混凝土重力坝设计规范word版
水利工程混凝土重力坝技术规程
水利工程混凝土重力坝技术规程一、前言水利工程混凝土重力坝是一种重要的水利水电工程建设形式,具有拦水、调节水流、发电等多重功能,因此其建设技术规范具有重要的意义。
本文旨在为混凝土重力坝的建设提供一份全面的技术规程,以确保其安全、高效、可靠的运行。
二、设计要求1. 坝体结构设计应符合国家相关标准,满足在正常使用条件下的稳定性、安全性和可靠性要求;2. 坝顶高程应满足工程要求,坝体高程应根据水库的防洪标准确定;3. 坝顶的宽度应符合设计要求,具有良好的排水功能;4. 坝体应具有良好的抗震性能,能够满足地震安全要求;5. 坝体要求具有良好的隧道、泄洪、进水、出水等工程设施。
三、基础工程1. 坝基处理坝基处理应采取综合措施,包括基础平整、坝基排水、坝基加固、坝基防渗等。
坝基处理应根据地质条件和水力条件进行评估。
2. 坝基填筑坝基填筑应采用优质的填充材料,填筑高度应符合设计要求。
填筑过程中应注意均匀分层、加压、加湿等措施,保证填筑质量。
3. 坝基防渗采用粘土芯墙或混凝土防渗墙进行坝基防渗,防渗墙应满足设计要求,确保坝体的稳定性和安全性。
四、混凝土结构1. 混凝土材料混凝土材料应采用符合国家标准和工程要求的水泥、骨料、砂、水等原材料。
混凝土强度等级应符合设计要求。
2. 混凝土浇筑混凝土浇筑应采用逐层浇筑的方式,每层浇筑应控制在设计高度以内。
浇筑过程中应注意控制混凝土的水灰比、温度、湿度等参数,确保混凝土质量。
3. 坝体结构坝体结构应符合设计要求,包括坝顶、坝肩、坝墙、坝底等。
结构应具有良好的承载能力、抗震性能和耐久性。
五、坝体监测1. 监测要求坝体的监测应包括坝顶、坝肩、坝墙、坝底等部位的测量和观测,包括应变、位移、温度、水位等参数的监测。
2. 监测设备监测设备应采用符合国家标准和工程要求的设备,包括应变计、位移计、温度计、水位计等。
设备应定期检修、校准和维护。
3. 监测报告监测报告应每年进行一次,包括监测数据、分析和评估,以及针对问题的建议和措施。
重力坝设计内容.docx
第三部分枢纽布置(1)坝型的选择坝型根据:坝址基岩岩性为燕山早期第三次侵入黑云母花岗岩,河岸边及冲沟底部见有弱风化基岩出露。
河床冲积层厚度一般为 2.0-2.5m,左岸覆盖层厚度为3-8m,右岸覆盖层厚度为 0.5-5.0m,覆盖层主要为坡残积含碎石粘土层。
且河床堆积块石、孤石和卵石,但是缺乏土料。
浆砌石重力坝虽然可以节约水泥用量,但不能实现机械化施工,施工质量难以控制,故本工程采用混凝土重力坝。
(2)坝轴线的选取坝址河段长 350m,河流方向为 N20E,其上、下游河流方向分别为 S70E和 S80E。
坝址河谷呈“V”型,两岸h山体较雄厚,地形基本对称,较1完整,两岸地形坡度为 30°-40°。
河床宽 20-30m,河底高程约 556-557m。
坝轴线取在峡谷出口处,此处坝轴线较短,主体工程量小,建库后可以有较大库容。
(3)地形地质坝址基岩岩性为燕山早期第三次侵入黑云母花岗岩,河岸边及冲沟底部见有弱风化基岩出露。
河床冲积层厚度一般为 2.0-2.5m,左岸覆盖层厚度为3-8m,右岸覆盖层厚度为 0.5-5.0m,覆盖层主要为坡残积含碎石粘土层。
(4)坝基参数坝址地质构造主要表现为断层、节理裂隙。
坝址发育 11 条断层。
建议开挖深度:河中 5m,左岸 6-12m,右岸 6-15m。
(5)基本参数干密度 2.61g/cm 3 ,饱和密度 2.62 g/cm 3 ,干抗压强度92-120MPa,饱和抗压强度 83-110MPa,软化系数 0.9,泊松比 0.22-0.23。
混凝土与基岩接触面抗剪断指标:Ⅲ类岩体,抗剪断摩擦系数 1.0-1.1,抗剪断凝聚力 09.-1.1MPa。
坝基高程为550m.正常水位 642.00m设计水位 642.71m校核水位 643.69m(6)工程级别:本水利枢纽坝址林地溪与国宝溪汇合口下游约2.5km的峡谷中,坝址集水面积144.5km2,又知河底高程556-557m。
重力坝规范老word版本
混凝土重力坝设计规范(试行)SDJ21—78中华人民共和国水利电力部关于颁发试行《混凝土重力坝设计规范》的通知(78)水电规字第118号根据国家建委关于修订设计规范的要求,我部先后委托水电十二工程局和华东勘测设计院负责编制《混凝土重力坝设计规范》SDJ21-78。
在编制过程中得到了各有关单位的积极支持,进行了广泛的调查研究和征求意见,并吸收了有关科研成果。
现批准《混凝土重力坝设计规范》SDJ21-78颁发试行。
各单位在试行过程中,有何意见,请随时函告我部规划设计管理局和华东勘测设计院。
1978年12月4日第一章总则第1条混凝土重力坝的设计必须全面贯彻执行“鼓足干劲,力争上游,多快好省地建设社会主义”的总路线和党的各项方针政策,做到技术先进,安全适用,经济合理,保证质量。
第2条本规范适用于大、中型工程中岩基上的1、2、3级混凝土重力坝(指实体重力坝和宽缝重力坝)的设计。
4、5级混凝土重力坝设计可参照使用。
对于特殊重要的工程,设计时可进行专门研究,制定补充条例。
第3条设计混凝土重力坝时,应符合《水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)》、《水利水电工程水利动能设计规范》、《水利水电工程地质勘察规范》、《水工钢筋混凝土结构设计规范》和《水利水电工程钢闸门设计规范》等规范和标准的有关要求。
设计地震区的混凝土重力坝时,还应符合《水工建筑物抗震设计规范》的要求。
第4条混凝土重力坝按其坝高分为低坝、中坝和高坝。
低坝的高度为30m以下,中坝的高度为30~70m,高坝的高度为70m以上。
注:坝高系指坝基(但不包括局部深槽或井、洞)的最低面至坝顶路面的高度。
第5条混凝土重力坝的设计应符合下列要求:1.初步设计阶段应进行坝址、坝线、枢纽布置及主要建筑物形式的选择,根据综合利用要求,确定坝体上各建筑物(例如泄洪、发电、灌溉、航运、供水、过木、过鱼、导流和交通等)的规模、布置、结构型式和主要尺寸;并提出坝基处理、温度控制和主要施工方法的初步方案。
重力坝设计规范
重力坝设计规范
重力坝,也叫重力堤,是一种形式简单,抗压极大,间断性,顶高较小的水闸。
重力坝由横向悬索牵引拉出的钢板或钢筋混凝土组成,高低之间有档定度;两桩之间放置相应数量的横向连接杆,以及拉索牵引线,而其上部装配塑料板。
1、重力坝设计应遵循《水利水电工程水闸设计规范》(SL 331-2002)的规定。
2、重力坝的设计应综合考虑水力学要素、建筑结构要素、设备要素及环境要素,确定所有的设计参数及技术要求,使重力坝的耐久性和安全性满足设计要求。
3、重力坝的长度通常视水库大小而定,至少为10m ,高度一般为6-10m,应根据施工和使用需要,确定合理的高度和形状。
