计量经济学论文eviews
计量经济学论文(eviews分析)计量经济作业.(精选)
我国旅游收入的计量分析一、经济理论陈述在研读了大量统计和计量资料的基础上,选择了三个大方面进行研究,既包括旅游人数,人均旅游花费和基本交通建设。
其中,在旅游人数这个解释变量的划分上,我们考虑到随着全球经济一体化的发展,越来越多的外国游客来中国旅游消费。
中国旅游的国际市场是个有发展潜力的新兴市场,尽管外国游客前来旅游的方式包罗万象而且消费能力也不尽相同,但从国际服务贸易的角度出发,我们在做变量选择时,运用国际营销的知识进行市场细分,划分了国际和国内两个市场。
这样,在旅游人数这个解释变量的最终确定上,我们选择了2X国内旅游人数,3X入境旅游人数。
这点选择除了理论支持外,在现实旅游业发展中我们也看到很多景区包括成都的近郊也有不少外国游客的身影。
所以,我们选取这两个解释变量等待下一步进行模型设计和检验。
另外,对于人均旅游花费,我们在进行市场细分时,没有延续前两个变量的选择模式,有几个原因。
首先,外国游客前来旅游的形式和消费方式各异且很难统计。
我们在花大力气收集数据后,仍然没有比较权威的统计数据资料。
其次,随着国家对农业的不断重视和扶持,我国农业有了长足发展。
农村居民纯收入增加,用于旅游的花费也有所上升。
而且鉴于农村人口较多,前面的市场细分也不够细化,在这个解释变量的确定上,我们选择农村人均旅游花费,既是从我国基本国情出发,也是对第一步研究分析的补充。
所以我们确定了4X城镇居民人均旅游花费和5X农村居民人均旅游花费。
旅游发展除了对消费者市场的划分研究,还应考虑到该产业的基础硬件设施。
在众多可选择对象中我们经分析研究结合大量文献资料决定从交通建设着手。
在我国,交通一般分布为公路,铁路,航班,航船等。
由于考虑到我国一般大众的旅游交通方式集中在公路和铁路上,为了避免解释变量的过多过繁以及可能带来的多重共线形等问题,我们只选取了前二者。
即确定了6X公路长度和7X铁路长度这两个解释变量。
其中,考虑到我国旅游业不断发展过程中,高速公路的修建也不断增多,在6X的确定过程中,我们已经将其拟合,尽量保证解释变量的完整和真实。
计量经济学论文范文eviews
《我国财政收入影响因素分析》班级:09财政1班姓名:***学号:************指导教师:***完成时间:2011年12月4日摘要:对我国财政收入影响因素进行了定量分析,建立了数学模型,并提出了提高我国财政收入质量的政策建议。
关键词:财政收入实证分析影响因素一、引言财政收入对于国民经济的运行及社会发展具有重要影响。
首先,它是一个国家各项收入得以实现的物质保证。
一个国家财政收入规模大小往往是衡量其经济实力的重要标志。
其次,财政收入是国家对经济实行宏观调控的重要经济杠杆。
宏观调控的首要问题是社会总需求与总供给的平衡问题,实现社会总需求与总供给的平衡,包括总量上的平衡和结构上的平衡两个层次的内容。
财政收入的杠杆既可通过增收和减收来发挥总量调控作用,也可通过对不同财政资金缴纳者的财政负担大小的调整,来发挥结构调整的作用。
此外,财政收入分配也是调整国民收入初次分配格局,实现社会财富公平合理分配的主要工具。
在我国,财政收入的主体是税收收入。
因此,在税收体制及政策不变的情况下,财政收入会随着经济繁荣而增加,随着经济衰退而下降。
我国的财政收入主要包括税收、国有经济收入、债务收入以及其他收入四种形式,因此,财政收入会受到不同因素的影响。
从国民经济部门结构看,财政收入又表现为来自各经济部门的收入。
财政收入的部门构成就是在财政收入中,由来自国民经济各部门的收入所占的不同比例来表现财政收入来源的结构,它体现国民经济各部门与财政收入的关系。
我国财政收入主要来自于工业、农业、商业、交通运输和服务业等部门。
因此,本文认为财政收入主要受到总税收收入、国内生产总值、其他收入和就业人口总数的影响。
二、预设模型令财政收入Y(亿元)为被解释变量,总税收收入X1(亿元)、国内生产总值X2(亿元)、其他收入X3(亿元)、就业人口总数为X4(万人)为解释变量,据此建立回归模型。
二、数据收集从《2010中国统计年鉴》得到1990--2009年每年的财政收入、总税收收入、国内生产总值工、其他收入和就业人口总数的统计数据如下:obs 财政收入Y 总税收收入X1 国内生产总值X2 其他收入X3 就业人口总数X4 1990 2937.1 2821.86 18667.8 299.53 64749 1991 3149.48 2990.17 21781.5 240.1 65491 1992 3483.37 3296.91 26923.5 265.15 66152 1993 4348.95 4255.3 35333.9 191.04 66808 1994 5218.1 5126.88 48197.9 280.18 67455 1995 6242.2 6038.04 60793.7 396.19 68065 1996 7407.99 6909.82 71176.6 724.66 68950 1997 8651.14 8234.04 78973 682.3 69820 1998 9875.95 9262.8 84402.3 833.3 70637 1999 11444.08 10682.58 89677.1 925.43 71394 2000 13395.23 12581.51 99214.6 944.98 72085 2001 16386.04 15301.38 109655.2 1218.1 73025 2002 18903.64 17636.45 120332.7 1328.74 73740 2003 21715.25 20017.31 135822.8 1691.93 74432 2004 26396.47 24165.68 159878.3 2148.32 75200 2005 31649.29 28778.54 184937.4 2707.83 75825 2006 38760.2 34804.35 216314.4 3683.85 76400 2007 51321.78 45621.97 265810.3 4457.96 76990 2008 61330.35 54223.79 314045.4 5552.46 774802009 68518.3 59521.59 340506.9 7215.72 77995三、模型建立1、散点图分析2、单因素或多变量间关系分析Y X1 X2 X3 X4Y 1 0.9989134611478530.9934790452908040.8770144886795640.983602719841508X1 0.998913461147853 10.9937402677184690.8556377347447820.984935296593492X2 0.9934790452908040.993740267718469 10.8561835802284710.986241165680459X3 0.8770144886795640.8556377347447820.856183580228471 10.810940334650381X4 0.9836027198415080.9849352965934920.9862411656804590.810940334650381 1由散点图分析和变量间关系分析可以看出被解释变量财政收入Y与解释变量总税收收入X1、国内生产总值X2、其他收入X3、就业人口总数X4呈线性关系,因此该回归模型设为:μβββββ+++++=443322110X