关于磷化处理原理

合集下载

钢板磷化处理

钢板磷化处理

钢板磷化处理

钢板磷化处理是一种常见的表面处理方法,用于提高钢板的耐腐蚀性能和涂层附着力。本文将介绍钢板磷化处理的原理、工艺和应用。

一、磷化处理的原理

钢板磷化处理是通过在钢板表面形成一层磷化物膜来改善钢板的性能。磷化物膜主要由磷酸盐和金属磷化物组成,具有良好的耐腐蚀性和涂层附着力。磷化处理的原理是在酸性磷酸盐溶液中,通过与钢板表面的金属离子反应,形成磷化物膜。

二、磷化处理的工艺

1. 表面准备:在进行磷化处理之前,需要对钢板表面进行清洗和除油处理,以确保磷化液能够充分接触到钢板表面。

2. 磷化液配制:根据不同的磷化要求,可以选择不同的磷化液配方。常用的磷化液包括酸性磷酸盐溶液和含有磷酸盐的有机溶液。

3. 磷化处理:将钢板浸泡在磷化液中,通过控制温度、浸泡时间和搅拌等条件,使磷酸盐与钢板表面的金属离子发生反应,形成磷化物膜。

4. 清洗和中和:磷化处理后,需要对钢板进行清洗和中和处理,以去除残留的磷酸盐和酸性物质,防止对后续工艺和涂层质量产生影响。

三、磷化处理的应用

1. 防腐蚀:磷化处理后的钢板表面形成的磷化物膜具有良好的耐腐蚀性能,可以有效地防止钢板被氧化、腐蚀和锈蚀。

2. 涂层附着力:磷化处理可以增加钢板表面的粗糙度,提高涂层与钢板的附着力,使涂层更加牢固耐用。

3. 摩擦减少:磷化处理后的钢板表面形成的磷化物膜具有一定的润滑性,可以减少钢板之间的摩擦,提高机械设备的工作效率。

4. 装饰效果:磷化处理可以改变钢板表面的颜色和光泽,使其具有更好的装饰效果,广泛应用于家具、建筑和汽车等领域。

磷化发黑的作用原理

磷化发黑的作用原理

磷化发黑的作用原理

磷化发黑的作用原理是在物质表面形成磷化膜,这是由于磷化物与金属表面发生化学反应,生成了一层黑色的磷化物。这种磷化膜具有较好的附着力,可以起到保护金属表面的作用,并且具有良好的耐腐蚀性。

磷化发黑的过程通常通过在含有磷酸盐的溶液中进行处理来实现。磷酸盐可以与金属表面发生反应,生成磷化物。在这个过程中,磷酸盐会被氧化,供给反应所需的磷源。在环境中的氧气存在的情况下,这些磷化物会进一步氧化形成黑色的氧化物层。

磷化发黑的原理是通过磷化物和氧化物共同形成的双层结构达到的。这种双层结构具有较高的稳定性和抗腐蚀性,可以防止金属表面被进一步氧化和腐蚀。另外,磷化膜还可以增加金属表面的摩擦系数,提高润滑性能。

总之,磷化发黑通过表面生成磷化膜,进而形成氧化物层,能够提高金属表面的保护性能和耐腐蚀性能,以及改善金属表面的润滑性能。

磷化基础知识

磷化基础知识

磷化基础知识

磷化(I)——基本原理及分类

磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。

1 基本原理

磷化过程包括化学与电化学反应。不同磷化体系、不同其材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:

8Fe+5Me(H2PO4)2+8H2O+H3PO4

Me2Fe(PO4)2·4H2O(膜)+Me3(PO4)·4H2O(膜)+7FeHPO4(沉渣)+8H2↑

Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:

①酸的浸蚀使基体金属表面H+浓度降低

Fe –2e→ Fe2+

2H2-+2e→2[H] (1)

H2

②促进剂(氧化剂)加速

[O]+[H] → [R]+H2O

Fe2++[O] → Fe3++[R]

式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。

磷化钝化膜形成原理

磷化钝化膜形成原理

磷化钝化膜形成原理

在金属表面处理中,磷化和钝化是两种常用的工艺,它们能够增强金属的耐腐蚀性。磷化是通过化学反应在金属表面形成磷酸盐的转化膜,而钝化则是通过化学反应使金属表面形成一层氧化膜,从而增强金属的耐腐蚀性。

