N3390-44.736中文资料

合集下载

C3390中文资料

C3390中文资料

C33xx 5x7mm SMDHCMOS Clock Oscillator3.3 V oltsModel C33xx is a 1.544MHz to 156.250MHz HCMOS ClockOscillator operating at 3.3Volts. The oscillator utilizes Fundamental or High Q Third Overtone crystal design providing very low Jitter and Phase Noise. No Sub-Harmonicsare present in the Output Signal.Applications:5x7mm SMDDigital VideoSONET/SDH/DWDMStorage Area NetworksBroadband AccessEthernet, Gigabit EthernetHCMOS Clock Oscillator 3.3 V oltsC33xx 5x7mm SMD Frequency Range:1.544 to 156.250MhzFrequency Stability Options(ppm): ±20, ±25, ±50, ±100Temperature Range: (standard) 0°C to +70°C(Option M) -20°C to +70°C (Option E) -40°C to +85°C Storage: -55°C to 120°C Input Voltage: 3.3V ± 0.3V Input Current: (1.544~34.00MHz) 18mA Max (35.00~50.00MHz) 25mA Max (51.00~69.00MHz) 30mA Max (70.00~156.25MHz) 45mA MaxStandby Current: 3uA Typ., 10uA Max Output: HCMOSSymmetry: 45/55% Max @ 50%Vdd Rise/Fall Time: (1.54~10.00MHz) 5nsec Max @ 20% to 80% Vdd (10.10~30.00MHz) 4nsec Max @ 20% to 80% Vdd (30.10~50.00MHz) 3nsec Max @ 20% to 80% Vdd (50.10~80.00MHz) 2.5nsec Max @ 20% to 80% Vdd (80.10~156.25MHz) 2nsec Max @ 20% to 80% Vdd Logic: “0”= 10% Vdd Max“1”= 90% Vdd Min. Disable Time 200nSec MaxStart-up Time 1mSec Typ., 2mSec MaxLoad:30pF Max, >125MHz 15pF Max Jitter RMS:12KHz~80MHz0.5psec Typ., 1psec Max Sub-harmonics:NoneAging:<3ppm 1st/yr, <1ppm every year thereafterPART NUMBER GUIDEPart Number Stability C3390±100ppm C3392±50ppm C3391±25ppm C3398±20ppmExample: C3392-44.736MHzIntermediate Temp: CM3392-44.736MHz Extended Temp: CE3392-44.736MHzC = 0°C to 70°C CM = -20°C to 70°C CE = -40°C to 85°CHCMOS Clock Oscillator 3.3 V oltsC33xx 5x7mm SMDRECOMMENDED REFLOW SOLDERING PROFILE217°C 200°C 260°C 150°C90 Secs. Max.T E M P E R A T U R ERamp-Up 3°C/Sec Max.Preheat 180 Secs. Max.8 Minutes Max.260°C for 10 Secs. Max.CriticalTemperature ZoneRamp-Down 6°C/Sec.NOTE: Reflow Profile with 240°C peak also acceptable.0.045 ±0.008(1.14 ±0.20)0.055 Typ.(1.40 Typ.)0.200 ±0.005(5.08 ±0.13)#1#3#2#40.283(7.20)0.204(5.02)P/N XXX FrequencyXXDenotes pad 1XXX=Date Code XX=Lot Code 0.075 (1.80)PadConnection1Enable/Disable2GND 3Out 4VccSUGGESTED PAD LAYOUT0.071 SQ (1.80)0.165(4.19)0.200(5.08)0.01uF Bypass Capacitor RecommendedMechanical:Shock:Solderability:Vibration:Solvent Resistance:Resistance to Soldering Heat:Environmental:Thermal Shock:Moisture Resistance:MIL-STD-883, Method 2002, Condition B MIL-STD-883, Method 2003MIL-STD-883, Method 2007, Condition A MIL-STD-202, Method 215MIL-STD-202, Method 210, Condition I or JMIL-STD-883, Method 1011, Condition A MIL-STD-883, Method 1004Tri-State FunctionPin #1StateOutput State Open or N/C Active“1” level 0.7*Vcc Min Active “0” level 0.3*Vcc MaxHigh ZPWR SupplymA MVMOSC.pin 1pin 4pin 2pin 3Bypass Cap.O/P Load incl Probe ClOUTHigh Impedance GND or "LOW"Oscillation OPEN or "HIGH"GNDOUTVdd。

SEN-R-956-003中文资料

SEN-R-956-003中文资料

TECHNICAL DATA SHEET 4200…SURFACE MOUNT DIE WITH HEAT ABSORBING STANDOFF TERMINAL STRIPS TRANSIENT VOLTAGE SUPPRESSOR 500 WATT SERIES Glass Passivated Die Plus Dual Heat StripsFeatures:• Low Profile• Broad Voltage Range Available - - 6.8 to 200 Volts • Broad Spectrum Transient Suppression• Rapid Response - - 4 nanoseconds typical• Built-in Heat Absorbing Terminations• Electrically Similar to Mil-Prf-19500/516 Applications:• Connector I/O Surge Suppression• Data Line Protection Description: This is a bipolar transient voltage suppressor series extending from 6.8 volts to 200 volts intended for surface mount applications.Each device comes as a “Cell” with its own heat absorbing terminals pre-bonded at high temperature. This permits mounting on printed circuit boards that cannot provide their own heat sinking. Each terminal is silver plated and is solderable permitting solder down attachment with a very small footprint. Each unit is bi-symmetrical so any orientation can be used.ELECTRICAL CHARACTERISTICSPARAMETER SYMBOL Test Conditions Min TYP Max.Units Response Turn-on Time ton 2 5 nsTransient Energy Pulse (Cell) Ep 1 10uS rise, I= 0.5Ip at t=100us (exponentialdecay)1500 WTransient Energy Pulse (Cell) Ep 2 10uS rise, I= 0.5Ip at t=1.0mS (exponentialdecay)500 WTransient Energy Pulse (Cell) Ep 3 10uS rise, I= 0.5Ip at t=10mS (exponentialdecay)150 WTransient Energy Pulse (Cell) Ep 4 10uS rise, I= 0.5Ip at t=50mS (exponentialdecay)70 WTransient Energy Pulse(Cell)Ep 5 10uS rise, I= 0.5Ip at t=50mS (step pulse) 50 W Electrical Parameters See TableMaximum SolderTemperatureTmax 10 second exposure 300 ºC Thermal Resistance (J-C) ΤJC Assume heat sink on terminal strip ends 18 30 ºC/WNote 1: “Die Only” configuration requires user to provide adequate energy absorption. Note 2: Terminal strips are 0.009” to 0.011” thick copper with nickel and silver plate.0.034"0.039"Typ0.052"0.056"0.0115"0.0155"Bipolar Die OnlySEN-R-956-XXX 500Watt TVS SeriesNominal Vz min Vz max TC (nom) Ir max Part Vz Iz @ Iz @ Iz of Vz Vr @ Vr Vcc Ip Number (V) (mA) (V) (V) (%.°C) (V) (uA) (V) (A) SEN-R-956-001 6.8 10 6.40 7.25 0.050 5.0 1600 9.2 54.3 SEN-R-956-002 7.2 10 6.67 7.67 0.060 6.0 1600 10.3 48.5 SEN-R-956-003 7.8 10 7.22 8.30 0.060 6.5 1000 11.2 44.6 SEN-R-956-004 8.4 10 7.78 8.95 0.060 7.0 400 12.0 41.7 SEN-R-956-005 9.0 1 8.33 9.58 0.070 7.5 200 12.9 38.8 SEN-R-956-006 9.6 1 8.89 10.23 0.070 8.0 100 13.6 36.8 SEN-R-956-007 10 1 9.44 10.82 0.070 8.5 20 14.4 34.7 SEN-R-956-008 11 1 10.00 11.50 0.080 9.0 10 15.4 32.5 SEN-R-956-009 12 1 11.10 12.80 0.080 10.0 5 17.0 29.4 SEN-R-956-010 13 1 12.20 14.00 0.080 11.0 5 18.2 27.5 SEN-R-956-011 14 1 13.30 15.50 0.085 12.0 5 19.9 25.1 SEN-R-956-012 15 1 14.40 16.50 0.085 13.0 5 21.5 23.3 SEN-R-956-013 17 1 15.60 17.90 0.085 14.0 5 23.2 21.6 SEN-R-956-014 18 1 16.70 19.20 0.090 15.0 5 24.4 20.5 SEN-R-956-015 19 1 17.80 20.50 0.090 16.0 5 26.0 19.2 SEN-R-956-016 20 1 18.90 21.70 0.090 17.0 5 27.6 18.1 SEN-R-956-017 22 1 20.00 23.30 0.095 18.0 5 29.2 17.1 SEN-R-956-018 24 1 22.20 25.50 0.095 20.0 5 32.4 15.4 SEN-R-956-019 26 1 24.40 28.00 0.095 22.0 5 35.5 14.1 SEN-R-956-020 29 1 26.70 30.70 0.095 24.0 5 38.9 12.9 SEN-R-956-021 31 1 28.90 33.20 0.095 26.0 5 42.1 11.9 SEN-R-956-022 33 1 31.10 35.80 0.095 28.0 5 45.4 11.0 SEN-R-956-023 36 1 33.30 38.30 0.095 30.0 5 48.4 10.3 SEN-R-956-024 39 1 36.70 42.20 0.100 33.0 5 53.3 9.4 SEN-R-956-025 43 1 40.00 46.00 0.100 36.0 5 58.1 8.6 SEN-R-956-026 48 1 44.40 51.10 0.100 40.0 5 64.5 7.8 SEN-R-956-027 51 1 47.80 54.90 0.100 43.0 5 69.4 7.2 SEN-R-956-028 54 1 50.00 57.50 0.100 45.0 5 72.7 6.9 SEN-R-956-029 57 1 53.30 61.30 0.100 48.0 5 77.4 6.5 SEN-R-956-030 61 1 56.7 65.2 0.100 51.0 5 82.4 6.1 SEN-R-956-031 65 1 60.0 69.0 0.100 54.0 5 87.1 5.7 SEN-R-956-032 69 1 64.4 74.1 0.105 58.0 5 93.6 5.3 SEN-R-956-033 72 1 66.7 76.7 0.105 60.0 5 96.8 5.2 SEN-R-956-034 76 1 71.1 81.8 0.105 64.0 5 103.0 4.9 SEN-R-956-035 84 1 77.8 89.5 0.110 70.0 5 113.0 4.4 SEN-R-956-036 90 1 83.3 95.8 0.110 75.0 5 121.0 4.1 SEN-R-956-037 93 1 86.7 99.7 0.110 78.0 5 126.0 4.0 SEN-R-956-038 101 1 94.4 108.2 0.110 85.0 5 137.0 3.6 SEN-R-956-039 108 1 100.0 115.5 0.110 90.0 5 146.0 3.4 SEN-R-956-040 120 1 111.0 128.0 0.110 100.0 5 162.0 3.1 SEN-R-956-041 131 1 122.0 140.5 0.110 110.0 5 177.0 2.8 SEN-R-956-042 143 1 133.0 153.0 0.110 120.0 5 193.0 2.6 SEN-R-956-043 155 1 144.0 165.5 0.110 130.0 5 209.0 2.4 SEN-R-956-044 180 1 167.0 192.5 0.110 150.0 5 243.0 2.1 SEN-R-956-045 192 1 178.0 205.0 0.110 160.0 5 259.0 1.9 SEN-R-956-046 203 1 189.0 217.5 0.110 170.0 5 275.0 1.81Time (s)Clamp Power vs Time for Sensitron 500W TVS SeriesTime (mS)Exponential Decay Pulse WaveformRated Vz of Device (V)Reverse Junction Capacitance for Sensitron 500W TVSSENSITRONSEMICONDUCTORTECHNICAL DATADISCLAIMER:1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users’ fail-safe precautions or other arrangement.3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user’s units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.。