X X X Y3、 模型预模拟由eviews 做ols 回归得到结果:Dependent Variable: Y Method: Least Squares Date: 11/14/11 Time: 17:51 Sample: 1990 2009 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 7299.523 1691.814 4.314614 0.0006 X1 1.062802 0.021108 50.34972 0.0000 X2 0.001770 0.004528 0.391007 0.7013 X3 0.873369 0.119806 7.289852 0.0000 X4-0.1159750.026580-4.3631600.0006R-squared 0.999978 Mean dependent var 20556.75 Adjusted R-squared 0.999972 S.D. dependent var 19987.03 S.E. of regression 106.6264 Akaike info criterion 12.38886 Sum squared resid 170537.9 Schwarz criterion 12.63779 Log likelihood -118.8886 F-statistic 166897.9 Durbin-Watson stat1.496517 Prob(F-statistic)0.0000004321115975.0873369.0001770.0062802.1523.7299X X X X Y -+++=(4.314614) ( 50.34972 ) ( 0.391007) ( 7.289852) ( -4.363160)999978.02=R 999972.02=R 9.166897=F 496517.1.=W D四、 模型检验 1.计量经济学意义检验 ⑴多重共线性检验与解决求相关系数矩阵,得到:Correlation MatrixY X1 X2 X3 X4 1 0.998913461147853 0.9934790452908040.8770144886795640.9836027198415080.998913461110.99374026770.85563773470.984935296547853 18469 44782 934920.993479045290804 0.993740267718469 10.8561835802284710.9862411656804590.877014488679564 0.8556377347447820.856183580228471 10.8109403346503810.983602719841508 0.9849352965934920.9862411656804590.810940334650381 1发现模型存在多重共线性。
计量经济学案例分析(Eviews操作)
美股行情对A股的影响性分析——标普500与沪深300相关性分析摘要:本文主要通过分析标准普尔500指数与沪深300指数的相关性,以标普500指数为解释变量,以沪深300指数为被解释变量,利用Eviews软件,使用其中的最小二乘法对其进行线性回归分析,最终得出方程。
并对其进行显著性检验(F,t)、异方差检验、自相关性检验来验证方程的可靠性。
然后解释方程的经济意义,并利用软件对未来指数变动进行预测。
最后在未来几天比较预测结果与实际两个指数的变化情况,验证实际应用情况。
关键词:标普500、沪深300、Eviews、显著性检验、异方差检验、自相关性检验。
一、研究背景1.全球化大环境在经济全球化不断深入发展的今天,全球资本市场,尤其是中美两个超级大国之间的资本流通,早已彼此嵌入,密不可分。
全世界早有不少学者对中美资本流通做了深入研究。
但美国股市发展早于中国十几年,其内部的资金也远远超过中国股市,美国股市的资本流动势必会对中国股市产生一定影响,这种影响不仅体现在情绪面,更反映在指数变动方向上。
2.对外开放资本市场的QFII政策Qualified Foreign Institutional Investor,作为一种过渡性制度安排,QFII制度是在资本项目尚未完全开放的国家和地区,实现有序、稳妥开放证券市场的特殊通道。
外资对中国股市的影响早已不可忽视,而美国市场的变动也一定程度会影响在中国股市外资的操作行为。
所以研究两个指数的变动是很有意义的。
二、数据1.数据选择沪深两个市场各自均有独立的综合指数和成份指数,这些指数不能用来反映沪深两市的整体情况,而沪深300指数则同时考虑了两市的交易情况,是中国A股市场的“晴雨表”。
标准普尔500指数英文简写为S&P 500 Index,是记录美国500家上市公司的一个股票指数。
与道琼斯指数等其他指数相比,标准普尔500指数包含的公司更多,因此风险更为分散,能够反映更广泛的市场变化。
计量经济学论文(eviews分析)
计量经济学论文(eviews分析)我国限额以上餐饮企业营业额的影响因素分析摘要:本文收集了1999年至2009年共11年的相关数据,选取餐饮企业数量、城镇居民人均年消费性支出、全国城镇人口数以及公路里程数作为解释变量构建模型,对我国限额以上餐饮企业营业额的影响因素进行分析。
利用Eviews软件对模型进行参数估计和检验,并加以修正,最后根据模型的最终结果进行经济意义分析,提出自己的看法。
关键词:餐饮企业营业额、影响因素、计量分析一、研究背景近十年来,投资者进入餐饮企业的数量不断增加。
在他们进入一个行业之前,势必要对该行业的营业额、营业利润等进行估计,当这些因素的估计值能够达到他们的预期时,他们才会对其进行投资。
由于餐饮企业的营业额是影响投资者是否进入餐饮业的一个重要因素,对于我国餐饮企业的营业额问题的深入研究就显得尤为必要,这有助于投资者作出合理的决策。
因此,本文进行了对我国限额以上餐饮企业营业额的计量模型研究。
二、变量的选取影响餐饮企业营业额的因素有很多,包括餐饮企业的数量、营业面积、从业人员、城镇居民人均年消费性支出、全国城镇人口数、餐饮企业的平均价格水平及公路里程数(表示交通状况)。
但综合考虑后,本文选取了其中的一部分变量(企业数、城镇居民人均年消费性支出、全国城镇人口数、公路里程数)进行研究,并对各个变量对餐饮企业营业额的影响进行预测。
1.企业数本文认为餐饮企业营业额与餐饮企业的数量有关,并预测两者之间呈正相关。
2.城镇居民人均年消费性支出本文认为餐饮企业营业额与城镇居民人均年消费性支出有关,并预测两者之间呈正相关。
3.全国城镇人口数本文认为餐饮企业营业额与全国城镇人口数有关,并预测两者之间呈正相关。
4.公路里程数本文认为餐饮企业营业额与公路里程数有关,并预测两者之间呈正相关。
三、相关数据本文收集了1999年至2009年共11年的相关数据,包括营业额(单位:亿元)、企业数(单位:个)、人均年消费性支出(单位:元)、全国城镇人口数(单位:万人)以及公路里程数(单位:万公里)。
计量经济学EViews操作
计量经济学作业操作过程详解1.进入Eviews软件2.主菜单-->File--->Workfile3.打开工作文件范围选择框,选择Annual,分别输入1985,1998。
点击完成。