4、弹性材料材质选择应满足使用环境的需要,常用材料有钢板、钢格栅、钢筋混凝土和不锈钢板。
5、重力坝应对汛期有足够的安全系数同时具有较高的水密性能和较低的固结系数,防止水流穿透重力坝。
6、安全设计应充分考虑汛期的水位变化,重力坝的受力类型及变化规律。
7、水闸设计时,应以坝顶以上3m水深所有穿流形式及泄洪和灌溉需要为依据,设计合理的调节流量系统,保证重力坝的安全。
8、重力坝设计应考虑并结合增强坝体厚度、加强坝体固定、建立安全监控等措施,帮助改善坝体的运行,降低施工风险。
《混凝土重力坝设计规范》
5.基本设计规定本章规定了概率极限状态设计原则,列出了分项系数极限状态设计表达式。内容共分4节:一般规定、承载能力极限状态计算规定、正常使用极限状态计算规定与作用和材料性能标准值。规定了各类作用的分项系数、作用的标准值或代表值按照《水工建筑物荷载设计规范》(DL5077一1997)的规定确定。对材料性能的标准值及其分项系数作出了规定。
10.观测设计规定了重力坝观测设备的项目及其布设原则。安全性观测项目可根据混凝土重力坝的安全等级提出不同的项目;专门性观测项目根据工程的安全等级、结构型式及地质条件等选设项目。观测设备布设原则要能反映大坝与基础的工作性状,应目的明确、重点突出,做到少而精、布点集中,观测方法简捷直观满足精度要求,重点部位观测值能互校,规定了观测点布设应具的工作条件。
7.坝基处理设计共分6部分,即一·般规定、坝基开挖、坝基固结灌浆、坝基防渗帷幕和排水、断层破碎带和软弱夹层处理、岩溶地区的防渗处理,防渗帷幕标准用透水率(…表示,单位用吕荣。对坝基深层缓倾角软弱夹层处理和岩溶地区防渗处理的要求作出了规定。
8.坝体构造包括坝顶布置、坝内廊道及通道、坝体分缝、坝体止水和排水、大坝混凝土及材料分区5部分。所有规定适用于常规混凝土重力坝和碾压混凝土重力坝。对大坝混凝土强度等级、耐久性(包括抗渗、抗冻、抗冲耐磨、抗风化和抗侵蚀)以及低热性分别提出了规定的要求指标或应具有的材料特性。
规范分正文及附录、条文说明、专题报告汇编3部分。正文共10章、7个附录;条文说明与规范正文的章、节、条顺序相对应,绝大部分的条文均作了说明,该规范现已提出送审稿。
规范的主要Байду номын сангаас容有:
1.总则阐明了规范修订原则,适用于岩基上坝高200m以下的常规混凝土重力坝和碾压混凝土重力坝,在本规范中未涉及的部分应执行本行业相应的其他设计规范和符合其他行业的设计规范等的规定,对高坝、中坝、低坝分档的标准作出了规定。
混凝土重力坝设计设计说明23页
混凝土重力坝设计设计说明23页混凝土重力坝设计说明书学生:宋文海指导老师:张萍三峡大学水利与环境学院1. 工程等级、建筑物级别及防洪标准确定1.1工程等级确定根据工程基本资料和《水利水电工程等级划分及洪水标准》SL252—2000(表1—1),确定:1)根据水库总库容1.042亿m3和供水保证率为95%判定,工程属于Ⅱ等工程,大(2)型规模;2)根据电站装机1.5万KW判定,工程属于Ⅳ等工程,小(1)型规模;3)根据水库设计灌溉面积24.28万亩,工程属于Ⅲ等工程,中型规模。
综合以上数据,确定水利枢纽工程为Ⅱ等工程,大(2)型规模。
表1-1 水利水电工程分等指标工程等别工程规模水库总库容(3810m)防洪治涝灌溉供水发电保护城镇及工矿企业的重要性保护农田(410亩)治涝面积(410亩)灌溉面积(410亩)供水对象重要性装机容量(410KW)Ⅰ大(1)型≥10 特别重要≥500≥200≥150特别重要≥120Ⅱ大(2)型10~1.0 重要500~100200~60150~50重要120~30Ⅲ中型 1.0~0.10 中等100~30 60~15 50~5 中等30~5 Ⅳ小(1)型0.10~0.01 一般30~5 15~3 5~0.5 一般5~1Ⅴ小(2)型0.01~0.001<5 <3 <0.5 <1注: ①水库总库容指水库最高水位以下的静库容;②治涝面积和灌溉面积均指设计面积。
1.2 建筑物级别确定表 1-2 水工建筑物级别工程等别永久性建筑物级别临时性建筑物级别主要建筑物次要建筑物Ⅰ 1 3 4Ⅱ 2 3 4Ⅲ 3 4 5Ⅳ 4 5 5Ⅴ 5 5根据工程基本资料和《水利水电工程等级划分及洪水标准》SL252—2000(表1—2),确定:鲤鱼塘水库水工建筑物级别工程等别永久性建筑物级别临时性建筑物级别主要建筑物次要建筑物Ⅱ 2 3 41.3 工程洪水标准确定根据《水利水电工程等级划分及洪水标准》SL252—2000规定:表1-3山区、丘陵区水利水电工程永久性水工建筑物的洪水标准[重现期(年)]项目水工建筑物级别1 2 3 4 5设计1000~500 500~100 100~50 50~30 30~20 校土石坝可能最大洪水5000~2000 2000~1000 1000~300 300~200 核(PMF )或10000~5000混凝土坝、浆砌石坝5000~20002000~10001000~500500~200200~100表1-4 临时性水工建筑物洪水标准[重现期(年)临时性建筑物类型临时性水工建筑物级别34 5 土石结构 50~20 20~10 10~5 混凝土、浆砌石结构20~1010~55~3根据表1—3、表1—4确定,有:鲤鱼塘水库工程的洪水标准水工建筑物类型永久性水工建筑物级别临时性建筑物重现期(年)设计500~10010~5 校核2000~1000 所以,永久性水工建筑物的洪水标准:正常运用情况下为500年一遇(%2.0=P ),非常运用情况下为2000年一遇(%05.0=P );临时性建筑物的洪水标准:5年一遇(%20=P )。
(完整word版)重力坝课程设计
目录一、基本资料................................... - 1 -1.1工程概况................................... - 1 -1。
2设计基本资料.............................. - 4 -1。
3水库特征表................................ - 6 -1。
4电站建筑物基本数据........................ - 7 -二、剖面设计..................................... - 8 -2。
1坝顶高程: ................................. - 8 -2。
2波浪要素.................................. - 8 -2.3坝顶宽度.................................. - 13 -2。
4坝坡的确定。
............................. - 13 -2。
5坝体的防渗排水。
......................... - 13 -2。