2N3906中文资料(nte)中文数据手册「EasyDatasheet - 矽搜」

2N3906中文资料(nte)中文数据手册「EasyDatasheet - 矽搜」

VCE = 1V, I C = 1mA
40 − − 80 − −
2N3905 2N3906
VCE = 1V, I C = 10mA
50 − 150 100 − 300
2N3905 2N3906
VCE = 1V, I C = 50mA
30 − − 60 − −
2N3905 2N3906
VCE = 1V, I C = 100mA
芯片中文手册,看全文,戳
2N3905 & 2N3906 硅PNP晶体管
一般用途
TO92类型封装
绝对最大额定值:
集电极 - 发射极电压,V
CEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40V
器件总功耗(T
C = +255C), PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5W
减免上述255℃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12MW / 5C
减免上述255℃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0MW / 5C
器件总功耗(T

4N33-X000中文资料

4N33-X000中文资料

Optocoupler, Photodarlington Output, High Gain, with Base Connection 4N32/4N33Vishay SemiconductorsDESCRIPTIONThe 4N32 and 4N33 are optically coupled isolators with a gallium arsenide infrared LED and a solicon photodarlington sensor.Switching can be achieved while maintaining a high degree of isolation between driving and load circuits.These optocouplers can be used to replace reed and mercury relays with advantages of long life, high speed switching and elimination of magnetic fields.FEATURES•Very high current transfer ratio, 500 % min.•High isolation resistance, 1011Ω typical •Standard plastic DIP package•Lead (Pb)-free component•Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/ECAGENCY APPROVALS•UL1577, file no. E76222 system code A•DIN EN 60747-5-5 available with option 1•BSI IEC 60950; IEC 60065ORDER INFORMATIONPART REMARKS4N32CTR > 500 %, DIP-64N33CTR > 500 %, DIP-6ABSOLUTE MAXIMUM RATINGS (1)PARAMETER TEST CONDITION SYMBOL VALUE UNIT INPUTReverse voltage V R 6.0V Forward current I F60mAPower dissipation P diss100mWDerate linearly from 55 °C 1.33mW/°C OUTPUTCollector emitter breakdown voltage BV CEO30VEmitter base breakdown voltage BV EBO8.0V Collector base breakdown voltage BV CBO50VEmitter collector breakdown voltage BV ECO 5.0V Collector (load) current I C150mAPower dissipation P diss150mWDerate linearly 2.0mW/°CDocument Number: 83736For technical questions, contact: optocoupler.answers@ For technical questions, contact: optocoupler.answers@Document Number: 837364N32/4N33Vishay Semiconductors Optocoupler, Photodarlington Output,High Gain, with Base ConnectionNotes (1)T amb = 25 °C, unless otherwise specified.Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.(2)Refer to wave profile for soldering conditions for through hole devices.Notes(1)T amb = 25 °C, unless otherwise specified.Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.(2)Indicates JEDEC registered values.COUPLER Total dissipation P tot250mW Derate linearly 3.3mW/°C Isolation test voltage V ISO 5300V RMS Leakage path 7.0mm min.Air path7.0mm min.Isolation resistance V IO = 500 V, T amb = 25 °C R IO ≥ 1012ΩV IO = 500 V, T amb = 100 °CR IO ≥ 1011ΩStorage temperature T stg - 55 to + 125°C Operating temperature T amb - 55 to + 100°C Lead soldering time (2)at 260 °C10sELECTRICAL CHARACTERISTICS (1)PARAMETER TEST CONDITIONSYMBOLMIN.TYP.MAX.UNIT INPUTForward voltage I F = 50 mA V F 1.25 1.5V Reverse current V R = 3.0 V I R 0.1100µA Capacitance V R = 0 V C O 25pF OUTPUTCollector emitter breakdown voltage (2)I C = 100 µA, I F = 0BV CEO 30V Collector base breakdown voltage (2)I C = 100 µA, I F = 0BV CBO 50V Emitter base breakdown voltage (2)I C = 100 µA, I F = 0BV EBO 8VEmitter collector breakdown voltage (2)I C = 100 µA, I F = 0BV ECO 510V Collector emitter leakage current V CE = 10 V, I F = 0I CEO 1.0100nA COUPLERCollector emitter saturation voltage V CEsat1.0V Coupling capacitance1.5pFCURRENT TRANSFER RATIOPARAMETER TEST CONDITION SYMBOL MIN.TYP.MAX.UNIT Current transfer ratioV CE = 10 V, I F = 10 mACTR500%SWITCHING CHARACTERISTICSPARAMETER TEST CONDITION SYMBOLMIN.TYP.MAX.UNIT Turn-on time V CC = 10 V, I C = 50 mA t on 5.0µs Turn-off timeI F = 200 mA, R L = 180 Ωt off100µsABSOLUTE MAXIMUM RATINGS (1)PARAMETER TEST CONDITIONSYMBOLVALUEUNIT4N32/4N33Optocoupler, Photodarlington Output,High Gain, with Base ConnectionVishay SemiconductorsNoteAs per IEC 60747-5-2, § 7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.TYPICAL CHARACTERISTICST amb = 25 °C, unless otherwise specifiedFig. 1 - Normalized Non-Saturated and Saturated CTR CE vs.LED Current Fig. 2 - Normalized Non-Saturated and Saturated Collector EmitterCurrent vs. LED CurrentSAFETY AND INSULATION RATINGSPARAMETER TEST CONDITION SYMBOL MIN.TYP.MAX.UNIT Climatic classification(according to IEC 68 part 1)55/100/21Comparative tracking index CTI175399Peak transient overvoltage V IOTM6000V Peak insulation voltage V IORM850V Safety rating - power output P SO265mW Safety rating - input current I SI130mA Safety rating - temperature T SI150°C Creepage distance standard DIP-67mm Clearance distance standard DIP-67mm Creepage distance400 mil DIP-68mm Clearance distance400 mil DIP-68mmInsulation thickness,reinforced ratedper IEC 60950 2.10.5.10.4mmDocument Number: 83736For technical questions, contact: optocoupler.answers@ 4N32/4N33Vishay Semiconductors Optocoupler, Photodarlington Output,High Gain, with Base ConnectionFig. 3 - Normalized Collector Base Photocurrent vs.LED CurrentFig. 4 - Non-Saturated and Saturated h FE vs.Base CurrentFig. 5 - Low to High Propagation Delay vs.Collector Load Resistance and LED CurrentFig. 6 - High to Low Propagation Delay vs.Collector Load Resistance and LED Current Fig. 7 - Switching Waveform and Switching Schematic For technical questions, contact: optocoupler.answers@ Document Number: 837364N32/4N33Optocoupler, Photodarlington Output,Vishay SemiconductorsHigh Gain, with Base ConnectionPACKAGE DIMENSIONS in millimetersFor 4N32/33.... see DIL300-6 Package dimension in the package section.For products with an option designator (e.g. 4N32-X007 or 4N33-X009).... see DIP-6 Package dimensions in the package section. DIL300-6 Package DimensionsDIP-6 Package DimensionsDocument Number: 83736For technical questions, contact: optocoupler.answers@ 4N32/4N33Vishay Semiconductors Optocoupler, Photodarlington Output,High Gain, with Base Connection For technical questions, contact: optocoupler.answers@ Document Number: 837364N32/4N33Optocoupler, Photodarlington Output,Vishay SemiconductorsHigh Gain, with Base ConnectionOZONE DEPLETING SUBSTANCES POLICY STATEMENTIt is the policy of Vishay Semiconductor GmbH to1.Meet all present and future national and international statutory requirements.2.Regularly and continuously improve the performance of our products, processes, distribution and operating systems withrespect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.1.Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.2.Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency(EPA) in the USA.3.Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.We reserve the right to make changes to improve technical designand may do so without further notice.Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, GermanyDocument Number: 83736For technical questions, contact: optocoupler.answers@ Disclaimer Legal Disclaimer NoticeVishayAll product specifications and data are subject to change without notice.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.Product names and markings noted herein may be trademarks of their respective owners.元器件交易网Document Number: 。