磷化是一种化学反应过程,通常在金属表面形成一层磷酸盐的转化膜。磷化膜的形成原理可以概括为以下几个步骤:

1.表面处理:首先需要对金属表面进行除锈、除油等预处理,以确保金属表面的清洁度和粗糙度,从而增加磷化膜与金属表面的附着力。

2.酸洗:将金属浸入酸洗液中,通过酸洗液与金属表面的反应,去除金属表面的氧化物和杂质,使金属表面呈现出活性状态。

3.磷化:将酸洗后的金属浸入磷化液中,磷化液中的磷酸根离子会与金属表面发生反应,形成磷酸盐的转化膜。这个转化膜具有多孔性,能够吸附更多的颜料和涂层,从而增强金属的耐腐蚀性和装饰性。

钝化的过程与磷化类似,它也是通过化学反应在金属表面形成一层氧化膜。与磷化不同的是,钝化使用的化学试剂通常是强氧化剂,如浓硫酸、浓硝酸等。这些强氧化剂能够迅速将金属表面氧化,形成一层致密的氧化膜。

钝化膜的形成原理可以概括为以下几个步骤:

1.表面处理:同样需要对金属表面进行除锈、除油等预处理,以提高钝化膜与金属表面的附着力。

2.酸洗:将金属浸入酸洗液中,去除金属表面的氧化物和杂质,使金属表面呈现出活性状态。

3.钝化:将酸洗后的金属浸入钝化液中,钝化液中的强氧化剂会迅速将金属表面氧化,形成一层致密的氧化膜。这个氧化膜能够阻挡腐蚀介质对金属的侵蚀,从而提高金属的耐腐蚀性。

通过磷化和钝化处理,金属表面的耐腐蚀性能得到了显著提高。同时,这两种处理方法还可以增强金属的装饰性能,使其具有更美观的外观。在实际应用中,应根据不同的需求选择合适的处理方法。

磷化基本原理

磷化基本原理

基本原理

磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。

磷化过程包括化学与电化学反应。不同磷化体系、不同其材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:

8Fe+5Me(H2PO4)2+8H2O+H3PO4 Me2Fe(PO4)2·4H2O(膜)+Me3(PO4)·4H2O(膜)+7FeHPO4(沉渣)+8H2↑

Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:

① 酸的浸蚀使基体金属表面H+浓度降低

Fe - 2e→ Fe2+

2H2-+2e→2[H] (1)

H2

② 促进剂(氧化剂)加速

[O]+[H] → [R]+H2O

Fe2++[O] → Fe3++[R]

式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。

③ 磷酸根的多级离解

H3PO4 H2PO4-+H+ HPO42-+2H+ PO43-+3H-(3)

金属磷化原理及目的

金属磷化原理及目的

金属磷化原理及目的

磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。

磷化工艺操作简便,成本低廉,经过磷化工艺处理的工件,其优良的物理机械性能——强度,硬度,弹性,磁性,延展性等保持不变。而被处理的金属表面,由于形成均匀致密的磷化膜,其金属表面的性能大大提高。

磷化膜外观均匀致密,颜色按膜层成分不同,呈现浅灰,深灰,灰黑,或彩虹等色彩。结构则呈针状斜方晶体、圆柱形晶体、四方面心晶体或混合晶体及无定型结晶等多种形态。磷化膜无论何种外观颜色和晶体形态,都具有不耐热、不耐酸碱、不耐水、不导电、不导热等性能,同时膜层呈多孔性表面。由于磷化膜具多孔性,极大的提高了表面积,从而大大的提高了金属表面与涂层之间的附着力;由于磷化膜为电的不良导体,致密均匀的磷化膜大大降低了金属表面的电位差,使金属表面形成一层近乎等电位体的膜层,从而抑制了金属表面微电池的形成,大大降低了金属表面电化学腐蚀,从而极大的提高了金属表面的耐腐蚀性。

磷化膜成膜过程主要有以下四个步骤组成:

①酸的浸蚀使基体金属表面H+浓度降低

②促经济(氧化剂)加速

③磷酸根的多级离解

④磷酸盐沉淀结晶成为磷化膜

磷化处理工艺

磷化处理工艺

磷化处理工艺

磷化处理是一种金属表面处理技术,广泛应用于钢铁、铝、镁等金属的防腐和装饰。本文将详细介绍磷化处理工艺的原理、流程和影响因素。

一、磷化处理原理

磷化处理是指在金属表面形成一层磷酸盐薄膜的过程。该薄膜主要由金属磷酸盐组成,具有较高的耐腐蚀性和装饰性。磷化处理过程中,金属表面与磷化液中的磷酸、氧化剂等发生化学反应,生成一层致密的磷酸盐薄膜。