4.数据输入:方法一:导入excel文件中的数据1)在excel中先建立数据文件2)点击file/import/read text-lotus-excel选项,在对话框中选择已建立的excel文件4)打开后,在新的对话框中输入想要分析的变量名称,然后点击OK即可。
此时工作文件中出现变量图标。
方法二:手工数据输入主菜单--->Quick----->Empty Group分别输入变量Y、GDP的数据。
点击obs后面的灰色格子中分别输入Y、GDP。
(方法一:一个一个输入方法二:在Excel中输入完再复制粘贴)5.主菜单---->Quick----->Estimate Equation打开估计模型对话框,输入Y C GDP ,(如上图所示,注意字母之间要有空格)点击OK键。
得出Eviews的估计结果:其中12596.27为β(上面还要带个帽子,电脑打不出来),26.95415为1β。
第五步可以直接输入LS Y C GDP 等出结果6.一元线性回归模型的预测1)在工作文件主窗口点击procs/change workfile range(改变范围),弹出对话框,在对话框的end date栏中输入预测值的时间或序号,点击OK2)在工作文件窗口中双击解释变量文件,在变量窗口中点击edit+/-键,进入编辑模式,在变量窗口底端输入新序号的数值,再点击edit+/-键,关闭编辑模式3)再次进行估计,点击quick/estimate equation,在对话框中输入方程,注意样本范围应不包括新序号,点击OK得到估计结果4)点击结果窗口中的forecast键,产生对话框,在对话框中选择样本范围,点击OK可得预测曲线图。
eviews论文
eviews论文EViews (Econometric Views) 是由 Quantitative Micro Software (QMS)开发的一种经济学和金融学数据分析软件。
EViews 论文可以涵盖各种经济学和金融学领域的主题,从宏观经济学到微观经济学,从金融市场到国际贸易等。
在EViews论文中,作者可以使用EViews软件来进行经济数据的收集、整理、分析和建模。
EViews提供了一个用户友好的界面,可以轻松地导入各种数据形式,如Excel表格、数据库、文本文件等。
使用EViews的数据管理功能,作者可以对数据进行清理、转换和整合,以便进行后续的经济分析。
在EViews论文中,作者可以使用各种经济计量方法来分析数据。
EViews提供了许多经济学和金融学领域常用的计量模型和技术,例如ARMA模型、VAR模型、ARCH模型、协整关系等。
作者可以使用EViews的图形功能来可视化数据和模型的结果,进一步分析和解释经济学和金融学现象。
EViews论文可以包括以下内容:1. 数据描述和整理:描述经济数据的基本特征,清理和整理数据以准备后续分析。
2. 基本统计分析:使用EViews进行一般的统计分析,如描述统计、相关性分析、回归分析等。
3. 经济计量模型:应用经济计量模型对数据进行建模和预测,如时间序列模型、面板数据模型等。
4. 模型评估和诊断:对建立的经济计量模型进行评估和诊断,检验模型的合理性和拟合度。
5. 数据可视化:使用EViews的图形功能可视化数据和模型的结果,以便更好地理解和解释经济学和金融学现象。
6. 结果分析和讨论:对分析结果进行解释和讨论,提出相关的经济学和金融学见解和结论。
总而言之,EViews论文是利用EViews软件进行经济学和金融学数据分析和建模的论文。
通过使用EViews的功能和方法,作者可以更深入地研究和理解各种经济学和金融学问题,并得出相关的结论和见解。
计量经济学eviews报告
计量经济学eviews报告在经济学研究中,计量经济学是一个重要的分支领域,它利用数理统计和经济理论方法,对经济现象进行定量分析和预测。
而在进行计量经济学研究时,经济学家们通常会使用eviews软件来进行数据处理和分析。
本报告将对eviews软件在计量经济学研究中的应用进行介绍和分析。
首先,eviews软件作为一款专业的计量经济学软件,具有强大的数据处理和分析功能。
它可以对各种类型的经济数据进行处理,包括时间序列数据、截面数据和面板数据等。
同时,eviews还提供了丰富的统计分析工具,如回归分析、时间序列分析、方差分析等,可以帮助经济学家们快速准确地进行数据分析和模型建立。
其次,eviews软件在计量经济学研究中的应用非常广泛。
在实证研究中,经济学家们通常会使用eviews来进行数据的导入和清洗,然后进行相关的计量分析。
例如,他们可以利用eviews进行回归分析,来探讨不同经济变量之间的关系;也可以利用eviews进行时间序列分析,来预测未来的经济走势。
总之,eviews为经济学家们提供了一个强大的工具,帮助他们更好地进行计量经济学研究。
另外,eviews软件还具有友好的用户界面和丰富的图表展示功能,使得经济学家们可以直观地呈现研究结果。
他们可以通过eviews生成各种统计图表,如散点图、折线图、柱状图等,直观地展示数据之间的关系和变化趋势。
这些图表不仅可以帮助经济学家们更好地理解数据,还可以用于学术论文和研究报告的展示。
总之,eviews软件在计量经济学研究中发挥着重要的作用,它为经济学家们提供了强大的数据处理和分析工具,帮助他们更好地进行实证研究。
未来,随着计量经济学研究的深入发展,相信eviews软件将会继续发挥重要作用,为经济学研究提供更多的便利和支持。
计量经济学实验 Eviews的基本操作
实验一 EViews软件的基本操作【实验目的】了解EViews软件的基本操作对象,掌握软件的基本操作。
【实验内容】一、EViews软件的安装;二、数据的输入、编辑与序列生成;三、图形分析与描述统计分析;四、数据文件的存贮、调用与转换。
实验内容中后三步以表1-1所列出的税收收入和国内生产总值的统计资料为例进行操作。
表1-1 我国税收与GDP统计资料单位:亿元资料来源:《中国统计年鉴1999》【实验步骤】一、安装EViews软件㈠EViews对系统环境的要求⒈一台386、486奔腾或其他芯片的计算机,运行Windows3.1、Windows9X、Windows2000、WindowsNT或WindowsXP操作系统;⒉至少4MB内存;⒊VGA、Super VGA显示器;⒋鼠标、轨迹球或写字板;⒌至少10MB以上的硬盘空间。
㈡安装步骤⒈点击“网上邻居”,进入服务器;⒉在服务器上查找“计量经济软件”文件夹,双击其中的setup.exe,会出现如图1-1所示的安装界面,直接点击next按钮即可继续安装;⒊指定安装EViews软件的目录(默认为C:\EViews3,如图1-2所示),点击OK按钮后,一直点击next按钮即可;⒋安装完毕之后,将EViews的启动设置成桌面快捷方式。
图1-1 安装界面1图1-2 安装界面2二、数据的输入、编辑与序列生成 ㈠创建工作文件⒈菜单方式启动EViews 软件之后,进入EViews 主窗口(如图1-3所示)。
图1-3 EViews 主窗口在主菜单上依次点击File/New/Workfile ,即选择新建对象的类型为工作文件,将弹出一个对话框(如图1-4所示),由用户选择数据的时间频率(frequency )、起始期和终止期。
图1-4 工作文件对话框工作区域状态栏其中, Annual——年度 Monthly——月度Semi-annual——半年 Weekly——周Quarterly——季度 Daily——日Undated or irregular——非时序数据选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日前1985和1998。
