A. B. C. D.图 14.以下图形中,不是 轴对称图形的是()..A.B. C. D.5.已知三角形的三边长分别是 3,8, x ;若 x 的值为偶数,则 x 的值有( )A. 6个 B. 5个C. 4个 D. 3个6.一件标价为 250 元的商品,若该商品按八折销售,则该商品的实质售价是()A. 180 元B. 200 元C. 240 元D. 250 元7.一数据2,1, 0 ,1, 2 的方差是()A. 1B. 2C. 3D. 48.若( a 2)2b30 , (a b)2007的是()AA. 0B. 1C. 1D. 2007D 31°a9.如 2,直a∥b,∠A的度数是()B70°b CA. 28B. 31C. 39D. 42210.在同向来角坐系中,函数y k(k0) 与 y kx k(k 0) 的象大概是()yxy yyx x x xA.B.C.D.第二部分非选择题填空(本共 5 小,每小 3 分,共 15分)11.一个口袋中有 4 个白球, 5 个球, 6 个黄球,每个球除色外都同样,匀后随机从袋中摸出一个球,个球是白球的概率是.12.分解因式:2x24x2.13.若式2x2y m与1x n y3是同,m n 的是.314.直角三角形斜是 6 ,以斜的中点心,斜上的中半径的的面是.15.老了一个算程序,入和出的数据以下表:入数据123456⋯出数据123456⋯2714233447那么,当入数据是7 ,出的数据是.解答(本共8 小,此中第16 5分,第 17 6分,第 18 6分,第 19 6分,第 20 7分,第 218 分,第 22 9 分,第 23 8 分,共 55 分)16.算:31 2 sin 452007π 032(x2) ≤ x 3 ①17.解不等式组,并把它的解集表示在数轴上:x x 1②3418.如图3,在梯形ABCD中,AD∥BC,EA⊥AD,M是 AE上一点,∠ BAE ∠ MCE ,∠MBE 45 .A D(1)求证:BE ME .M(2)若AB7,求 MC的长.B CE图 319.2007 年某市国际车展时期,某企业对观光本次车展嘉会的花费者进行了随机问卷检查,共发放1000 份检盘问卷,并所有回收.①依据检盘问卷的结果,将花费者年收入的状况整理后,制成表格以下:年收入(万元) 4.867.2910被检查的花费者人数(人)2005002007030②将花费者打算购置小车的状况整理后,作出频数散布直方图的一部分(如图4).注:每组包括最小值不包括最大值,且车价取整数.请你依据以上信息,回答以下问题.(1)依据①中信息可得,被检查花费者的年收入的众数是______万元.(2)请在图 4 中补全这个频数散布直方图.(3)打算购置价钱10万元以下小车的花费者人数占被检查花费者人数的百分比是______.人数 /人36020012040车价 /万元046810 12 1416图 420.如图 5,某货船以24海里/时的速度将一批重要物质从 A 处运往正东方向的M 处,在点 A 处测得某岛 C 在北偏东 60 的方向上.该货船航行30 分钟后抵达 B 处,此时再测得该岛在北偏东 30的方向上,已知在 C 岛四周 9 海里的地区内有暗礁.若持续向正东方向航行,该货船有无触礁危险?试说明原因.北C60°30°MA B图 521.A,B两地相距18公里,甲工程队要在A,B两地间铺设一条输送天然气管道,乙工程队要在 A, B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提早 3 周动工,结果两队同时达成任务,求甲、乙两工程队每周各铺设多少公里管道?22.如图 6,在平面直角坐标系中,正方形AOCB 的边长为 1,点 D 在x轴的正半轴上,且OD OB,BD交OC于点 E.(1)求∠BEC的度数.(2)求点E的坐标.(3)求过B,O,D三点的抛物线的分析式.(计算结果要求分母有理化.参照资料:把分母中的根号化去,叫分母有理化.比如:①22525555;5②11(21) 2 1;③15 ( 55 3 5 3 等21 (21)(21)33)( 5 3)2运算都是分母有理化)yB CEA O D x图 6237y x6与直线y x订交于A, B 两点..如图,在平面直角坐标系中,抛物线12142(1)求线段AB的长.(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?(3)如图 8,线段AB的垂直均分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出 OM , OC , OD 的长,并考证等式1 1 12 能否建立.OC2OD 2OMyyBDMBOxOCxAA图 7图 8(4)如图 9,在 Rt △ ABC 中,∠ ACB 90 ,CD AB ,垂足为 D ,设 BC a ,ACb ,1 11AB c . CD b ,试说明: a 2 b 2h 2 .CbhaAcD B图 9深圳市 2007 年初中毕业生学业考试数学试卷参照答案第一部分 选择题(此题共10 小题,每题3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10 答案DBAADBBCCC第二部分 非选择题填空题(此题共 5 小题,每题 3 分,共 15 分)题号11121314 154 2( x 1)257 答案15962解答题(此题共 7 小题,此中第 16题5分,第 17题6分,第 18 题6分,第 19题6分,第20题7分,第 21题 8分,第 22题 9分,第 23题 8分,共 55 分) 16.1317. 原不等式组的解集为x ≤ 118. (1) 证明略(2)∴MC=719. (1)6 (2)略(3)40 120 360 100% 52%100020.∵63 9因此货船持续向正东方向行驶无触礁危险.21.设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道( x1)公里依据题意 ,得18183 x x 1解得 x1 2 , x2 3 经查验 x1 2 , x2 3 都是原方程的根但 x23不切合题意 , 舍去∴x 1 3答 :甲工程队每周铺设管道 2 公里 , 则乙工程队每周铺设管道 3 公里.22. (1 )∴CBE114522.5 OBD OBC22∴ BEC90CBE 9022.567.5(2)点 E 的坐标是(0,2 2 )( 3)设过 B、O、D 三点的抛物线的分析式为y ax 2bx c∵B(-1 ,1),O(0,0),D(2, 0)a b c1∴ c 02a2b c0解得, a 1 2 ,b22,c0因此所求的抛物线的分析式为y (1 2 )x 2( 22)x23.( 1)∴ A( -4 , -2 ), B( 6, 3)分别过 A、 B 两点作AE x 轴, BF y 轴,垂足分别为E、 F ∴ AB=OA+OB422 2 6 232 5 5(2)设扇形的半径为x ,则弧长为 (5 52x),扇形的面积为y则 y1 (552 x )x255x 5 5 ) 2 1252 x2( x164∵ a1∴当 x55 y 最大125时,函数有最大值 164( 3)过点 A 作 AE ⊥ x 轴,垂足为点 E∵ CD 垂直均分 AB ,点 M 为垂足∴ OM1AB OA5 52 55222∵ AEOOMC , EOACOM∴△ AEO ∽△ CMO∴OEAO∴42 5 ∴ CO5 2 5 1 5 OMCO5 CO2 4 42同理可得OD 52∴1 1(4)2 ( 2)220 4OC 2OD 2 5525 514∴OM 25111 ∴2 OD 2OM 2 OC (4)等式 11 1a 2b 2h 2 建立.原因以下:∵ACB 90 , CD AB∴ 1 ab1AB hAB 2a 2b 222 ∴ ab c h∴ a 2 b 2 c 2 h 2∴ a 2 b 2( a 2 b 2 )h 2∴a 2b 2 (a 2 b 2 )h 22b 2 h 2a 2b 2 h 2a22∴1 a bh 22 b 2a∴111h2 a 2b2∴111a2 b 2h2。
历年福建省福州市中考试题(含答案)
2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题!毕业学校姓名考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A.0.7 B.21C.πD.-82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A.B.C.D.3.如图,直线a、b被直线C所截,∠1和∠2的位置关系是A.同位角B.内错角C.同旁内角D.对顶角4.下列算式中,结果等于a6的是A.a4+a2B.a2+a2+a2C.a4·a2D.a2·a2·a25.不等式组⎩⎨⎧>->+31xx的解集是A.x>-1 B.x>3 C.-1<x<3 D.x<36.下列说法中,正确的是A.不可能事件发生的概率为0B.随机事件发生的概率为21C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l ) B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两点,P是⌒AB上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是第2题A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10年龄/岁 13 14 15 16 频数 5 15 x 10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0 .20.(7分)化简:a -b -ba b a ++2)( 21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .x y O x yO x y O x y O22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN的面积;(3)当射线BN 交线段CD 于点F 时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。
2004年福建龙岩中考数学试题及答案
2004年龙岩市初中毕业、升学考试数学试题(满分:150分 考试时间120分钟)一、填空题(本题共12小题,每小题3分,计36分.) 1. 3-的相反数是__________. 2. 因式分解:2x x -=__________.3. 2004年4月6日《闽西日报》刊载:龙岩市统计局公布去年我市各级各类学校在校生约为620000人,用科学记数法表示为__________人.4. 当x = 时,分式22x x -+的值为零.5.函数y =x 的取值范围是__________.6. 如图所示,//a b ,c 与a 、b 相交,若150,∠=︒,则2∠=__________度.7. 正八边形的每一个外角等于__________度.8. 小明的身高是 1.6m ,他的影长是2m ,同一时刻旗杆的影长是15m ,则旗杆的高是__________m.9.装修工人拟用某种材料包装圆柱体的石柱侧面,现量得石柱底面周长约为0.9m ,柱高约为3m ,那么至少需用该材料m 2.10. 把一块周长为20cm 的三角形铁片裁成四块形状、大小完全相同的小三角形铁片(如图示),则每块小三角形铁片的周长为 cm.11. 如图,厂房屋顶人字架(等腰三角形)的跨度为12m ,26A ∠=, 则中柱BC (C 为底边中点)的长约为 m.(精确到0.01m )12. 若a 、b 满足2a b b a +=,则22224a ab b a ab b++++的值为 . 二、选择题(本题共8小题,每小题4分,计32分;每小题都给出四个备选答案,其中有且只有一个是正确的,把正确答案的代号填入下表中)13. 下列各式中,运算正确的是(A )426x x x += (B 2=(C )2= (D )624x x x ÷=14. 若矩形的面积S 为定值,矩形的长为a ,宽为b ,则b 关于a 的函数图象大致是1 2a cb(第6题)(第10题)(第11题)15. 某商品标价1200元,打八折售出后仍盈利100元,则该商品进价是(A )800元 (B )860元 (C )900元 (D )960元16.计算1200401122⎛⎫-+- ⎪⎝⎭())的结果为(A )0 (B )1 (C ) -3 (D )5217. 顺次连结等腰梯形各边中点所得四边形是(A )梯形 (B )矩形 (C )菱形 (D )正方形18. 商店里出售下列形状的地砖:○1正三角形 ○2正方形 ○3正五边形 ○4正六边形,只选购其中一种地砖镶嵌地面,可供选择的地砖共有(A )1种 (B )2种 (C )3种 (D )4种 19. 在半径为2a 的⊙O 中,弦AB长为,则AOB ∠为(A )90(B )120(C )135(D )15019. 如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8,若弦MN 的两端在圆周上滑动时,始终与AB 相交,记点A 、B 到 MN 的距离分别为h 1、h 2,则| h 1- h 2|等于(A )5 (B )6 (C )7 (D )8 三、解答题:(共大题共8小题,计82分)21. (9分)先化简,再求值:151222x x x -÷+---()(),其中1x =. 22. (9分)今年4月25日,我市举行龙岩冠豸山机场首航仪式,利用这一契机,推出“冠豸山绿色之旅” 等多项旅游项目.“五一”这天,对连城八家旅行社 中部分游客的年龄(年龄取整数)进行了抽样统计, 经整理后分成六组,并绘制成频率分布直方图(如 图示).已知从左到右依次为1~6小组的频率分别 是0.08 、0.20、0.32、0.24、0.12 、0.04,第1小 组的频数为8,请结合图形回答下列问题: (1)这次抽样的样本容量是 ;(2)样本中年龄的中位数落在第 小组内; (3)“五一”这天,若到连城豸的游客约有5000人,请你用学过的统计知识去估计20.5)~50.5年龄段的 游客约有 人.(A )(B )(C ) (D ) (第20题)(第22题)23. (8分)如图,ABCD 是一张矩形纸片,点O 为矩形对角线的交点.直线MN 经过点O 交AD 于M ,交BC 于N .操作:先沿直线MN 剪开,并将直角梯形MNCD 绕点O 旋 转 度后(填入一个你认为正确的序号:○190; ○2180 ;○3270 ;○4360),恰与直角梯形NMAB 完全重合;再将重合后的直角梯形MNCD 以直线MN 为轴翻转180后所得到的图形是下列中的 .(填写正确图形的代号)24.(1n (n >1)的代数式表示:a = ,b = ,c = .(2)猜想:以a 、b 、c 为边的三角形是否为直角三角形?并证明你的猜想.25. (10分)已知关于x 的方程2244(1)10x k x k -+++=的两实根x 1、x 2满足:| x 1|+| x 2|=2,试求k 的值.26. (10分)为加强公民节约用水,减少污水排放的环保意识,某城市制定了以下用水收费标准(含城市污水处理费):每户每月用水未超过8 m 3时,按1.2元/ m 3收费;每户每月用水超过8 m 3时,其中的8 m 3仍按原标准收费,超过部分按1.9元/m3收费.设某户每月用水量为x (m 3),应交水费为y (元).(1)分别写出用水未超过8m 3和超过8m3时,y 与x 之间的函数关系式;(2)某用户五月份共交水费13.4元,问该用户五月份用水多少m 3.27. (12分)如图,已知⊙O 1为△ABC 的外接圆,以BC 为直径作⊙O 2,交AB 的延长线于D ,连结CD ,且∠BCD =∠A . (1)求证:CD 为⊙O 1的切线;(2)如果CD =2,AB =3,试求⊙O 1的直径.28. (14分)如图,已知抛物线C :211322y x x =-++与x 轴交于点A 、B 两点,过定点的直线l :12(0)y x a a=-≠交x 轴于点Q . CD(第23题)(A ) (B ) (C ) (D )(第27题)(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;(2)写出点A、B的坐标:A(,)、B(,)及点Q的坐标;Q(,)(用含a的代数式表示);并依点Q坐标的变化确定:当时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;(2)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a(第28题)2004年龙岩市初中毕业、升学考试参考答案及评分标准一、填空题(每小题3分,共36分)1. 3;2. x (x -1)( x +1);3. 6.2×105;4. 2;5. x ≥-2;6. 130;7. 45;8. 12;9. 2.7; 10. 10; 11.2.93; 12. 12二、选择题(本大题共4小题,计32分)三、解答题(本大题共8小题,计82分)21. (9分)解:原式=23922x x x x --÷--………………………………………………(2分) =()()32233x x x x x --⨯--+ =13x +…………………………………………………………(6分)当1x =时, 原式2==(9分) 22. (9分)(1)100 (2)3 (3)3800……………………………………(每空3分)23. (8分)○2; (D )………………………………………………………(每空4分)24. (10分)(1)n 2-1 2 n n 2+1…………………………………(每空2分,计6分) (2)答:以a 、b 、c 为边的三角形是直角三角形…………………………………(7分)证明:∵a 2+ b 2=(n 2-1)2+4 n 2= n 4-2 n 2+1+4 n 2= n 4+2 n 2+1=( n 2+1)2=c 2∴以a 、b 、c 为边的三角形是直角三角形……………………………(10分) 25. (10分)解法一:依题意,2121(1)04x x k =+> ,所以x 1与x 2同号……(2分) 1. 当x 1>0,x 2>0时,有x 1+ x 2=2,即k +1=2,k =1无解。
2004年数学中考真题
[2004]10.如图4,一个机器人从O达A 1点,再向正北方向走6米到达A 2走9米到达A 3点,在想正南方向走12米到达A 4向正东方向走15米到达A 5机器人走到A 5时,离O 点的距离是米。
[2004]2.在七巧板拼图中(如图1),∠ABC=。
[2004]12.如果要用正三角形和正方形两种图形进行密铺,那么至少..需要()。
(A )三个正三角形,两个正方形(B )两个正三角形,三个正方形 (C )两个正三角形,两个正方形(D )三个正三角形,三个正方形 图1[2004]21.(本题满分8分)如图6,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题(只需写出一种情况)。