标准电阻阻值表67824

标准电阻阻值表67824

国家标准规定了电阻的阻值按其精度分为两大系列,分别为E-24系列和E-96系列,E-24系列精度为5%,E-96系列为1%。

精度为5%的碳膜电阻,以欧姆为单位的标称值:1.0 5.6 33 160 820 3.9K 20K 100K 510K2.7M1.1 6.2 36 180 910 4.3K 22K 110K 560K 3M1.2 6.8 39 200 1K 4.7K 24K 120K 620K 3.3M1.3 7.5 43 220 1.1K 5.1K 27K 130K 680K 3.6M1.5 8.2 47 240 1.2K 5.6K 30K 150K 750K 3.9M1.6 9.1 51 270 1.3K 6.2K 33K 160K 820K 4.3M1.8 10 56 300 1.5K 6.6K 36K 180K 910K 4.7M2.0 11 62 330 1.6K 7.5K 39K 200K 1M 5.1M2.2 12 68 360 1.8K 8.2K 43K 220K 1.1M 5.6M2.4 13 75 390 2K 9.1K 47K 240K 1.2M 6.2M2.7 15 82 430 2.2K 10K 51K 270K 1.3M 6.8M3.0 16 91 470 2.4K 11K 56K 300K 1.5M 7.5M3.3 18 100 510 2.7K 12K 62K 330K 1.6M 8.2M3.6 20 110 560 3K 13K 68K 360K 1.8M 9.1M3.9 22 120 620 3.2K 15K 75K 390K 2M 10M4.3 24 130 680 3.3K 16K 82K 430K 2.2M 15M4.7 27 150 750 3.6K 18K 91K 470K 2.4M 22M5.1 30精度为1%的金属膜电阻,以欧姆为单位的标称值:10 33 100 332 1K 3.32K 10.5K 34K 107K 357K10.2 33.2 102 340 1.02K 3.4K 10.7K 34.8K 110K 360K10.5 34 105 348 1.05K 3.48K 11K 35.7K 113K 365K10.7 34.8 107 350 1.07K 3.57K 11.3K 36K 115K 374K11 35.7 110 357 1.1K 3.6K 11.5K 36.5K 118K 383K11.3 36 113 360 1.13K 3.65K 11.8K 37.4K 120K 390K11.5 36.5 115 365 1.15K 3.74K 12K 38.3K 121K 392K11.8 37.4 118 374 1.18K 3.83K 12.1K 39K 124K 402K12 38.3 120 383 1.2K 3.9K 12.4K 39.2K 127K 412K12.1 39 121 390 1.21K 3.92K 12.7K 40.2K 130K 422K12.4 39.2 124 392 1.24K 4.02K 13K 41.2K 133K 430K12.7 40.2 127 402 1.27K 4.12K 13.3K 42.2K 137K 432K13 41.2 130 412 1.3K 4.22K 13.7K 43K 140K 442K13.3 42.2 133 422 1.33K 4.32K 14K 43.2K 143K 453K13.7 43 137 430 1.37K 4.42K 14.3K 44.2K 147K 464K14 43.2 140 432 1.4K 4.53K 14.7K 45.3K 150K 470K14.3 44.2 143 442 1.43K 4.64K 15K 46.4K 154K 475K14.7 45.3 147 453 1.47K 4.7K 15.4K 47K 158K 487K15 46.4 150 464 1.5K 4.75K 15.8K 47.5K 160K 499K15.4 47 154 470 1.54K 4.87K 16K 48.7K 162K 511K15.8 47.5 158 475 1.58K 4.99K 16.2K 49.9K 165K 523K16 48.7 160 487 1.6K 5.1K 16.5K 51K 169K 536K16.2 49.9 162 499 1.62K 5.11K 16.9K 51.1K 174K 549K16.5 51 165 510 1.65K 5.23K 17.4K 52.3K 178K 560K16.9 51.1 169 511 1.69K 5.36K 17.8K 53.6K 180K 562K17.4 52.3 174 523 1.74K 5.49K 18K 54.9K 182K 576K17.8 53.6 178 536 1.78K 5.6K 18.2K 56K 187K 590K18 54.9 180 549 1.8K 5.62K 18.7K 56.2K 191K 604K18.2 56 182 560 1.82K 5.76K 19.1K 57.6K 196K 619K18.7 56.2 187 562 1.87K 5.9K 19.6K 59K 200K 620K19.1 57.6 191 565 1.91K 6.04K 20K 60.4K 205K 634K19.6 59 196 578 1.96K 6.19K 20.5K 61.9K 210K 649K20 60.4 200 590 2K 6.2K 21K 62K 215K 665K20.5 61.9 205 604 2.05K 6.34K 21.5K 63.4K 220K 680K21 62 210 619 2.1K 6.49K 22K 64.9K 221K 681K21.5 63.4 215 620 2.15K 6.65K 22.1K 66.5K 226K 698K22 64.9 220 634 2.2K 6.8K 22.6K 68K 232K 715K22.1 66.5 221 649 2.21K 6.81K 23.2K 68.1K 237K 732K22.6 68 226 665 2.26K 6.98K 23.7K 69.8K 240K 750K23.2 68.1 232 680 2.32K 7.15K 24K 71.5K 243K 768K23.7 69.8 237 681 2.37 7.32K 24.3K 73.2K 249K 787K24 71.5 240 698 2.4K 7.5K 24.9K 75K 255K 806K24.3 73.2 243 715 2.43K 7.68K 25.5K 76.8K 261K 820K24.7 75 249 732 2.49K 7.87K 26.1K 78.7K 267K 825K24.9 75.5 255 750 2.55K 8.06K 26.7K 80.6K 270K 845K25.5 76.8 261 768 2.61K 8.2K 27K 82K 274K 866K26.1 78.7 267 787 2.67K 8.25K 27.4K 82.5K 280K 887K26.7 80.6 270 806 2.7K 8.45K 28K 84.5K 287K 909K27 82 274 820 2.74K 8.66K 28.7K 86.6K 294K 910K27.4 82.5 280 825 2.8K 8.8K 29.4K 88.7K 300K 931K28 84.5 287 845 2.87K 8.87K 30K 90.9K 301K 953K28.7 86.6 294 866 2.94K 9.09K 30.1K 91K 309K 976K29.4 88.7 300 887 3.0K 9.1K 30.9K 93.1K 316K 1.0M30 90.9 301 909 3.01K 9.31K 31.6K 95.3K 324K 1.5M30.1 91 309 910 3.09K 9.53K 32.4K 97.6K 330K 2.2M30.9 93.1 316 931 3.16K 9.76K 33K 100K 332K31.6 95.3 324 953 3.24K 10K 33.2K 102K 340K32.4 97.6 330 976 3.3K 10.2K 33.6K 105K 348K常用电阻阻值:1,1.1,1.2,1.3,1.5,1.6,1.8 2,2.2,2.4,2.7,3,3.3,3.6,3.9 4.3,4.7 5.1,5.6 6.2,6.8 7.5 8.29.1 10,11,12,13,15,16,1820,22,24,2730,33,36,3943,4751,5662,687582,81 100,110,120,130,150 ,160,180200,220,240,270300,330,360,390430,470510,560620,680750820910 1K,1.1K,1.2K,1.3K,1.5K,1.6K,1.8K 2K,2.2K,2.4K,2.7K 3K,3.3K,3.6K,3.9K 4.3K,4.7K 5.1K,5.6K 6.2K,6.8K,7.5K 8.2K 9.1K10K,11K ,12K,13K,15K,16K,18K20K,22K,24K,27K30K,33K,36K,39K43K,47K 51K,56K62K,68K75K82K91K 100K,110K,120K,130K,150K,160K,180K 200K,220K,240K,270K,300K,330K,360K,390K430K,470K510K 560K 620K,680K750K,820K 910K 1M,1.1M,1.2M,1.3M,1.5M,1.6M,1.8M 2M,2.2M,2.4M,2.7M 3M,3.3M,3.6M,3.9M 4.4M,4.7M常用电容值:【单位pF】39 P 43 P 47 P 51 P 56 P 62 P 68 P 75 P 82 P 91 P 100 P 120 P 150 P 180 P 200 P 220 P 240 P 270 P 300 P 330 P 360 P 390 P 470 P 560 P 620 P 680 P 750 P【单位nF】1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 10 15 18 22 27 33 39 56 68 82【单位uF】0.15 0.22 0.33 0.47 1.0 (1.5) 2.21、5%精度的命名:RS-05K102JT2、1%精度的命名:RS-05K1002FTR -表示电阻S -表示功率0402是1/16W、0603是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。

饲料卫生标准新旧版对照表

饲料卫生标准新旧版对照表

饲料卫生标准新旧版对照表
说明:
一、标准对照说明
本对照表主要对照了2007版与2001版(包括其后续补充标准)及NY 5072-2002在卫生标准方面的区别,同时,另对比了部分原料标准中规定的卫生标准供参考。

GB 13078-2007(新标准)
NY 5072-2002(现行标准)
GB 13078-2001(旧标准)
GB 13078.1-2006(旧标准)
GB 13078.2-2006(旧标准)
GB 13078.3-2007(旧标准)
GB 21693-2008(旧标准)
二、新标准修改的主要内容
1.拓展了标准对于饲料原料和饲料产品的覆盖范围;
2.适用范围中删除了饲料添加剂,其卫生指标将在产品标准中规定;
3.明确提出不适用于宠物饲料,宠物饲料卫生标准另行制定;
4.增补了污染物的控制项目进口饲料登记;
5.更新了检测方法;
6.修订了部分限量指标进口饲料注册;
7.调整了列式方式。

三、新标准修订的内容包括污染物项目共5类24个
1.无机污染物(7个):总砷、铅、汞、镉、铬、氟、亚硝酸盐;
2.真菌毒素(6个):黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮、呕吐毒素、T-2毒素、伏马毒素(B1+B2);
3.天然植物毒素(4个):氰化物、游离棉酚、异硫氰酸酯、恶唑烷硫酮;
4.有机氯污染物(4个):多氯联苯、六六六、滴滴涕、六氯苯;
5.微生物污染物(3个):霉菌总数、细菌总数、沙门氏菌。

信浓步进电机产品目录2011年版

信浓步进电机产品目录2011年版
0 50 100 200 300 400 600 800 1000 1500 2000
0.9° φ36mm
NEMA16
双极
36C0 36C1
规格
型号 步进角 deg. 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 电压 V 5.0 3.2 2.6 2.0 8.2 5.2 4.1 3.3 电流 A/φ 0.3 0.5 0.6 0.8 0.3 0.5 0.6 0.8 电阻 Ω/φ 16.80 6.40 4.30 2.53 27.20 11.50 6.90 4.10 电感 mH/φ 8.50 3.16 2.23 1.24 20.70 9.00 5.35 3.16 保持力矩 mN-m 41.2 41.2 41.2 41.2 100 100 100 100 转动惯量 g-cm2 7.3 7.3 7.3 7.3 19.6 19.6 19.6 19.6 引线数 Lead 4 4 4 4 4 4 4 4 重量 g 50 50 50 50 90 90 90 90 机身长 mm 12.35 12.35 12.35 12.35 19.7 19.7 19.7 19.7
2200 4950 6000 6000 *1:1520 /*2:1800 850 6500 6500 5330 1000 7700
* * * *
1
□39mm
NEMA16
单极
39C1 40C1 40C2
*
2
*
□56mm
NEMA23
单极
56C1 56C3 56C5
* * * * * *
1.8° □28mm
单极
42H0 42H1 42H2 42H3
力矩 (mN-m)
1500 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

NSVA339资料

NSVA339资料

NSVS339 Dec-01
Notice
1. Use this component within operating temperature range. It might not be satisfied with electrical specification without operating temperature range. When it is used less than -10ºC or more than +60ºC, it might be a cause of degradation or destruction of the component. Even if it endures during a short time, it causes degradation of qualification. 2. When soldering iron is used, solder with the temperature at the tip of soldering iron: 350ºC max., the time of soldering: 10 seconds max., the power of soldering iron: 30W max.. 3. Notice that the allowed time of soldering with soldering iron is accumulated time, when soldering is repeated. 4. As rapid temperature change for cleaning after reflow soldering might be a cause of destruction clean this component after confirming that temperature of this component goes down to room temperature. 5. Confirm that there are not any influence for qualification to this component in mounting on PCB when this component is cleaned. 6. As it might be a cause of degradation of destruction to apply static electricity to this component, do not apply static electricity or excessive voltage while assembling and measuring. And do not transport this component with bare hand. 7. As it might be a cause of degradation or destruction to apply D.C. voltage between each terminal, apply D.C. voltage 7.5V max. in actual circuit.

Agilent 8890 5977C Series gas chromatograph mass s

Agilent 8890 5977C Series gas chromatograph mass s

Agilent 5977C GC/MSD SystemThe Agilent 8890/5977C Series gas chromatograph/mass selective detector (GC/MSD) builds on a tradition of leadership in GC and MS technology, with the world’s most competitive performance and productivity features.Agilent GC/MSD system featuresAgilent 5977C GC/MSD — the most sensitive and robust MSD provides:–Four EI source options including the revolutionary high-efficiency source (HES), which offers the industry’s lowest instrument detection limit (IDL) and bestcarrier gas applications.signal-to-noise ratio (S/N) and a HydroInert source for H2– A heated monolithic quartz gold quadrupole (heatable up to 200 °C) for rapid elimination of contamination to keep the analyzer clean.– A second-generation triple-axis detector (TAD) for eliminating neutral noise.–Scan speeds up to 20,000 u/sec (extractor ion source and HES).–An optional oil-free IDP-3 roughing pump: a cleaner, quieter, and greener alternative (for use with turbo molecular pump systems).10-Year value promiseSupport is guaranteed for 10 years from the date of purchase, or Agilent will provide credit for the residual value of the system toward a model upgrade.Installation checkout specifications Agilent verifies GC/MSD system performance at the customer site.IDL is a statistically based metricthat more accurately confirms system performance than an S/N measurement. Test specificationsare based on splitless injection intoan Agilent J&W HP-5ms Ultra Inert30 m × 0.25 mm, 0.25 μm column for helium and a 20 m × 0.18 mm, 0.18 μm column for HydroInert with hydrogen. IDL analyses use lab helium (hydrogen for HydroInert) with GC gas filters installed. See more about the IDL test at /Library/ technicaloverviews/Public/5990-8341EN.pdf* IDL was statistically derived at 99% confidence level from the area precision of eight sequential splitless injections of OFN (octafluoronaphthalene). Demonstration of IDL specifications require a compatible system configuration, including a liquid autosampler with a 5 μL syringe.–HES IDL was measured using 10 fg injection, 1 µL injection.–Other IDLs were measured using 100 fg, 1 µL injection.–A 30 m column was used for helium IDL checkout; a 20 m column was used for hydrogenIDL checkout.–Helium carrier gas for Installation Specifications of the HES, Extractor, and Stainless steel sources; hydrogen carrier gas for Installation Specification of the HydroInert source only.–Reference IDL specifications from the above table will be confirmed only when purchased as an additional service with a compatible new system (GC and MS) installation.Signal-to-noise (S/N) specificationsa S/N checkout is performed only if there is no compatible autosampler (which is required for IDL checkout). Helium carrier gas, manual injection using a 30 m × 0.25 mm,0.25 µm column and in scan mode. Hydrogen carrier gas, manual injection using 20 m × 0.18 mm, 0.18 µm column and in scan mode. When the autosampler (ALS) is present, these specifications are a reference of the performance. Reference S/N specifications from the above table will not be confirmed at installation or introduction for ALS equipped systems.b Standard scanning from 50 to 300 u at nominal 272.0 u ion.c 1 μL injection of 100 pg/μL benzophenone (BZP) standard, 80 to 230 u scan at nominal 183 u ion, using methane reagent gas.d 2 μL injection of 100 fg/μL OFN standard scanning from 50 to 300 u at nominal 272 u ion, using methane reagent gas.2a Only applicable with optional Accurate Mass software package. Scan mode only. Not verified during installation.b As scan rate increases, sensitivity will decrease, and resolution may degrade.c A high flow rate into a fixed ion source will cause a loss in sensitivity.d The heated quadrupole mass filter should not require maintenance, but if maintenance is required, it should be performed by an Agilent service engineer.34aInlet temperature should be cool enough to touch when performing maintenance.bA micro ion gauge is shipped standard for the CI system, and is available optionally for EI systems.DE67854286This information is subject to change without notice.© Agilent Technologies, Inc. 2022Printed in the USA, May 26, 20225994-4846EN。