基于EVIEWS软件的计量经济学建模检验案例解读
基于EVIEWS软件的计量经济学建模检验案例解读计量经济学是经济学领域的一个重要分支,它运用数理统计方法对经济学模型进行定量分析和预测。
而EVIEWS软件则是计量经济学常用的数据分析与建模工具。
本文将通过一个实例案例,解读基于EVIEWS软件的计量经济学建模检验的方法和过程。
首先,我们需要了解案例的背景和研究问题。
假设我们想研究某国家的经济增长与就业率之间的关系。
我们提出了一个假设:经济增长对就业率有积极的影响。
第一步是数据收集和准备。
我们需要收集与经济增长和就业率相关的数据。
以中国为例,我们可以从国家统计局等官方机构获取国内生产总值(GDP)和就业率的数据。
这些数据应该是时间序列数据,通常包括一定的时间跨度和频率(例如月度或年度数据)。
第二步是数据预处理。
我们需要对收集到的数据进行清洗和处理,以确保数据的质量。
具体来说,我们需要检查数据是否存在缺失值、异常值等,确保数据的连续性和一致性。
第三步是建立计量经济学模型。
在本案例中,我们使用一个简单的线性回归模型来研究经济增长对就业率的影响。
假设就业率(Y)是经济增长(X)的线性函数,即Y = β0 +β1X + ε,其中β0和β1是回归系数,ε是误差项。
第四步是模型检验。
在EVIEWS软件中,我们可以利用OLS(Ordinary Least Squares)方法进行模型的估计和检验。
OLS方法是最小二乘法的一种形式,用于估计回归系数的值。
此外,我们还可以通过检验模型的显著性和拟合优度来评估模型的质量。
具体来说,我们可以通过检验回归系数的t值和p值来判断是否存在统计显著性。
如果t值的绝对值较大且p值小于设定的显著性水平(通常是0.05),则可以认为回归系数是显著的,即具有统计意义。
此外,我们还可以计算回归方程的R-squared值来评估模型的拟合优度,R-squared值越接近1,说明模型的解释能力越强。
最后,我们需要进行模型诊断。
模型诊断用于检验回归模型的假设是否成立,以及模型是否满足统计方法的要求。
计量经济学 eviews详解
作业:2.自己设计一个一元线性回归模型,并查阅2012年统计年鉴,用1985-2011年数据完成下列要求:(1) 作散点图; (2) 拟合样本回归函数;(3) 对所建立的模型进行经济意义检验;(4) 对所建立的模型进行统计检验,并详细解释检验结果; (5) 作历史模拟图,并计算平均绝对百分比误差:%100ˆ11⨯-=∑=ni iii Y Y Y nMAPE(6) 用2011年数据对模型作外推检验;(7) 预测2012年、2013年被解释变量的值,并给出总体均值的95%预测区间。
(注:用Eviews 完成)解:由经济理论分析可知,经济发展水平与居民消费水平有密切关系。
因此,我们设定居民消费水平i Y (绝对数(元))与国内生产总值i X (亿元)的关系为:011,1,2,...,27i i Y X i ββμ=++=数据来源:中国统计年鉴2012 (1) 散点图:在Eviews 中,通过Quick →Gragh →Scatter Diagram ,得到如下散点图:(2)拟合样本回归函数:通过Quick estimation equation,在如下窗口中输入:得到:由此可得样本回归函数:^=665.6063+0.02534i iY X ,(7.398) (50.495)2R=0.9903(3) 其中^1β=0.02534是回归方程的斜率,它表示1985-2011年期间,GDP 每增加1亿元,居民消费水平平均增加0.02534元;^0β=665.6065是回归方程的截距,她表示不受GDP 影响的居民消费水平的起始值。
^1β,^β的符号大小均符合经济理论及实际情况。
(4) 统计检验。
2R =0.9903,说明总离差平方和的99.03%被样本回归直线所解释,只有0.97%未被解释,因此样本回归对样本点的拟合优度很高。
给出显著性水平,α=0.05,查自由度n-2=25的t 分布表,得临界值0.05(25) 2.060t =,^0tβ=7.398 > 0.05(25) 2.060t =,^1tβ=50.495 > 0.05(25) 2.060t =,拒绝回归系数为零的原假设,说明X 变量显著地影响Y 变量。
计量经济学案例分析报告eviews
第二章案例分析一、研究的目的要求居民消费在社会经济的持续开展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体表现。
改革开放以来随着中国经济的快速开展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济开展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为元, 最低的某某省仅为人均元,最高的某某市达人均10464元,某某是某某的倍。
为了研究全国居民消费水平与其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例与经济结构有较大差异,最具有直接比照可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出〞来比拟,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出〞。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产〞和“购物环境〞;有的与居民收入可能高度相关,如“就业状况〞、“居民财产〞;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数〞、“利率〞。
计量经济学论文eviews
计量经济学论文一、问题提出自改革开放以来,中国经济的高速增长是有目共睹的,1981~2009年的29年来,中国的财政收入也在高速的增长,从2002年中国财政收入不足2万亿元,到2006年接近4万亿元,再到2007年上半年突破2.6万亿元,短短5年间中国国家财政收入实现高速增长。
中国财政部数据显示,2007年1至6月累计全国财政收入达到26117.84亿元,同比增长30.6%,完成预算的59.3%,增幅比上年同期提高8.6个百分点,财政收入增收额创近几年同期最高。
2007年上半年我国财政收入达到2.6万亿元,可以说是继2006年财政收入突破4万亿元大关后的又一个惊人数据。
在经济高增长的背景下,财政收入的持续高速增长,特别是税收收入增长持续高于同期GDP 增长,成为推动财政收入增长的主要原因。
目前,我国财政收入的主体是税收收入,2006年税收收入已经占到了全部财政收入的95.7%。
目前在我国税收当中,占比重最大的是增值税,由于现阶段我国依然依靠投资来拉动经济,这也带来了目前我国财政收入增长比较快的结果。
其实,财政收入增长过快只是表象,而投资增长过快造成的经济过热的体制顽疾才是最需要担心的,因此,面对高速增长的财政收入,人们担心的是经济过热问题还会越来越严重。
如果财政收入大幅度增长,远远高于国民收入的增长速度,就会出现一系列问题。
收入是一国政府实现政府职能的基本保障,对国民经济的运行及社会的发展起着非凡的作用。
首先,它是一个国家各项收入得以实现的物质保证。
一个国家财政收入规模的大小通常是衡量其经济实力的重要标志。
其次,财政收入是国家对经济实行宏观调控的重要经济杠杆。