①AE=AD ,②AB=AC ,③OB=OC ,④∠B=∠C 已知: 求证: 证明: 图6[2004]8.顺次连接一个任意四边形四边的中点,得到一个四边形。
[2004]26.某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10m 、20m 的梯形空地上种植花木(如图10—1)。
(1)他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后(图10—1中阴影部分),共花了160元,请计算种满△BMC 地带所需的费用。
图10—1ADECBO(2)若其余地带要种的有玫瑰和茉莉花两种花木可拱选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?(3)若梯形ABCD 为等腰梯形,面积不变(如图10—2),请设计一种花坛图案,即在梯形内找到一点P ,使得△APB ≌△DPC 且S △APD =S △B PC ,并说出你的理由。
图10—2[2004]9.图3是两张全等的图案,它们完全重合地叠放在一起,按住 下面的图案不动,将上面图案绕点O 顺时针旋转,至少旋转 度角后,两张图案....构成的图形是中心对称图形。
图3[2004]15.下列左边的主视图和俯视图对应右边的哪个物体?()(A )(B )(C )(D )主视图俯视图ADCB10m20m[2004]14.两个完全相同的长方体的长、宽、高分别为5cm 、4cm 、3cm ,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积最大是()。
2005--2011年福建省福州市中考数学试题及答案(7套)
2008年无锡市初中毕业暨高级中等学校招生考试数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有12小题,15空, 每空2分,共30分.请把结果直接填在题中的横线上.) 1.6-的相反数是 ,16的算术平方根是 . 2.分解因式:22b b -=.3.设一元二次方程2730x x -+=的两个实数根分别为1x 和2x , 则12x x +=,12x x =.4.截至5月30日12时止,全国共接受国内外社会各界捐赠的抗 震救灾款物合计约3990000万元,这个数据用科学记数法可表示为 万元. 5.函数21y x =-中自变量x 的取值范围是 ; 函数24y x =-x 的取值范围是.6.若反比例函数ky x=的图象经过点(12--,),则k 的值为.7.一射击运动员一次射击练习的成绩是(单位:环):7,10,9,9, 10,这位运动员这次射击成绩的平均数是 环. 8.五边形的内角和为 . 9.如图,OB OC =,80B ∠=,则AOD ∠=.10.如图,CD AB ⊥于E ,若60B ∠=,则A ∠=.11.已知平面上四点(00)A ,,(100)B ,,(106)C ,,(06)D ,, 直线32y mx m =-+将四边形ABCD 分成面积相等的两部分,则m 的值为 .12.已知:如图,边长为a 的正ABC △内有一边长为b 的内接正 DEF △,则AEF △的内切圆半径为 .二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)13.计算22()ab ab的结果为( ) A.b B .aC.1D.1b14.不等式112x ->的解集是( ) (第9题)(第10题)(第12题)A.12x >-B.2x >- C.2x <- D.12x <-15.下面四个图案中,是轴对称图形但不是旋转对称图形的是( )A . B.C .D .16.如图,OAB △绕点O 逆时针旋转80到OCD △的位置, 已知45AOB ∠=,则AOD ∠等于( ) A.55 B.45 C.40 D.3517.下列事件中的必然事件是( ) A.2008年奥运会在北京举行B.一打开电视机就看到奥运圣火传递的画面 C.2008年奥运会开幕式当天,北京的天气晴朗D.全世界均在白天看到北京奥运会开幕式的实况直播18.如图,E F G H ,,,分别为正方形ABCD 的边AB ,BC ,CD ,DA 上的点,且13AE BF CG DH AB ====,则图中阴影部分的面积 与正方形ABCD 的面积之比为( )A.25B.49C.12D.35三、认真答一答(本大题共有8小题,共64分,解答需写出必要的文字说明、演算步骤或证明过程.) 19.解答下列各题(本题有3小题,第(1),(2)小题每题5分,第(3)小题3分,共13分.) (101232tan 60(12)--+-+.(2)先化简,再求值:244(2)24x x x x -++-,其中x =(3)如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形)(第16题)(第18题)20.(本小题满分6分)如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试说明:ABF EAD △∽△.21.(本小题满分7分)如图,四边形ABCD 中,AB CD ∥,AC 平分BAD ∠,CE AD ∥交AB 于E . (1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断ABC △的形状,并说明理由.22.(本小题满分6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.23.(本小题满分6分)小明所在学校初三学生综合素质评定分A B C D ,,,四个等第,为了了解评定情况,小明随机调查了初注:等第A,B,C,D分别代表优秀、良好、合格、不合格.(1)请在下面给出的图中画出这30名学生综合素质评定等第的频数条形统计图,并计算其中等第达到良好以上(含良好)的频率.(2)已知初三学生学号是从3001开始,按由小到大顺序排列的连续整数,请你计算这30名学生学号的中位数,并运用中位数的知识来估计这次初三学生评定等第达到良好以上(含良好)的人数.24.(本小题满分8分)已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40”,那么满足这一条件,且彼此不全等的三角形共有个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.25.(本小题满分9分)在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m 和乙种板材120002m 的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m 或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所图1问:这400间板房最多能安置多少灾民?26.(本小题满分9分)已知抛物线22y ax x c =-+与它的对称轴相交于点(14)A -,,与y 轴交于C ,与x 轴正半轴交于B . (1)求这条抛物线的函数关系式; (2)设直线AC 交x 轴于D P ,是线段AD 上一动点(P 点异于A D ,),过P 作PE x ∥轴交直线AB 于E ,过E 作EF x ⊥轴于F ,求当四边形OPEF 的面积等于72时点P 的坐标.四、实践与探索(本大题共2小题,满分18分) 27.(本小题满分10分)如图,已知点A 从(10),出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形OABC ,使点B C ,在第一象限内,且60AOC ∠=;以(03)P ,为圆心,PC 为半径作圆.设点A 运动了t 秒,求:(1)点C 的坐标(用含t 的代数式表示);(2)当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.28.(本小题满分8分)一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)2008年无锡市初中毕业高级中等学校招生考试数学试题参考答案及评分说明一、细心填一填 1.6,42.(2)b b -3.7,34.63.9910⨯5.1x ≠,2x ≥6.2 7.9 8.540 9.20 10.30 11.1212.3()6a b - 二、精心选一选 13.B 14.C 15.D 16.D 17.A 18.A三、认真答一答19.(1)解:原式31=- ·················· (4分)4=. ···································· (5分)(2)解:原式22(2)11(2)(2)(2)(4)2(2)22x x x x x x -=+=-+=--.············································································································· (4分) 当x =11(54)22=-=. ··························································· (5分) (3)如图所示(答案不唯一) ···································································· (3分) 20.解法一:矩形ABCD 中,AB CD ∥,90D ∠=, ······························· (2分)BAF AED ∴∠=∠. ················································································ (4分) BF AE ⊥,90AFB ∴∠=,AFB D ∴∠=∠. ········································· (5分)图1第19题(3)ABF EAD ∴△∽△. ·············································································· (6分)解法二:矩形ABCD 中,90BAD D ∠=∠=. ········································· (2分)90BAF EAD ∴∠+∠=,90EAD AED ∠+∠=,BAF AED ∴∠=∠. ·········· (4分)(下同)21.(1)AB CD ∥,即AE CD ∥,又CE AD ∥,∴四边形AECD 是平行四边形. ············································································································· (2分) AC 平分BAD ∠,CAE CAD ∴∠=∠, ···················································· (3分) 又AD CE ∥,ACE CAD ∴∠=∠,ACE CAE ∴∠=∠,AE CE ∴=,∴四边形AECD 是菱形. ·········································································· (4分) (2)证法一:E 是AB 中点,AE BE ∴=. 又AE CE =,BE CE ∴=,B BCE ∴∠=∠, ··········································· (5分)180B BCA BAC ∠+∠+∠=,································································ (6分) 22180BCE ACE ∴∠+∠=,90BCE ACE ∴∠+∠=.即90ACB ∠=,ABC ∴△是直角三角形. ··················································· (7分) 证法二:连DE ,则DE AC ⊥,且平分AC , ·············································· (5分) 设DE 交AC 于F .E 是AB 的中点,EF BC ∴∥. ····························································· (6分) BC AC ∴⊥,ABC ∴△是直角三角形. ······················································ (7分) 22.解:列表如下:或列树状图:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,7 8 9 10 11 121 2 3 4 5 6 6 7 8 9 10 111 2 3 4 5 6 5 6 7 8 9 101 2 3 4 5 6456点数之和 小晶 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6123点数之和 小晶 2 3 4 5 6 7 3 4 5 6 7 84 5 6 7 8 9小红小红故P (和为6)536=,P (和为7)636=. P (和为6)P <(和为7),∴小红获胜的概率大.评分说明:列表正确或画对树状图得3分,两个概率每求对一个得1分,比较后得出结论再得1分. 23.解:(1)评定等第为A 的有8人,等第为B 的有14人,等第为C 的有7人,等第为D 的有1人,频数条形统计图如图所示. ∴等第达到良好以上的有22人,其频率为22113015=. (2)这30个学生学号的中位数是3117,故初三年级约有学生(31173001)21233-⨯+=人, 11233170.915⨯≈, ∴故该校初三年级综合素质评定达到良好以上的人数估计有171人.评分说明:第(1)小题画图正确得2分,频率算对得1分;第(2)小题中位数算对得1分,估计出学生总数得1分,最后得出结论得1分. 24.解:(1)如图1; ·········· (3分) (2)如图2; ······················ (6分)(3)4. ····························· (8分)25.解:(1)设安排x 人生产甲种板材, 则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,. ···················································· (6分)解得300m ≥. ······················································································· (7分)又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························· (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ·················································· (9分)26.解:(1)由题意,知点(14)A -,是抛物线的顶点, 21242aa c -⎧-=⎪∴⎨⎪-=-+⎩,,···················································································· (2分) 1a ∴=,3c =-,∴抛物线的函数关系式为223y x x =--. ·························· (3分)2cm 1cm40° 2cm1cm 40° 图1图2(2)由(1)知,点C 的坐标是(03)-,.设直线AC 的函数关系式为y kx b =+,则34b k b =-⎧⎨-=+⎩,,3b ∴=-,1k =-,3y x ∴=--. ········································ (4分)由2230y x x =--=,得11x =-,23x =,∴点B 的坐标是(30),. 设直线AB 的函数关系式是y mx n =+,则304m n m n +=⎧⎨+=-⎩,.解得2m =,6n =-.∴直线AB 的函数关系式是26y x =-. ······················································· (5分) 设P 点坐标为()P P x y ,,则3P P y x =--.PE x ∥轴,E ∴点的纵坐标也是3P x --.设E 点坐标为()E E x y ,,点E 在直线AB 上,326P E x x ∴--=-,32PE x x -∴=. ·························· (6分) EF x ⊥轴,F ∴点的坐标为302P x -⎛⎫⎪⎝⎭,,332P E P x PE x x -∴=-=,32Px OF -=,(3)3P P EF x x =---=+, 333117()(3)22222P P POPEF x x S PE OF EF x --⎛⎫∴=+=++= ⎪⎝⎭四边形,·············· (7分) 22320P P x x +-=,2P x ∴=-,12P x =,当0y =时,3x =-, 而321-<-<,1312-<<, P ∴点坐标为1722⎛⎫- ⎪⎝⎭,和(21)--,. ··························································· (9分) 四、实践与探索27.解:(1)过C 作CD x ⊥轴于D , 1OA t =+,1OC t ∴=+,1cos 602t OD OC +∴==,3(1)sin 602t DC OC +==, ∴点C 的坐标为1)22t t ⎛⎫++ ⎪ ⎪⎝⎭,. ············ (2分)新世纪教育网 精品资料 版权所有@新世纪教育网(2)①当P 与OC 相切时(如图1),切点为C ,此时PC OC ⊥,cos30OC OP ∴=,313t ∴+=,1t ∴=-. ················· (4分) ②当P 与OA ,即与x 轴相切时(如图2),则切点为O ,PC OP =,过P 作PE OC ⊥于E ,则12OE OC =, ····················································· (5分) 133cos3022tOP +∴==,1t ∴=. ··············································· (7分) ③当P 与AB 所在直线相切时(如图3),设切点为F ,PF 交OC 于G,则PF OC ⊥,FG CD ∴==, 3(1)sin 30t PC PF OP +∴==+. ························································ (8分) 过C 作CH y ⊥轴于H ,则222PH CH PC +=,22213(1)33(1)322t t t ⎫⎛+++⎛⎫∴+=⎪ ⎪⎪ ⎝⎭⎝⎭⎝⎭, 化简,得2(1)183(1)270t t +-++=, 解得19366t +=9310t =-<, 1t ∴=.∴所求t的值是12-,1和1. ··································· (10分) 28.解:(1)将图1中的正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为1302312=<,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求.················· (3分)(图案设计不唯一)(2)将原正方形分割成如图2中的3个矩形,使得BE DG CG ==.将每个装置安装在这些矩形的对角线交点处,设AE x =,则30ED x =-,15DH =.由BE DG =,得22223015(30)x x +=+-,图1 y A FCB P OGH新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