6拟定非溢流坝基本剖面如图所示............. - 14 -2.7荷载计算及组合............................ - 14 -三、挡水坝稳定计算.............................. - 16 -3.1荷载计算.................................. - 16 -3.2稳定计算.................................. - 20 -四、挡水坝应力计算:............................ - 21 -4。
1坝址抗压强度极限状态计算: ................ - 21 -4.2坝体上下游面拉应力正常使用极限状态计算.... - 24 -五、重力坝的地基处理............................ - 25 -5。
(完整版)重力坝设计说明书
网络教育学院《水工建筑物课程设计》题目:混凝土重力坝设计学习中心:专业:年级:年春/秋季学号:学生:指导教师:混凝土重力坝设计说明书目录第一章基本资料 (1)一、基本情况 (1)二、气候特征 (1)三、工程地质条件 (1)第二章大坝设计 (3)一、工程等级 (3)二、坝型确定 (3)三、基本剖面的拟定 (3)四、坝高计算 (3)五、挡水坝段剖面的设计 (4)第三章结构计算 (5)一、荷载及其组合 (5)二、挡水坝抗滑稳定分析计算 (7)三、挡水坝边缘应力分析与强度计算 (9)第四章细部构造设计 (13)一、材料区分及标号选择 (13)二、坝顶 (13)三、坝体防渗与排水 (13)四、坝体廊道系统 (13)第五章地基处理 (14)一、基底开挖 (14)二、固结灌浆 (14)三、惟幕灌浆与坝基排水孔 (14)第六章附件 (15)一、挡水坝段剖面图 (15)第一章基本资料一、基本情况本重力坝水库坝高53.9m,坝底高程31.0m,坝顶高程84.9m,坝基为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强。
水库死水位51.0m,死库容0.3亿m3,正常水位80.0m,设计状况时上游水位82.5m、下游水位45.5m,校核状况上游戏水位84.72m、下游水位46.45m。
二、气候特征1、根据当地气象局50年统计资料,多年平均最大风速14m/s,重现期50年最大风速23m/s,设计洪水位时2.6km,校核洪水位时3.0km;2、最大冻土层深度为125m;3、河流结冰期平均为150天左右,最大冰层1.05m。
三、工程地质条件1、坝址地形地质(1)、左岸:覆盖层2-3m,全风化带厚3-5,强风化加弱风化带厚3m,微风化层厚4m;(2)、河床:岩面较平整,冲积沙砾层厚约0-1.5m,弱风化层厚1m左右,微风化层厚3-6m;坝址处河床岩面高程约在38m 左右,整理个河床皆为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强;(3)、右岸:覆盖层3-5m,全风化带厚5-7,强风化加弱风化带厚1-3m,弱风化带厚1-3m,微风化层厚1-4m。
混凝土重力坝设计规范
混凝土重力坝设计规范SL 中华人民共和国水利行业标准SL319 — 9><>2005 替代SDJ<>21-7><78 混凝土重力坝设计规范Design specification for concrete gravity dams <>2005 - 0<7 - <>21 发布 <>2005 - 11 - 01 实施中华人民共和国水利部发布 1中华人民共和国水利部关于批准发布《混凝土重力坝设计规范》 SL319—<>2005的通知水国科[<>2005]301号部直属各单位,各省、自治区、直辖市水利(水务)厅(局),各计划单列市水利(水务)局,新疆生产建设兵团水利局:经审查,批准《混凝土重力坝设计规范》为水利行业标准,并予发布。
标准编号为SL319-<>2005,替代SDJ<>21-<78及其补充规定。
本标准自<>2005年11月1日起实施。
标准文本由中国水利水电出版社出版发行。
二○○五年七月二十一日 <>2前言《混凝土重力坝设计规范》于19<78年首次发布,1984年作了局部修改。
本次根据水利部水利水电规划设计管理局(水总局科[<>2001]1号)文件《关于下达<>2001年度水利水电勘测设计技术标准制定、修订项目计划及主编单位的通知》以及《水利技术标准编写规定》(SL1-<>200<>2),对《混凝土重力坝设计规范》(SDJ<>21—<78 )及其补充规定(以下简称原标准)进行修订。
本标准主要包括下列技术内容:——坝体布置;——实体重力坝、宽缝重力坝、空腹重力坝的体形选择、泄水建筑物坝体结构布置;——泄洪、消能、防冲的水力设计;——作用在坝体上的荷载、坝体应力与稳定计算及其控制标准;——坝基处理设计,开挖、固灌、防渗排水、岩溶、断层破碎带的处理设计;——坝体构造、大坝材料、坝顶、坝内廊道、坝体分缝及止水、排水坝体构造;——温度控制标准和防止裂缝措施;——安全监测设计。
碾压混凝土重力坝设计范本
FJD31050FJD水利水电工程技术设计阶段碾压混凝土实体重力坝设计大纲范本(大中型)水利水电勘测设计标准化信息网1999年3月1工程技术设计阶段碾压混凝土实体重力坝设计大纲主编单位:主编单位总工程师:参编单位:主要编写人员:软件开发单位:软件编写人员:勘测设计研究院年月2目次1. 引言 (4)2. 设计依据文件和规范 (4)3. 设计基本资料 (4)4 坝体布置 (6)5.水力设计 (7)6.坝体断面设计 (8)7.碾压混凝土材料配合比及层面抗剪断参数的试验 (12)8.坝体稳定应力分析 (13)9.坝体构造 (16)10.坝基处理设计 (16)11.坝体观测设计 (17)12.专题研究 (17)13.工程量计算 (17)14.设计成果 (18)31 引言1.1 适用范围本设计大纲范本适用于技施设计阶段一般地区大中型碾压混凝土重力坝的设计。
工程位于,是以为主,兼有等综合利用的水利水电枢纽工程。
挡水建筑物为碾压混凝土实体重力坝,最大坝高 m,水库正常蓄水位 m,总库容亿m3,电站机组台,总装机容量 MW,多年平均发电量亿kW·h。
2 设计依据文件和规范2.1 主要依据文件(1) 工程可行性研究报告;(2) 工程可行性研究报告审批文件;(3) 工程技术设计任务书;(4)有关工程文件和会议纪要。
2.2 主要设计规范(1)SDJ 12-78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)(试行)及补充规定;(2)GB 50201-94 防洪标准;(3)SDJ 21-78 混凝土重力坝设计规范(试行)及补充规定;(4)DL/T 5005-92 碾压混凝土坝设计导则;(5)SL 48-94 水工碾压混凝土试验规程;(6)SDJ 341-89 溢洪道设计规范;(7)SDJ 10-78 水工建筑物抗震设计规范(试行);(8)SDJ 20-78 水工钢筋混凝土结构设计规范(试行);3 设计基本资料3.1 工程等别和建筑物级别(1)工程等别为等;(2)建筑物级别为级。