二、磷化处理流程

1.预处理:去除金属表面的油污、锈蚀等杂质,以提高磷化的效果。

2.酸洗:用酸洗液清洗金属表面,去除氧化层和锈蚀,为磷化处理做准备。

3.磷化:将金属表面浸泡在磷化液中,形成一层磷酸盐薄膜。

4.清洗:用清水冲洗金属表面,去除残留的磷化液和杂质。

5.干燥:将金属表面烘干,以防止生锈和影响后续加工。

三、磷化处理影响因素

1.金属材质:不同材质的金属对磷化的反应不同,如钢铁、铝、镁等金属的磷

化处理效果存在差异。

2.磷化液成分:磷化液的成分对磷化效果有重要影响,包括磷酸、氧化剂、促

进剂等成分的选择和配比。

3.处理温度和时间:处理温度和时间对磷化效果也有重要影响,温度过高或过

低、时间过长或过短都可能影响磷化效果。

4.表面预处理:金属表面的预处理对磷化效果也有很大影响,如油污、锈蚀等

杂质的去除程度直接影响磷化效果。

5.环境湿度:环境湿度对磷化效果也有一定影响,湿度过高可能导致磷化膜质

量下降。

四、磷化处理的应用

1.防腐:磷化膜具有较高的耐腐蚀性,可用于钢铁、铝、镁等金属的防腐处

理。例如,在建筑、船舶、汽车等领域,磷化处理被广泛应用于金属结构的防腐保护。

磷化原理

磷化原理

金属表面磷化过程

磷化工艺包括脱脂、除锈、表面调整、磷化、钝化及各工序间的水洗,有的还包括水洗后的烘干。

1、脱脂

钢材及其零件在储运过程中要用防锈油脂保护,零件上的油脂不仅阻碍了磷

化膜的形成,而且在磷化后进行涂装时会影响涂层的结合力、干燥性能、装饰性能和耐蚀性。首先要脱去金属表面的油脂。

2、涂装前除锈、除氧化皮

钢铁热加工时受氧化产生硬而脆的氧化皮,如热轧钢板、热处理零件、锻件、焊接件都会有氧化皮。而这氧化皮和黄锈在涂层下时会加快钢铁的腐蚀速度。可见充分的除去钢铁表面的氧化皮和黄锈,对涂装物得到有效保护是非常重要的。

3、表调

所谓磷化表面调整句是采用磷化表面调整剂使需要磷化的金属表面改变微观状态,促使磷化过程中形成结晶细小的、均匀、致密的磷化膜。

4、磷化处理

所谓磷化处理是指金属表面与含磷酸二氢盐的酸性溶液接触,发生化学反应而在金属表面生成稳定的不溶性的无机化合物膜层的一种表面的化学处理方法。

所形成的膜称为磷化膜。

(一)磷化反应原理

阴极区域:Fe →Fe2+ +2e

阳极区域:2H + 2e → H2或者

O + H2O + 2e → 2(OH)

成膜反应:H3PO4 + Zn(H2PO4)2 + Fe(H2PO4)2+Fe →

Zn3(PO4)2 + Zn2Fe(PO4)2 + ZnHPO4 + FePO4磷化膜:Zn3(PO4)2; Zn2Fe(PO4)2 (4份水)

磷化渣:ZnHPO4; FePO4

5、钝化处理

原理:在磷化膜表面形成一层聚合物覆盖膜,这层覆盖膜能与磷化膜螯合。作用:

1、封闭磷化膜孔隙,提高耐腐蚀性能。

磷化处理及工艺

磷化处理及工艺

磷化

目录

总述

原理及应用

磷化基础知识

1. 一、磷化原理

2. 二、磷化分类

3. 三、磷化作用及用途

4. 四、磷化膜组成及性质

5. 五、磷化工艺流程

6. 六、影响因素

7. 七、磷化后处理

8. 八、磷化渣

9. 九、磷化膜质量检验

10. 十、游离酸度及总酸度的测定

11. 十一、有色金属磷化

总述

原理及应用

磷化基础知识

总述

磷化(phosphorization)是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。磷化处理工艺应用于工业己有90多年的历史,大致可以分为三个时期:奠定磷化技术基础时期、磷化技术迅速发展时期和广泛应用时期。