AO4459中文资料

AO4459中文资料

AO4459中⽂资料SymbolTyp Max 33406275R θJL 1824Maximum Junction-to-Lead CSteady-State°C/WThermal Characteristics ParameterUnits Maximum Junction-to-AmbientAt ≤ 10s R θJA °C/W Maximum Junction-to-Ambient ASteady-State °C/W AO4459AO4459SymbolMin TypMaxUnits BV DSS -30V -1T J =55°C-5I GSS ±100nA V GS(th)-1.5-1.85-2.5V I D(ON)-30A 3846T J =125°C53685872m ?g FS 11S V SD -0.78-1V I S-3.5A C iss 668830pF C oss 126pF C rss 92pF R g69?Q g (10V)12.716nC Q g (4.5V) 6.4nC Q gs 2nC Q gd 4nC t D(on)7.7ns t r 6.8ns t D(off)20ns t f 10ns t rr 2230ns Q rr15nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.DYNAMIC PARAMETERS Maximum Body-Diode Continuous CurrentGate resistanceV GS =0V, V DS =0V, f=1MHzV GS =0V, V DS =-15V, f=1MHz Input Capacitance Output Capacitance Turn-On Rise Time Turn-Off DelayTime V GS =-10V, V DS =-15V, R L =2.5?, R GEN =3?Turn-Off Fall TimeTurn-On DelayTime SWITCHING PARAMETERSTotal Gate Charge (4.5V)Gate Source Charge Gate Drain Charge Total Gate Charge (10V)V GS =-10V, V DS =-15V, I D =-6.5Am ?V GS =-4.5V, I D =-5AI S =-1A,V GS =0V V DS =-5V, I D =-6.5AR DS(ON)Static Drain-Source On-ResistanceForward TransconductanceDiode Forward VoltageI DSS µA Gate Threshold Voltage V DS =V GS I D =-250µA V DS =-24V, V GS =0VV DS =0V, V GS =±20V Zero Gate Voltage Drain Current Gate-Body leakage current Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditions Body Diode Reverse Recovery Time Body Diode Reverse Recovery ChargeI F =-6.5A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =-250µA, V GS =0V V GS =-10V, V DS =-5V V GS =-10V, I D =-6.5AReverse Transfer Capacitance I F =-6.5A, dI/dt=100A/µs A: The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6 are obtained using < 300µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev0 Sept 2006AO4459AO4459。

桑德森标准产品数据表(数据表16810-A)2020年1月版说明书

桑德森标准产品数据表(数据表16810-A)2020年1月版说明书

Technical DataTechnical DaTa 25-16810-A January 2020 SpecificationSupply Voltage 15 to 30 VdcCable size / Type 0.5mm 2 ~ 2.5mm 2 /FIRETUF, FP200 or MICC Mounting Hole Centres 50 ~ 80mm Allowable Alarm Current25mA Allowable Remote Indicator Current25mAWiring hintsEach terminal is suitable for clamping up to 2 wires. Clamping of 2 wires of very different diameters under one screw is not recommended.DO NOT USE A POWER TERMINAL DRIVER.Suitable for mounting to mounting boxes with 50-80mm fixing centres.EFXN533 DoP044818EN54-7 Point Type Smoke Detectors EFXN525DoP044618EN54-5 Point Type Heat Detectors EFXN524DoP044518EN54-5 Point Type Heat Detectors EFXN526DoP044718EN54-5 Point Type Heat Detectors EFXN632DoP044918EN54-5 Point Type Heat Detectors EN54-7 Point Type Smoke DetectorsFXN922DoP0405122831Detector InstalledDetector RemovedE n d o f L i n e M o n i t o rE n d o f L i n e R e s i s t o rGeneralIf difficulty is experienced when mounting the detector, this may be due to the following:Wiring causing an obstruction - move or shorten wires. Although the base is tolerant to uneven mounting surfaces, a very uneven surface may cause the base to deform when the mounting screws are tightened down - loosen screws to reduce this or slide base to a more flat position.WaRninG: DO NOT USE HIGH VOLTAGE TESTERS WHEN DETECTORS OR CONTROL PANEL ARE CONNECTED TO THE SYSTEM.Zener Diode Switch action eFDB800 (cDB300 & MDB800)eatonEMEA Headquarters Route de la Longeraie 71110 Morges, Switzerland Eaton.euTEL: +44 (0) 1302 321541FAX: +44 (0) 1302 303220******************************************************© 2020 EatonAll Rights ReservedEaton is a registered trademark.All trademarks are property of their respective Eaton Electrical Systems Ltd.Wheatley Hall Road Doncaster DN2 4NBTEL: +44 (0) 1302 303303 FAX: +44 (0) 1302 367155Utilising locking T a bThe Mounting base includes an optional feature to prevent the removal of the detector without the use of a tool.1. Remove the standard fit retaining clip.2. Insert the locking clip which is located at the centre of the base as shown.Mount the detector onto the base as described in Detector Installation (see over) and rotate fully clockwise until it finally clicks.The detector is now locked into position. Remove by utilising a suitable tool (eg a thin screwdriver) into the hole in the detector cover. Gently push the tool into the detector and rotate anti-clockwise.BaseOrder Codes Conventional Photoelectric Smoke Detector - Cooper EFXN520(CDBB300 / FXN520)EFDB800(CDB300 / MDB800) EFXN533 Conventional Heat Detector - Class A2R - Cooper EFXN525Conventional Heat Detector - Class BS - Cooper EFXN524Conventional Heat Detector - Class CS - CooperEFXN526Conventional Photo/Thermal - Class A2S (Heat Performance) - Cooper EFXN632Bi-Wire Programmable Conventional Photoelectric, Photo/Thermal (A2S), Heat Detector (A1R, BS or CS) - JSBEFXN520(CDBB300 / FXN520)FXN922Detector Features (Photoelectric & Photo/Thermal)All Photoelectric and Photo/Thermal detectors, automatically compensate for gradual increases in the scatter signal due to contamination e.g. dust build up.Self-check Features Of The Bi-wire DetectorThe Self-Check feature monitors for the failure of the internal primary alarm circuitry.Under this condition, the detector will still register an alarm condition via the yellow LED. Following such a failure, the yellow LED will remain on following a reset, signaling a fault at the main panel and the detector must be replaced.BiWire detectors, automatically compensate for gradual increases in the scatter signal due to contamination e.g. dust build up. If excessive dust occurs, the yellow LED will show continuously. If this occurs, the maintenance procedure should be conducted.The yellow LED will also light continuously if the detectors optical sensor signal begins to reduce below its normal level (chamber monitoring).In addition, the BiWire range has an isolator that opens if the internal power fails in the detector, giving rise to a zone fault at the main panel.When used with a BiWire compatible panel with Self Check features, the BiWireDetectors range of detectors can be instructed to blink their yellow LED every 2 seconds by a command from the main panel, to aid the search for a break in the zone cabling or an open detector isolator.Detector installationFit detector to mounting base and rotate clockwise until the detector drops into place. Continue to rotate clockwise until the detector clicks into place and no further rotation is possible. If the detectors are required to be locked into position, refer to the ‘UtilisingLocking Tab’ section.Smoke detectors are supplied fitted with dust covers for general protection against airborne contaminates.These must be removed from all detectors before the fire system is commissioned.NB. These dust covers do not provide adequate protection against quantities of dust generated by building workT estingAll detectors must be tested following installation or routine service andmaintenance. It is recommended that these tests are carried out by a competent person. Authorised personnel must be informed that the fire system will betemporarily out of service before commencing testing. To prevent unwanted alarms, ensure that the the panel is in test mode and it may be appropriate to disable some or all of the sounder circuits.. When all tests are complete, restore panel to normal operation and notify authorised personnel that the system is operational.Smoke Detectors:Subject the detector to be tested to a controlled amount of an approved synthetic smoke aerosol via a smoke detector test pole. Suitable products are available for example, from No Climb Products Ltd.Check that the red LED on the detector latches into alarm within 30 seconds. If an optional remote LED is fitted, check that this also lights.Ensure that the control panel activates into alarm.Reset the detector from the control panel unless automatically reset by the panel in test mode.This procedure will test the smoke sensing circuitry of the Photo/Thermal Detector.heat Detectors:Using a heat gun or hair dryer capable of generating temperatures of up to 95°C,direct the heat source towards the heat sensing elements, visible through the side of the outer cover, from a distance of 15 to 30cm. Care should be taken not to allow the plastic surface temperature to exceed 110°C otherwise damage may occur.When the temperature reaches the ‘Alarm Temperature’ (see Specifications above), check that the red LED on the detector latches into alarm. If an optional remote LED is fitted, check that this also lights.Ensure that the control panel activates into alarm.Reset the detector from the control panel unless automatically reset by the panel in test mode.This procedure will test the heat sensing circuitry of the Photo/Thermal Detector.MaintenanceOnly minimal maintenance can be performed on this range of detectors as they do not contain any site serviceable parts. The frequency of maintenance and will depend on the environment towhich the detector is exposed but should be at least annually. Dusty or damp environments will demand more frequent maintenance.Remove the detector from its mounting base.Use a vacuum cleaner to remove dust build up from around the smoke entryapertures of a smoke detector, or from around the heat sensing element of a heat detector.For smoke detectors, visually inspect the insect mesh for blockages. If these can not be cleared by vacuuming, the detector must be replaced.Re-fit detector to its mounting base and test as described above.Detectors that fail the testing procedure must be replaced.EFXN533EFXN525EFXN524EFXN526EFXN632FXN922Operating voltage 15 to 30 Vdc 15 to 30 Vdc 15 to 30 Vdc 15 to 30 Vdc 15 to 30 Vdc 15 to 30 Vdc Standby current (max) 30μA 30μA 30μA 30μA 30μA 80μA Start up current (max 20 sec)340μA N/A N/A N/A 340μA 340μA Alarm current (max)25mA 25mA 25mA 25mA 25mA 25mAAmbient temperature (max)60ºC45ºC60ºC75ºC45ºCOpto Mode 60ºCOpto-Heat Mode 45°CA1R Rate of Rise Mode 45°C BS Fixed Temp Mode 60°C CS Fixed Temp Mode 80°C Ambient temperature (min)-20ºC -20ºC -20ºC -20ºC -20ºC -10ºCAlarm temperature (static)N/A60ºC77ºC90ºC60ºCOpto-Heat Mode 60°CA1R Rate of Rise Mode 60°C BS Fixed Temp Mode 77°C CS Fixed Temp Mode 92°C Heat detector class –as defined by EN54-5:2000N/A A2R BS CS A2S See above Relative humidity (non-condensing)0 to 95%0 to 95%0 to 95%0 to 95%0 to 95%0 to 95%Height (without base)34mm 43mm 43mm 43mm 43mm 43mm Height (with base)47mm 56mm 56mm 56mm 56mm 56mm Diameter 100.5mm 100.5mm 100.5mm 100.5mm 100.5mm 100.5mm Weight 78g 76g 76g 76g 78g 78g Material PC/ABS PC/ABS PC/ABS PC/ABS PC/ABS PC/ABS ColourWhite White White White White White Bi-Wire compatible No No No No No Yes Self check featuresNoNoNoNoNoYes。