财政收入的增长情况关系着一个国家的经济的发展和社会的进步。
因此,研究财政收入的增长显得尤为重要。
财政收入的主要来源是各项税收收入,此外还有政府其他收入和基金收入等。
同时一个国家的财政收入的规模还受到经济规模等诸多因素的影响。
本文就建立财政收入影响因素模型,实证分析影响我国财政收入的主要因素,为如何合理有效地制定我国的财政收入计划提供一些政策性 建议。
计量经济学案例分析eviews
第二章案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
计量经济学论文(eviews分析)计量经济作业
计量经济学论文(eviews分析)计量经济作业计量经济学论文(EViews分析)导言计量经济学是一门研究经济现象及其相互关系的学科,通过运用统计学方法和经济学理论,对经济数据进行分析和解释。
在本篇论文中,我们将运用EViews软件进行计量经济分析,以探讨某一经济问题的核心要素和关系。
第一部分:数据收集与描述性统计在这一部分中,我们将介绍数据的来源和收集方法,并进行描述性统计分析,以便了解数据的基本特征。
数据来源和收集方法我们收集了关于某国家的宏观经济数据,包括国内生产总值(GDP)、物价指数、失业率、人口数量等。
这些数据可以通过政府统计局、国际组织或经济学研究机构的报告来获取。
描述性统计分析在这一部分,我们将计算各个变量的平均值、标准差、最小值、最大值和偏度等统计指标,并绘制相应的直方图和散点图,以便对数据的分布和相关关系有更直观的了解。
第二部分:计量经济模型的建立与估计在这一部分中,我们将构建计量经济模型,并通过使用EViews软件进行参数估计,以分析各个变量之间的关系。
模型的建立根据我们对经济问题的研究目标和数据的特点,我们选择了某一计量经济模型,以解释变量Y与自变量X1、X2之间的关系。
在模型中,我们还考虑了可能的误差项。
参数估计使用EViews软件,我们可以通过最小二乘法对模型进行参数估计。
这将帮助我们确定各个变量的系数估计值,并评估其统计显著性。
模型诊断在参数估计后,我们将进行模型的诊断检验,以评估模型的拟合优度和误差项的符合性。
通过观察残差图和假设检验等方法,我们可以确定模型是否符合计量经济学的基本假设。
第三部分:计量经济模型的解释与预测在这一部分中,我们将解释计量经济模型的估计结果,并利用该模型进行未来情景的预测。
模型解释通过对模型中各个变量的系数估计进行解释,我们可以理解自变量与因变量之间的经济关系,并得出相应的经济学解释。
模型预测利用模型的参数估计结果和最新的经济数据,我们可以进行未来情景的预测。
计量经济学论文(eviews分析)计量经济作业
计量经济学论文(eviews分析)计量经济作业计量经济学论文分析的重要性不言而喁。
在经济学领域中,计量经济学是一门研究经济现象的学科,通过数学模型和统计分析对经济数据进行量化分析,以揭示经济规律和探寻经济发展规律。
eviews是一个专门用于时间序列分析和计量经济学建模的软件工具,广泛应用于经济学研究和金融领域。
在进行计量经济学论文分析时,首先需要明确研究问题和假设,然后收集相关数据。
随后,利用eviews软件对数据进行清洗和整理,进行描述性统计分析,绘制图表,进行回归分析等。
通过计量经济学方法,可以验证假设、识别变量之间的关系、预测未来趋势等。
举例来说,假设我们要研究某国家的经济增长与通货膨胀之间的关系。
首先,我们收集相关数据,包括国内生产总值(GDP)、通货膨胀率等。
然后,利用eviews软件导入数据,进行描述性统计分析,观察数据的分布特征。
接下来,可以进行回归分析,建立经济增长与通货膨胀之间的模型,分析它们之间的关系及影响因素。
在计量经济学论文中,需要注重数据的准确性和分析的科学性。
同时,也需要注意论文的结构和组织,合理安排内容,确保表达清晰,逻辑严谨。
最后,对研究结果进行讨论和总结,提出建议和展望,为相关研究和政策制定提供参考。
综上所述,计量经济学论文分析是一项复杂而重要的研究工作,需要研究者具备扎实的理论基础和专业的技能。
利用eviews软件进行数据分析和建模,可以帮助研究者更好地理解经济现象、揭示规律、做出预测,为经济学研究和实践提供理论支持和决策依据。
愿更多的学者和研究人员投身于计量经济学领域,不断推动学科进步和实践应用,为经济发展和社会进步做出贡献。
计量经济学期末论文-中国股市有效性分析eviews
中国股市有效性分析摘要:传统的有效市场理论(Efficient Market Hypothesis,EMH)认为证券价格完全反映了证券的内在价值,证券价格的变动仅受未来的信息影响,信息的变动能够在证券的价格上得到充分及时且准确的反映。
同时,有效市场理论认为,风险中性投资者所组成的一个竞争市场中,证券的内在价值与价格都是服从随机游走规则的,因而未来的证券价格具有不可预测性,但近年来出现了很多理论挑战有效市场假说,均值回归理论就是其中之一,均值回归理论认为,从长期的角度来看,证券价格服从均值回归,也就是长期收益率服从负的相关性。
本文采用时间序列回归方法,对上证指数过去十年的周收益率进行实证验证,证明上证指数具有显著的均值回归特性,为统计套利方法提供了理论依据。
关键词:时间序列;自回归;均值回归;序列相关-稳健推断一、均值回归的由来与发展传统的有效市场理论(Efficient Market Hypothesis,EMH)认为证券价格完全反映了证券的内在价值,证券价格的变动仅受未来的信息影响,信息的变动能够在证券的价格上得到充分及时且准确的反映。
同时,有效市场理论认为,风险中性投资者所组成的一个竞争市场中,证券的内在价值与价格都是服从随机游走规则的,因而未来的证券价格具有不可预测性,投资者只能获得市场平均收益。
萨缪尔森(Samuelson,1957)认为,信息是决定股票价格波动的主要因素,但由于信息是不可预测的,所以股票的未来价格也是不可测的。
法玛(Fama,1965)用间隔天数不同的价格变化来求它们之间的自相关性,得出了1958至1962年期间道·琼斯工业股票的股价变动的自相关系数近似于零,论证了股价是随机游走的,。
自有效市场理论提出以来,该理论一直处于现代金融的主流地位。
但近些年来,尤其是21世纪以来,该理论在理论和实证方面遭遇了前所未有的挑战。
De Bondt和Thaler(1985)[1]第一个对有效市场理论发起了质疑,他们认为股票市场存在着和心理学上类似的过度反应现象,过度反应一般来说是指市场上过分悲观或乐观的心理,过去表现的更好的股票(赢家)被投资者追捧,而过去表现不好的股票(输家)无人理睬。
eviews_计量经济学论文——通货膨胀率影响因素计量分析
通货膨胀率影响因素计量分析一.经济理论概述在研读了大量统计和计量资料的基础上,选取了国民生产总值,职工平均工资,全社会固定资产投资总额,失业率解释变量来探究对通货膨胀率的影响,建立通货膨胀率影响因素的计量模型。
这里用居民消费价格指数作为反应通货膨胀率的指标。
(1)一般来说国民生产总值增加会导致通货膨胀率的上升;(2)职工平均工资增加,将导致职工消费的增加,又会导致国民生产总值的增加,两者之前可能会出现较高的相关性,要进行多重共线性检验。
(3)全社会固定资产投资总额对通货膨胀率的影响,可以从两个角度来分析。
第一种是通过分析投资的实质来分析。
投资能形成现实的货币流通量,又增加商品和劳务的产出,促进经济增长增加商品和劳务的供给。
第二种是投资过程会在商品和货币两个市场产生对通货膨胀率的影响。