磷化膜用作钢铁的防腐蚀保护膜,最早的可靠记载是英国Charles Ross于186 9年获得的专利(B.P.No.3119)。从此,磷化工艺应用于工业生产。在近一个世纪的漫长岁月中,磷化处理技术积累了丰富的经验,有了许多重大的发现。一战期间,磷化技术的发展中心由英国转移至美国。1909年美国T.W.Coslet将锌、氧化锌或磷酸锌盐溶于磷酸中制成了第一个锌系磷化液。这一研究成果大大促进了磷化工艺的发展,拓宽了磷化工艺的发展前途。Parker防锈公司研究开发的Parco Power配制磷化液,克服T许多缺点,将磷化处理时间提高到lho 1929年Bonderizing磷化工艺将磷化

时间缩短至10min, 1934年磷化处理技术在工业上取得了革命性的发展,即采用了将磷化液喷射到工件上的方法。二战结束以后,磷化技术很少有突破性进展,只是稳步的发展和完善。磷化广泛应用于防蚀技术,金属冷变形加工工业。这个时期磷化处理技术重要改进主要有:低温磷化、各种控制磷化膜膜重的方法、连续钢带高速磷化。当前,磷化技术领域的研究方向主要是围绕提高质量、减少环境污染、节省能源进行。

磷化处理的作用和原理

磷化处理的作用和原理

磷化处理的作用和原理

磷化处理的作用和原理

磷化处理是一种热处理工艺,它可以改善金属材料的性能,提高它们的耐腐蚀性、耐磨损性和耐热性。磷化处理的主要作用是在金属表面形成一层磷化膜,从而改变金属的物理性质。

磷化处理的原理是通过将磷元素渗透到金属表面形成膜,从而提高金属的耐腐蚀性、耐磨损性和耐热性。磷化膜是一种致密的、结构稳定的金属氧化物,其形成的原因是磷渗入金属中,形成了一层氧化膜,从而保护金属不受腐蚀、磨损和热损伤。

磷化处理的过程主要有四步:首先,将金属材料置于磷溶液中进行温度升高,使金属表面的温度升至一定的温度,使金属表面形成少量气泡;其次,将磷元素渗透到金属表面形成一层磷化膜;然后,将金属材料浸入另一种特殊溶液中,使金属表面形成膜层;最后,将金属冷却,使磷化膜达到最终状态。

磷化处理不仅可以改善金属材料的性能,而且可以提高金属材料的耐腐蚀性、耐磨损性和耐热性,从而使金属材料的使用寿命得到极大的提高。磷化处理的原理是在金属表面形成一层磷化膜,从而改变金属的物理性质,使金属更加耐腐蚀、耐磨损和耐热。

磷化与钝化处理的区别

磷化与钝化处理的区别

磷化处理和钝化处理的区别

点击次数:711时间:2009-11-10

磷化处理:

磷化是金属材料防腐蚀的重要方法之一,其目的在于给基体金属提供防腐蚀保护、用于喷漆前打底、提高覆膜层的附着力与防腐蚀能力及在金属加工中起减摩润滑作用等。按用途可分为三类:1、涂装性磷化 2、冷挤压润滑磷化 3、装饰性磷化。按所用的磷酸盐分类有:磷酸锌系、磷酸锌钙系、磷酸铁系、磷酸锌锰系、磷酸锰系。根据磷化的温度分类有:高温

(80 ℃以上)磷化、中温(50~70 ℃)磷化、低温磷化(40 ℃左右)和常温磷化( 10~30 ℃)。

一、磷化成膜机理

磷化主要有以下过程:

(1)金属的溶解过程即金属与磷化液中的游离酸发生反应:

M+H3PO4 = M(H2PO4)2+H2↑

(2)促进剂的加速过程为:

M(H2PO4)2+Fe+[O]→M3(PO4)2+FePO

由于氧化剂的氧化作用,加速了不溶性盐的逐步沉积,使金属基体与槽液隔离,会限制甚至停止酸蚀的进行。

(3)磷酸及盐的水解磷化液的基本成分是一种或多种重金属的酸式磷酸盐, 其分子式为Me(H2PO4)2,这些酸式磷酸盐溶

于水,在一定浓度及pH值下发生水解,产生游离磷酸:

Me(H2PO4)2=MeHPO4+H3PO4

3MeHPO4=Me3(PO4)2+H3PO4

H3PO4=H2PO4-+H+= HPO2-4 + 2H+ =PO3-4 + 3H+

由于金属工件表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终成为磷酸根。

(4 ) 磷化膜的形成当金属表面离解出的PO3-4与磷化槽液中的金属离子Zn2+、Mn2+、Fe2+达到饱和时,即结晶沉积在金属工件表面,晶粒持续增长,直到在金属工件表面生成连续不溶于水的牢固的磷化膜:

磷化的原理

磷化的原理

磷化的原理

磷化是常用的前处理技术,原理上应属于化学转化膜处理。工程上应用主要是钢铁件表面磷化,但有色金属如铝、锌件也可应用磷化。

磷化原理:工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成不溶于水的结晶型磷酸盐转化膜的过程,称之为磷化。

把金属放入含有锰、铁、锌的磷酸盐溶液中进行化学处理,使金属表面生成一层难溶于水的磷酸盐保护膜的方法,叫做金属的磷酸盐处理。磷化膜层为微孔结构,与基体结合牢固,具有良好的吸附性、润滑性、耐蚀性、不粘附熔融金属(Sn、Al、Zn)性及较高的电绝缘性等。

本文由营口康如科技有限公司整理。

关于磷化处理原理

关于磷化处理原理

金属磷化处理

在各类制造业中对钢、镀锌钢、锌和铝等金属作磷化处理是表面处理中的重要步骤。在油漆前的金属表面预处理中作磷化处理的目的是为了增强材料的抗腐蚀能力、帮助冷成形、改善部件在滑动接触时的摩擦性能。本文将用实例来加以说明。

磷酸锌是一种在金属基材上生成的晶型转化膜,这种膜是利用了那些先让溶于酸的金属离子起反应然後经水稀释而成的磷化液来处理生成的。传统的电镀法是利用电流在金属上生成镀膜,磷化则是让金属与磷化液接触发生酸蚀反应而生成磷化膜的。硝酸和磷酸是常用的用于溶解金属的无机矿物酸。

依照工艺要求可以在磷化液中添加锌、镍和锰等金属离子。为了得到特殊的效果,也可加一些其它金属离子,磷化液中加镍能提高材料的抗腐力 加快磷化反应。近年来所发展的无镍工艺的效果已经也可在各方面与含镍工艺相竞争。

在磷化液中加入促进剂可以提高磷化反应速度、消除氢气的影响和控制磷化渣的生成。促进剂可以是单一的物质、也可以为取得最佳效果而将几种物质混合一起使用。可以选用的促进剂有亚硝酸盐/硝酸盐、氯酸盐、溴酸盐、过氧化物和一些有机物(如:硝基苯磺酸钠)。

在对热浸镀锌板或铝板作磷化处理时还常添加游离或络合的氟化物。图1是使用不同的磷化工艺所生成的各种磷酸盐晶体。

一,磷化反应机理:

1. 酸蚀反应

金属表面与磷化液发生的第一个反应是将某些金属从表面溶解下来的酸蚀反应。不同的磷化液对钢的酸蚀速度约1-3 g/m2;作厚膜磷化时,酸蚀反应速度还要求高许多。酸蚀反应对形成涂膜是非常重要的,因为它既可净化金属表面、又能提高漆膜的附著力。在酸蚀反应发生时,由于金属表面的溶解,所以紧靠表面的磷化液中的游离酸被消耗,金属离子进入磷化液,所溶入的金属离子类型与所处理的基材有关。在磷化液中添加氧化促进剂可减少酸蚀反应时所生成的氢气:

表面磷化处理

表面磷化处理

表面磷化处理

1. 简介

表面磷化处理是一种常用的表面处理方法,通过在材料表

面形成一层磷化物层,改善材料的表面性能,提高其耐腐蚀性、耐磨损性、润滑性等。本文将介绍表面磷化处理的原理、方法以及应用。

2. 原理

表面磷化处理的原理是将材料浸泡在含磷化试剂的溶液中,使磷元素与材料表面发生化学反应,生成一层磷化物层。磷化物层可以增加材料表面的硬度和附着力,形成一种保护层,起到防腐蚀、耐磨损的作用。