混凝土重力坝设计规范
促进技术创新:设计规范是技术创新的重要推动力,它鼓励工程师们不断探索新的设计 理念和技术,推动混凝土重力坝建设的进步。
降低建设成本:合理的设计规范可以有效降低建设成本,通过优化设计方案、提高施工 效率等方式实现经济效益的提升。
设计规范的应用确保了坝体结构的稳定性、安全性和耐久性,减少了工程风险。
在实际应用中,设计规范需要考虑地质条件、水文气象等因素,以确保坝体的合理设计。
随着工程实践的不断发展,混凝土重力坝设计规范也在不断完善和更新,以适应新的技 术和要求。
设计规范对混凝土重力坝建设的影响
确保结构安全:设计规范为混凝土重力坝的建设提供了安全准则,确保了大坝在各种工 况下的安全性和稳定性。
坝体排水设计通常包括排水孔的设置、排水廊道的布置等内容,以确保排水顺畅。
消能防冲措施包括挑流消能、面流消能、底流消能等多种方式,需根据具体情况进行选择和 设计。
设计规范的执行机构和职责
执行机构:水利部及各级地方水利部门 职责:负责监督和检查混凝土重力坝设计规范的实施情况,确保工程安全和质量;对违反规 范的行为进行处罚和纠正;推广先进技术和经验,提高混凝土重力坝设计水平。
感谢您的观看
设计规范的未来发展与展望
智能化技术的应用:利用大数据和人工智能技术提高设计规范的应用效 果和安全性。
可持续发展要求:满足环境保护和资源利用的要求,推动设计规范的绿 色化和低碳化发展。
新型材料的应用:研究新型材料在混凝土重力坝设计规范中的应用,提 高坝体的性能和安全性。
国际化合作与交流:加强国际合作与交流,借鉴国际先进的设计规范和 技术经验,推动混凝土重力坝设计规范的创新和发展。
混凝土重力坝设计规范word版
混凝土重力坝设计规范word版目次前言1 范围2 引用标准3 总则4 术语、符号5 重力坝布置6 坝体结构和泄水建筑物型式7 泄水建筑物的水力设计8 结构计算基本规定9 坝体断面设计10 坝基处理设计11 坝体构造12 坝体防裂及温度控制13 观测设计附录A (标准的附录) 堰面曲线、堰面压力及反弧段半径附录B (标准的附录) 坝身泄水孔体型设计附录C (标准的附录) 水力设计计算公式附录D (标准的附录) 坝基、坝体抗滑稳定抗剪断参数值附录E (标准的附录) 实体重力坝的应力计算公式附录F (标准的附录) 坝基深层抗滑稳定计算附录G (标准的附录) 坝体温度和温度应力计算条文说明1 范围本规范规定了重力坝的布置、结构计算、设计原则、温度控制和观测等技术要求。
本规范适用于水利水电大、中型工程岩基上的1、2、3级混凝土重力坝的设计,4、5级混凝土重力坝设计可参照使用。
对于坝高大于200m的混凝土重力坝设计,应作专门研究。
22引用标准33下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。
在标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB50199—94 水利水电工程结构可靠度设计统一标准GB50201—94 防洪标准DL/T5039—95 水利水电工程钢闸门设计规范DL/T5057—1996水工混凝土结构设计规范DL5073—1997 水工建筑物抗震设计规范DL5077—1997 水工建筑物荷载设计规范DL/T5082—1998水工建筑物抗冰冻设计规范SD105—82 水工混凝土试验规程SD303—88 水电站进水口设计规范SDJ12—1978 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分) (试行) 及补充规定SDJ336—89 混凝土大坝安全监测技术规范(试行) SL48—94 水工碾压混凝土试验规程3 总则3.0.1 本规范是根据GB50199规定的原则制定的。
水库混凝土重力坝设计书
水库混凝土重力坝设计书第1章基本资料一、枢纽工程概况:P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。
控制流域面积3.37万km2,总库容为14.39亿m3。
P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。
并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。
根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。
二、气象:P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。
表一多年平均气温、水温表单位:℃本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。
流域冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。
流域多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六:表二多年月平均降水天数及降水量表单位:mm三、水文分析:1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。
年分配很不均匀,主要集中汛期七、八月份。
丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。
2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。
其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。
洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。
混凝土重力坝工程设计基本资料(完整版)
混凝土重力坝工程设计1流域概况某水电站位于云南省怒江州兰坪县兔峨乡境内澜沧江上游河段上,距兰坪县城77km,是澜沧江干流水电基地上游河段规划的八座梯级电站中的第六级。
坝址控制流域面积9.26×104平方公里,多年平均流量925立方米/秒。
正常蓄水位1477m,相应库容2.93亿立方米,调节库容0.41亿立方米,具有周调节性能。
本工程主要任务为发电,兼有防洪等功能。
2设计技术参数本枢纽经过技术经济调查以及水利水能计算,提出了如下设计参数,作为进行建筑物设计的依据。