2005--2011年福建省福州市中考数学试题及答案(7套)
湘潭市2006年初中毕业学业考试数 学 试 卷亲爱的同学,你好!今天是展示你的才能的时候了,请你仔细审题,认真答题,发挥自己的正常水平,轻松一点,相信自己的实力!注意:本试卷共八个版面,考试时间:120分钟;满分100分. 一、填空题(本题共10个小题,每小题2分,满分20分) 1. 的相反数是3-. 2.分解因式:21_______a -=.3.小明设计了一个关于实数的运算程序如下,当输入x 的值为2时,则输出的数值为 .4.六一儿童节期间,佳明眼镜店开展优惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价.5.如图,在Rt ABC △中,9010C BC ==∠,米,15A =∠, 用科学计算器算得AB 的长约为 米.(精确到0.1米)6.如图,菱形ABCD 的对角线AC BD ,交于点O ,若3cm AO =,4cm BO =,则菱形ABCD 的面积是 2cm .7.用同一种正多边形地板砖密铺地面,为铺满地面而不重叠,那么这种正多边形的地板砖可以是正 边形.(只需写出一种即可)8.由一个圆平均分成8个相等扇形的转盘,每个扇形内标有如图数字,固定指针,转动转盘,则指针指到负数的概率是 .9.如图,在半径为2的O 中,弦AB 的长为23,则_______AOB =∠.10.如果一组数据246x y ,,,,的平均数为4.8,那么x y ,的平均数为 . 输入x 2x 1- 输出原价: 元六一节8折优惠,现价:160元(第5题图)AB C15(第6题图)AB CDO(第8题图)1- 2- 54- 3 21 (第9题图)ABO二、选择题(本大题共10个小题,每小题2分,满分20分)下列每小题都给出了标号为A,B,C,D四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或多选的不得分,请将所选答案的标号填写在下面的表格内.题号 11 12 13 14 15 16 17 18 19 20 答案11.保护耕地、惠及子孙,国家将18亿亩耕地定为“红色警示线”.2005年底,国家公布我国实有耕地面积为18.35亿亩,这意味着珍惜、保护耕地刻不容缓.请将2005年国家公布的我国实有耕地面积用科学记数法表示为( ) A.818.3510⨯亩 B.91.83510⨯亩 C.81.83510⨯亩D.100.183510⨯亩12.下列结论与式子正确的是( )A.()33a a -=B.不等式组5040x x >⎧⎨+⎩≥的解集为04x <≤C.平行四边形是轴对称图形D.三角形的中位线等于第三边的一半13.分式方程532x x =-的解是( ) A.3- B.3 C.2D.0 14.数学老师对小玲同学在参加高考前的5次数学模拟考试成绩进行统计分析,判断小玲的数学成绩是否稳定,于是数学老师需要知道小玲这5次数学成绩的( ) A.平均数 B.众数 C.频数 D.方差15.已知三角形的两边的长分别为2cm 和7cm ,第三边的长为cm c ,则c 的取值范围是( )A.27c << B.79c << C.57c << D.59c << 16.如右图是一组立方块,你从上面看到的视图是( )17.反比例函数的图象在第一象限内经过点A ,过点A分别向x 轴,y 轴引垂线,垂足分别为P Q ,,已知四边形APOQ的面积为4,那么这个反比例函数的解析式为() A.4yx=B.4x y =C.4y x = D.2y x=(第16题图)A. B. C. D. (第17题图)AQO Pxy18.下列命题中真命题的个数是( )①两个相似多边形面积之比等于相似比的平方;②两个相似三角形的对应高之比等于它们的相似比;③在ABC △与A B C '''△中,AB ACA A AB A C'=='''',∠∠,那么ABC A B C '''△∽△; ④已知ABC △及位似中心O ,能够作一个且只能作一个三角形,使位似比为0.5.A.1个 B.2个 C.3个 D.4个 19.下列说法正确的是( )A.一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩; B.事件发生的频率就是它的概率;C.质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%;D.成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件.20.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是25400cm ,设金色纸边的宽为cm x ,那么x 满足的方程是( ) A.213014000x x +-= B.2653500x x +-= C.213014000x x --=D.2653500x x --=三、解答题(本题共8个小题,其中21~24题每小题6分,25题,26题每小题8分,27题,28题每小题10分,满分60分) 21.(本题满分6分)先化简,再求值:()()2221a b a b a +-+-,其中122a b =-=,.22.(本题满分6分)如图是一个等腰梯形状的水渠的横切面图,已知渠道底宽2BC =米,渠底与渠腰的夹角120BCD = ∠,渠腰5CD =米,求水渠的上口AD 的长.(第20题图)(第22题图)AB CD23.(本题满分6分)上面是用棋子摆成的“H”字.(1)摆成第一个“H”字需要 个棋子,第二个“H”字需要棋子 个; (2)按这样的规律摆下去,摆成第10个“H”字需要多少个棋子?第n 个呢?24.(本题满分6分)同学们在小学阶段做过这样的折纸游戏:把一个长方形纸片经过折叠可以得到新的四边形.如图(1),将长方形ABCD 沿DE 折叠,使点A 与点F 重合,再沿EF 剪开,即得图(2)中的四边形DAEF .求证:四边形DAEF 为正方形.25.(本题满分8分)小刚、小明一起去精品文具店买同种钢笔和同种练习本,根据下面的对话解答问题: 小刚:阿姨,我买3支钢笔,2个练习本,共需多少钱? 售货员:刚好19元.小明:阿姨,那我买1支钢笔,3个练习本,需多少钱呢? 售货员:正好需11元.(1)求出1支钢笔和1个练习本各需多少钱? (2)小明现有20元钱,需买1支钢笔,还想买一些练习本,那么他最多可买练习本多少个?图(1) A BCD E F图(2)A D E F ……① ② ③26.(本题满分8分)月群中学为了解2006届初中毕业学生体能素质情况,进行了抽样调查,下表是该校九年级(一)班在体能素质测试中的得分表.(分数以整分计,满分30分,18分以下为不合格,24~30分为优秀)分数段 18分以下 18~20分 21~23分 24~26 分 27~29分 30分 人数 4 7 18 12 8 1认真阅读,解答下列问题:(1)估计这个班的学生体能素质成绩的中位数落在哪个分数段内;(2)根据表中相关统计量及相应数据,结合你所学的统计知识,合理制作一种统计图; (3)根据统计图,你还得到了什么信息?并结合你所在班的实际情况,谈谈自己的感想.(字数30个字以内)27.(本题满分10分)某中学要印制期末考试卷,甲印刷厂提出:每套试卷收0.6元印刷费,另收400元制版费;乙印刷厂提出:每套试卷收1元印刷费,不再收取制版费.(1)分别写出两个厂的收费y (元)与印刷数量x (套)之间的函数关系式; (2)请在下面的直角坐标系中,分别作出(1)中两个函数所在点的直线;并根据图象回答:印800套试卷,选择哪家印刷厂合算?若学校有学生2000人,为保证每个学生均有试卷,那么学校至少要付出印刷费多少元? (3)从图象上你还获得了哪些信息.(写一条与(2)中不同的信息即可)精 品 文 具 店 400 800 1200 1600 2000 2400 2800 400800 1200 1600 2000 O ()x 套()y 元28.(本题满分10分) 已知:如图,抛物线2323333y x x =--+的图象与x 轴分别交于A B ,两点,与y 轴交于C 点,M 经过原点O 及点A C ,,点D 是劣弧 OA 上一动点(D 点与A O ,不重合).(1)求抛物线的顶点E 的坐标;(2)求M 的面积;(3)连CD 交AO 于点F ,延长CD 至G ,使2FG =,试探究当点D 运动到何处时,直线GA 与M 相切,并请说明理由.湘潭市2006年初中毕业学业考试数学参考答案及评分标准一、填空题(本题共10个小题,每小题2分,满分20分)1.3, 2.()()11a a +-, 3.1, 4.200, 5.38.6, 6.24, 7.三(或四,或六),(说明:填成正三角形,正方形不扣分), 8.38, 9.120, 10.6.二、选择题(本题共10个小题,每小题2分,满分20分)题号 11 12 13 14 15 16 17 18 19 20 答案 B D A D D C A C C B三、解答题(本题共8个小题,其中21~24题每小题6分,25题,26题每小题8分,27题,28题每小题10分,满分60分) 21.(本题满分6分)解:原式222222a ab b ab a a =++--- ··············································· 2分 22b a =- ············································································ 4分 将122a b =-=,代入得 原式21222⎛⎫=-⨯-⎪⎝⎭········································································· 5分 yE C MAFG D O x B5= ·························································································· 6分 22.(本题满分6分)解:过C 和B 分别作CE AD BF AD ⊥⊥, ·········· 1分120BCD =∠30ECD ∴= ∠ ··············································· 2分115 2.522ED CD ∴==⨯= ······························· 4分∴四边形ABCD 为等腰梯形 2.5AF ED ∴== ············································································· 5分 2EF BC ==2.52 2.57AD DE EF FA ∴=++=++=(米) ··································· 6分23.(本题满分6分) 解:(1)7,12 ·································································· 2分(每空1分) (2)第10个时,棋子个数为510252⨯+=(个) ·································· 4分 第n 个时,棋子个数为()52n +个 ························································· 6分 24.(本题满分6分)解: 矩形ABCD 沿图(1)中DE 折叠,使点A 与点F 重合 DAE ∴△关于直线DE 做了轴反射,得DFE △ DA DF DFE A ∴==,∠∠ ······························································· 2分 四边形ABCD 是矩形90ADF A DFE ∴=== ∠∠∠ ·························································· 4分∴四边形DAEF 为矩形 ······································································ 5分 DA DF =∴矩形DAEF 为正方形 ······································································ 6分 (其他证法参照计分)25.(本题满分8分)解:(1)设买一支钢笔要x 元,买一个练习本要y 元 ······························· 1分 依题意:3219311x y x y +=⎧⎨+=⎩······································································ 3分解之得52x y =⎧⎨=⎩ ·················································································· 4分(2)设买的练习本为z 个 则15220z ⨯+≤ ·············································································· 6分 得7.5z ≤.因为z 为非负整数,所以z 的最大值为7 ······························ 7分 答:(1)买1支钢笔需5元,1个练习本需2元.(2)小明最多可买7个练习本. ····················································· 8分 (注:(2)用2057.52-=,再分析说明取整数7也可.) AB C DE F26.(本题满分8分)解:(1)中位数落在21~23分数段内 ·················································· 2分 (2)··············································· 6分 (3)由条形统计图可知:①符合两头小、中间大的规律;②18分以下(或不合格)人数过多; ……或从扇形统计图可知:①不合格人数占8%,而满分只占2%; ②21~23分数段所占百分率最大; ……(说明:只要根据自己所绘制图形获得的有用信息,有进步意义即可.) ·················································· 7分 结合本班实际情况谈感想,只要合理即可. ············································ 8分 27.(本题满分10分)(1)4000.6y x =+甲;y x =乙(x 为非负整数——没有写不扣分) ·········· 2分 (2)··············································· 4分 由图象可知:印800套,选择乙厂, ····················································· 6分 印2000套至少要1600元. ··············································· 8分 (3)当印1000套时,不论哪个印刷厂都是一样的钱; 当超过1000套时,选甲厂印刷合算; 当小于1000套时,选乙厂印刷合算;24~26分24% 30分 2% 21~23分 36% 18~20分14% 27~29分 16% 18分以下 8% 或 400 800 1200 1600 2000 2400 2800 400 800 1200 16002000 O ()x 套()y 元y 乙y 甲 人数(个)0 2 4 68 1012 14 16 187 18 12 8 1 18分以下 18~20 21~23 24~26 27~29 30 分数(分)4或者y 乙是正比例函数上的点;……(所得信息只要符合图象即可) ··························································· 10分 28.(本题满分10分) 解:(1)抛物线2323333y x x =--+ ()23321333x x =-++++ ()2343133x =-++··············································· 1分 E ∴的坐标为4313⎛⎫- ⎪ ⎪⎝⎭, ···································································· 2分 (说明:用公式求E 点的坐标亦可).(2)连AC ;M 过90A O C AOC = ,,,∠AC ∴为O 的直径. ········································································ 3分而33OA OC ==, ······································································· 4分32ACr ∴== ················································································ 5分 23M S r ∴=π=π ············································································· 6分 (3)当点D 运动到 OA 的中点时,直线GA 与M 相切 ··························· 7分理由:在Rt ACO △中,33OA OC ==,3tan 33ACO == ∠.6030ACO CAO ∴== ∠,∠点D 是 OA的中点 AD DO∴= 30ACG DCO ∴== ∠∠tan 301OF OC ∴== ,60CFO = ∠ ················································ 8分y E C M AF GD O xB在GAF △中,22AF FG ==,60AFG CFO == ∠∠ AGF ∴△为等边三角形60GAF ∴= ∠90CAG GAF CAO ∴=+= ∠∠∠ ····················································· 9分又AC 为直径,∴当D 为 OA 的中点时,GA 为M 的切线 ······················ 10分(以上各题,其他解法均参照计分)。