固定资产投资膨胀会拉动对能源、原料等生产资料的大量需求,引发基础产品价格上涨,进而造成下游产品全面上涨。
固定资产投资会形成大量资金需求,并在国内银行信贷放松的情况下称为可能,引起货币供应量、信贷的超常规增长,造成物价增长。
(4)失业率与通货膨胀率的关系:根据短期菲利普斯曲线,两者是负相关关系,可以用总需求供给解释,在短期中物品与劳务的总需求增加引起物价上涨,产量增加。
产量越多,意味着就业越多,失业率下降,物价上涨引起通货膨胀,因此,总需求变动在短期中使通货膨胀和失业反方向变动。
而在长期菲利普斯曲线中,失业率与通货膨胀无关,失业率为自然失业率。
在长期中,总供给量只取决于它的劳动、资本和自然资源的供给,以及生产技术,因此总供给量不变,就业量不变,失业率不变,为经济摩擦下的自然失业率。
二.相关数据列1列2列3列4列5列6指标名称中国中国中国中国中国就业基本情况(年) CPI(年)城镇非私营单位就业人国内生产总值(年)全社会固定资产投资完成城镇登记失业率CPI平均工资:合计GDP全社会固定资产投资完成单位上年=100元亿元亿元%来源国家统计局国家统计局国家统计局国家统计局国家统计局1981102.50772.004,891.60961.00 3.80 1982102.00798.005,323.401,200.40 3.20 1983102.00826.005,962.701,369.06 2.30 1984102.70974.007,208.101,832.87 1.90 1985109.301,148.009,016.002,543.19 1.80 1986106.501,329.0010,275.203,120.60 2.00 1987107.301,459.0012,058.603,791.69 2.00 1988118.801,747.0015,042.804,753.80 2.00 1989118.001,935.0016,992.304,410.40 2.60 1990103.102,140.0018,667.804,517.00 2.50 1991103.402,340.0021,781.505,594.50 2.30 1992106.402,711.0026,923.488,080.10 2.30 1993114.703,371.0035,333.9213,072.30 2.60 1994124.104,538.0048,197.8617,042.10 2.80 1995117.105,348.0060,793.7320,019.30 2.90 1996108.305,980.0071,176.5922,913.50 3.00 1997102.806,444.0078,973.0324,941.10 3.10 199899.207,446.0084,402.2828,406.20 3.10 199998.608,319.0089,677.0529,854.70 3.10 2000100.409,333.0099,214.5532,917.70 3.10 2001100.7010,834.00109,655.1737,213.50 3.60 200299.2012,373.00120,332.6943,499.90 4.00 2003101.2013,969.00135,822.7655,566.60 4.30 2004103.9015,920.00159,878.3470,477.40 4.20 2005101.8018,200.00184,937.4088,773.60 4.20 2006101.5020,856.00216,314.40109,998.20 4.10 2007104.8024,721.00265,810.30137,323.90 4.00 2008105.9028,898.00314,045.40172,828.40 4.20 200999.3032,244.00340,902.81224,598.80 4.30 2010103.3036,539.00401,512.80278,121.90 4.10 2011105.4041,799.00473,104.00311,485.13 4.10 2012102.6046,769.00519,470.10374,694.74 4.10 2013102.6051,483.00568,845.20446,294.09 4.05三.计量经济模型的建立其中P——CPIY——国民生产总值W——职工平均工资I ——全社会固定资产投资总额U——失业率四、模型的求解和检验利用eviews软件进行计量回归,模型的F值为0.02,在5%的显著性水平下显著,但是发现I和U的t值较小,没有通过在5%的显著性水平下变量的显著性检验。
计量经济学论文(eviews分析)《促进内蒙古经济发展的因素分析》
促进内蒙古经济发展的因素分析摘要:“西部大开发”发展战略的实施西部落后地区迎来了发展的机遇,内蒙古作为西部的一个省,也将抓住机遇积极发展经济。
近年来内蒙经济在全区的结构调整和西部大开发的过程中有了长足的发展,但是在发展中也存在一些问题和困难,需要我们认真重视、研究并加以改进,本文就影响内蒙古经济发展的因素进行了分析,并提出了一些的建议。
发挥怎样才能使内蒙古更好更快地发展起来呢?在经济建设中又应当注重哪些方面呢?下面我对其影响经济的几个因素进行了分析。
数据如下:(表1)(资料来源:内蒙古统计局、中国统计年鉴)其中:Y代表地区生产总值,X1代表社会消费品零售总额X2代表基本建设投资,X3代表固定资产投资总额,X4代表出口总额,X5代表进口总额,X6代表实际利用外资额,X7代表教育事业投资总额。
一、建立模型并回归Y=C+a1*X1+a2*X2+a3*X3+a4*X4+a5*X5+a6*X6+a7*X7+u运用OLS估计方法对式1中的参数进行估计,得回归分析结果:(表2)Dependent Variable: YMethod: Least SquaresDate: 12/14/10 Time: 21:52Sample: 1985 2003Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.C -96.68733 11.43839 -8.452878 0.0000X1 3.243682 0.306288 10.59030 0.0000X2 -0.690818 1.160908 -0.595067 0.5638X3 0.023696 0.047295 0.501030 0.6262X4 -0.111652 0.947891 -0.117790 0.9084X5 -0.617843 0.841959 -0.733816 0.4784X6 0.000335 0.000551 0.608476 0.5552X7 -0.111526 5.205167 -0.021426 0.9833R-squared 0.999523 Mean dependent var 823.4679Adjusted R-squared 0.999220 S.D. dependent var 597.4553S.E. of regression 16.68431 Akaike info criterion 8.762376Sum squared resid 3062.028 Schwarz criterion 9.160035Log likelihood -75.24257 F-statistic 3295.807Durbin-Watson stat 1.297381 Prob(F-statistic) 0.000000从表2中可以看出F检验显著,但有几项t检验不过关,说明变量之间存在多重线性。