表1 设计参数表3坝址区地质构造资料坝址处坝基岩体以中等坚硬的板岩和坚硬的石英砂岩互层为主,二者比例基本为1:1,层面闭合,结合紧密,微风化岩体完整性较好(RQD为50%~70%),从岩体强度、抗变形能力上石英砂岩较好,而板岩较差。
河床坝基岩体质量以Ⅲ1类为主,两岸石英砂岩多为Ⅲ1~Ⅳ1、板岩多为Ⅲ2~Ⅳ1类,承载力总体能满足要求。
坝基断裂构造不发育,两岸岩层层序对应关系正常,主要结构面为单一的横河向、陡角度略倾向下游的层面,且多为胶结较好的硬性结构面,对坝基稳定影响较小。
表2 坝址区岩体力学参数表岩石与混凝土间抗剪断强度参数f =0.85~0.95,粘聚力c =0.80~0.95MPa ;抗剪强度参数f =0.65.4其它资料1)坝址区地震基本烈度为Ⅵ度2)风速及风区长度:重现期为50年的年最大风速为19.5m/s ,多年平均最大风速为14.0 m/s 计算,风区长度为400m ;3)淤沙情况:坝前淤沙高程为1406.9m ,泥沙浮重度为9.0kN/m 3,内摩擦角s ϕ为15°;5 筑坝材料(1)当地材料。
勘测结果如下。
1)砂:河沙A :在坝址下游3~5km 处,颗粒较粗,其主要颗粒直径在0.5~1.0之间,.30065d mm =,不均匀系数/603021d d η==。
砂均在正常河水附近,含泥量约为 3.5%,沿河有公路可通。
DL 5108-1999 混凝土重力坝设计规范1
中华人民共和国电力行业标准混凝土重力坝设计规范主编单位国家电力公司华东勘测设计研究院批准部门中华人民共和国国家经济贸易委员会批准文号号前言年作了局部修订字第号文的要求及通过本规范的实本规范对年结构设计采用概率极限状态设计原则以分项系数极限状增加了坝基深层抗滑稳定分析方法和极限状态设计表达对重力坝结构分析增加了有限元方法并提出了设计控制型设计修订了坝基处理标准采用混凝土强度等级取代了混凝土标号本规范替代年补充规定并替代本规范由国家电力公司水电水利规划设计总院提出修订并归本规范起草单位本规范的主要起草人目次前言范围引用标准总则重力坝布置坝体结构和泄水建筑物型式结构计算基本规定坝体断面设计坝基处理设计坝体构造坝体防裂及温度控制观测设计附录附录坝身泄水孔体型设计附录附录断参数值附录附录坝基深层抗滑稳定计算附录坝体温度和温度应力计算范围级混凝对于坝高大于的混凝土重力坝设计引用标准在标准出版时所有标准都会被修水利水电工程结构可靠度设计统一标准防洪标准水利水电工程钢闸门设计规范水工混凝土结构设计规范水工建筑物抗震设计规范水工建筑物荷载设计规范水工建筑物抗冰冻设计规范水工混凝土试验规程水电站进水口设计规范水利水电枢纽工程等级划分及设计标准水工碾压混凝土试验规程本规范是根据在本规范中未涉及的部分应执行本行业或其它行业相应坝高在坝高在术语坝高建基面的最低点混凝土实体重力坝碾压混凝土重力坝将干硬性的混凝土拌和料分薄层摊铺并经振动碾压密实而成混凝土空腹重力坝在坝的腹部沿坝轴线方向布置有大尺度空腔的混凝土重力混凝土宽缝重力坝宽尾墩联合消能扭曲式挑坎窄缝式挑坎气温骤降日平均气温在内连续下降超过基础温差符号分项系数极限状态设计结构重要性系数设计状况系数作用效应函数结构抗力函数正常使用极限状态短期组合的结构功能限值正常使用极限状态长期组合的结构功能限值几何特征分别为坝材料性能基岩变形模量混凝土泊松比混凝土的重度混凝土的比热混凝土的表面放热系数混凝土的温度膨胀系数混凝土抗压强度设计值坝体混凝土与基岩接触面的抗剪断摩擦系数坝体混凝土层面的抗剪断摩擦系数坝基岩体结构面的抗剪断摩擦系数作用及作用效应基岩法向作用对计算截面形心轴的力矩之和计算参数坝顶距水库静水位的高度波高超高流速流量定型设计水头水深冲坑水垫厚度基础允许温差坝体的稳定温度热量计算系数基础约束系数重力坝布置碾压混凝土重力坝的枢纽布置宜采用引水式或地下式厂若采用坝后式厂房时两岸坝接头可通过技术经济比水库运行和泄洪以及排漂浮物的要求坝体分段情况与相邻建筑物的关系开敞式溢流孔泄洪孔设置条件经研究认为采用泄水孔泄洪有利放水孔的设置条件当地震设计烈度为度以上或坝基地质条件极为复杂其它取水设施不能满足要求时下因素其消能排沙孔应靠近其流态不得影响这运行条件施工条件泄水孔不同位置对施工进度和施工方法的影其布置应符合下列要求能宣泄所承担的施工流量来满足泄洪时应不致冲坏永久建筑物或影响施工进度工农业及城市生活供水取水口应满足供水期的引水高程和流量的要求设置在坝上的过坝建筑物的进出口宜远离泄洪建筑物的进出大型枢纽工程的重力坝布置应经水工模型试验验证运行坝体结构和泄水建筑物型式一般规定各溢流坝段和非溢流坝段下游面应分别保持一致但溢流坝段与非溢流坝段建在地震区的混凝土重力坝坝体结构的抗震设计应符合建在寒冷地区的混凝土重力坝坝体结构的抗冰冻设计应符合非溢流坝段的规确定在严寒地区当冰压力很大时上游坝坡宜采用采用下游坝坡可采用一个或几个坡度并应根据稳定下游坝坡宜采用上游下游坝坡可按常态混凝土不宜设纵缝宽缝宽度可取坝段宽的该部头部应力状态帷幕灌浆廊道和坝内交通系统的布置迎水面头部最小厚度可取倍该高程处上游坝面部分连接处宽缝水平截面的渐变坡度宽缝顶部的高程应高于下游水位倒坡宜陡于空腹重力坝腹孔底部的位置可位于坝剖面中部的坝基面腹孔总宽可占坝基总宽的左右腹孔高度在坝高的腹孔形状可采用或顶部溢流坝段经过数值模拟优化论证和试验验证选择溢流坝的堰面曲线时堰顶附近允许出现的经当地大气压修正的负压值应符合下列要求论证确定当堰顶闸门槽产生过大负压足以引起严重空蚀破坏时应设弧半径等大型工程应经水工模型试验验证中型工程宜经水工模型试验验证水力条件较简单的中型工程则可参照类似工程的经当溢流坝有排冰要求时溢流孔口尺寸应根据冰情资料确冰块应能自由下泄而不致闸墩墩头宜呈锐角溢流坝设置的闸门应符合溢流坝断面设计还应符合本规范坝身泄水孔无压孔在平面上宜布置成直线如需布置成弯道时应进有压段末端设工作闸该段体型的设计见附录无压段的高度可取最大流量时不掺气水深的无压段出口宜高出尾水位无压段水流流速较大时工作闸门设在出口端有压孔的体型设计可见附录坝身泄水孔的闸门和启闭机的设计应符合下列要求事故检修闸可设于坝顶位于坝内的启坝身泄水孔的通气孔设计应符合无法避免采取适当措施以避免坝身泄水孔的衬护并与外围混凝土可靠结泄水建筑物的水力设计一般规定泄水建筑物的水力设计内容应包括泄流能力的计算下游水流衔接和消能防冲设施的设计泄水建筑物的泄洪标准应根据和及其补充规定一等工程消能防冲建筑物宜按程消能防冲建筑物宜按筑物宜按并需考虑在小于设计洪水时可能所列公式进行计的选定的消能型式应能在宣泄设计洪水及其以下各级洪水流量时消能防冲设计标准的洪水允许消能防冲建筑物出现不危及挡水建筑物安全低坝需经论证才底流消能需经论证联合消能应大型工程和高坝的泄水建筑物设计应经水工模型试验验泄流能力及消能计算边墩或导墙顶高程应根据计算水面线加挑流水舌挑射距离和跌入下游河床的最大冲坑深度可按照附录护坦上的时均水压力分布可按下列规定取值计算断面上的水深作为近似水面线当护坦上设有消力墩时高速水流区的防空蚀设计泄