2004年福建省福州市中考数学试卷
2004年一、填空题:每小题3分,满分36分. 1、-6的绝对值是__________. 2、分解因式:252-a =__________.3、函数12-=x y 自变量x 的取值范围是__________.4、如图,两条直线a 、b 被第三条直线c 所截,如果a ∥b ,∠1=70°,那么2∠=__________.5、你知道废电池是一种危害严重的污染源吗?一粒纽扣电池可以污染600000升水.用科学记数法表示为__________升.6、如图,数轴上表示的一个不等式组的解集,这个不等式组的整数解是__________.7、已知⊙O 1的半径为6cm ,⊙O 2的半径为2cm ,O 1O 2=8cm ,那么这两圆的位置关系是__________.8、如果反比例函数图象过点A (1,2),那么这个反比例函数的图象在__________象限. 9、某班学生为希望工程共捐款131元,比每人平均2元还多35元.设这个班的学生有x 人,根据题意列方程为__________.10、校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞__________米.11、如图,一把纸折扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为17cm ,则贴纸部分的面积为__________cm 2(结果用π表示).12、图中是幅“苹果图”,第一行有一个苹果,第二行有2个,第三行有4个,第四行有8个,….你是否发现苹果的排列规律?猜猜看,第十行有__________个苹果.ba c12ABCD!宁静致远二、选择题:每小题4分,满分24分,每小题都有A 、B 、C 、D 四个选项,其中只有一个选项是正确的,请把正确选项的代号,写在题末的括号内. 13、下列计算正确的是( )A 、2222x x x =- B 、632x x x =∙ C 、33x x x =÷ D 、()49223y x y x =14、等腰三角形的一个角是120°,那么另外两个角分别是( )A 、15°、45°B 、30°、30°C 、40°、40°D 、60°、60° 15、下列图形中能够用来作平面镶嵌的是( )A 、正八边形B 、正七边形C 、正六边形D 、正五边形 16、已知正比例函数y =kx (k ≠0)的图象过第二、四象限,则( ) A 、y 随x 的增大而减小 B 、y 随x 的增大而增大C 、当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小D 、不论x 如何变化,y 不变 17、下列命题错误的是( )A 、平行四边形的对角相等B 、等腰梯形的对角线相等C 、两条对角线相等的平行四边形是矩形D 、对角线互相垂直的四边形是菱形 18、如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN ⊥AB ,垂足为N.P 、Q 分别是、上一点(不与端点重合),如果∠MNP =∠MNQ ,下面结论:①∠1=∠2;②∠P +∠Q =180°;③∠Q =∠PMN ;④PM =QM ;⑤MN 2=PN ·QN.其中正确的是( ) A 、①②③ B 、①③⑤ C 、④⑤ D 、①②⑤三、解答题:每小题7分,满分28分.19、三月三,放风筝.图中是小明制作的风筝,他根据DF DE =,FH EH =,不用度量,就知道DFH DEH ∠=∠.请你用所学知识给予证明.20、计算:1303)2(2514-÷-+⎪⎭⎫⎝⎛+-21、解方程:111=--x x 22、如图是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离AB O· P M N Q1 2 H DEF都是1,请你画出“中国结”的对称轴,并直接写出图中阴影部分的面积.四、每小题8分,满分16分.23、为了了解学校开展“孝敬父母,从家务事做起”活动的实话情况,该校抽取初二年段50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时),得到一组数据,并绘制成右表,请根据该表完成下列各题: ⑴填写频率分布表中未完成的部分;⑵ 这组数据的中位数落在__________范围内;⑶ 由以上信息判断,每周做家务的时间不超过 1.5小时的学生所占百分比是__________;24、已知一元二次方程0122=-+-m x x .⑴ 当m 取何值时,方程有两个不相等的实数根?⑵ 设1x ,2x 是方程的两个实数根,且满足12121=+x x x ,求m 的值. 五、(满分10分)25、已知:如图,AB 是⊙O 的一条弦,点C 为 AB 的中点,CD 是⊙O 的直径,过C 点的直线l 交AB 所在直线于点E ,交⊙O 于点F.⑴ 判定图中CEB ∠与FDC ∠的数量关系,并写出结论;⑵ 将直线l 绕C 点旋转(与CD 不重合),在旋转过程中,E 点、F 点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.六、(满分10分)26、如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.⑴ 根据图象分别求出1l 、2l 的函数关系式;⑵ 当照明时间为多少时,两种灯的费用相等? ⑶ 小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).七、(满分13分)27、如图,在边长为4的正方形ABCD 中,E 是DC 中点,点F 在BC 边上,且1=CF ,在AE F ∆中作正方形1111D C B A ,使边11B A 在AF 上,其余两个顶点1C 、1D 分别在EF 和AE 上. ⑴ 请直接写出图中两直角边之比等于1∶2的三个直角三角形(不另添加字母及辅助线); ⑵ 求AF 的长及正方形1111D C B A 的边长;⑶ 在⑵的条件下,取出AEF ∆,将11D EC ∆沿直线11D C 、11FB C ∆沿直线分别向正方形1111D C B A 内折叠,求小正方形1111D C B A 未被两个折叠三角覆盖的四边形面积.A BC l E FO· O· O·八、(满分13分)28、如图所示,抛物线2)(m x y --=的顶点为A ,直线l :m x y 33-=与y 轴的交点为B ,其中0>m .⑴ 写出抛物线对称轴及顶点A 的坐标(用含m 的代数式表示); ⑵ 证明点A 在直线l 上,并求出OAB ∠的度数;⑶ 动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以P 、Q 、A 为顶点的三角形与OAB ∆全等?若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,说明理由.ABC DE AB 1E F A 1C 1D 1A 1B 1C 1D1。
最新福州市中考数学试题含答案(word版)
二O一四年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,22小题,满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。
毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是A.-5 B.5 C.15D.-15【答案】B2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯106【答案】B3.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥【答案】D4.下列计算正确的是A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【答案】D5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是A.44 B.45 C.46 D.47【答案】C6.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒【答案】B7.若(m-1)2+=0,则m+n的值是A.-1 B.0 C.1 D.2【答案】A8.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-【答案】A9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为A.45︒B.55︒C.60︒D.75︒【答案】C10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是A.-1 B.1 C.12D.34【答案】D二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:ma+mb=.【答案】m(a+b)12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【答案】1 513.计算:+1)1)=.【答案】114.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.【答案】2015.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC .若AB=10,则EF的长是.【答案】5三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(112014⎛⎫⎪⎝⎭0+|-1|.【答案】解:原式=3+1+1=5.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1 3 .【答案】解:原式=x2+4x+4+2x-x2=6x+4.当x=13时,原式=6⨯13+4=6.17.(每小题7分,共14分)(1)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明:∵BE=CF,∴BE+EF=CF+EF即BF=CE.又∵AB=DC,∠B=∠C,∴△ABF≌△DCE.∴∠A=∠E.(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.【答案】①35;②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,高是4. ∴11AA B B S 梯形 =12(AA 1+BB 1)⨯4=20.18.(满分12分)设中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生,a = %; (2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名? 【答案】解:(1)50,24; (2)如图所示; (3)72;(4)该校D 级学生有:2000⨯450=160人.19.(满分12分)现有A ,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A商品和2件B 商品共用了160元. (1)求A ,B 两种商品每件多少元?(2)如果小亮准备购买A ,B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低? 【答案】解:(1)设A 商品每件x 元,B 商品每件y 元.依题意,得29032160.x y x y +=⎧⎨+=⎩,解得2050.x y =⎧⎨=⎩,答:A 商口每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10-a )件. 依题意,得2050(10)3002050(10)350.a a a a +-≥⎧⎨+-≤⎩,解得5≤a ≤623. 根据题意,a 的值应为整数,所以a =5或a =6.方案一:当a =5时,购买费用为20⨯5+50⨯(10-5)=350元; 方案二:当a =6时,购买费用为20⨯6+50⨯(10-6)=320元. ∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.20.(满分11分)如图,在△ABC 中,∠B =45︒,∠ACB =60︒,AB =,点D 为BA 延长线上的一点,且∠D =∠ACB ,⊙O 为△ACD 的外接圆. (1)求BC 的长; (2)求⊙O 的半径.【答案】解:(1)过点A 作AE ⊥BC ,垂足为E . ∴∠AEB =∠AEC =90︒. 在Rt △ABE 中,∵sin B =AEAB,∴AB =AB ·sin B =·sin45︒=2=3. ∵∠B =45︒,∴∠BAE =45︒. ∴BE =AE =3.在Rt △ACE 中,∵tan ∠ACB =AEEC,∴EC =3tan tan 60AE ACB ==∠︒∴BC =BE +EC =3(2)由(1)得,在Rt △ACE 中,∵∠EAC =30︒,EC∴AC =解法一:连接AO 并延长交⊙O 于M ,连接CM .∵AM 为直径, ∴∠ACM =90︒.在Rt △ACM 中,∵∠M =∠D =∠ACB =60︒,sin M =ACAM,∴AM =sin AC M =4. ∴⊙O 的半径为2.解法二:连接OA ,OC ,过点O 作OF ⊥AC ,垂足为F ,则AF =12AC ∵∠D =∠ACB =60︒, ∴∠AOC =120︒. ∴∠AOF =12∠AOC =60︒. 在Rt △OAF 中,sin ∠AOF =AFAO, ∴AO =sin AFAOF∠=2,即⊙O 的半径为2.21.(满分13分)如图1,点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60︒,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当t =12秒时,则OP = ,S △ABP = ; (2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP =AB 时,过点A 作AQ ∥BP ,并使得∠QOP =∠B ,求证:AQ ·BP =3.【答案】解:(1)1; (2)①∵∠A <∠BOC =60︒, ∴∠A 不可能是直角. ②当∠ABP =90︒时, ∵∠BOC =60︒, ∴∠OPB =30︒.∴OP =2OB ,即2t =2. ∴t =1.③当∠APB =90︒时,作PD ⊥AB ,垂足为D ,则∠ADP =∠PDB =90︒. ∵OP =2t ,∴OD =t ,PD ,AD =2+t ,BD =1-t (△BOP 是锐角三角形).解法一:∴BP 2=(1-t )2 +3t 2,AP 2=(2+t )2+3t 2. ∵BP 2+AP 2=AB 2,∴(1-t )2+3t 2+(2+t )2+3t 2=9, 即4t 2+t -2=0.解得t 1t 2= . 解法二:∵∠APD +∠BPD =90︒,∠B +∠BPD =90︒, ∴∠APD =∠B . ∴△APD ∽△PBD .∴.AD PDPD BD=∴PD2=AD·BD.于是)2=(2+t)(1-t),即4t2+t-2=0.解得t1t2=.综上,当△ABP为直角三角形时,t=1(3)解法一:∵AP=AB,∴∠APB=∠B.作OE∥AP,交BP于点E,∴∠OEB=∠APB=∠B.∵AQ∥BP,∴∠QAB+∠B=180︒.又∵∠3+∠OEB=180︒,∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴△QAO∽△OEP.∴AQ AOEO EP=,即AQ·EP=EO·AO.∵OE∥AP,∴△OBE∽△ABP.∴13 OE BE BOAP BP BA===.∴OE=13AP=1,BP=32EP.∴AQ·BP=AQ·32EP=32AO·OE=32⨯2⨯1=3.解法二:连接PQ,设AP与OQ相交于点F. ∵AQ∥BP,∴∠QAP=∠APB.∵AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.∵∠QF A=∠PFO,∴△QF A∽△PFO.∴FQ FA FP FO =,即FQ FPFA FO =. 又∵∠PFQ =∠OF A , ∴△PFQ ∽△OF A . ∴∠3=∠1.∵∠AOC =∠2+∠B =∠1+∠QOP , 已知∠B =∠QOP , ∴∠1=∠2. ∴∠2=∠3.∴△APQ ∽△BPO . ∴AQ APBO BP=. ∴AQ ·BP =AP ·BO =3⨯1=3.22.(满分14分)如图,抛物线y =12(x -3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D 了. (1)求点A ,B ,D 的坐标;(2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.【答案】(1)顶点D 的坐标为(3,-1). 令y =0,得12(x -3)2-1=0,解得x 1=3x 2=3. ∵点A 在点B 的左侧,∴A 点坐标(30),B 点坐标(3,0).(2)过D作DG⊥y轴,垂足为G. 则G(0,-1),GD=3.令x=0,则y=72,∴C点坐标为(0,72).∴GC=72-(-1)=92.设对称轴交x轴于点M.∵OE⊥CD,∴∠GCD+∠COH=90︒.∵∠MOE+∠COH=90︒,∴∠MOE=∠GCD.又∵∠CGD=∠OMN=90︒,∴△DCG∽△EOM.∴9323CG DGOM EM EM==,即.∴EM=2,即点E坐标为(3,2),ED=3.由勾股定理,得AE2=6,AD2=3,∴AE2+AD2=6+3=9=ED2.∴△AED是直角三角形,即∠DAE=90︒.设AE交CD于点F.∴∠ADC+∠AFD=90︒.又∵∠AEO+∠HFE=90︒,∴∠AFD=∠HFE,∴∠AEO=∠ADC.(3)由⊙E的半径为1,根据勾股定理,得PQ2=EP2-1.要使切线长PQ最小,只需EP长最小,即EP2最小.设P坐标为(x,y),由勾股定理,得EP2=(x-3)2+(y-2)2.∵y=12(x-3)2-1,欢迎来主页下载---精品文档精品文档 ∴(x -3)2=2y +2.∴EP 2=2y +2+y 2-4y +4=(y -1)2+5.当y =1时,EP 2最小值为5.把y =1代入y =12(x -3)2-1,得12(x -3)2-1=1, 解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上, ∴x 1=1舍去.∴点P 坐标为(5,1). 此时Q 点坐标为(3,1)或(191355,).。