N,N-2乙基间甲苯胺理化特性表

N,N-2乙基间甲苯胺理化特性表
N,N-2乙基间甲苯胺危险、有害识别表


中文名:N,N-2乙基间甲苯胺
英文名:N,N-Diethyl-m-toluidine
分子式:(C2H5)2NC6H4CH3
分子量:163.3
UN编号:
危规号:61756
RTECS号:
CAS号:
危险性类别:第6.1类毒害品
化学类别:
包装标志:
包装类别:
理化性质
性状:无色或淡琥珀色油状液体。
熔点/℃:-63.5
溶解性:能与乙醇、乙醚相混溶。
沸点/℃:231
相对密度(水=1):0.96
饱和蒸气压/kPa:0.13
相对密度(空气=1):4.18
临界温度/℃:
燃烧热(kJ·mol-1):4687.9
临界压力/Mpa:
最小点火能/mJ:
燃烧爆炸危险性
燃烧性:可燃
燃烧分解产物:一氧化碳、二氧化碳、氧化氮
闪点/℃:91
聚合危害:不聚合
爆炸极限(体积分数)/%:1.6~9.5
稳定性:稳定
引燃温度/℃:
禁忌物:酸类、酸酐、酰基氯、强氧化剂、二氧化碳
危险特性:遇明火能燃烧。与酸或氧化剂接触能引起反应。
灭火剂:
泡沫、干粉、二氧化碳、砂土。
毒性
接触限值:
急性毒性:LD50:1950mg/kg(大鼠经口);5000mg/kg(大鼠经皮);5950mg/kg(大鼠吸入);
储运
储存于阴凉、通风仓间内。远离火种、热源。防止阳光直射。保持容器密封。应与酸类、食用化学品、氧化剂等分仓间存放。搬运时要轻装轻卸,防止包装及容器破损。分装和搬运作业要注意个人防护。
LC50:
对人体危害

74435561100;中文规格书,Datasheet资料

74435561100;中文规格书,Datasheet资料

74435561100
DATUM / DATE : 2009-11-02 Gurtspezifikation / Tape specification:
G H
SPEICHERDROSSEL WE-HCI POWER-CHOKE WE-HCI
I Rollenspezifikation / tape and reel specification:
74435561100
DATUM / DATE : 2009-11-02
SPEICHERDROSSEL WE-HCI POWER-CHOKE WE-HCI
H Induktivitätskurve / Inductance curve:
Induktivität vs Strom (typ.) Inductance vs Current (typ.)
08-09-29
Geprüft / checked
Kontrolliert / approved
Datum / date
D-74638 Waldenburg · Max-Eyth-Strasse 1 - 3 · Germany · Telefon (+49) (0) 7942 - 945 - 0 · Telefax (+49) (0) 7942 - 945 - 400 http://www.we-online.de
12,00
10,00
8,00
L (µH)
6,00
4,00
2,00
0,00 0 5 10 15 Current (A) 20 25 30 35
Freigabe erteilt / general release:
..................................................................................

2n3904 数据表.pdf说明书

2n3904 数据表.pdf说明书

General Purpose TransistorsNPN SiliconMAXIMUM RATINGSRatingSymbol Value Unit Collector–Emitter Voltage V CEO 40Vdc Collector–Base Voltage V CBO 60Vdc Emitter–Base VoltageV EBO 6.0Vdc Collector Current — Continuous I C 200mAdc Total Device Dissipation @ T A = 25°C Derate above 25°CP D 6255.0mW mW/°C Total Device Dissipation @ T C = 25°C Derate above 25°CP D 1.512Watts mW/°C Operating and Storage Junction Temperature RangeT J , T stg–55 to +150°CTHERMAL CHARACTERISTICS (1)CharacteristicSymbol Max Unit Thermal Resistance, Junction to Ambient R q JA 200°C/W Thermal Resistance, Junction to CaseR q JC83.3°C/WELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)CharacteristicSymbolMinMaxUnitOFF CHARACTERISTICSCollector–Emitter Breakdown Voltage (2)(I C = 1.0 mAdc, I B = 0)V (BR)CEO 40—Vdc Collector–Base Breakdown Voltage (I C = 10 m Adc, I E = 0)V (BR)CBO 60—Vdc Emitter–Base Breakdown Voltage (I E = 10 m Adc, I C = 0)V (BR)EBO6.0—Vdc Base Cutoff Current(V CE = 30 Vdc, V EB = 3.0 Vdc)I BL —50nAdc Collector Cutoff Current(V CE = 30 Vdc, V EB = 3.0 Vdc)I CEX—50nAdc1.Indicates Data in addition to JEDEC Requirements.2.Pulse Test: Pulse Width v 300 m s; Duty Cycle v 2.0%.Preferred devices are Motorola recommended choices for future use and best overall value.Order this documentby 2N3903/DMOTOROLASEMICONDUCTOR TECHNICAL DATA2N39032N3904*Motorola Preferred DeviceCASE 29–04, STYLE 1TO–92 (TO–226AA)123*COLLECTOR32BASE1EMITTERREV 22N39032N3904ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued)CharacteristicSymbolMinMaxUnitON CHARACTERISTICSDC Current Gain (1)(I C = 0.1 mAdc, V CE = 1.0 Vdc)2N39032N3904(I C = 1.0 mAdc, V CE = 1.0 Vdc)2N39032N3904(I C = 10 mAdc, V CE = 1.0 Vdc)2N39032N3904(I C = 50 mAdc, V CE = 1.0 Vdc)2N39032N3904(I C = 100 mAdc, V CE = 1.0 Vdc)2N39032N3904h FE204035705010030601530————150300—————Collector–Emitter Saturation Voltage (1)(I C = 10 mAdc, I B = 1.0 mAdc)(I C = 50 mAdc, I B = 5.0 mAdc V CE(sat)——0.20.3VdcBase –Emitter Saturation Voltage (1)(I C = 10 mAdc, I B = 1.0 mAdc)(I C = 50 mAdc, I B = 5.0 mAdc)V BE(sat)0.65—0.850.95VdcSMALL–SIGNAL CHARACTERISTICSCurrent–Gain — Bandwidth Product(I C = 10 mAdc, V CE = 20 Vdc, f = 100 MHz)2N39032N3904f T250300——MHzOutput Capacitance(V CB = 5.0 Vdc, I E = 0, f = 1.0 MHz)C obo — 4.0pF Input Capacitance(V EB = 0.5 Vdc, I C = 0, f = 1.0 MHz)C ibo —8.0pF Input Impedance(I C = 1.0 mAdc, V CE = 10 Vdc, f = 1.0 kHz)2N39032N3904h ie1.01.08.010k ΩVoltage Feedback Ratio(I C = 1.0 mAdc, V CE = 10 Vdc, f = 1.0 kHz)2N39032N3904h re0.10.5 5.08.0X 10–4Small–Signal Current Gain(I C = 1.0 mAdc, V CE = 10 Vdc, f = 1.0 kHz)2N39032N3904h fe50100200400—Output Admittance(I C = 1.0 mAdc, V CE = 10 Vdc, f = 1.0 kHz)h oe 1.040m mhos Noise Figure(I C = 100 m Adc, V CE = 5.0 Vdc, R S = 1.0 k Ω, f = 1.0 kHz)2N39032N3904NF——6.05.0dBSWITCHING CHARACTERISTICSDelay Time (V = 3.0 Vdc, V = 0.5 Vdc,t d —35ns Rise Time (CC BE I C = 10 mAdc, I B1 = 1.0 mAdc)t r —35ns Storage Time (V CC = 3.0 Vdc, I C = 10 mAdc,2N3903I B1 = I B2 = 1.0 mAdc)2N3904t s ——175200ns Fall Timet f—50ns1.Pulse Test: Pulse Width v 300 m s; Duty Cycle v2.0%.2N39032N3904Figure 1. Delay and Rise TimeEquivalent Test Circuit Figure 2. Storage and Fall TimeEquivalent Test Circuit+3 V27510 k 1N916C S < 4 pF*+3 V27510 kC S < 4 pF*< 1 ns–0.5 V+10.9 V300 nsDUTY CYCLE = 2%< 1 ns–9.1 V ′+10.9 VDUTY CYCLE = 2%t 110 < t 1 < 500 m s * Total shunt capacitance of test jig and connectorsTYPICAL TRANSIENT CHARACTERISTICSFigure 3. Capacitance REVERSE BIAS VOLTAGE (VOLTS)2.03.05.07.0101.00.1Figure 4. Charge DataI C , COLLECTOR CURRENT (mA)50001.0V CC = 40 V I C /I B = 10Q , C H A R G E (p C )3000200010005003002007001005070 2.0 3.0 5.07.01020305070100200C A P A C I T A N C E (p F )1.02.03.0 5.07.010*******.20.30.50.7Q TQ AC iboC oboT J = 25°C T J = 125°C2N39032N3904Figure 5. Turn–On TimeI C , COLLECTOR CURRENT (mA)7010020030050050Figure 6. Rise TimeI C , COLLECTOR CURRENT (mA)T I M E (n s )1.02.03.01020705100t , R I S E T I M E (n s )Figure 7. Storage Time I C , COLLECTOR CURRENT (mA)Figure 8. Fall TimeI C , COLLECTOR CURRENT (mA)5.07.03050200103072070100200300500501.0 2.0 3.010207051005.07.03050200103072070100200300500501.0 2.0 3.010207051005.07.03050200103072070100200300500501.0 2.0 3.010207051005.07.030502001030720r t , F A L L T I M E (n s )f t , S T O R A G E T I M E (n s )s ′V CC = 40 V I C /I B = 10V CC = 40 V I B1 = I B2I C /I B = 20I C /I B = 10I C /I B = 10t r @ V CC = 3.0 Vt d @ V OB = 0 V40 V 15 V 2.0 VI C /I B = 10I C /I B = 20I C /I B = 10I C /I B = 20t ′s = t s – 1/8 t f I B1 = I B2TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICSNOISE FIGURE VARIATIONS(V CE = 5.0 Vdc, T A = 25°C, Bandwidth = 1.0 Hz)Figure 9. f, FREQUENCY (kHz)468101220.1Figure 10.R S , SOURCE RESISTANCE (k OHMS)0N F , N O I S E F I G U R E (d B )1.02.04.01020400.20.4010046810122140.11.02.04.01020400.20.4100N F , N O I S E F I G U R E (d B )f = 1.0 kHz I C = 1.0 mAI C = 0.5 mAI C = 50 m AI C = 100 m ASOURCE RESISTANCE = 200 W I C = 1.0 mASOURCE RESISTANCE = 200 W I C = 0.5 mASOURCE RESISTANCE = 500 W I C = 100 m A SOURCE RESISTANCE = 1.0 k I C = 50 m A2N39032N3904h PARAMETERS(V CE = 10 Vdc, f = 1.0 kHz, T A = 25°C)Figure 11. Current GainI C , COLLECTOR CURRENT (mA)7010020030050Figure 12. Output AdmittanceI C , COLLECTOR CURRENT (mA)h , C U R R E N T G A I Nh , O U T P U T A D M I T T A N C E ( m h o s )Figure 13. Input Impedance I C , COLLECTOR CURRENT (mA)Figure 14. Voltage Feedback RatioI C , COLLECTOR CURRENT (mA)3010050510202.03.05.07.0101.00.10.21.02.0 5.00.5100.30.5 3.00.72.05.010201.00.20.5o e h , V O L T A G E F E E D B A C K R A T I O (X 10 )r e h , I N P U T I M P E D A N C E (k O H M S )i e 0.10.21.02.0 5.0100.30.5 3.00.10.21.02.0 5.0100.30.5 3.0210.10.21.02.0 5.0100.30.5 3.0f e m –4TYPICAL STATIC CHARACTERISTICSFigure 15. DC Current GainI C , COLLECTOR CURRENT (mA)0.30.50.71.02.00.20.1h , D C C U R R E N T G A I N (N O R M A L I Z E D )0.5 2.0 3.01050700.20.30.11001.00.720030205.07.0F E V CE = 1.0 VT J = +125°C+25°C–55°C2N39032N3904Figure 16. Collector Saturation RegionI B , BASE CURRENT (mA)0.40.60.81.00.20.1V , C O L L E C T O R E M I T T E R V O L T A G E (V O L T S )0.5 2.0 3.0100.20.301.00.7 5.07.0CE I C = 1.0 mAT J = 25°C0.070.050.030.020.0110 mA30 mA100 mAFigure 17. “ON” Voltages I C , COLLECTOR CURRENT (mA)0.40.60.81.01.20.2Figure 18. Temperature CoefficientsI C , COLLECTOR CURRENT (mA)V , V O L T A G E (V O L T S )1.02.0 5.01020500100–0.500.51.0060801201401601802040100C O E F F I C I E N T (m V / C )200–1.0–1.5–2.0200°T J = 25°C V BE(sat) @ I C /I B =10V CE(sat) @ I C /I B =10V BE @ V CE =1.0 V+25°C TO +125°C–55°C TO +25°C +25°C TO +125°C–55°C TO +25°Cq VC FOR V CE(sat)q VB FOR V BE(sat)2N39032N3904PACKAGE DIMENSIONSNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.4.DIMENSION F APPLIES BETWEEN P AND L.DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.RAPJL FBKGH SECTION X–XC VDNNX XSEATINGPLANEDIM MIN MAX MIN MAX MILLIMETERSINCHES A 0.1750.205 4.45 5.20B 0.1700.210 4.32 5.33C 0.1250.165 3.18 4.19D 0.0160.0220.410.55F 0.0160.0190.410.48G 0.0450.055 1.15 1.39H 0.0950.105 2.42 2.66J 0.0150.0200.390.50K 0.500–––12.70–––L 0.250––– 6.35–––N 0.0800.105 2.04 2.66P –––0.100––– 2.54R 0.115––– 2.93–––V0.135–––3.43–––1STYLE 1:PIN 1.EMITTER2.BASE3.COLLECTORCASE 029–04(TO–226AA)ISSUE AD2N39032N3904Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.How to reach us:USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;JAPAN: Nippon Motorola Ltd.; T atsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, P.O. Box 5405; Denver, Colorado 80217. 1–800–441–24473–14–2 T atsumi Koto–Ku, T okyo 135, Japan. 81–3–3521–8315MFAX: RMFAX0@ – TOUCHTONE 602–244–6609ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B T ai Ping Industrial Park, INTERNET: http://Design–51 Ting Kok Road, T ai Po, N.T., Hong Kong. 852–26629298。