水建筑物的高速水流区应注意下列部位或区域发生空蚀破坏的可能性反弧段及其附近溢流坝面上和泄水孔流速大于在高速水流区各部位的水流空化数宜大于该处的初生对采取以下防空蚀措施的控制标准见附录采用掺气设施可按照附录流速的泄水建筑物应采取掺气措施特殊重要的工程和流速大于的建筑物应通过减压箱模型试验确消能防冲设施的设计规定的洪水标准时的下游水位挑流鼻坎的挑角可采用采差动式鼻坎的上齿坎挑角和下齿坎挑角的差值以出底板的挑角宜取零度或为正负小挑角收缩比可为宜取长宽比宜取冲坑最低点距坝趾的距离应大于水舌入水宽度的选择挑流消能应研究雾化对枢纽其它建筑物运行安全及边坡坝下游的建筑物及消力池内要清理干净跃前断面平均流速小于辅助消能设施应满足设在池外侧的导墙宜采取下列工鼻坎下设置齿墙或短护坦两侧设置导墙联合消能的防冲设施可按照应宽尾墩的体形见附录结构计算基本规定一般规定本规范采用概率极限状态设计原则以分项系数极限状态设计表达式进行结构计算混凝土重力坝应分别按承载能力极限状态和正常使用极限状态进行下列计算和验算承载能力极限状态和抗滑稳定计算对需抗震设防的坝正常使用极限状态混凝土拉应力验算必要时进行坝体及结构变形计算复杂地基局见表表水工建筑物结构安全级别合基本组合持久状况或短暂状况下永久作用与可变作用的效应组合偶然组合合短期组合持久状况或短暂状况下可变作用的短期效应与永久作用效应的组合长期组合持久状况下承载能力极限状态计算规定式中设计状况系数状况可分别取用作用效应函数式中偶然组合结构系数表材料性能分项系数表结构系数正常使用极限状态计算规定正常使用极限状态作用效应的短期组合采用下列设计表正常使用极限状态作用效应的长期组合采用下列设计表达式式中结构的功能限值函数的结构系数取作用及材料性能标准值抗剪强度标准值大型工程可行性研究及招标设计阶段坝体混凝土与基岩接准值按现场或室内试验测定成果概率分布的当坝基地质条件简单时其抗剪断强度的标准值可根据少量现场大型工程可行性研究以前各设计阶段及中型工程的所有设计阶段可参考类似条件工程的试验成果或参考附录所列标准值上述抗剪断摩擦系数概率分布模型取正态分布抗剪断凝聚抗压强度标准值龄期用标准试验方法测得的具有大坝常态混凝土强度的标准值可采用表大坝常态混凝土强度标准值大坝碾压混凝土强度的标准值可采用表大坝碾压混凝土强度标准值当坝体常态混凝土开始承受荷载的时间早于混凝土开始承受荷载的时间早于坝体断面设计主要设计原则混凝土重力坝一般以材料力学法和刚体极限平衡法计算式见附录高坝除用材料力学法计算坝体应力外尚宜采用有限元法进行计算分析修建在复杂地基上的中坝地震作用组合下的偶然状况应符合分期施工投入运行的坝强度和稳定计算应按持久状况计设计规定的坝体及其构件的施工程序不宜使施工期产生的所得应力成果应避免特别不利的应不设横缝或横缝灌浆的整体式重力坝的稳定计算可按整体式厂坝连接的坝后式厂房作用及其组合按照承载能力极限状态基本组合由下列永久和可变作用产生的效应组合而排水及防渗设施正常工作时的水荷载扬压力浪压力取扬压力承载能力极限状态作用的基本组合和偶然组合按表组合计入中坝体在施工和检修情况下应按短暂状况承载能力极限状作用值坝体强度和稳定承载能力极限状态计算承载能力极限状态设计包括坝体与坝基接触面抗滑稳定计算坝体层面抗滑稳定计算坝趾抗压强度承载能力极限状态作用效应函数抗压强度极限状态抗力函数或逆时针方向为正坝体下游坡度规定应按材料的标准值和作坝体选定截面下游端点的抗压强度承载能力极限状态作用效应函数抗压强度极限状态抗力函数式中应按材料的标准值和作用的标准值或代表值分别计算基本组合和坝体混凝土与基岩接触面的抗滑稳定极限状态作用效应函数抗滑稳定抗力函数式中坝基面抗剪断摩擦系数作用效应函数抗滑稳定抗力函数式中应按材料的标准值和作用的标准值或代表值分别计算基本组合和核算坝基深层抗滑稳定极限状态时根据式中坝基面形心轴到上游面的距离核算坝踵应力时根据式为式中计算截面上全部作用对截面形心的力矩之和规定应按作用的标有限元法计算作用按的规定取标准值有限元法计算混凝土重力坝上游垂直应力时控制标准坝基上游面坝体上游面倍或坝内孔洞配筋可根据有限元法应力计算成果按溢流坝闸墩结构设计溢流坝上闸墩强度的设计计算包括闸墩强度的计算应符合下列要求核算纵向强度时核算横向强度时应将闸墩视为固端的整体构件根据拉钢筋混凝土构件设计弧门支座附近闸墩的局部受拉区的裂缝控制和支座截面闸墩结构设计计算应符合坝基处理设计一般规定混凝土重力坝的基础经处理后应满足下列要求具有足够的强度以承受坝体的压力控制渗流量坝基处理设计应综合考虑基础与其上部结构之间的相互透和坝肩边坡稳定情况尤应考虑施工或蓄水对稳定和渗透带来非岩溶岩石的封闭条坝基开挖定的基础上坝高超过微风化或弱风化下部基岩两岸地形较高部台阶的高差应与混凝土浇筑块的尺寸和分缝的位置相协调并和对地形高差悬殊部位的坝体应有一定宽度的台阶状或采取其它结构措施坝基固结灌浆应在坝基范围内进宽缝重力坝的宽缝部位适当扩大灌浆范围防渗帷幕上游的坝基宜进行固结灌浆或根据开挖以固结灌浆孔的孔深应根据坝高和开挖以后的地质条件采用必要时可适当加固结灌浆孔通常布置成梅花形对于较大的断层和裂隙灌浆孔方向应根据主要裂隙产状结合施工条件确帷幕上游区的固结灌浆应在基础部位混凝土浇筑后进灌浆压力在不抬动基础岩体的原则下经论证采用无混凝土盖重灌浆时其灌浆压力为坝基防渗帷幕和排水水文地质条件复杂的高坝防渗帷幕应符合下列要求生不利影响坝基渗漏量降至允许值以内两岸岸坡也多泥沙河流上经分析淤积物的渗透系数及上游的淤积厚度但应确保大坝初期运在施工主帷幕应在水库坝高在在坝高在在坝高在为抽水蓄能电站或水源短缺水库当坝基下存在可靠的相对隔水层时防渗帷幕应伸入到该岩层内度应符合两岸坝头部位对隔水层处或正常蓄水位与地下水位相交处并与河床部位的帷坝基灌浆帷幕中心线距坝上游面的距离可取倍左右坝底帷幕排数在考虑帷幕上游区的固结灌浆对加强基础浅层的防当帷幕由两排灌浆孔组成时可将其中的一排孔钻灌至设计倾向上游帷幕灌浆必须在浇筑一定厚度的坝体混凝土作为盖重后当高尾水位历时坝高较低主排水孔的孔距可为排水孔孔深应根据帷幕和固结灌浆的深度及基础的工程地高当坝基内存在裂副排水孔深可为夹泥裂隙时断层破碎带和软弱结构面处理研究在地震设计烈度为坝基范围内单独出露的断层破碎带其组成物质主要为坚硬构造岩对基础的强度和压缩变形影响不大时可将断层破碎可用混凝土塞加提高深层缓倾角软弱结构面稳定性处理方法有提高软弱结构面抗剪能力增加尾岩抗力当断用水泥灌浆难以达根据地质条件确定并应符合本规范岩溶地区的防渗处理对存在岩溶洞穴或具或管道时及错列式等岩溶地区防渗帷幕厚度可根据临界渗透坡降控制的允许廊道层间高差和层数宜高差可取混凝土形成连续防渗墙也可采用槽式洞挖后回填混凝土形成防坝体构造坝顶坝顶应高于校核洪水位坝顶上游防浪墙顶的高程应高应选择两者中防浪墙顶高程的高者作为选定高程式中防浪墙顶至正常蓄水位或校核洪水位的高差按照表安全超高防浪墙宜采用与坝体连成整体的钢筋混凝土结构墙身应有足够的厚度以抵挡波浪及漂浮物的冲击在坝体横缝处应留非溢流坝段的坝顶宽度可根据必要常态混凝土坝坝顶最小宽度为坝顶路面应具有横向坡度坝顶上的桥梁宜采用装配桥下应有足够的净坝顶用作公路时公路侧的人行道宜高出路面坝内廊道及通道坝内应根据下列要求设置廊道及竖井进行帷幕灌浆设置坝基排水孔检查和维修坝身的排水管坝内应设置纵向坝体排水及检查廊道廊道每隔左对设引张线廊道的上游壁离上游坝面的距离应满足防渗要求并不小于净距离不宜小于应通过应力分析确定严寒地区纵向坝体排水及检查廊道应沿不同高程分设自流式或专当灌浆廊道的高程低于尾水位或采用抽排降压措应设置的横向廊道可用三角形顶平底断面电梯井及集水井多采用矩形其它寸宽度为基础灌浆廊道的纵向坡度应缓于坡度较陡的长廊当两岸坡度陡于器设备与线路应保证绝缘良好坝内埋设仪器坝体分缝。