福建省福州市中考数学真题试题(带解析)
数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.3的相反数是A .-3B .13C .3D .-13考点:相反数.专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为A .48.9×104B .4.89×105C .4.89×104D .0.489×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体.故选C .点评:本题考查了三种视图中的主视图,比较简单. 4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是A .50°B .60°C .70°D .80°考点:平行线的性质.分析:根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果. 解答:解:∵ a ∥b ,∴ ∠1=∠2, ∵ ∠1=70°, ∴ ∠2=70°.第3题图A B C D a 第4题图 1 2 b点评:本题考查了平行线的性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题.5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:计算题.分析:分别根据合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可.解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误. 故选A .点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.6.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥1 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:解:∵ 式子x -1在实数范围内有意义,∴ x -1≥0,解得x ≥1. 故选D .点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.4 考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为:15×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8. 故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离 考点:圆与圆的位置关系.分析:由⊙O 1、⊙O 2的半径分别是3cm 、4cm ,若O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出⊙O 1和⊙O 2的位置关系. 解答:解:∵ ⊙O 1、⊙O 2的半径分别是3cm 、4cm ,O 1O 2=7cm ,又∵ 3+4=7,∴⊙O 1和⊙O 2的位置关系是外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:① 两圆外离⇔d >R +r ;② 两圆外切⇔d =R +r ;③ 两圆相交⇔R -r <d <R +r (R ≥r );④ 两圆内切⇔d =R -r (R >r );⑤ 两圆内含⇔d <R -r (R >r ).9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米考点:解直角三角形的应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠A =30°,∠B =45°,CD =100,∵ CD ⊥AB 于点D .∴ 在Rt △ACD 中,∠CDA =90°,tan A =CD AD, ∴ AD =CDtan A =10033=100 3在Rt △BCD 中,∠CDB =90°,∠B =45°, ∴ DB =CD =100米,∴ AB =AD +DB =1003+100=100(3+1)米. 故选D .点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长. 10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =k x(x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8 考点:反比例函数综合题. 专题:综合题.分析:先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y =-x +6,设交点为(x ,-x +6)时k 值最大,然后列式利用二次函数的最值问题解答即可得解.解答:解:∵ 点C (1,2),BC ∥y 轴,AC ∥x 轴,∴ 当x =1时,y =-1+6=5,当y =2时,-x +6=2,解得x =4,∴ 点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小,设与线段AB 相交于点(x ,-x +6)时k 值最大,则k =x (-x +6)=-x 2+6x =-(x -3)2+9,第9题图AB CD 30° 45°第10题图∵ 1≤x ≤4,∴ 当x =3时,k 值最大, 此时交点坐标为(3,3),因此,k 的取值范围是2≤k ≤9. 故选A .点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:x 2-16=_________________. 考点:因式分解——运用公式法.分析:运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a 2-b 2=(a +b )(a -b ).解答:解:x 2-16=(x +4)(x -4).点评:本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 考点:概率公式.分析:根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解;布袋中球的总数为:2+3=5,取到黄球的概率为:35.故答案为:35.点评:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.13.若20n 是整数,则正整数n 的最小值为________________. 考点:二次根式的定义. 专题:存在型.分析:20n 是正整数,则20n 一定是一个完全平方数,首先把20n 分解因数,确定20n 是完全平方数时,n 的最小值即可.解答:解:∵ 20n =22×5n .∴ 整数n 的最小值为5. 故答案是:5.点评:本题考查了二次根式的定义,理解20n 是正整数的条件是解题的关键.14.计算:x -1x +1x=______________.考点:分式的加减法. 专题:计算题.分析:直接根据同分母的分数相加减进行计算即可.解答:解:原式=x -1+1x=1. 故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减. 15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号) 考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD =x ,根据相似三角形的对应边的比相等,即可列出方程,求得x 的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cos A 的值.解答:解:∵ △ABC ,AB =AC =1,∠A =36°,∴ ∠ABC =∠ACB =180°-∠A2=72°.∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠DBC =12∠ABC =36°.∴ ∠A =∠DBC =36°, 又∵ ∠C =∠C , ∴ △ABC ∽△BDC , ∴ AC BC =BCCD, 设AD =x ,则BD =BC =x .则1x =x1-x ,解得:x =5+12(舍去)或5-12. 故x =5-12. 如右图,过点D 作DE ⊥AB 于点E , ∵ AD =BD ,∴E 为AB 中点,即AE =12AB =12.在Rt △AED 中,cos A =AE AD=125-12=5+14. 故答案是:5-12;5+14. 点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cos A 时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:|-3|+(π+1)0-4.(2) 化简:a (1-a )+(a +1)2-1.ABCD 第15题图ABCD E考点:整式的混合运算;实数的运算;零指数幂. 专题:计算题.分析:(1) 原式第一项根据绝对值的代数意义:负数的绝对值等于它的相反数进行化简,第二项利用零指数公式化简,第三项利用a 2=|a |化简,合并后即可得到结果; (2) 利用乘法分配律将原式第一项括号外边的a 乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(1) 解:|-3|+(π+1)0-4=3+1-2=2.(2) 解:a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a .点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:绝对值的代数意义,零指数公式,二次根式的化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题的关键. 17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1;② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).考点:作图——旋转变换;全等三角形的判定;扇形面积的计算;作图——平移变换. 分析:(1) 由AB ∥CD 可知∠A =∠C ,再根据AE =CF 可得出AF =CE ,由AB =CD 即可判断出△ABF ≌CDE ;(2) 根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A 1C 1所扫过的面积等于以点C 1为圆心,以A 1C 1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可. 解答:证明:∵ AB ∥CD ,∴ ∠A =∠C . ∵ AE =CF ,∴ AE +EF =CF +EF , 即 AF =CE . 又∵ AB =CD , ∴ △ABF ≌△CDE .(2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.点评:本题考查的是作图-旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部A B C D E F第17(1)题图 第17(2)题图A B C分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名? 考点:条形统计图;用样本估计总体;扇形统计图. 分析:(1) 用1减去其他各种情况所占的百分比即可求m 的值,用乘公交的人数除以其所占的百分比即可求得抽查的人数; (2) 从扇形统计图或条形统计图中直接可以得到结果;(3) 用学生总数乘以骑自行车所占的百分比即可.解答:解:(1) 1-14%-20%-40%=26%;20÷40%=50; 条形图如图所示;(2) 采用乘公交车上学的人数最多;(3) 该校骑自行车上学的人数约为: 150×20%=300(人).点评:本题考查了条形统计图、扇形统计图及用样本估计总数的知识,解题的关键是从统计图中整理出进一步解题的信息.19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题? 考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1) 设小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x 的方程,解方程即可求解; (2) 小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于x 的不等式组,从而求得x 的范围,再根据x 是非负整数即可求解. 解答:解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68. 解得:x =16.答:小明答对了16道题.(2) 设小亮答对了y 道题,学生上学方式扇形统计图步行 其他乘公交车 骑自行车 上学方式步行 其他乘公交车 骑自行车 上学方式依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90.因此不等式组的解集为1614≤y ≤1834.∵ y 是正整数,∴ y =17或18.答:小亮答对了17道题或18道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后的得分是关键.20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形. 专题:几何综合题.分析:(1) 连接OC ,由CD 为⊙O 的切线,根据切线的性质得到OC 垂直于CD ,由AD 垂直于CD ,可得出OC 平行于AD ,根据两直线平行内错角相等可得出∠1=∠2,再由OA =OC ,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC 为角平分线;(2) 法1:由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD 中,根据30°角所对的直角边等于斜边的一半,由CD 的长求出AC 的长,在直角三角形ABC 中,根据cos30°及AC 的长,利用锐角三角函数定义求出AB 的长,进而得出半径OE 的长,由∠EAO 为60°,及OE =OA ,得到三角形AEO 为等边三角形,可得出AE =OA =OE ,即可确定出AE 的长;法2:连接EC ,由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC 中,由CD 及tan30°,利用锐角三角函数定义求出AD 的长,由∠DEC 为圆内接四边形ABCE 的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC =∠B ,由∠B 的度数求出∠DEC 的度数为60°,在直角三角形DEC 中,由tan60°及DC 的长,求出DE 的长,最后由AD -ED 即可求出AE 的长. 解答:(1) 证明:如图1,连接OC ,∵ CD 为⊙O 的切线, ∴ OC ⊥CD ,∴ ∠OCD =90°. ∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°, ∴ AD ∥OC , ∴ ∠1=∠2, ∵ OA =OC , ∴ ∠2=∠3, ∴ ∠1=∠3, 即AC 平分∠DAB .(2) 解法一:如图2,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43,∴ AB =ACcos ∠CAB =43cos30°=8.连接OE ,∵ ∠EAO =2∠3=60°,OA =OE , ∴ △AOE 是等边三角形,∴ AE =OA =12AB =4.解法二:如图3,连接CE ∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ADC 中,CD =23, ∴ AD =CDtan ∠DAC =23tan30°=6.∵ 四边形ABCE 是⊙O 的内接四边形, ∴ ∠B +∠AEC =180°. 又∵ ∠AEC +∠DEC =180°, ∴ ∠DEC =∠B =60°. 在Rt △CDE 中,CD =23,∴ DE =CD tan ∠DEC =23tan60°=2.∴ AE =AD -DE =4.点评:此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.图2图3考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质. 专题:代数几何综合题. 分析:(1) 根据题意得:CQ =2t ,PA =t ,由Rt△ABC 中,∠C =90°,AC =6,BC =8,PD ∥BC ,即可得tan A = PD PA =BC AC =43,则可求得QB 与PD 的值;(2) 易得△APD ∽△ACB ,即可求得AD 与BD 的长,由BQ ∥DP ,可得当BQ =DP 时,四边形PDBQ 是平行四边形,即可求得此时DP 与BD 的长,由DP ≠BD ,可判定▱PDBQ 不能为菱形;然后设点Q 的速度为每秒v 个单位长度,由要使四边形PDBQ 为菱形,则PD =BD =BQ ,列方程即可求得答案;(3) 设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF ,由△PMN ∽△PQC .利用相似三角形的对应边成比例,即可求得答案.解答:解:(1) QB =8-2t ,PD =43t .(2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10. ∵ PD ∥BC ,∴ △APD ∽△ACB ,∴ AD AB =AP AC ,即:AD 10=t6, ∴ AD =53t ,∴ BD =AB -AD =10-53t .∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125.当t =125时,PD =43×125=165,BD =10-53×125=6,∴ DP ≠BD ,∴ □PDBQ 不能为菱形.第21题图①第21题图②图1设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t .要使四边形PDBQ 为菱形,则PD =BD =BQ , 当PD =BD 时,即43t =10-53t ,解得:t =103.