MAXIM MAX338 MAX339 数据手册

MAXIM MAX338 MAX339 数据手册

The MAX338/MAX339 are monolithic, CMOS analog multiplexers (muxes). The 8-channel MAX338 is designed to connect one of eight inputs to a common output by control of a 3-bit binary address. The dual, 4-channel MAX339 is designed to connect one of four inputs to a common output by control of a 2-bit binary address. Both devices can be used as either a mux or a demux. On-resistance is 400Ωmax, and the devices conduct current equally well in both directions.These muxes feature extremely low off leakages (less than 20pA at +25°C), and extremely low on-channel leakages (less than 50pA at +25°C). The new design offers guaranteed low charge injection (1.5pC typ) and electrostatic discharge (ESD) protection greater than 2000V, per method 3015.7. These improved muxes are pin-compatible upgrades for the industry-standard DG508A and DG509A. For similar Maxim devices with lower leakage and charge injection but higher on-resis-tance, see the MAX328 and MAX329.The MAX338/MAX339 operate from a single +4.5V to +30V supply or from dual supplies of ±4.5V to ±20V.All control inputs (whether address or enable) are TTL compatible (+0.8V to +2.4V) over the full specified tem-perature range and over the ±4.5V to ±18V supply range. These parts are fabricated with Maxim’s 44V sili-con-gate process.________________________ApplicationsData-Acquisition Systems Sample-and-Hold Circuits Test Equipment Heads-Up Displays Military RadiosCommunications Systems Guidance and Control SystemsPBX, PABX____________________________Features♦On-Resistance, <400Ωmax ♦Transition Time, <500ns ♦On-Resistance Match, <10Ω♦NO-Off Leakage Current, <20pA at +25°C ♦1.5pC Charge Injection♦Single-Supply Operation (+4.5V to +30V)Bipolar-Supply Operation (±4.5V to ±20V)♦Plug-In Upgrade for Industry-Standard DG508A/DG509A ♦Rail-to-Rail Signal Handling ♦TTL/CMOS-Logic Compatible♦ESD Protection >2000V, per Method 3015.7Ordering InformationMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers________________________________________________________________Maxim Integrated Products 1_____________________Pin Configurations/Functional Diagrams/Truth Tables19-0272; Rev 3; 11/04Ordering Information continued at end of data sheet.*Contact factory for dice specifications.**Contact factory for availability.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .General DescriptionM A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—Dual Supplies(V+ = +15V, V- = -15V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage Referenced to V-V+............................................................................-0.3V, 44V GND.........................................................................-0.3V, 25V Digital Inputs, NO, COM (Note 1)...........(V- - 2V) to (V+ + 2V) or30mA (whichever occurs first)Continuous Current (any terminal)......................................30mA Peak Current, NO or COM(pulsed at 1ms, 10% duty cycle max)..........................100mAContinuous Power Dissipation (TA = +70°C)Plastic DIP (derate 10.53mW/°C above +70°C)..........842mW Narrow SO (derate 8.70mW/°C above +70°C)............696mW 16-Pin TQFN (derate 21.3mW/°C above +70°C).......1702mW CERDIP (derate 10.00mW/°C above +70°C)...............800mW Operating Temperature RangesMAX33_C__........................................................0°C to +70°C MAX33_E__......................................................-40°C to +85°C MAX33_MJE ..................................................-55°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CNote 1:Signals on NO, COM, EN, A0, A1, or A2 exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.MAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)(V+ = +15V, V- = -15V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)M A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—Single Supply(V+ = +12V, V- = 0V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Note 2:The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used inthis data sheet.Note 3:Guaranteed by design.Note 4:ΔR ON = R ON(MAX)- R ON(MIN).Note 5:Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.Note 6:Worst-case isolation is on channel 4 because of its proximity to the drain pin. Off isolation = 20log V COM /V NO , whereV COM = output and V NO = input to off switch.MAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________5600ON-RESISTANCE vs. V COM(DUAL SUPPLIES)500010*******-2020-1515-1010-55400V COM (V)R O N (Ω)ON-RESISTANCE vs. V COM OVER TEMPERATURE (DUAL SUPPLIES)100200300-1515-1010-550400V COM (V)R O N (Ω)12001400ON-RESISTANCE vs. V COM(SINGLE SUPPLY)100002004006001520105800V COM (V)R O N (Ω)600700ON-RESISTANCE vs. V COM OVER TEMPERATURE (SINGLE SUPPLY)500010020030015105400V COM (V)R O N (Ω)30CHARGE INJECTION vs. V COM200-30-20-100-1515-1010-55010V COM (V)Q j (p C )40100.0001-55125OFF LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O F F L E A K A G E (n A )250.010.001-35-15650.1100100045851055100.0001-55125ON LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O N L E A K A G E (n A )250.010.001-35-15650.11001000458510551000.001-55125SUPPLY CURRENT vs. TEMPERATURE10TEMPERATURE (°C)I +, I - (μA )250.10.01-35-156514585105510006001000900800700TRANSITION TIME vs.POWER SUPPLIES5000100200300OR 10V(SINGLE)OR 5V(SINGLE)400SUPPLY VOLTAGE (V)t T R A N S (n S )__________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)__________Applications InformationOperation withSupply Voltages Other than 15VUsing supply voltages less than ±15V will reduce the analog signal range. The MAX338/MAX339 switches operate with ±4.5V to ±20V bipolar supplies or with a +4.5V to +30V single supply. Connect V- to GND when operating with a single supply. Both device types can also operate with unbalanced supplies such as +24V and -5V. The Typical Operating Characteristics graphs show typical on-resistance with 20V, 15V, 10V, and 5V supplies. (Switching times increase by a factor of two or more for operation at 5V.)Overvoltage ProtectionProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi-mum ratings, because stresses beyond the listed rat-ings may cause permanent damage to the devices.Always sequence V+ on first, then V-, followed by the logic inputs NO and COM. If power-supply sequencing is not possible, add two small signal diodes in series with supply pins for overvoltage protection (Figure 1).Adding diodes reduces the analog signal range to 1V below V+ and 1V above V-, but does not affect the devices’ low switch resistance and low leakage charac-teristics. Device operation is unchanged, and the differ-ence between V+ and V- should not exceed 44V.M A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 6_____________________________________________________________________________________________________________________________________________________Pin DescriptionFigure 1. Overvoltage Protection Using External Blocking DiodesMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________7______________________________________________Test Circuits/Timing DiagramsFigure 2. Transition TimeM A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 8________________________________________________________________________________________________________________________Test Circuits/Timing Diagrams (continued)Figure 5. Charge InjectionMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers_______________________________________________________________________________________9_________________________________Test Circuits/Timing Diagrams (continued)Figure 6. Off-Isolation Figure 7. CrosstalkFigure 8. NO/COM CapacitanceM A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 10______________________________________________________________________________________________Pin Configurations/Functional Diagrams/Truth Tables (continued)A2A1A0EN ON SWITCH X 00001111X 00110011X 01010101011111111None 12345678MAX338LOGIC “0” V AL ≤ 0.8V, LOGIC “1” V AH ≥ 2.4VA1A0EN ON SWITCH X 0011X 010101111None 1234MAX339LOGIC “0” V AL ≤ 0.8V, LOGIC “1” V AH ≥ 2.4VMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers______________________________________________________________________________________11Ordering Information (continued)*Contact factory for dice specifications.**Contact factory for availability.Pin Configurations/Functional Diagrams/Truth Tables (continued)M A X 338/M A X 3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog Multiplexers 12________________________________________________________________________________________________________________________________________________Chip TopographiesV+NO3EN 0.114"(2.89mm)0.078"(1.98mm)COM NO8NO5NO6N07A0A1A2GNDNO2 NO1 V-N.C.NO4V+NO3AEN0.114"(2.89mm)0.078"(1.98mm)COMA COMB NO1B NO2B N04BA0A1N.C.GNDNO2A NO1A V-NO3BNO4ATRANSISTOR COUNT: 224SUBSTRATE IS INTERNALLY CONNECTED TO V+Note:On Thin QFN packages connect exposed pad to V+.TRANSISTOR COUNT: 224SUBSTRATE IS INTERNALLY CONNECTED TO V+MAX338MAX339N.C. = NO INTERNAL CONNECTIONMAX338/MAX3398-Channel/Dual 4-Channel,Low-Leakage, CMOS Analog MultiplexersMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________13©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