混凝土面板堆石坝设计规范word版
对应的旧标准:DL 5016-93P59备案号:J11—2000中华人民共和国电力行业标准P DL/T 5016—1999混凝土面板堆石坝设计规Design specifications for concrete face rockfill dams主编单位:国家电力公司水电水利规划设计总院批准部门:中华人民共和国国家经济贸易委员会批准文号:国经贸电力[2000]164号2000—02—24 发布2000—07—01 实施中华人民共和国国家经济贸易委员会发布前言我国现代混凝土面板堆石坝的建设始于1985年,起步虽晚,但发展很快。
到1998年已建成42座,在建32座。
其中坝高100m以上的有11座。
在此期间,在我国第一批8座混凝土面板堆石坝研究和建设经验的基础上,组织编制并于1993年发布DL5016—1993《混凝土面板堆石坝设计导则》(以下简称《设计导则》),对指导这一新型坝的设计起了很好的作用。
随着我国水利水电建设的蓬勃发展,混凝土面板堆石坝已成为枢纽常规比较坝型。
一批拟建的混凝土面板堆石坝坝高已达200m量级。
在坝体布置、筑坝材料、止水结构、混凝土面板与趾板设计、地基处理、施工方法、原型观测与质量控制等关键技术方面,进行了系统的攻关研究。
为了及时反映新的建设经验和成熟的技术研究成果,原电力工业部综科教[1998]28号文中正式下达了对原《设计导则》进行修订的任务。
修订工作于1997年上半年正式开始,先后提出过六次修改稿,召开了八次工作及审查会议。
于1999年4月通过送审稿审查,1999年11月完成报批稿。
本规范在《设计导则》基础上,吸收了近年来的工程建设经验和科研攻关成果,修订、增补了如下主要内容:1.对适用范围调整为适用于1、2、3级坝和4、5级的高坝,明确200m以上的坝应做专门研究;2.增加了术语和符号一章;3.放宽了趾板对基岩的要求,修改了砂砾石地基上不宜建高混凝土面板堆石坝的规定;4.修订了筑坝材料要求、填筑压实控制标准以及坝体分区;提出了对软岩和砂砾石筑坝材料的要求;5.突出和扩充了混凝土面板、趾板及分缝止水的设计内容;6.增加了抗震措施设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目次前言1 范围2 引用标准3 总则4 术语、符号5 重力坝布置6 坝体结构和泄水建筑物型式7 泄水建筑物的水力设计8 结构计算基本规定9 坝体断面设计10 坝基处理设计11 坝体构造12 坝体防裂及温度控制13 观测设计附录A (标准的附录) 堰面曲线、堰面压力及反弧段半径附录B (标准的附录) 坝身泄水孔体型设计附录C (标准的附录) 水力设计计算公式附录D (标准的附录) 坝基、坝体抗滑稳定抗剪断参数值附录E (标准的附录) 实体重力坝的应力计算公式附录F (标准的附录) 坝基深层抗滑稳定计算附录G (标准的附录) 坝体温度和温度应力计算条文说明1 范围本规范规定了重力坝的布置、结构计算、设计原则、温度控制和观测等技术要求。
本规范适用于水利水电大、中型工程岩基上的1、2、3级混凝土重力坝的设计,4、5级混凝土重力坝设计可参照使用。
对于坝高大于200m的混凝土重力坝设计,应作专门研究。
22引用标准33下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。
在标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB50199—94 水利水电工程结构可靠度设计统一标准 GB50201—94 防洪标准DL/T5039—95 水利水电工程钢闸门设计规范DL/T5057—1996水工混凝土结构设计规范DL5073—1997 水工建筑物抗震设计规范DL5077—1997 水工建筑物荷载设计规范DL/T5082—1998水工建筑物抗冰冻设计规范SD105—82 水工混凝土试验规程SD303—88 水电站进水口设计规范SDJ12—1978 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分) (试行) 及补充规定SDJ336—89 混凝土大坝安全监测技术规范(试行) SL48—94 水工碾压混凝土试验规程3 总则3.0.1 本规范是根据GB50199规定的原则制定的。
3.0.2 在本规范中未涉及的部分应执行本行业或其它行业相应的设计规范。
3.0.3 混凝土重力坝按其坝高分为低坝、中坝和高坝。
坝高在30m 以下为低坝,坝高在30m~70m为中坝,坝高在70m以上为高坝。
4 术语、符号4.1 术语4.1.1 坝高dam height建基面的最低点(不包括局部深槽、井或洞) 至坝顶的高度。
4.1.2 混凝土实体重力坝concrete solid gravity dam整个坝体除若干小空腔外均用混凝土填筑的重力坝。
4.1.3 碾压混凝土重力坝roller compacted concrete gravity dam将干硬性的混凝土拌和料分薄层摊铺并经振动碾压密实而成的重力坝。
4.1.4 混凝土空腹重力坝concrete hollow gravity dam在坝的腹部沿坝轴线方向布置有大尺度空腔的混凝土重力坝。
4.1.5 混凝土宽缝重力坝concrete slotted gravity dam两个坝段之间的横缝中部扩宽成空腔的混凝土重力坝。
4.1.6 宽尾墩end flared pier后段加宽成鱼尾状的溢流坝闸墩。
4.1.7 联合消能combined energy dissipation指宽尾墩与挑流鼻坎、宽尾墩与底流消力池、宽尾墩与戽式消力池等联合运用消能。
4.1.8 扭曲式挑坎distorted type flip bucket底面扭曲、坎顶不等高并与流向成一定夹角的挑坎。
4.1.9 窄缝式挑坎slit type flip bucket急流出口处的泄槽边墙急剧收缩形成窄缝的挑坎。