当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615.(3) 解法一:如图2,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系.依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0); 当t =4时,点M 2的坐标为(1,4).设直线M 1M 2的解析式为y =kx +b ,∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6. ∴ 直线M 1M 2的解析式为y =-2x +6. ∵ 点Q (0,2t ),P (6-t ,0),∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t ).把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t .∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2. ∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度. 解法二:如图3,设E 是AC 的中点,连接ME . 当t =4时,点Q 与点B 重合,运动停止. 设此时PQ 的中点为F ,连接EF .过点M 作MN ⊥AC ,垂足为N ,则MN ∥BC . ∴ △PMN ∽△PDC . ∴ MN QC =PN PC =PM PQ ,即:MN 2t =PN 6-t =12. ∴ MN =t ,PN =3-12t ,∴ CN =PC -PN =(6-t )-(3-12t )=3-12t .∴ EN =CE -CN =3-(3-12t )= 12t .∴ tan ∠MEN =MN EN=2.∵ tan ∠MEN 的值不变,∴ 点M 在直线EF 上.过F 作FH ⊥AC ,垂足为H .则EH =2,FH =4. ∴ EF =25.∵ 当t =0时,点M 与点E 重合;当t =4时,点M 与点F 重合, ∴ 线段PQ 中点M 所经过的路径长为25单位长度.图2AC PN 图3E H点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠ABO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).考点:二次函数综合题.分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标; (3) 综合利用几何变换和相似关系求解. 方法一:翻折变换,将△NOB 沿x 轴翻折;方法二:旋转变换,将△NOB 绕原点顺时针旋转90°.特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也满足题意,即满足题意的P解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1. ∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .∵ 点D 在抛物线y =x 2-3x 上.∴ 可设D (x ,x 2-3x ). 又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0.第22题图① 第22题图②∵ 抛物线与直线只有一个公共点, ∴ △=16-4m =0,解得:m =4.此时x 1=x 2=2,y =x 2-3x =-2, ∴ D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3). 设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14.∴ 直线A'B 的解析式是y =14x +3.∵ ∠NBO =∠ABO , ∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上,∴ 14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去),∴ 点N 的坐标为(-34,4516).方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1,则N 1(-34,-4516),B 1(4,-4),∴ O 、D 、B 1都在直线y =-x 上.∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, ∴ OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38).综上所述,点P 的坐标是(-38,-4532)或(4532,38).方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB 2则N 2(4516,34),B 2(4,-4),∴ O 、D 、B 2都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 2OB 2, ∴ OP 1ON 2=OD OB 2=12, 图1∴ 点P 1的坐标为(4532,38).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532).综上所述,点P 的坐标是(-38,-4532)或(4532,38).点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.本模板说明1、页眉21世纪教育网 21世纪教育网 黑体 小三号字 加粗 鲜红色 居中 2、背景专注初中教育,服务一线教师 隶书 鲜红色 3、页脚21世纪教育网期待您的投稿!zkzyw@ 宋体(正文) 小五号字 右对齐 鲜红色 4、页码 -1-数字,两遍加横 居中。
2004届数学中考样卷四
2004届初中升学数学样卷(四) 姓名 准考证号一.填空题:(每小题3分,共30分) 1.2-的倒数的绝对值是 ;2.世界工程量最大的水利工程——三峡工程,今年6月二期工程完工,开始蓄水及混凝土浇筑量为5481700立方米。
创造了混凝土浇筑的世界纪录。
请用科学记数法表示:5481700立方米= 立方米;3.因式分解a ab 22-= ;4.某校初三年级甲、乙两班举行电脑汉字输入速度比赛, 两个班参加比赛的学生每分钟输入汉字的个数.经统计和计算后结果如下表:有一位同学根据上表得出如下结论:○1甲、乙两班学生的平均水平相同;○2乙班优秀的人数比甲理优秀的人数多(每分钟输入汉字达150个以上为优秀);○3甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是 (填序号); 5.如图,如果弦AB 经过⊙O 的半径OC 的中点P ,且PA = 3,PB = 4, 那么⊙O 的半径等于6.已知抛物线822--=x x y 的顶点坐标是 ;7.圆柱的高为10cm,底面半径为6cm ,则该圆柱的侧面积为 ;8.华山鞋厂为了了解初中学生穿鞋的鞋号情况,对永红中学初二(1)班的20名男生所穿鞋号统计如下表:那么这20名男生鞋号数据的平均数是 ,中位数是 ;在平均数、中位数和众数中,鞋厂最感兴趣的是 ;9.如图,PA 切⊙O 于点A ,PO 交⊙O 于点B , 若PA =6,BP =4,则⊙O 的半径为 ; 10.某果园今年栽果树200棵,现计划扩大栽种面积,使今后两年的栽种量都比前一年增长一个相同的百分数,这样三年(包括今年)的总栽种量为1400棵,列方程为:(设百分数为x ) ;二. 选择题(每小题4分,共24分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填11.已知()ax a y 1-=是反比例函数,则它的图象在(A )第一、三象限 (B )第二、四象限 (C )第一、二象限 (D )第三、四象限 12. 实数722,sin30º,2+1,π2,(3)0,|-3|中,有理数的个数是 (A ) 2个 (B ) 3个 (C ) 4个 (D ) 5个13.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是 (A ) 68,55 (B ) 55,68 (C ) 68,57 (D ) 55,5714.如图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是(A ) 25 (B ) 66 (C ) 91 (D ) 120 15.在同一个圆中内接正三角形、正方形、正六边形的边长分别用 (A ) 1:2:3 (B ) 1:2:3(C )3:2:1 (D ) 以上都不对16. 某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米。
【2013版中考12年】福建省福州市2002-2013年中考数学试题分类解析 专题04 图形的变换
【2013版中考12年】福建省福州市2002-2013年中考数学试题分类解析专题04 图形的变换一、选择题1.(2004年福建福州4分)下列图形中能够用来作平面镶嵌的是【】A、正八边形B、正七边形C、正六边形D、正五边形2.(2005年福建福州大纲卷3分)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是【】A.都是等腰梯形 B.都是等边三角形C.两个直角三角形,一个等腰三角形 D.两个直角三角形,一个等腰梯形【答案】C。
【考点】剪纸问题。
【分析】严格按照图中的顺序向上对折,对角顶点对折,沿折痕中点与重合顶点的连线剪开展开可得到两个直角三角形,一个等腰三角形。
故选C。
3.(2005年福建福州课标卷3分)如图是小明用八块小正方体搭的积木,该几何体的俯视图是【】A、B、 C、 D、4.(2007年福建福州3分)只用下列一种正多边形不能镶嵌成平面图案的是【】A.正三角形 B.正方形C.正五边形D.正六边形5.(2008年福建福州4分).如图所示的物体是一个几何体,其主视图是【】A.B.C.D.【答案】C。
【考点】简单几何体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得是一个等腰梯形。
故选C。
6.(2009年福建福州4分)如图所示的几何体的主视图是【】A. B. C. D.7.(2009年福建福州4分)如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是【】.A.2DE=3MN, B.3DE=2MN, C.3∠A=2∠F D.2∠A=3∠F8.(2009年福建福州4分)如图, AD是以等边三角形ABC一边AB为半径的四分之一圆周, P为 AD 上任意一点,若AC=5,则四边形ACBP周长的最大值是【】.A. 15 B. 20 C.15+.15+9.(2010年福建福州4分)下面四个立体图形中,主视图是三角形的是【】A.B.C.D.10. (2011年福建福州4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是【】A、B、 C、D、11.(2011年福建福州4分)如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是【】A、2B、3C、4D、512.(2012年福建福州4分)如图是由4个大小相同的正方体组合而成的几何体,其主视图是【 】A .B .C .D .13.(2013福建福州4分)下列立体图形中,俯视图是正方形的是【 】A .B .C .D .二、填空题1. (2002年福建福州3分)如图:四边形 ABCD 是正方形,曲线DA 1B 1C 1D 1…叫做“正方形的渐开线”,其中 1111111DA A B B C C D 、、、…的圆心依次按A 、B 、C 、D 循环,它依次连接.取AB =1,则曲线11222DA B C D A 的长是 ▲ (结果保留π).。
福建省厦门市2004年中考数学试题
(3)我国“长征”系列火箭的第一级是用联肼(N2H4)作为燃料,用一氧化氮作为助燃剂,燃烧生成水和空气中最多的气体,请写出该反应的化学方程式:________________
25.(8分)下表是行星上“大气”(相当于地球上的空气)的主要成分。请回答下列问题:
行星名称
行星上“大气”主要成分
金星
二氧化碳、硫酸
火星
二氧化碳
冥王星
甲烷
(1)它们中可能成为宇宙飞船燃料补给站的行星是:__________________________。
(2)科学家发现在宇宙飞船飞过冥王星“大气”时,甲烷并没有被点燃,请分析其原因:
A.这种分子机器人是一种新型分子
B.我们已可以用肉眼直接看到这种分子“散步”
C.分子本身是不会运动的,其“散步”一定是在人的推动下进行的
D.这种分子组成的物质是一种单质
15.据《厦门日报》报道:近日,厦大郑兰荪院士的研究小组成功地获得了C50颗粒。1985年美国科学家斯莫利发现了C60,获得了1996年诺贝尔化学奖。下列说法正确的是()
A.厦门三达膜技术公司开发的海水淡化膜——资源问题
B.海尔洗衣机厂开发的不用洗衣粉的洗衣机——污染问题
C.应用于计算机领域的导电塑料——能源问题
D.中科院开发的纳米玻璃用于国家大戏院——材料问题
12.氢气是高效清洁的新能源。但近来有研究表明,氢气的大量使用可能大面积破坏臭氧层。针对此研究成果,下列认识你认为正确的是()
23.(12分)下面是在鼓浪屿淑庄花园前新设的一组垃圾箱的说明:
(1)小明在整理房间时,清理出如下物品,它们应分别放入哪个垃圾箱(请填序号):
中考数学试卷真题2004
中考数学试卷真题20042004年中考数学试卷一、选择题1. 已知:正方形ABCD的边长为5cm。
点E、F分别是AB、CD的中点。
连接EF并延长至交点G,连接AG。
则AG的长为()。
A. 5.5cmB. 2.5cmC. 6.5cmD. 3.5cm2. 解方程2x - 8 = 4x的解为()。
A. x = 2B. x = -2C. x = -4D. x = 43. 如图,ΔABC中,∠ACB = 90°,AB = 8cm,AC = 6cm。
则BC 的长为()。
(图略)A. 2cmB. 10cmC. 10.8cmD. 4cm4. 把一个平面图形沿顶点A旋转120°,得到图形'A。
再把图形'A沿顶点A旋转120°,得到图形''A。
如下图所示:(图略)则图形''A与图形A的形状相同,并且A''是A的()。
A. 起始位置B. 三倍位置C. 原位置D. 六倍位置5. 已知一个人健走的速度为每小时5km(公里),则他每走20分钟的速度是()。
A. 1km/hB. 1.2km/hC. 0.2km/hD. 6km/h二、填空题6. 如图,已知∠ABC = 60°,边长AB = 3cm,线段AD平分∠BAC,且点D在AB上。
则以线段AD为边的等边三角形的周长是______ cm。
(图略)7. 一水果店买来一箱苹果,总共200个。
如果每个人平均分得3个苹果,店主自己得3个,还剩17个苹果没有分。
则买来这一个箱苹果的人数为_____ 人。
8. 已知数k使“5:k = 3:15”成立,则k的值为______。
三、解答题9. 小明口中有4颗红色的糖和6颗黄色的糖,小红口中有5颗红色的糖和5颗黄色的糖。
如果小红和小明同时从自己的口袋里拿出一颗糖,放到中间的一个盘子里。
现在从盘子里随机取出一个糖,请问这颗糖是黄色的概率为多少?10. 小明从家到学校有两条路可选,一条是直线距离为8km的收费公路,另一条是弯曲的道路,相当于直线距离的1.25倍,但不收费。
福州二十四中2004~2005学年度八年级第二学期期中
福州二十四中2004~2005学年度八年级第二学期期中数学试卷出题 林世保同学们, 你们好! 一转眼半学期飞快地过去了. 在这半学期里, 我们学到了许多新的数学知识, 提高了数学思维的能力.现在让我们在这里展示一下自己的真实水平吧!注意: 1、本卷满分100分, 考试时间120分钟. 2、在密封线内写上自己的姓名、座号、班级. 一、选择题(每小题2分,共24分)1、已知b a >则下列不等式中正确的是( )A .b a 33->-B . 33ba ->-C .b a ->-33D .33->-b a 2、 下列各题从左到右的变形是分解因式的是( )A .1)1)(1(2-=-+x x xB .222)(2y x xy y x -=-+C 1)2(122+-=+-x x x x D .)()(y x n y x m ny nx my mx +++=+++3、下图表示的不等式组的解集是( )A .41≤<xB .41<≤xC .41>>xD .41>≥x4、下列各式从左到右的变形不正确的是( )A .y y 3232-=- B .xyx y 66=-- C .y x y x 4343-=- D .y x y x 3535-=-- 5、下列多项式中,不能用完全平方公式分解因式的是( )A .222y xy x -+-B .122+-x xC .4131912+-x xD .212+-x x6、不等式组⎩⎨⎧>-≥-04012x x 的解集为( )A .421≤≤x B .421≤<x C .421<<x D .421<≤x 祝你成功!012344080120D CB A7、关于方程87978=----xx x 的解的情况,下列说法正确的是( ) A .8=x 是方程的增根 B .7=x 是方程的增根C .8=x 是方程的解D .7=x 是方程的解8、不等式125131<-x 的正整数解有( ) A .2个 B .3个 C .4个 D .5个9、把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )A .3B .4C .5D .610、若点A (43,y 1)、B (37,y 2)、C (33,y 3)分别为一次函数72242005+-=x y 图象上的三点.则( )A .123y y y <<B .132y y y <<C .321y y y <<D . 312y y y <<11、对于任何整数n ,多项式225n n -+)(都能( ). A .被2整除 B .被5整除 C .被n 整除 D .被)5(+n 整除12、甲、乙两车在同一条公路上行驶,图中的图象(折线ABCD )描述了甲汽车在行驶过程中,甲车离出发地的距离S (千米)和行驶时间t (小时)之间的函 数关系;乙车在甲车前340千米,与甲车同时出发又同时到达目的 地,乙车在整个行程中都保持匀速运动.根据图中提供的信息及所 给乙车的行驶过程的条件,则下列说法:①甲车在行驶途中停留 了1小时;②乙车在整个行驶过程中的平均速度为380千米/时;③ 甲汽车在整个行驶过程中的平均速度为380千米/时;④出发后1小时,甲车第一次追上了乙车;⑤出发后1至2.5小时,甲车行驶在乙车的前面,⑥出发后2.5至4小时,乙车行驶在甲车的前面. 