33977资料

33977资料

Freescale Semiconductor, Inc. reserves the right to change the detail specifications, as may be required, to permit improvements in the design of its products.Document Number: MC33977Rev. 2.0, 1/2007Freescale Semiconductor Technical Data© Freescale Semiconductor, Inc., 2007. All rights reserved.Single Gauge DriverThe 33977 is a Serial Peripheral Interface (SPI) Controlled, stepper motor gauge driver Integrated Circuit (IC). This monolithic IC consists of a dual H-Bridge coil driver and its associated control logic. The H-Bridge drivers are used to automatically control the speed, direction, and magnitude of current through the coils of a two-phaseinstrumentation stepper motor, similar to an MMT-licensed AFIC 6405 of Switec MS-X156.xxx motor.The 33977 is ideal for use in instrumentation systems requiring distributed and flexible stepper motor gauge driving. The device also eases the transition to stepper motors from air core motors by emulating the damped air core pointer movement. Features •MMT-Licensed Two-Phase Stepper Motor Compatible •Switec MS-X15.xxx Stepper Motor Compatible •Minimal Processor Overhead Required•Fully Integrated Pointer Movement and Position State Machine with Air Core Movement Emulation•4096 Possible Steady State Pointer Positions •340° Maximum Pointer Sweep •Maximum Acceleration of 4500°/s 2•Maximum Pointer Velocity of 400°/s•Analog Microstepping (12 Steps/Degrees of Pointer Movement)•Pointer Calibration and Return to Zero (RTZ)•Controlled via 16-Bit SPI Messages •Internal Clock Capable of Calibration •Low Sleep Mode Current•Pb-Free Packaging Designated by suffix code EGFigure 1. 33977 Simplified Application DiagramORDERING INFORMATIONDevice Temperature Range (T A )PackageMC33977DW/R2- 40°C to 125°C24 SOICWMCZ33977EG/R233977SINGLE GAUGE DRIVERAnalog Integrated Circuit Device Data33977INTERNAL BLOCK DIAGRAMINTERNAL BLOCK DIAGRAMFigure 2. 33977 Simplified Internal Block DiagramH-BRIDGE COS+INTERNAL VPWRVDDCOSCOS-REGULATORLOGICSPIILIMOVERTEMPERATUREAND CONTROLSINOSCILLATORDETECTUNDER -ANDOVERVOLTAGE DETECTCS SCLK SO SIRSTRTZSIN+SIN-GND (8)MULTIPLEXERSIGMA-DELTAADCAGNDSTATE MACHINEVDDAnalog Integrated Circuit Device Data 33977PIN CONNECTIONSPIN CONNECTIONSFigure 3. 33977 Pin ConnectionsTable 1. 33977 Pin DefinitionsA functional description of each pin can be found in the Functional Pin Description section beginning onpage 10.PinPin Name Pin Function Formal Name Definition1234(MS Motor Pin #)COS+ (MS #4)COS- (MS #3)SIN+ (MS #1)SIN- (MS #2)OutputH-Bridge Outputs 0Each pin is the output of a half-bridge, designed to source or sink current.5 to 8, 17 to 20GND N/A Ground Ground pins9CS Input Chip Select This pin is connected to a chip select output of a Large Scale Integration (LSI) Master IC and controls which device is addressed.10SCLK Input Serial Clock This pin is connected to the SCLK pin of the master device and acts as a bit clock for the SPI port.11SOOutput Serial Output This pin is connected to the SPI Serial Data Input pin of the Master device or to the SI pin of the next device in a daisy chain.12SIInput Serial Input This pin is connected to the SPI Serial Data Output pin of the Master device from which it receives output command data.13RTZ Multiplexed Output Return to ZeroThis is a multiplexed output pin for the non-driven coil, during a Return to Zero (RTZ) event.14VDD Input Voltage This SPI and logic power supply input will work with 5.0 V supplies. 15RSTInputResetThis pin is connected to the Master and is used to reset the device, or place it into a sleep state by driving it to Logic [1]. When this pin is driven to Logic [0], all internal logic is forced to the default state. This input has an internal active pull-up. 16VPWRInput Battery Voltage Power supply21, 22, 23, 24NC–No ConnectThese pins are not connected to any internal circuitry, or any other pin, and may be connected to the board where convenient.NC NC NC NC GND GND GND GND VPWR RST VDD RTZCOS +COS -SIN+SIN-GND GND GND GND CS SCLK SO SIAnalog Integrated Circuit Device Data33977ELECTRICAL CHARACTERISTICS MAXIMUM RATINGSELECTRICAL CHARACTERISTICSMAXIMUM RATINGSTable 2. Maximum RatingsAll voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.RatingsSymbolValueUnitELECTRICAL RATINGS Power Supply Voltage Steady-State V PWRSS-0.3 to 41VInput Pin Voltage (1)V IN -0.3 to 7.0V SIN± COSI± Continuous Current Per Output (2)I OUTMAX 40mA ESD Voltage (3)Human Body Model (HBM) Machine Model (MM)Charge Device Model (CDM)V ESD±2000 ±2000±200V THERMAL RATINGS Operating Temperature Ambient JunctionT A T J -40 to 125-40 to 150°CStorage Temperature T STG-55 to 150°C Thermal Resistance Junction-to-Ambient Junction-to-LeadR ΘJA R ΘJL 6020°C/W Peak Package Reflow Temperature During Reflow (4), (5)T PPRTNote 5°CNotes1.Exceeding voltage limits on Input pins may cause permanent damage to the device.2.Output continuous output rating so long as maximum junction temperature is not exceeded. Operation at 125°C ambient temperaturewill require maximum output current computation using package thermal resistances.3.ESD testing is performed in accordance with the Human Body Model (HBM) (C ZAP = 100 pF, R ZAP = 1500 Ω), the Machine Model (MM)(C ZAP = 200 pF, R ZAP = 0 Ω), and the Charge Device Model (CDM).4.Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.5.Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL),Go to , search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.Analog Integrated Circuit Device Data 33977ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSTable 3. Static Electrical CharacteristicsCharacteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbol Min Typ Max UnitPOWER INPUT (VDD)Battery Supply Voltage Range Fully Operational Limited Operation (6),(7)V PWR6.54.0–2626VV PWR Supply CurrentGauge Outputs ON, No Output Loads I PWR–4.06.0mAVPWR Supply Current (All Outputs Disabled)Reset = Logic [0], V DD = 5.0 V Reset = Logic [0], V DD = 0 V I PWRSLP1I PWRSLP2––42156025µAOvervoltage Detection Level (8)V PWROV 263238V Undervoltage Detection Level (9)V PWRUV 5.0 5.6 6.2V Logic Supply Voltage Range (5.0 V Nominal Supply)V DD 4.5 5.0 5.5V Under V DD Logic Reset V DDUV––4.5VVDD Supply Current Sleep: Reset Logic [0]Outputs EnabledI DDOFF I DDON––401.0651.8µV mAPOWER OUTPUT (SIN-, SIN+, COS-, COS+)Microstep Output (Measured Across Coil Outputs)SIN± (COS±) (Refer to Pin Definitions onpage 3)R OUT = 200 Ω, PE6 = 0VSteps Pin Definitions 6, 18, 0, 125, 7, 17, 19 1, 11, 13, 234, 8, 16, 20 2, 10, 14, 223, 9, 15, 21 3, 9, 15, 212, 10, 14, 22 5, 7, 17, 191, 11, 13, 23 5, 7, 17, 190, 126, 18V ST6V ST5V ST4V ST3V ST2V ST1V ST0 4.820.94 V ST60.84 V ST60.68 V ST60.47 V ST60.23 V ST60.15.30.97 V ST60.87 V ST60.71 V ST60.50 V ST60.26 V ST60.06.01.0 V ST60.96 V ST60.8 V ST60.57 V ST60.31 V ST60.1Full Step Active Output (Measured Across Coil Outputs) (10)SIN± (COS±), Steps 1,3 (Pin Definitions 0 and 2)V FS4.95.36.0V Notes6.Outputs and logic remain active; however, the larger coil voltage levels may be clipped. The reduction in drive voltage may result in aloss of position control.7.The logic will reset at some level below the specified Limited Operational minimum.8.Outputs will disable and must be re-enabled via the PECCR command.9.Outputs remain active; however, the reduction in drive voltage may result in a loss of position control.10.See Figure 7.Analog Integrated Circuit Device Data33977ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSPOWER OUTPUT (SIN-, SIN+, COS-, COS+) (Continued)Microstep Full Step Output (Measured from Coil Low Side to Ground)SIN± (COS±) I OUT = 30 mA V LS0.00.10.3VOutput Flyback Clamp (11)V FB –V ST6 + 0.5V ST6 + 1.0V Output Current Limit (Output - V ST6)I LIM 40100170mA Overtemperature Shutdown (12) T SD 155–180°C Overtemperature Hysteresis (12)T HYST 8.0–16°C CONTROL I/O (SI, SCLK, CS, RST, SO)Input Logic High Voltage (12)V IH 2.0––V Input Logic Low Voltage (12)V IL ––0.8V Input Logic Voltage Hysteresis (12)V INHYST –100–mV Input Logic Pull-Down Current (SI, SCLK)I DWN 3.0–20µA Input Logic Pull-Up Current (CS, RST)I UP 5.0–20µA SO High State Output Voltage (I OH = 1.0 mA)V SOH 0.8 V DD––V SO Low State Output Voltage (I OL = 1.6 mA)V SOL –0.20.4V SO Tri-State Leakage Current (CS = 3.5 V)I SOLK -5.00.0 5.0µA Input Capacitance (13)C IN – 4.012pF SO Tri-State Capacitance (13)C SO––20pFANALOG TO DIGITAL CONVERTER (RTZ ACCUMULATOR COUNT)ADC Gain (12), (14)G ADC100188270Counts/V/msNotes 11.Outputs remain active; however, the reduction in drive voltage may result in a loss of position control.12.This parameter is guaranteed by design; however, it is not production tested.13.Capacitance not measured. This parameter is guaranteed by design; however, it is not production tested. 14.Reference RTZ Accumulator (Typical) on page 30Table 3. Static Electrical Characteristics (continued)Characteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbolMinTypMaxUnitAnalog Integrated Circuit Device Data 33977ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSTable 4. Dynamic Electrical CharacteristicsCharacteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbol Min Typ Max UnitPOWER OUTPUT AND CLOCK TIMINGS (SIN+, SIN-, COS+, COS-) CS SIN± (COS±) Output Turn ON Delay Time (Time from Rising CS Enabling Outputs to Steady State Coil Voltages and Currents)(15)t DLYON––1.0msSIN± (COS±) Output Turn OFF Delay Time (Time from Rising CS Disables Outputs to Steady State Coil Voltages and Currents) (15)t DLYOFF–– 1.0msUncalibrated Oscillator Cycle Time t CLU 0.651.01.7µs Calibrated Oscillator Cycle TimeCalibration Pulse = 8.0 µs, PECCR D4 = Logic [0]Calibration Pulse = 8.0 µs, PECCR D4 = Logic [1]t CLC1.00.91.11.0 1.21.1µsMaximum Pointer Speed (16) V MAX ––400°/s Maximum Pointer Acceleration (16)A MAX––4500°/s 2SPI INTERFACE TIMING (CS, SCLK, SO, SI, RST) (17)Recommended Frequency of SPI Operationf SPI – 1.0 2.0MHz Falling Edge of CS to Rising Edge of SCLK (Required Setup Time) (18)t LEAD 167––ns Falling Edge of SCLK to Rising Edge of CS (Required Setup Time) (18)t LAG 167––ns SI to Falling Edge of SCLK (Required Setup Time) (18)t SISU –2583ns Falling Edge of SCLK to SI (Required Hold Time) (18)t SIHOLD –2583ns SO Rise Time C L = 200 pF t RSO–2550nsSO Fall Time C L = 200 pFt FSO–2550nsSI, CS, SCLK, Incoming Signal Rise Time (19)t RSI ––50ns SI, CS, SCLK, Incoming Signal Fall Time (19)t FIS ––50ns Falling Edge of RST to Rising Edge of RST (Required Setup Time) (18)t W RST –– 3.0µs Rising Edge of CS to Falling Edge of CS (Required Setup Time) (18), (20)t CS –– 5.0µs Falling Edge of RST to Rising Edge of CS (Required Setup Time) (18)t EN––5.0µsNotes15.Maximum specified time for the 33977 is the minimum guaranteed time needed from the microcontroller.16.The minimum and maximum value will vary proportionally to the internal clock tolerance. These numbers are based on an ideallycalibrated clock frequency of 1.0 MHz. These are not 100 percent tested.17.The 33977 shall meet all SPI interface timing requirements specified in the SPI Interface Timing section of this table, over the specifiedtemperature range. Digital interface timing is based on a symmetrical 50 percent duty cycle SCLK Clock Period of 33 ns. The device shall be fully functional for slower clock speeds. Reference Figure 4 and 5.18.The required setup times specified for the 33977 are the minimum time needed from the microcontroller to guarantee correct operation. 19.Rise and Fall time of incoming SI, CS, and SCLK signals suggested for design consideration to prevent the occurrence of double pulsing. 