3. 方法

表面磷化处理的方法可以分为热磷化和化学磷化两种。

3.1 热磷化

热磷化是将材料加热至一定温度后,将其浸泡在磷化剂溶

液中。在高温和磷化剂的作用下,材料表面的金属元素与磷化

剂发生反应,生成磷化物层。常用的磷化剂有磷酸盐类、磷酸二氢铵等。

3.2 化学磷化

化学磷化是将材料浸泡在含磷酸盐或磷酸二氢铵的溶液中。在室温下,磷酸盐或磷酸二氢铵通过氧化还原反应与材料表面的金属元素发生反应,生成磷化物层。

4. 应用

表面磷化处理广泛应用于各种金属材料的表面处理和防腐

蚀领域。

4.1 钢铁材料

表面磷化处理可用于提高钢铁材料的耐腐蚀性和耐磨损性。磷化物层能够有效阻止钢铁材料与环境中的氧气和水分接触,减少钢铁材料的腐蚀速度。此外,磷化物层还能够提高钢铁材料的润滑性,降低摩擦系数,减少磨损。

4.2 铝材料

表面磷化处理可用于增强铝材料的附着力和耐腐蚀性。磷

化物层能够与铝材料形成一种化学键合,提高涂层的附着力。

同时,磷化物层也能够阻止铝材料与氧气和水分接触,延缓铝材料的腐蚀速度。

4.3 其他材料

表面磷化处理还可用于不锈钢、铜合金、镁合金等其他金

磷化原理及工艺

磷化原理及工艺

磷化原理及工艺

中文名称:磷化

英文名称:phosphatizing

其他名称:磷酸盐处理

定义:把工件浸入磷酸盐溶液中,使工件表面获得一层不溶于水的磷酸盐薄膜的工艺。

所属学科:机械工程(一级学科);机械工程(2)_热处理(二级学科);化学热处理(三级学科)

磷化(phosphorization)是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。磷化处理工艺应用于工业己有90多年的历史,大致可以分为三个时期:奠定磷化技术基础时期、磷化技术迅速发展时期和广泛应用时期。

磷化膜用作钢铁的防腐蚀保护膜,最早的可靠记载是英国Charles Ross 于1869年获得的专利(B.P. N o.3119)。从此,磷化工艺应用于工业生产。在近一个世纪的漫长岁月中,磷化处理技术积累了丰富的经验,有了许多重大的发现。一战期间,磷化技术的发展中心由英国转移至美国。1909年美国T.W.Coslet将锌、氧化锌或磷酸锌盐溶于磷酸中制成了第一个锌系磷化液。这一研究成果大大促进了磷化工艺的发展,拓宽了磷化工艺的发展前途。Parker防锈公司研究开发的Parco Power配制磷化液,克服T许多缺点,将磷化处理时间提高到lho 1929年Bonderizing磷化工艺将磷化时间缩短至10min, 1934年磷化处理技术在工业上取得了革命性的发展,即采用了将磷化液喷射到工件上的方法。二战结束以后,磷化技术很少有突破性进展,只是稳步的发展和完善。磷化广泛应用于防蚀技术,金属冷变形加工工业。这个时期磷化处理技术重要改进主要有:低温磷化、各种控制磷化膜膜

磷化的基本原理及分类

磷化的基本原理及分类

磷化的基本原理及分类

磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。

1 基本原理

磷化过程包括化学与电化学反应。不同磷化体系、不同其材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:

8Fe+5Me(H2PO4)2+8H2O+H3PO4=Me2Fe(PO4)2•4H2O(膜)+Me3(PO4)•

4H2(膜)+7FeHPO4(沉渣)+8H2↑

Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:①酸的浸蚀使基体金属表面H+浓度降低

Fe –2e→Fe2+

2H2++2e→2 (1)

H2

②促进剂(氧化剂)加速

+ →+H2O

Fe2++ →Fe3++

式中为促进剂(氧化剂),为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。

③磷酸根的多级离解

H3PO4 H2PO4-+H+ HPO42-+2H+ PO43-+3H-(3)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属磷化处理

在各类制造业中对钢、镀锌钢、锌和铝等金属作磷化处理是表面处理中的重要步骤。在油漆前的金属表面预处理中作磷化处理的目的是为了增强材料的抗腐蚀能力、帮助冷成形、改善部件在滑动接触时的摩擦性能。本文将用实例来加以说明。

磷酸锌是一种在金属基材上生成的晶型转化膜,这种膜是利用了那些先让溶于酸的金属离子起反应然後经水稀释而成的磷化液来处理生成的。传统的电镀法是利用电流在金属上生成镀膜,磷化则是让金属与磷化液接触发生酸蚀反应而生成磷化膜的。硝酸和磷酸是常用的用于溶解金属的无机矿物酸。