其中正确的说法共有( )A .3个B .4个C .5个D .6个 二、填空题 (每空 2分,共12分)13、分解因式: =-ab b a 2_______________.14、当x = 时,分式392+-x x 的值为0.15、请写出一个分式方程,使其根为2=x , .16. 若一正方形的面积是(91242++a a )个平方单位,请用含a 的式子表示它的边长为________________.17、若1=+y x ,23=+y x ,则2234y xy x ++的值为____________. 18、某商场在促销期间规定:商场内所有商品按标价的%80出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券.(奖券购物根据上述促销方法,顾客在该商场购物可获得双重优惠,如果胡老师在该商场购标价450元的商品,他获得的优惠额为_________元. 三. 解答题19、解不等式(组),将解集在数轴上表示出来: (1)3722xx -≥- (5分) (2)()⎩⎨⎧<-≤+512541x x x (5分) ∴不等式的解集是 ∴不等式组的解集是20、因式分解下列各题:(1))()(22m n m n m -+- (4分) (2)22)2()2(y x y x +-+(4分)21 先化简,再求值:12122222+--+÷--x x x x x x x ,其中21=x .(5分)22. 解方程: 21321--=+-x x x (5分)23. 有这样一道题:分解因式86a a -张名的做法: 陈亮的做法:他们的答案对吗?如果你认为错了,请给予更正; 如果是对的,请回答下列问题: 比较他们两种解法,哪种简便些? 从中你受到了什么启示? (5分)24.请你阅读下列计算过程,再回答所提出的问题:11132-+---x x x x )(11)1()1(3A x x x x x -+--+-= )(1113B x x x ----=)(11)3(C x x ---=)(14D x x --=(1)上速计算过程中,从哪一步开始出现错误_______________.(1分)(2)从(A )到(C )是否正确________,若不正确,错误的原因是____________. (3分) (3) 请你写出正确的答案.(3分)[][])1)(1()1()1())(()()(6334343242386a a a a a a a a a a a a a a a -+=-⋅+=-+=-=-)1)(1()1(62686a a a a a a a -+=-=-25、列方程解应用题八年级(5)班学生周末乘汽车到游览区游览,游览区距离学校120千米,一部分学生乘慢车先行出发1小时,另一部分学生乘快车前往,结果他们同时到达,已知快车的速度是慢车的5.1倍.求慢车的速度.(8分)26. 仔细观察下图,认真阅读对话:(8分)小朋友,本来你用10元钱买一盒饼干是有剩的,但要再买一袋牛奶 就不够了!今天是儿童节,我给你 买的饼干打九折,两样东西拿好! 还有找你的8角钱。
历年(2005年~2014年)福州市初中毕业班质量检查数学试卷及参考答案
福州市中考改革简介2005年是福州市市区中考改革的第一年,当年,福州市区和八县(市)使用两套不同的中考试卷,其中福州市区中考试卷为课改卷,八县为非课改卷;2006年,永泰、闽侯、闽清、长乐、福清、连江6个县也进入中考改革,与福州五区一起使用课改卷,罗源、平潭2个县仍采用非课改卷;2007年,全市(五区八县)全面进入中考改革,全市采用统一试卷。
历年中考总分变化情况:2005年之前,中考总分为780分,其中语文、数学、英语各150分,政治、物理、化学各100分,体育30分;2005年福州市实施中考改革后,连续6年(2005年至2010年),中考总分为450分,其中语文、数学、英语各150分,其他学科以等级记载,不计入中考总分;2011年,自2005年福州中招改革以来,时隔6年,物理、化学“重返”中考总分。
当年,物理和化学学科除了以等级方式记载外,还分别以卷面成绩的20%和10%作为奖励分计入总分。
这样,中考总分变为480分,其中语文、数学、英语各150分,物理20分,化学10分。
2012年起,物理、化学除了以等级方式记载外,还分别以卷面成绩的60%和40%作为奖励分计入总分。
这样,中考总分为550分,其中语数英各150分,物理60分,化学40分。
为了给各位即将迎来中考的初三学子,提供更有效的备考,洞悉命卷教师的命题方向,以便在中考备考过程中,更有针对性的做题,特组织中考教研团队共同汇编了福州市中考改革以来的十年质检以及中考试卷,帮助各位考生,亦可作为新教师的参考。
以下为《历年(2005年~2014年)福州市初中毕业班质量检查数学试卷及参考答案》2014年福州市初中毕业班质量检测数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-3的相反数是A .3B .-3C . 1 3D .- 1 3 2.今年参加福州市中考的总人数约为78000人,将78000用科学记数法表示为 A .78.0×104 B .7.8×104 C .7.8×105 D .0.78×1053.某几何体的三种视图如图所示,则该几何体是A .三棱柱B .长方体C .圆柱D .圆锥4.下列各图中,∠1与∠2是对顶角的是5.下列计算正确的是A .3a -a =2B .2b 3·3b 3=6b 3C .3a 3÷a =3a 2D .(a 3)4=a 7 6.若2-a +3+b =0,则a +b 的值是A .2B .0C .1D .-17.某班体育委员对七位同学定点投篮进行数据统计,每人投十个,投进篮筐的个数依次为:5,6,5,3,6,8,9.则这组数据的平均数和中位数分别是A .6,6B .6,8C .7,6D .7,88.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路x m .依题意,下面所列方程正确的是A .120 x =100 x +10B .120 x =100 x -10C .120 x -10 = 100 xD .120 x +10 =100 x9.如图,△ABC 的中线BD 、CE 交于点O ,连接OA ,点G 、F 分别为OC 、OB 的中点,BC =4,AO =3,则四边形DEFG 的周长为A .6B .7C .8D .12A B C D 1 2 1 2 1 2 12 主视图 左视图 俯视图第3题图 A D E O F G10.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为C (1,k ),与y 轴的交点在(0,2)、(0,3)之间(不包含端点),则k 的取值范围是A .2<k <3B . 5 2<k <4C . 8 3<k <4D .3<k <4二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.分解因式:xy 2+xy =______________.12.“任意打开一本200页的数学书,正好是第50页”,这是_______事件(选填“随机”,“必然”或“不可能”).13.已知反比例函数y = k x的图象经过点A (1,-2).则k =_________. 14.不等式4x -3<2x +5的解集是_______________.15.如图,已知∠AOB =60°,在OA 上取OA 1=1,过点A 1作A 1B 1⊥OA 交OB 于点B 1,过点B 1作B 1A 2⊥OB 交OA 于点A 2,过点A 2作A 2B 2⊥OA 交OB 于点B 2,过点B 2作B 2A 3⊥OB 交OA 于点A 3,…,按此作法继续下去,则OA 10的值是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1) 计算:16-( 1 3)-1+(-1)2014;(2) 先化简,再求值:(1+a )(1-a )+(a -2)2,其中a = 1 2.17.(每小题7分,共14分)(1) 如图,CA =CD ,∠1=∠2,BC =EC .求证:AB =DE .x =1Ox y 第10题图AB O A 1 B 1A 2B 2第15题图 A 3 A B C D E 1 2(2) 如图,已知点A (-3,4),B (-3,0),将△OAB 绕原点O 顺时针旋转90°,得到△OA 1B 1. ① 画出△OA 1B 1,并直接写出点A 1、B 1的坐标;② 求出旋转过程中点A 所经过的路径长(结果保留π).18.(满分12分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如下两幅不完整统计图,请根据图中提供的信息解答下列各题.(1) m =_______%,这次共抽取了_________名学生进行调查;并补全条形图;(2) 请你估计该校约有_________名学生喜爱打篮球;(3) 现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?A B O x y 第17(2)题图 篮球 24% 羽毛球 34%乒乓球 m 踢毽子 14% 跳绳 8% 学生体育活动扇形统计图学生体育活动条形统计图 羽毛球 乒乓球 踢毽子 跳绳 篮球 项目 人数 20 10 15 4 5 7 171219.(满分11分)某商店决定购进一批某种衣服.若商店以每件60元卖出,盈利率为20%(盈利率= 售价-进价 进价×100%). (1) 求这种衣服每件进价是多少元?(2) 商店决定试销售这种衣服时,每件售价不低于进价,又不高于70元,若试销售中销售量y (件)与每件售价x (元)的关系是一次函数(如图).问当每件售价为多少元时,商店销售这种衣服的利润最大?20.(满分12分)如图,在⊙O 中,点P 为直径BA 延长线上一点,直线PD 切⊙O 于点D ,过点B 作BH ⊥PD ,垂足为H ,BH 交⊙O 于点C ,连接BD .(1) 求证:BD 平分∠ABH ; (2) 如果AB =10,BC =6,求BD 的长;(3) 在(2)的条件下,当E 是⌒AB 的中点,DE 交AB 于点F ,求DE ·DF的值.O x y3060 40 70 第19题图 A B C D E O P F H 第20题图21.(满分13分)如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AB =7,AD =4,CA =5,动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C →D →A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 交于点E ,与折线A -C -B 的交点为Q ,设点M 的运动时间为t . (1) 当点P 在线段CD 上时,CE =_________,CQ =_________;(用含t 的代数式表示) (2) 在(1)的条件下,如果以C 、P 、Q 为顶点的三角形为等腰三角形,求t 的值; (3) 当点P 运动到线段AD 上时,PQ 与AC 交于点G ,若S △PCG ∶S △CQG =1∶3,求t 的值.22.(满分14分)已知抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0)、B (3,0)、C (0,3),顶点为D .(1) 求抛物线的解析式;(2) 在x 轴下方的抛物线y =ax 2+bx +c 上有一点G ,使得∠GAB =∠BCD ,求点G 的坐标;(3) 设△ABD 的外接圆为⊙E ,直线l 经过点B 且垂直于x 轴,点P 是⊙E 上异于A 、B 的任意一点,直线AP 交l 于点M ,连接EM 、PB .求tan ∠MEB ·tan ∠PBA 的值.A B C D E M P Q l 第21题图 AB C D 备用图 A B C D 备用图 A B C D O x y 第22题图 备用图 A BC D O x y∠2013年福州市初中毕业班质量检查数 学 试 卷(本卷共4页,三大题,共22小题;满分150分,考试时间120分钟) 友情提示:所有答案都必须填涂在答题卡的相应位置上,答在本试卷一律无效. 一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.计算-3+3的结果是A .0B .-6C .9D .-92.如图,AB ∥CD ,∠BAC =120°,则∠C 的度数是A .30°B .60°C .70°D .80°3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为A .3.5×107B .3.5×108C .3.5×109D .3.5×10104.下列学习用具中,不是轴对称图形的是5.已知b <0,关于x 的一元二次方程(x -1)2=b 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有两个实数根6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是A .⎩⎨⎧x ≥-1x <2B .⎩⎨⎧x ≤-1x >2C .⎩⎨⎧x <-1x ≥2D .⎩⎨⎧x >-1x ≤2A B CD 第2题图 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 5 6A BC D -3 -2 -1 1 2 37.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是A .3∶1B .8∶1C .9∶1D .22∶18.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且A 、D 在BC 同侧,连接AD ,量一量线段AD 的长,约为A .1.0cmB .1.4cmC .1.8cmD .2.2cm9.有一种公益叫“光盘”.所谓“光盘”,就是吃光你盘子中的食物,杜绝“舌尖上的浪费”.某校九年级开展“光盘行动”宣传活动,根据各班级参加该活动的总人次拆线统计图,下列说法正确的是A .极差是40B .中位数是58C .平均数大于58D .众数是510.已知一个函数中,两个变量x 与y 的部分对应值如下表: x… -2- 3 … -2+ 3 … 2-1 … 2+1 …y … -2+ 3 … -2- 3 … 2+1 … 2-1 …如果这个函数图象是轴对称图形,那么对称轴可能是A .x 轴B .y 轴C .直线x =1D .直线y =x二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡的相应位置)第7题图 A B C 第8题图 第9题图 1班 2班 3班 4班 5班 6班 班级 总人次 20 30 10 0 50 60 40 70 80 50 805945 62 58九年级宣传“光盘行动” 总人次拆线统计图11.分解因式:m 2-10m =________________.12.如图,∠A +∠B +∠C +∠D =____________度.13.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第______象限.14.若方程组⎩⎨⎧x +y =73x -5y =-3,则3(x +y)-(3x -5y)的值是__________. 15.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是____________.二、解答题(满分90分;请将正确答案及解答过程填在答题卡的相应位置.作图或添轴助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1) 计算:(π+3)0―|―2013|+64×18(2) 已知a 2+2a =-1,求2a(a +1)-(a +2)(a -2)的值.A BC D 第12题图 AB CD EF 第15题图17.(每小题8分,共16分)(1) 如图,在△ABC 中,AB =AC ,点D 、E 、F 分别是△ABC 三边的中点.求证:四边形ADEF 是菱形.(2) 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?18.(10分)有一个袋中摸球的游戏.设置了甲、乙两种不同的游戏规则:甲规则:乙规则: 第一次第二次红1红2 黄1 黄2 红1(红1,红1) (红2,红1) (黄1,红1) ②红2(红1,红2) (红2,红2) (黄1,红2) (黄2,红2) 黄1(红1,黄1) ① (黄1,黄1) (黄2,黄1) 黄2 (红1,黄2) (红2,黄2) (黄1,黄2) (黄2,黄2) 请根据以上信息回答下列问题:(1) 袋中共有小球_______个,在乙规则的表格中①表示_______,②表示_______;(2) 甲的游戏规则是:随机摸出一个小球后______(填“放回”或“不放回”),再随机摸出一个小球;(3) 根据甲、乙两种游戏规则,要摸到颜色相同的小球,哪一种可能性要大,请说明理由.C A BD EF 第17(1)题图红1 红2 黄1 黄2 红2 红1 黄1 黄2 黄1 红1 红2 黄2 黄2红1 红2 黄1 第一次 第二次19.(10分)如图,由6个形状、大小完全相同的小矩形组成矩形网格.小矩形的顶点称为这个矩形网格的格点.已知小矩形较短边长为1,△ABC 的顶点都在格点上.(1) 格点E 、F 在BC 边上,BE AF的值是_________; (2) 按要求画图:找出格点D ,连接CD ,使∠ACD =90°;(3) 在(2)的条件下,连接AD ,求tan ∠BAD 的值.20.(12分)如图,半径为2的⊙E 交x 轴于A 、B ,交y 轴于点C 、D ,直线CF 交x 轴负半轴于点F ,连接EB 、EC .已知点E 的坐标为(1,1),∠OFC =30°.(1) 求证:直线CF 是⊙E 的切线;(2) 求证:AB =CD ;(3) 求图中阴影部分的面积.A B C E F 第19题图 A B C D E O xyF 第20题图21.(12分)如图,Rt △ABC 中,∠C =90°,AC =BC =8,DE =2,线段DE 在AC 边上运动(端点D 从点A 开始),速度为每秒1个单位,当端点E 到达点C 时运动停止.F 为DE 中点,MF ⊥DE 交AB 于点M ,MN ∥AC 交BC 于点N ,连接DM 、ME 、EN .设运动时间为t 秒.(1) 求证:四边形MFCN 是矩形;(2) 设四边形DENM 的面积为S ,求S 关于t 的函数解析式;当S 取最大值时,求t 的值;(3) 在运动过程中,若以E 、M 、N 为顶点的三角形与△DEM 相似,求t 的值.22.(14分)如图,已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A(1,0)、B(4,0)两点,与y 轴交于C(0,2),连接AC 、BC .(1) 求抛物线解析式;(2) BC 的垂直平分线交抛物线于D 、E 两点,求直线DE 的解析式;(3) 若点P 在抛物线的对称轴上,且∠CPB =∠CAB ,求出所有满足条件的P 点坐标.A B C A B C D E M F N 第21题图 备用图 A B C O x y 第22题图 A B C O x y 备用图2013年福州市初中毕业班质量检查数学试卷参考答案一、选择题(每题4分,满分40分)1.A 2.B 3.B 4.C 5.C 6.D 7.A 8.B 9.C 10.D二、填空题(每题4分,满分20分)11.m(m -10) 12.360 13.