用Eviews分析计量经济学问题
一、问题背景高新区自开始设立至今短短十多年的时间,以其惊人的经济发展速度为世人所关注。
随着我国经济发展模式的逐步转变,高新区已经成为我国依靠科技进步和技术创新推动经济社会发展、走中国特色自主创新道路的一面旗帜。
“十二五”时期,面对新的机遇和挑战,国家高新区应注重提升五种能力,努力成为加快转变经济发展方式的排头兵。
为了探索高新经济发展的内在规律性,本文采用截面数据对高新区的投入产出进行分析,力求能够增进对高新区经济发展的了解,对高新区的进一步发展有所帮助。
二、模型设定本文研究的是高新区投入对产出的影响,所以本模型的被解释变量Y 即为高新区的产出。
就目前对高新区数据的统计来看,反映高新区产出的主要有“工业总产值”、“工业增加值”、“技工贸总收入”、“利润”和“上缴税额”几个总量指标。
按照生产函数理论,产出利用增加值,所以模型中我们将使用“工业增加值”指标数据来估计各高新区的总产出。
从高新区的投入来看,对产出有重要影响的因素主要包括以下几个方面:资本K ,劳动力L ,技术投入T ,此外,体制改革,管理模式创新也可以看作是投入的要素,但因其不可量化,因此归入模型的扰动项中。
这样,按照科布道格拉斯形式的生产函数,我们设定函数形式为:u T L AK Y γβα= 两边取自然对数得:u T L K A Y ln ln ln ln ln ln ++++=γβα其中,资本数据K 我们利用的是当年的年末净资产来进行估计,即当年年末资产减去当年年末负债后得到的数据;用当年年末从业人员来估计劳动力L ;用当年技术研发投入来估计技术投入T 。
数据选用的是截面数据。
从《国家高新技术产业开发区十年发展报告(1991-2000年)》得到1999年全国53个高新区各项指标统计数据:三、模型估计用Eviews 软件进行回归分析,得到如下结果:Dependent Variable: Y Method: Least SquaresDate: 13/12/11 Time: 19:31 Sample: 1 53C 0.664556 0.644854 1.030553 0.3078 LNK 0.478131 0.171585 2.786560 0.0076 LNL 0.367855 0.174496 2.108104 0.0402 R-squared0.740558 Mean dependent var6.280427Adjusted R-squared 0.724674 S.D. dependent var 0.440805 S.E. of regression 0.231297 Akaike info criterion -0.017755Sum squared resid 2.621421 Schwarz criterion 0.130946 Log likelihood4.470508 F-statistic 46.62236从表可以看出,回归方程为:TL K Y ln 140542.0ln 367855.0ln 478131.0664556.0ln +++=T= (1.030553) (2.786560) (2.109104) (1.520604)740558.02=R 724674.02=R(1) 经济意义检验从回归结果可以看出,模型估计的γβα,,的参数值都为正、且小于1,与生产函数理论中γβα,,各数值的意义相符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据表 1 中数据,模型估计的结果为
ˆ 1 .6928 0 .6930 ln X 0 .3195 ln X 0 .4719 ln X ln Y i 1 2 3
(0.6921) t=(2.4457)
R 2 0.9855
(0.1687) (4.1080)
2
(0.2476) (-1.2903)
(0.2424) (1.9466)
df 25
R 0.9838 F=566.1477
2
(1)多重共线性的检验 由 此 可 见,该 模 型 R 2 0.9855 , R 0.9838 可决 系数很高, F 检验的 值为 566.1477,说明回归方程明显显著。首先,由于税收是国家政府财政收入最主要 的收入来源, 很大程度上决定于财政收入的充裕状况;国内生产总值与财政收入 的增长保持一定的同向性;全社会固定资产投资通过刺激 GDP 增长,间接影响 财政税收收入整体增长。所以,财政收入一般和税收、GDP、全社会固定资产投 资呈正相关关系, 即 C1 至 C3 应该均为正值。 而且财政收入中税收应占很大一 部分比重,即 C1 的数值应该比较高。上面模型得到的 C1 和 C3 都为正符合 经济理论,但 C2 却为负与经济理论相悖。其次,税收、GDP、全社会固定资 产投资的 t 统计量值分别为 4.1080、-1.2903、1.9466。在显著性水平为 0.05 时,
39.6998 26.2797
其中,加入 lnX1 的方程 R 2 最大,以 lnX1 为基础,顺次加入其他变量逐步回归。 结果如表 4 所示 表4 lnX1 0.8643 (5.7062) 0.6774 (3.9751) 加入新变量的回归结果 lnX2 lnX3 0.0709 (0.4636) 0.2186 (1.5178)
ˆ 0.7071 0.9336 ln X ln Y t t
t=(3.4049)
R 2 0.9832
(39.6998)
R2
=0.9825
F=1576.071
DW=0.3854 这说明,当税收每增加 1%,平均来说财政收入会增加 0.9336% 异方差问题的处理 (1)异方差的检验 由于各年存在不同的税收收入,因此,每年对税收收入的数量存在不同的变 化,这种差异使得模型很容易产生异方差,从而影响模型的估计和运用,为此, 必须对该模型是否存在异方差进行检验。 由表 5 的估计结果,对其进行 White 检验,根据 White 检验中辅助函数的构造, 最后一项为变量的交叉乘积,因为本式为一元函数,帮无交叉项,则辅助函数为
不拒绝备择假设,表明模型存在异方差
五、本文的结论
(1)该模型的经济意义很明显,即财政收入主要取决于税收。lnX1 的系数为 财 政 收 入的税 收 弹性, 即当 年税 收每 增长 1% ,平均 说来财 政收入会增长 0.9477%;可见税收变化相当影响财政收入的变化。 (2)税收弹性系数为 0.9477,与 1 非常接近,说明财政收入的增加基本上 来源于税收的增加。 (3)当然,以上不一定只有税收才是影响财政收入的因素,上述模型中不排 除在多重共线修正的时候把一些相关的因素给排除掉,例如国内生产总值、就业 人数、全社会固定资产投资额对财政收入的影响。 (4)模型的不足:模型样本采用时间序列分析,虽然在最后通过剔出线性解 释变量使模型多重线性性质并不显著,但在此基础上的 R2 极高,仅能说明该 方程能较好地解释影响财政收入的因素,而拟合率其实并没有实际看到的这么 高。
t / 2 (n k ) t 0.025 (29 4) 2.060 ,不仅 lnX2 和 lnX3 的系数 C2、C3 的 t 检验不
显著, 而且 lnX2 系数的符号与预期相反,这表明很可能存在严重的多重共线性。 计算各解释变量的相关系数,选择 lnX1、lnX2、lnX3 数据,得相关系数矩阵如 下表 2 所示: 表 2 为相关系数矩阵