4.1.10 气温骤降sudden temperature drop日平均气温在2d~6d内连续下降超过5℃者为气温骤降或寒潮。
4.1.11 基础温差foundation temperature difference指基础约束区范围内,混凝土最高温度与该部位稳定温度之差。
4.2 符号4.2.1 分项系数极限状态设计γ0——结构重要性系数;ψ——设计状况系数;S(·) ——作用效应函数;R(·) ——结构抗力函数;S s(·) ——作用效应短期组合时的效应函数;S l(·) ——作用效应长期组合时的效应函数;G K——永久作用的标准值;γG——永久作用的分项系数;Q K——可变作用的标准值;γQ——可变作用的分项系数;A K——偶然作用的代表值;a K——几何参数的标准值;f K——材料性能的标准值;γm——材料性能的分项系数;γd1——承载能力极限状态基本组合的结构系数;γd2——承载能力极限状态偶然组合的结构系数;C1——正常使用极限状态短期组合的结构功能限值;C2——正常使用极限状态长期组合的结构功能限值;ρ——可变作用的长期组合系数。
4.2.2 几何特征T——坝体计算截面沿上、下游方向的长度(T R、T c分别为坝基面、计算层面的长度) ;m1——上游坝坡;m2——下游坝坡;A——坝体计算水平截面的面积(A R、A c分别为坝基面、计算层面的面积) ;J——坝体计算水平截面对于其形心轴的惯性矩(J R、J c分别为坝基面、计算层面对形心轴的惯性矩) ;B——溢流堰净宽;D——孔口高;A k——孔口出口处的面积;R——反弧半径;h——浇筑块高度;l——浇筑块长边长度。
4.2.3 材料性能E R——基岩变形模量;E c——混凝土的弹性模量;μ——混凝土泊松比;γr——岩石的重度;γw——水的重度;γc——混凝土的重度;C c——混凝土的比热;C w——水的比热;ε——混凝土的极限拉伸值;λc——混凝土的导热系数;a c——混凝土的导温系数;βc——混凝土的表面放热系数;α——混凝土的温度膨胀系数;C——混凝土强度等级符号;f c——混凝土抗压强度设计值;f′R——坝体混凝土与基岩接触面的抗剪断摩擦系数;f′c——坝体混凝土层面的抗剪断摩擦系数;f′d——坝基岩体结构面的抗剪断摩擦系数;c′R——坝体混凝土与基岩接触面的抗剪断黏聚力;c′c——坝体混凝土层面的抗剪断黏聚力;c′d——坝基岩体结构面的抗剪断黏聚力。
4.2.4 作用及作用效应ΣW——计算截面上全部法向作用之和;G——基岩法向作用;ΣP——计算截面上全部切向作用之和;ΣM——计算截面上全部作用(包括法向和切向) 对计算截面形心轴的力矩之和;σx——水平正应力;σy——垂直正应力;τ——剪应力;σ1、σ2——主应力;p、p′——计算截面上、下游坝面所受的水压力;U——扬压力;4.2.5 计算参数H——上、下游水位差;H1——上游水深;H2——下游水深;Δh——坝顶距水库静水位的高度;h1%——波高;h z——波浪中心线至水库静水位的高度;h c——超高;v——流速;Q——流量;q——单宽流量;H d——定型设计水头;h——水深;L′——水舌挑距;t k——冲坑水垫厚度;L——消力池长度;h b——波动或掺气后的水深;ΔT——基础允许温差;T p——混凝土的浇筑温度;T r——混凝土水化热温升;T f——坝体的稳定温度;Q0——胶凝材料(包括水泥和粉煤灰等混合材) 最终发热量;θ0——水化热绝热温升。
4.2.6 计算系数σ——空化数;F r——弗劳德数;m——溢流堰的流量系数;σs——淹没系数;φ——流速系数;R——基础约束系数;K p——由混凝土徐变引起的应力松弛系数。
5 重力坝布置5.0.1 应根据坝址区的地形、地质、水文、气象条件,工程开发目的及规模,施工条件等并结合枢纽布置,通过技术经济全面比较选定常态或碾压混凝土重力坝。
5.0.2 坝体布置应结合枢纽布置全面考虑。
根据综合利用要求,合理安排泄洪、发电、灌溉、供水、航运、过木、排沙、过鱼等建筑物的布置,避免相互干扰。
可首先考虑泄洪建筑物的布置,使其下泄水流不致冲淘坝基、其它建筑物的基础及岸坡。
5.0.3 碾压混凝土重力坝的枢纽布置宜采用引水式或地下式厂房。
若采用坝后式厂房时,可根据坝高将引(输) 水管道水平布置在坝体下部或上部的常态混凝土区内,后者宜采用背管式布置。
5.0.4 位于洪水流量大而狭窄河道上高坝的枢纽布置,可选用厂房顶溢流式、厂前挑流式、坝内式或地下式厂房等;位于宽阔河道上,可选用河床式或坝后式厂房。
两岸坝接头可通过技术经济比较选用混凝土坝或土石坝。
5.0.5 坝体溢流段的前沿长度、孔数、孔口型式、尺寸和堰顶高程,应考虑以下因素综合比较决定:1) 水库运行和泄洪以及排漂浮物的要求;2) 坝址地形地质条件、下游河床及两岸抗冲性能;3) 下游水深及消能要求;4) 坝体分段情况,与相邻建筑物的关系;5) 闸门型式、工作条件及运行方式。
开敞式溢流孔,具有较大泄洪潜力,宜优先考虑。
5.0.6 坝体泄洪消能防冲设施应根据坝高、坝基及下游河床和两岸地形地质条件,下游河道水深变化情况,结合过木、排冰、排漂等要求合理选择。
当采用挑流消能时,挑流水舌应不影响其它建筑物的安全和运行,必要时,设置导墙或采取其它措施。
5.0.7 坝体泄水孔有泄洪孔和放水孔,可根据功能要求设置。
1) 泄洪孔设置条件:a) 经研究认为采用泄水孔泄洪有利;b) 有排沙要求。
2) 放水孔的设置条件:a) 大型水库下游有重要城市、重要粮棉或经济作物基地、大型企业、交通干线;b) 当地震设计烈度为8度以上或坝基地质条件极为复杂时;c) 运行期、检修期和施工蓄水期需向下游供水,而由发电和其它取水设施不能满足要求时;d) 有检修或特殊要求,需降低或放空库水。
5.0.8 泄水孔位置、型式、高程、孔数和孔口尺寸的选择应考虑以下因素:1) 布置条件:在狭窄河道泄水孔宜与溢流坝段结合,其消能方式应与溢流坝统一考虑;宽阔河道可考虑分设。
排沙孔应靠近发电(或灌溉、供水) 进水口、船闸闸首等部位,其流态不得影响这类建筑物的正常运行。
2) 运行条件:下泄流量、放水期限、检修条件、排沙及排漂等。
3) 施工条件:泄水孔不同位置对施工进度和施工方法的影响,施工期泄洪及下游供水等要求。
4) 闸门工作条件、启闭机和坝体结构强度等。
5.0.9 重力坝的施工导流建筑物如底孔、缺口等,应根据导流方案和地形、地质、水文等条件经比较确定,其布置应符合下列要求:1) 能宣泄所承担的施工流量;2) 结合永久泄水建筑物的布置;3) 在通航河流上应考虑施工期通航要求,或采取其他措施来满足;4) 当需要时,能通过漂浮物或浮冰;5) 泄洪时应不致冲坏永久建筑物或影响施工进度;6) 施工方便,运行可靠,便于回填封堵。
导流建筑物的封堵应有妥善的设计和施工措施。
5.0.10 设于坝内的发电引水管道的进水口高程,应根据水利动能设计要求和泥沙淤积等条件确定,并符合SD30388的有关规定。