四 14.24 15.1.5 三、解答题16.(每题7分,共14分)(1) 解:原式=1-2013+8×18 ……3分=1-2013+1 ……4分=-2011 ……7分(2) 解:原式=2a 2+2a -a 2+4 ……3分= a 2+2a +4 ……4分∵a 2+2a =-1∴原式=-1+4=3 ……7分另解:∵a 2+2a =-1∴a 2+2a +1=0∴(a +1)2=0∴a=-1 ……3分原式=2×(-1)×(-1+1)-(-1+2)×(-1-2)=3 ……7分17.(每小题8分,共16分)(1) 证明:∵D、E 、F 分别是△ABC 三边的中点,∴DE ∥=12AC ,EF ∥=12AB , …………2分∴四边形ADEF 为平行四边形. …………4分又∵AC=AB ,∴DE =EF . …………6分(2) 解:设江水的流速为x 千米/时,依题意,得: …………1分10020+x =6020-x, ………………4分 解得:x =5. ………………6分经检验:x =5是原方程的解. …………7分答:江水的流速为5千米/时. …………8分18.(10分)(1) 4 ……1分; (红2,黄1) ……2分; (黄2,红1) ……3分(2) 不放回 ………5分(3) 乙游戏规则摸到颜色相同的小球的可能性更大.理由:在甲游戏规则中,从树形图看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,而颜色相同的两个小球共有4种. …………6分∴P(颜色相同)=412=13. …………7分 在乙游戏规则中,从列表看出,所有可能出现的结果共有16种,这些结果出现的可能性相同,而颜色相同的两个小球共有8种. ……………8分∴P(颜色相同) =816=12. ……………9分 ∵13<12, ∴乙游戏规则摸到颜色相同的小球的可能性更大. ……………10分19.(12分)(1) 12………3分 (2) 标出点D , ………5分连接CD . ………7分(3) 解:连接BD , ………8分∵∠BED =90°,BE =DE =1,∴∠EBD =∠EDB =45°,BD =BE 2+DE 2=12+12=2. ……9分由(1)可知BF =AF =2,且∠BFA =90°,∴∠ABF =∠BAF =45°,AB =BF 2+AF 2=22+22=22. ……10分 D A B CE F∴∠ABD =∠ABF +∠FBD =45°+45°=90°. ……11分∴tan ∠BAD =BD AB =222=12. ……12分20.(12分)解:(1) 过点E 作EG ⊥y 轴于点G ,∵点E 的坐标为(1,1),∴EG =1.在Rt △CEG 中,sin ∠ECG =EG CE =12, ∴∠ECG =30°. ………………1分∵∠OFC =30°,∠FOC =90°,∴∠OCF =180°-∠FOC -∠OFC =60°. ………………2分∴∠FCE =∠OCF +∠ECG =90°.即CF ⊥CE .∴直线CF 是⊙E 的切线. ………………3分(2) 过点E 作EH ⊥x 轴于点H ,∵点E 的坐标为(1,1),∴EG =EH =1. ………………4分在Rt △CEG 与Rt △BEH 中,∵⎩⎨⎧CE =BE EG =EH,∴Rt △CEG ≌Rt △BEH . ∴CG =BH . ………………6分∵EH ⊥AB ,EG ⊥CD ,∴AB =2BH ,CD =2CG .∴AB =CD . ………………7分(3) 连接OE ,在Rt △CEG 中,CG =CE 2-EG 2=3,∴OC =3+1. ………………8分同理:OB =3+1. ………………9分∵OG =EG ,∠OGE =90°,∴∠EOG =∠OEG =45°.又∵∠OCE =30°,∴∠OEC =180°-∠EOG -∠OCE =105°. A B C D E x yF OG H同理:∠OEB =105°. ………………10分∴∠OEB +∠OEC =210°.∴S 阴影=210×π×22360-12×(3+1)×1×2=7π3-3-1. ………………12分21.(12分)(1) 证明:∵MF ⊥AC ,∴∠MFC =90°. …………1分∵MN ∥AC ,∴∠MFC +∠FMN =180°.∴∠FMN =90°. …………2分∵∠C =90°,∴四边形MFCN 是矩形. …………3分(若先证明四边形MFCN 是平行四边形,得2分,再证明它是矩形,得3分)(2) 解:当运动时间为t 秒时,AD =t ,∵F 为DE 的中点,DE =2,∴DF =EF =12DE =1. ∴AF =t +1,FC =8-(t +1)=7-t .∵四边形MFCN 是矩形,∴MN =FC =7-t . …………4分又∵AC =BC ,∠C =90°,∴∠A =45°.∴在Rt △AMF 中,MF =AF =t +1, …………5分∴S =S △MDE + S △MNE =12DE ·MF +12MN ·MF =12×2(t +1)+ 12(7-t)(t +1)=-12t 2+4t +92…………6分 ∵S =-12t 2+4t +92=-12(t -4)2+252∴当t =4时,S 有最大值. …………7分(若面积S 用梯形面积公式求不扣分)(3) 解:∵MN ∥AC ,∴∠NME =∠DEM . …………8分① 当△NME ∽△DEM 时,∴NM DE =EM ME. …………9分 A B CD E M F N∴7-t 2=1,解得:t =5. …………10分 ② 当△EMN ∽△DEM 时,∴NM EM =EM DE. …………11分 ∴EM 2=NM ·DE .在Rt △MEF 中,ME 2=EF 2+MF 2=1+(t +1)2,∴1+(t +1)2=2(7-t).解得:t 1=2,t 2=-6(不合题意,舍去)综上所述,当t 为2秒或5秒时,以E 、M 、N 为顶点的三角形与△DEM 相似. ……12分22.(14分) 解:(1) 由题意,得:⎩⎪⎨⎪⎧a +b +c =116a +4b +c =0c =2 …………1分 解得:⎩⎪⎨⎪⎧a =12b =-52c =2. …………3分 ∴这个抛物线的解析式为y =12x 2-52x +2. …………4分 (2) 解法一:如图1,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点M 作MF ⊥x 轴于F .∴△BMF ∽△BCO ,∴MF CO =BF BO =BM BC =12. ∵B(4,0),C(0,2), ∴CO =2,BO =4,∴MF =1,BF =2,∴M(2,1) ………………5分∵MN 是BC 的垂直平分线,∴CN =BN ,设ON =x ,则CN =BN =4-x ,在Rt △OCN 中,CN 2=OC 2+ON 2,∴(4-x)2=22+x 2,解得:x =32,∴N(32,0). ………………6分 设直线DE 的解析式为y =kx +b ,依题意,得:x O y A B C M N F 图1⎩⎪⎨⎪⎧2k +b =132k +b =0,解得:⎩⎨⎧k =2b =-3. ∴直线DE 的解析式为y =2x -3. ………………8分解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线,∴CN =BN ,CM =BM .设ON =x ,则CN =BN =4-x ,在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x)2=22+x 2,解得:x =32,∴N(32,0). ………………5分 ∴BN =4-32=52. ∵CF ∥x 轴,∴∠CFM =∠BNM .∵∠CMF =∠BMN ,∴△CMF ≌△BMN .∴CF =BN .∴F(52,2). …………………6分 设直线DE 的解析式为y =kx +b ,依题意,得: ⎩⎨⎧52k +b =232k +b =0,解得:⎩⎨⎧k =2b =-3. ∴直线DE 的解析式为y =2x -3. ………………8分(3) 由(1)得抛物线解析式为y =12x 2-52x +2,∴它的对称轴为直线x =52. ① 如图3,设直线DE 交抛物线对称轴于点G ,则点G(52,2), 以G 为圆心,GA 长为半径画圆交对称轴于点P 1,则∠CP 1B =∠CAB . …………9分GA =(52-1)2+22=52, ∴点P 1的坐标为(52,-12). …………10分 ② 如图4,由(2)得:BN =52,∴BN =BG , ∴G 、N 关于直线BC 对称. …………11分 ∴以N 为圆心,NB 长为半径的⊙N 与⊙G 关于直线BC 对称. …………12分⊙N 交抛物线对称轴于点P 2,则∠CP 2B =∠CAB . …………13分x O y A B C 图3 G 1P xO y A B C 图4G 2P N gH x O yA B CF N图2M设对称轴与x 轴交于点H ,则NH =52-32=1. ∴HP 2=(52)2-12=212, ∴点P 2的坐标为(52,212). 综上所述,当P 点的坐标为(52,-12)或(52,212)时,∠CPB =∠CAB . ………14分2011年福州市初中毕业班质量检查数 学 试 卷(完卷时间:120分钟 满分:150分)一、选择题(每小题4分,满分40分;请在答题卡的相应位置填涂)1、2的倒数是( )A 、12B 、-2C 、12-D 、212、如图所示的一个三角尺中,两个锐角度数的和是( )A 、45︒B 、60︒C 、75︒D 、90︒3、用科学记数法表示我国九百六十万平方公里国土面积,正确的结果是( )A 、49610⨯平方公里B 、59.610⨯平方公里C 、69.610⨯平方公里D 、79.610⨯平方公里4、如果10、10、20和m 的平均数为20,那么m 的值是( )A 、20B 、40C 、60D 、805、不等式组{2139x x -≥->的解集在数轴上可表示为( ) A 、 B 、C 、D 、6、下面四个几何体中,左视图是四边形的几何体共有( )A 、1个B 、2个C 、3个D 、4个7、如图,圆心角为60︒的扇形中,弦6AB =,则扇形面积为( )A 、πB 、3πC 、6πD 、12π 8、△ABC 中,a 、b 、c 分别是∠A ,∠B ,∠C 的对边,如果222a b c +=,那么下列结论正确的是( )A 、cos bB c = B 、sin c A a =C 、tan a A b =D 、tan b B c =9、已知函数2y x b =+,当b 取不同的数值时,可以得到许多不同的直线,这些直线必定( )A 、交于同一个交点B 、有无数个交点C 、互相平行D 、互相垂直10、人民币一元硬币如图所示,要在这枚硬币的周围摆放几枚与它完全相同的一元硬币,使得周围的硬币和这枚硬币外切,且相邻的硬币也外切,则这枚硬币周围最多可摆放( )A 、4枚硬币B 、5枚硬币C 、6枚硬币D 、8枚硬币0 1 2 3 4 0 1 2 3 40 1 2 3 4 0 1 2 3 4 第2题图 60︒ ABC第7题图 第10题图二、填空题(每小题4分,满分20分,请将答案填入答题卡的相应位置)11、请写出一个负数____________12、因式分解:222m m -=_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年福建省福州市中考数学试卷
一、填空题:每小题3分,满分36分. 1、-6的绝对值是__________. 2、分解因式:252-a =__________. 3、函数12-=
x y 自变量x 的取值范围是__________.
4、如图,两条直线a 、b 被第三条直线c 所截,如果a ∥b ,∠1=70°,那么2∠=__________.
5、你知道废电池是一种危害严重的污染源吗?一粒纽扣电池可以污染600000升水.用科学
记数法表示为__________升. 6、如图,数轴上表示的一个不等式组的解集,这个不等式组的整数解是__________.
7、已知⊙O 1的半径为6cm ,⊙O 2的半径为2cm ,O 1O 2=8cm ,那么这两圆的位置关系是__________.
8、如果反比例函数图象过点A (1,2),那么这个反比例函数的图象在__________象限. 9、某班学生为希望工程共捐款131元,比每人平均2元还多35元.设这个班的学生有x 人,
根据题意列方程为__________. 10、校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米.一只小鸟从一棵树的
顶端飞到另一棵树的顶端,小鸟至少要飞__________米. 11、如图,一把纸折扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,
贴纸部分的宽BD 为17cm ,则贴纸部分的面积为__________cm 2
(结果用π表示).
12、图中是幅“苹果图”,第一行有一个苹果,第二行有2个,第三行有4个,第四行
有8个,….你是否发现苹果的排列规律?猜猜看,第十行有__________个苹果.
b
a c
1
2
-1
-2 A B
C
D
!
宁静致远
二、选择题:每小题4分,满分24分,每小题都有A 、B 、C 、D 四个选项,其中只有一个选项是正确的,请把正确选项的代号,写在题末的括号内. 13、下列计算正确的是( )
A 、2222x x x =-
B 、632x x x =∙
C 、33x x x =÷
D 、()492
23y x y x =
14、等腰三角形的一个角是120°,那么另外两个角分别是( )
A 、15°、45°
B 、30°、30°
C 、40°、40°
D 、60°、60° 15、下列图形中能够用来作平面镶嵌的是( )
A 、正八边形
B 、正七边形
C 、正六边形
D 、正五边形 16、已知正比例函数y =kx (k ≠0)的图象过第二、四象限,则( ) A 、y 随x 的增大而减小 B 、y 随x 的增大而增大
C 、当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小
D 、不论x 如何变化,y 不变 17、下列命题错误的是( )
A 、平行四边形的对角相等
B 、等腰梯形的对角线相等
C 、两条对角线相等的平行四边形是矩形
D 、对角线互相垂直的四边形是菱形 18、如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN ⊥AB ,垂足为N.P 、Q 分别是AM 、BM 上
一点(不与端点重合),如果∠MNP =∠MNQ ,下面结论:①∠1=∠2;②∠P +∠Q =180°;③∠Q =∠PMN ;④PM =QM ;⑤MN 2
=PN ·QN.其中正确的是( ) A 、①②③ B 、①③⑤ C 、④⑤ D 、①②⑤
三、解答题:每小题7分,满分28分.
19、三月三,放风筝.图中是小明制作的风筝,他根据DF DE =,FH EH =,不用度量,
就知道DFH DEH ∠=∠.请你用所学知识给予证明.
20、计算:130
3)2(251
4-÷-+⎪⎭
⎫
⎝
⎛
+- 21、解方程:11
1=--
x x
22、如图是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离
A
B O
· P M N Q
1 2 D
E
F
都是1,请你画出“中国结”的对称轴,并直接写出图中阴影部分的面积.
四、每小题8分,满分16分.
23、为了了解学校开展“孝敬父母,从家务事做起”活动的实话情况,该校抽取初二年段50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时),得到一组数据,并绘制成右表,请根据该表完成下列各题: ⑴填写频率分布表中未完成的部分; 频率分布表
⑵ 这组数据的中位数落在__________范围内;
⑶ 由以上信息判断,每周做家务的时间不超过 1.5小时的学生所占百分比是__________;
⑷ 针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.
24、已知一元二次方程0122
=-+-m x x .
⑴ 当m 取何值时,方程有两个不相等的实数根?
⑵ 设1x ,2x 是方程的两个实数根,且满足1212
1=+x x x ,求m 的值. 五、(满分10分)
25、已知:如图,AB 是⊙O 的一条弦,点C 为
AB 的中点,CD 是⊙O 的直径,过C 点的直线l 交AB 所在直线于点E ,交⊙O 于点F.
⑴ 判定图中CEB ∠与FDC ∠的数量关系,并写出结论;
⑵ 将直线l 绕C 点旋转(与CD 不重合),在旋转过程中,E 点、F 点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.
六、(满分10分)
26、如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:
元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明
效果一样.
⑴ 根据图象分别求出
1l 、2l 的函数关系式;
⑵ 当照明时间为多少时,两种灯的费用相等? ⑶ 小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).
七、(满分13分)
27、如图,在边长为4的正方形ABCD 中,E 是DC 中点,点F 在BC 边上,且1=CF ,在AEF
∆中作正方形1111D C B A ,使边11B A 在AF 上,其余两个顶点1C 、1D 分别在EF 和AE 上. ⑴ 请直接写出图中两直角边之比等于1∶2的三个直角三角形(不另添加字母及辅助线);
⑵ 求AF 的长及正方形1111D C B A 的边长;
⑶ 在⑵的条件下,取出AEF ∆,将11D EC ∆沿直线11D C 、11FB C ∆沿直线分别向正方形1111D C B A 内折叠,求小正方形1111D C B A 未被两个折叠三角覆盖的四边形面积.
A B
C l E F
O
· O
· O
·
八、(满分13分)
28、如图所示,抛物线2)(m x y --=的顶点为A ,直线l :m x y 33-=
与y 轴的交点
为B ,其中0>m .
⑴ 写出抛物线对称轴及顶点A 的坐标(用含m 的代数式表示);
⑵ 证明点A 在直线l 上,并求出OAB ∠的度数;
⑶ 动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以P 、Q 、A 为顶点的三角形与OAB ∆全等?若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,说明理由.
A
B
C D
E F
A
B 1
E F A 1
C 1
D 1
A 1
B 1
C 1
D
1。