由相关系数矩阵可以看出, 各解释变量相互之间的相关系数较高,证实确实存在 严重多重共线性。 (2)修正多重共线性 采用逐步回归的办法,去检验和解决多重共线性问题。分别作 lny 对 lnx1、lnx2、 lnx3 的一元回归,结果如表 3 所示 表3 变量 参数估计值 t 统计量
R2 R2
一元回归估计结果 lnX1 0.9336 0.9832 0.9825 lnX2 0.9322 0.9624 0.961 lnX3 0.7859 32.5335 0.9751 0.9742
二、理论模型分析
研究财政收入的影响因素离不开一些基本的经济变量。 回归变量的选择是建 立回归模型的一个极为重要的问题。如果遗漏了某些重要变量,回归方程的效果 肯定不会好。而考虑过多的变量,不仅计算量增大许多,而且得到的回归方程稳 定性也很差, 直接影响到回归方程的应用。通过经济理论对财政收入的解释以及 对实践的观察,对财政收入影响的因素主要有税收、国内生产总值、全社会固定 资产投资等。 (1)税收。税收由于具有征收的强制性、无偿性和固定性特点,可以为政 府履行其职能提供充足的资金来源。因此,各国都将其作为政府财政收入的最重 要的收入形式和最主要的收入来源。 (2)国内生产总值。常被公认为衡量国家经济状况的最佳指标。GDP 会促 进国民收入, 从而会提高居民个人收入水平直接影响居民储蓄量,并与财政收入 的增长保持一定的同向性。 (3)全社会固定资产投资。是建造和购置固定资产的经济活动,即固定资 产再生产活动。主要通过投资来促进经济增长,扩大税源,进而拉动财政税收收 入整体增长。 (4)模型形式的设计 本文以财政收入 Y(亿元)为因变量,税收 X1(亿元) 、国内生产总值 X2
(亿元) 、全社会固定资产投资 X3(亿元)3 个经济指标为自变量,建立多元函 数,即: lnY= C+ C1lnX1+ C2lnX2+ C3lnX3+ μ
三、数据的收集
本文以 《中国统计年鉴》 为源, 使用了 1981—2009 年税收、 国内生产总值、 全社会固定资产投资的数据,数据真实可靠。为了消除异方差,对数据做取对数 处理,利用 E- views 进行回归分析,排除以往模型存在的多重共线性,建立财 政收入影响因素更精确模型,分析影响财政收入的主要因素及其影响程度。 年份 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 国家财政收入 税收 (亿元) 1175.8 1212.3 1367.0 1642.9 2004.8 2122.0 2199.4 2357.2 2664.9 2937.1 3149.5 3483.4 4349.0 5218.1 6242.2 7408.0 8651.1 9876.0 11444.1 13395.2 16386.0 18903.6 21715.3 26396.5 31649.3 38760.2 51321.8 61330.4 68476.9 (亿元) 629.89 700.02 775.59 947.35 2040.79 2090.73 2140.36 2390.47 2727.40 2821.86 2990.17 3296.91 4255.3 5126.88 6038.04 6909.82 8234.04 9262.8 10682.58 12581.51 15301.38 17636.45 20017.31 24165.68 28778.54 34804.35 45621.97 54223.79 59521.59 国内生产总值 (亿元) 4891.6 5323.4 5962.7 7208.1 9016.0 10275.2 12058.6 15042.8 16992.3 18667.8 21781.5 26923.5 35333.9 48197.9 60793.7 71176.6 78973.0 84402.3 89677.1 99214.6 109655.2 120332.7 135822.8 159878.3 183217.5 211923.5 257305.6 314045.4 335352.9 全社会固定资产投 资额 (亿元) 961.01 1230.40 1369.06 2450.50 2543.19 3019.62 3640.86 4496.54 4137.73 4449.29 5508.80 7854.98 12457.88 17042.94 20019.26 22913.55 24941.11 28406.17 29854.71 32917.73 37213.49 43499.91 55566.61 70477.4 88773.6 109998.1624 137323.9381 172828.3998 224598.7679
t2 1 2 ln X t 3 , (ln X t ) 2 vt
经估计出现 White 检验结果,见表 8 表 8 White 检验结果
பைடு நூலகம்
从表 8 可以看出,nR 2 =27.4669,由 White 检验知,在 0.05 下,查 2 分布表,
2 5.9915 ,同时 lnX 和(lnX)^2 的 t 检验值也显著,比较计算 得临界值 0 .( 05 2) 2 5.9915 ,所以拒绝原假设, 的 2 统计量与统计值,因为 nR 2 =27.4669> 0 .( 05 2)
吉林财经大学期末论文
题目:财政收入影响因素的计量分析
学院:税务学院 姓名: 学号: 日期 13 年 12 月 21 日
评分表:
选题意义
建模分析
计量检验
研究结论
总分
一、问题提出
中国经济的高速增长是有目共睹的,中国的财政收入也在高速的增长,从 2002 年中国财政收入不足 2 万亿元,到 2006 年接近 4 万亿元,再到 2007 年上 半年突破 2.6 万亿元, 短短 5 年间中国国家财政收入实现高速增长。2007 年上半 年我国财政收入达到 2.6 万亿元,可以说是继 2006 年财政收入突破 4 万亿元大 关后的又一个惊人数据。在经济高增长的背景下,财政收入的持续高速增长,特 别是税收收入增长持续高于同期 GDP 增长, 成为推动财政收入增长的主要原因。 目前,我国财政收入的主体是税收收入,2006 年税收收入已经占到了全部财政 收入的 95.7%。目前在我国税收当中,占比重最大的是增值税,由于现阶段我国 依然依靠投资来拉动经济, 这也带来了目前我国财政收入增长比较快的结果。其 实, 财政收入增长过快只是表象,而投资增长过快造成的经济过热的体制顽疾才 是最需要担心的,因此,面对高速增长的财政收入,人们担心的是经济过热问题 还会越来越严重。如果财政收入大幅度增长,远远高于国民收入的增长速度,就 会出现一系列问题。 收入是一国政府实现政府职能的基本保障, 对国民经济的运行及社会的发展 起着非凡的作用。首先,它是一个国家各项收入得以实现的物质保证。一个国家 财政收入规模的大小通常是衡量其经济实力的重要标志。其次,财政收入是国家 对经济实行宏观调控的重要经济杠杆。 财政收入的增长情况关系着一个国家的经 济的发展和社会的进步。因此,研究财政收入的增长显得尤为重要。财政收入的 主要来源是各项税收收入, 此外还有政府其他收入和基金收入等。同时一个国家 的财政收入的规模还受到经济规模等诸多因素的影响。 本文就建立财政收入影响 因素模型, 实证分析影响我国财政收入的主要因素,为如何合理有效地制定我国 的财政收入计划提供一些政策性 建议。