依照工艺要求可以在磷化液中添加锌、镍和锰等金属离子。为了得到特殊的效果,也可加一些其它金属离子,磷化液中加镍能提高材料的抗腐力加快磷化反应。近年来所发展的无镍工艺的效果已经也可在各方面与含镍工艺相竞争。

在磷化液中加入促进剂可以提高磷化反应速度、消除氢气的影响和控制磷化渣的生成。促进剂可以是单一的物质、也可以为取得最佳效果而将几种物质混合一起使用。可以选用的促进剂有亚硝酸盐/硝酸盐、氯酸盐、溴酸盐、过氧化物和一些有机物(如:硝基苯磺酸钠)。

在对热浸镀锌板或铝板作磷化处理时还常添加游离或络合的氟化物。图1是使用不同的磷化工艺所生成的各种磷酸盐晶体。

一,磷化反应机理:

1. 酸蚀反应

金属表面与磷化液发生的第一个反应是将某些金属从表面溶解下来的酸蚀反应。不同的磷化液对钢的酸蚀速度约1-3 g/m2;作厚膜磷化时,酸蚀反应速度还要求高许多。酸蚀反应对形成涂膜是非常重要的,因为它既可净化金属表面、又能提高漆膜的附著力。在酸蚀反应发生时,由于金属表面的溶解,所以紧靠表面的磷化液中的游离酸被消耗,金属离子进入磷化液,所溶入的金属离子类型与所处理的基材有关。在磷化液中添加氧化促进剂可减少酸蚀反应时所生成的氢气:

钢表面: Fe + 2H+1 + 2Ox →Fe+2 + 2HOx

镀锌钢表面: Zn + 2H+1 + 2Ox →Zn+2 + 2HOx

铝表面: Al + 3H+1 + 3Ox →Al+3 + 3HOx

2. 磷化反应:

在磷化液中所发生的第二个反应是磷化。由于在金属与溶液的界面上的游离酸度的降低、PH升高,金属阳离子就不再以可溶离子形式存在,它们与溶液中的磷酸盐反应后以磷酸锌的形式沉淀结晶在金属表面。

依据不同的工艺方法,这种晶体可有不同的组成和结构:

3Zn+2 + 2H2PO4-1 + 4H2O →Zn3(PO4)2·4H2O

2Zn+2 + Fe+2+2H2PO4-1 + 4H2O →Zn2Fe(PO4)2·4H2O

2Mn+2 + Zn+2+2H2PO4-1 + 4H2O →Mn2Zn(PO4)2·4H2O

2Zn+2 + Mn+2+2H2PO4-1 + 4H2O →Zn2Mn(PO4)2·4H2O

3. 成渣反应

在酸蚀反应中溶解下来的金属离子(Fe+2)被磷化液中的促进剂(例如亚硫酸盐/硫酸盐、氯酸盐、过氧化物)氧化而成渣沉淀,而磷化反应中的Zn2+将不成渣。Al3+离子可使用氟化物而形成氟铝铬合物,此铬合物会以kryolith形式沉淀。

Fe+1 + H+1 + Ox →HOx

Fe+2 + H2PO4-1→FePO4 (渣) + 2H+

Al+3+6F-→AlF6-3

AlF6-3+3Na+→Na3AlF6 (渣)

工艺中所生成的磷化渣可利用某些过滤装置将其清除(如沉淀池、薄板澄清器,也可直接用压滤器,hydromation工艺等过滤掉)使用何种设备可按用户或生产线技术员的愿望加以选择。

二,油漆前的锌系磷化:

在要求油漆部件有最大的使用寿命时,对这些部件都广泛使用锌系磷化表面处理。目前为满足日渐增长需要,锌系磷化法已发展到可对各类零部件的处理加工;于是涂料工业中产生了与市场要求紧密联系的锌系磷化磷化工艺。

磷酸锌在镀锌钢和铝基材上的磷化膜的越来越多的应用促使发展能通过一个相同的处理工艺来对许许多多金属混合物同时作处理的工艺方法。下面将讨论预处理中常会遇到的金属基材。在涂漆前作合适的磷化将得到下列效果:磷化膜与金属的牢固结合;磷酸锌中的细孔增强了漆膜的附著力;减小漆膜下的腐蚀电流;磷酸锌膜的抗化学腐蚀能力;提高抗氧气和水扩散能力。这些能力都会延缓漆膜裂纹处发生的腐蚀。

三,金属基材:

需作磷化处理的主要材料是钢和按各种零件要求使用的镀层钢和铝。镀层钢是为了改善零件的抗腐蚀性,而使用铝和薄壁高强度钢是为了减轻部件重量。表1 列出了当今在制造业中常用的金属材料。

裸钢这种特殊的合金,其软硬度性质不比材料表面条件对磷化影响大。

在退火重结晶过程或冷轧後,过量的碳会残留于材料表面,这些残留的碳会使材料抗腐蚀力降低。(见图2)这种碳残渣不能被市售的大多数清洗剂清除。因此必须采取措施使用于生产的钢材有较低表面碳残留。

热浸镀锌钢条是用将钢条浸于溶融锌产生的。锌槽中的金属混合物决定了钢条上将形成的合金种类,铅、锡和铝这些金属会影响材料磷化性。

特别是铝,它会在表面形成厚度小于5nm的氧化铝膜,这层膜会影响磷化时的反应性。Galvalum这种锌铝合金也同样会而且比氧化铝膜更严重地降低反应性。就要求使用特殊设

计的锌系磷化工艺来处理有大面积铝金属的表面。大多数的这类工艺在槽中加有一定量的氟化物。

镀锌退火钢是将热浸镀锌钢板作热处理来生产的。这种生产过程使钢板中的铁渗入锌镀层而形成含10-15%铁的锌/铁合金层。这种材料有较好的焊接性,它也不像纯锌表面那样时易于在磷化中生成白斑。

电镀镀锌钢板是利用电镀法将锌镀上钢板的。使用不同的电解液可得到不同的锌合金镀层或锌镀层,这种镀层可改变材料的物理性质和抗腐蚀能力。大多数的锌合金都易于磷化。镀锌板的涂层会因腐蚀而生成白锈(ZnCO3/ZnO),此类白锈通常不能被温和的碱性清洗剂洗掉;这样就造成它不能正常磷化,会造成漆膜缺陷和降低了抗腐力。

为了避免锌镀层的腐蚀,常用防腐油或铬钝化处理。对于须油浸而不作钝化处理的部件的处理必须小心;在处理卷材时,磷化工艺亦须调整以使处理获得成功。

铝、铝合金和含有高铝成份的镀锌板(Galvalume)可以非常成功地作磷化处理,从而得到一种在不同试验环境中具有与传统的铬钝化转化层处理相同抗腐力的表面。研究表明当铝板是磨光的或铝合金中含有硅时,如果在锌系磷化中不能得到晶粒一致的均匀磷化层,则磷化层的抗腐蚀能力和漆膜的附著力将很差。如表2所示,当处理铝基材时,推荐使用含有一定量氟化物的锌系磷化工艺。

四,漆前的锌系磷化处理

多年来,为满足抗腐和提高粘著力以及处理多种混合金属材料的需要,已经发展了许多不同的锌系磷化工艺。传统所用的所谓锌系磷化工艺已在一些方面被低锌或锰改良的工艺所取代,这些工艺所生成的磷化膜在多种腐蚀试验环境中具有优良的性能(表3)。

在油浸前金属预处理各工艺的差异是工艺化学问题的不同所带来的。在通常的锌磷化槽中约有2000-4000ppm锌和5000-10000ppm五氧化二磷,而低锌槽中的锌约有400-1700ppm 和12000-16000ppm P2O5在低锌工艺中加入第三种金属(通常是Mn)是低锌工艺的进一步发展。这种工艺性能优异,被叫做锰改良低锌磷化工艺。表4是各类磷化工艺的比较。

磷化层的厚度要依今後部件的用途和油漆工艺来选择。磷化膜重范围在100- 500mg/ft2。

五,磷化膜晶体结构

由于材料和磷化工艺不同,所以磷化膜有多种不同的晶体结构。在普通的锌磷化工艺中,在所有不同材料上得到的晶体是相同的,即Zn3(PO4)2·4H2O。低锌工艺因下列因素而使漆膜性能较好:

1) 酸性反应时间较长,使金属表面清洗效果较好;

2) 磷化层沉积较慢,所以得到的磷化膜较细密;

3) 磷酸锌铁的含量较高.

下面是各种材料表面的晶体结构:

钢:ZnFe(PO4)2·4H2O

Zn3(PO4)2·4H2O

相关文档
最新文档