20.The value is for a 1.0 MHz calibrated internal clock. The value will change proportionally as the internal clock frequency changes.Analog Integrated Circuit Device Data33977ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSSPI INTERFACE TIMING (CS, SCLK, SO, SI, RST) ‘ (CONTINUED)Time from Falling Edge of CS to SO Low Impedance (22)t SOEN ––145ns Time from Falling Edge of CS to SO High Impedance (23)t SODIS –1.34.0µs Time from Rising Edge of SCLK to SO Data Valid (24)0.2 V DD = SO = 0.8 V DD , C L = 200 pFt VALID–90150nsNotes21.The 33977 shall meet all SPI interface timing requirements specified in the SPI Interface Timing section of this table, over the specifiedtemperature range. Digital interface timing is based on a symmetrical 50 percent duty cycle SCLK Clock Period of 33 ns. The device shall be fully functional for slower clock speeds.22.Time required for output status data to be terminated at SO 1.0 k Ω load on SO.23.Time required for output status data to be available for use at SO 1.0 k Ω load on SO.24.Time required to obtain valid data out from SO following the rise of SCLK.Table 4. Dynamic Electrical Characteristics (continued)Characteristics noted under conditions 4.75 V < VDD < 5.25 V, and - 40°C < TA < 125°C, unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbolMinTypMaxUnitAnalog Integrated Circuit Device Data 33977ELECTRICAL CHARACTERISTICSTIMING DIAGRAMSTIMING DIAGRAMSFigure 4. Input Timing Switching CharacteristicsFigure 5. Valid Data Delay Time and Valid Time WaveformstWRSTRST0.2 V DDV INCSSCLKSI0.7 V DD0.7 V DDt LEAD t CSt LAG0.7 V DD 0.2 V DDt RSIV ILV IH V ILV IH t FISt SISUt SI(HOLD)0.7 V DD 0.2 V DDValidDon’t CareValidDon’t CareDon’t Caret RSIt FISSCLK50%1.0VV OLV OH3.5VV OLV OHV OLV OHt SO(DIS)0.2 V DDt RSOt RSO t VALIDt SO(EN)0.7 V DD0.2 V DD0.7 V DDLow-to-HighHigh-to-LowSOSOAnalog Integrated Circuit Device Data33977FUNCTIONAL DESCRIPTION FUNCTIONAL PIN DESCRIPTIONFUNCTIONAL DESCRIPTIONINTRODUCTIONThis 33977 is a single-packaged, Serial PeripheralINterface (SPI) controlled, single stepper motor gauge driver integrated circuit (IC). This monolithic stepper IC consists of [deleted two per D. Mortensen] a dual output H-Bridge coil driver [deleted plural s for accurate tense] and theassociated control logic. The dual H-Bridge driver is used to automatically control the speed, direction, and magnitude of current through the coils of a two-phase instrumentation stepper motor, similar to an MMT-licensed AFIC 6405 of Switec MS-X 156.xxx motor.FUNCTIONAL PIN DESCRIPTIONCOSINE POSITIVE (COS0+)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.COSINE NEGATIVE (COS0-)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.SINE POSITIVE (SIN+)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.SINE NEGATIVE (SIN-)The H-Bridge pins linearly drive the sine and cosine coils of a stepper motor, providing four-quadrant operation.GROUND (GND)Ground pins.CHIP SELECT (CS)The pin enables communication with the master device. When this pin is in a logic [0] state, the 33977 is capable of transferring information to, and receiving information from, the master. The 33977 latches data in from the Input Shift registers to the addressed registers on the rising edge of CS.The output driver on the SO pin is enabled when CS is logic [0]. When CS is logic high, signals at the SCLK and SI pins are ignored and the SO pin is tri-stated (highimpedance). CS will only be transitioned from a logic [1] state to a logic [0] state when SCLK is logic [0]. CS has an internal pull-up (I UP ) connected to the pin, as specified in the section of the Static Electrical Characteristics Table.SERIAL CLOCK (SCLK)SCLK clocks the Internal Shift registers of the 33977device. The SI pin accepts data into the Input Shift register on the falling edge of the SCLK signal, while the Serial Output pin (SO) shifts data information out of the SO Line Driver on the rising edge of the SCLK signal. It is important that the SCLK pin be in a logic [0] state whenever the CS makes any transition.SCLK has an internal pull down (l DWN ), as specified in the section of the Static Electrical Characteristics Table. When CS is logic [1], signals at the SCLK and SI pins are ignored and SO is tri-stated (high impedance). Refer to the data transfer Timing Diagrams on page 9.SERIAL OUTPUT (SO)The SO data pin is a tri-stateable output from the Shift register. The Status register bits are the first 16 bits shifted out. Those bits are followed by the message bits clocked in FIFO, when the device is in a daisy chain connection or being sent words that are multiples of 16 bits. Data is shifted on the rising edge of the SCLK signal. The SO pin will remain in a high impedance state until the CS pin is put into a logic low state.SERIAL INPUT (SI)The SI pin is the input of the SPI. Serial input information is read on the falling edge of SCLK. A 16-bit stream of serial data is required on the SI pin, beginning with the mostsignificant bit (MSB). Messages that are not multiples of 16 bits (e.g., daisy chained device messages) are ignored. After transmitting a 16-bit word, the CS pin must be de-asserted (logic [1]) before transmitting a new word. SI information is ignored when CS is in a logic high state.RETURN TO ZERO (RTZ)This is a multiplexed output pin for the non-driven coil, during a Return to Zero (RTZ) event.VOLTAGE (VDD)The SPI and logic power supply input will work with 5.0 V supplies.RESET (RST)If the master decides to reset the device, or place it into a sleep state, the RST pin is driven to a Logic [0]. A Logic [0] on the RST pin forces all internal logic to the known default state. This input has an internal active pull-up.VOLTAGE POWER (VPWR)This is the power supply pin.FUNCTIONAL DESCRIPTIONFUNCTIONAL INTERNAL BLOCK DESCRIPTION (OPTIONAL) FUNCTIONAL INTERNAL BLOCK DESCRIPTION (OPTIONAL)Figure 6. Functional Internal 33977 Block IllustrationSERIAL PERIPHERAL INTERFACE (SPI) This circuitry manages incoming messages and outgoing status data.LOGICThis design element includes internal logic including state machines and message decoding.INTERNAL REFERENCEThis design element is used for step value levels.UNDER AND OVERVOLTAGE DETECTION This design element detects when V PWR is out of the normal operating range.OSCILLATORThe internal oscillator generates the internal clock for all timing critical features.H-BRIDGE AND CONTROLThis circuitry contains the output coil drivers and the multiplexers necessary for four quadrant operation and RTZ sequencing. This circuitry is repeated for the Sine and Cosine coils.•Overtemperature — Each output includes an overtemperature sensing circuit•ILIM — Each output is current limitedRETURN TO ZERO (RTZ)This circuitry outputs the voltage present on the non-driven coil during RTZ operation.SPI LogicUnder andOscillator OvervoltageDetectH-Bridge and Control Internal ReferenceRTZFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESSTATE MACHINE OPERATIONThe 33977 is ideal for use in instrumentation systemsrequiring distributed and flexible stepper motor gauge driving.The device also eases the transition to stepper motors fromair core motors by emulating the air core pointer movementwith little additional processor bandwidth utilization. The two-phase stepper motor has maximum allowable velocities andacceleration and deceleration. The purpose of the steppermotor state machine is to drive the motor with the maximumperformance while remaining within the motor’s voltage,velocity, and acceleration constraints.A requirement of the state machine is to ensure thedeceleration phase begins at the correct time and pointerposition. When commanded, the motor [will deleted PV]accelerates constantly to the maximum velocity, and then itmoves toward the commanded position at the maximumvelocity. Eventually, the pointer reaches the calculatedlocation where the movement has to decelerate, safelyslowing to a stop at the desired position. During thedeceleration phase, the motor does [will deleted PV] notexceed the maximum deceleration.During normal operation, both stepper motor rotors aremicrostepped at 24 steps per electrical revolution, illustratedin Figure 7. A complete electrical revolution results in twodegrees of pointer movement. There is a second smaller[parentheses removed-unnecessary] state machine in the ICcontrolling these microsteps. The smaller state machinereceives clockwise or counter-clockwise index commands attimed intervals, thereby stepping the motor in the appropriatedirection by adjusting the current in each coil. Normalizedvalues are provided in Table 5.Figure 7. Clockwise MicrostepsTable 5. Coil Step ValueStep Angle SINE(Angle)*COS (Angle -30)*PE6=0COS (Angle -30)*PE6=100.00.0 1.00.866 1150.2590.9650.966 2300.50.866 1.0 3450.7070.7070.966 4600.8660.50.866 5750.9660.2590.707 690 1.00.00.500 71050.966-0.2590.259 81200.866-0.50.0 91350.707-0.707-0.259 101500.5-0.866-0.500FUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESThe motor is stepped by providing index commands at intervals. The time between steps defines the motor velocity and the changing time defines the motor acceleration.The state machine uses a table to define the allowed time and the maximum velocity. A useful side effect of the table is that it also allows the direct determination of the position at which the velocity should reduce to stop the motor at the desired position.Motor motion equations follow: [reworded for efficient use of space](The units of position are steps and velocity and acceleration are in steps/second and steps/second2.) From an initial position of 0 with an initial velocity (u), the motor position (s) at a time (t) is:For unit steps, the time between steps is:This defines the time increment between steps when the motor is initially traveling at a velocity u. In the ROM, this time is quantized to multiples of the system clock by rounding upwards, ensuring acceleration never exceeds the allowed value. The actual velocity and acceleration is calculated from the time step actually used. Using:andand solving for v in terms of u, s, and t gives:The correct value of t to use in the equation is thequantized value obtained above.From these equations, a set of recursive equations can be generated to give the allowed time step between motor indexes when the motor is accelerating from a stop to its maximum velocity.Starting from a position p of 0 and a velocity v of 0, these equations define the time interval between steps at each position. To drive the motor at maximum performance, index commands are given to the motor at these intervals. A table is generated giving the time step *t at an index position n. Note: [chgd for format consistency AND deleted that as PV] For p n = n, on the nth step, the motor [has deleted as PV] indexed by n positions and has been accelerating steadily at the maximum allowed rate. This is critical because it also indicates the minimum distance the motor must travel while decelerating to a stop. For example, the stopping distance isalso equal to the current value of n.The algorithm of pointer movement can be summarized in two steps:1.The pointer is at the previously commanded positionand is not moving.2. A command to move to a pointer position (other thanthe current position) has been received. Timed indexpulses are sent to the motor driver at an ever-increasing rate, according to the time steps in Table 6, until:aThe maximum velocity (default or selected) isreached after which the step time intervals will nolonger decrease.bThe distance in steps that remain to travel are less than the current step time index value. The motorthen decelerates by increasing the step timesaccording to Table 6 until the commandedposition is reached. The state machine controlsthe deceleration so that the pointer reaches thecommanded position efficiently.An example of the velocity table for a particular motor is provided in Table 6. This motor’s maximum speed is 4800111650.259-0.966-0.707 121800.0-1.0-0.866 13195-0.259-0.966-0.966 14210-0.5-0.867-1.0 15225-0.707-0.707-0.966 16240-0.866-0.5-0.866 17255-0.966-0.259-0.707 18270-1.00.0-0.500 19285-0.9660.259-0.259 20300-0.8660.50.0 21315-0.7070.7070.259 22330-0.50.8660.500 23345-0.2590.9660.707 * Denotes normalized valuesTable 5. Coil Step Values = ut + 1/2 at 2⇒t =- u + √u2 + 2aav2 = u2 + 2asv = u + atv = 2/t - up0 = 0v0 = 0∆t n =⎡-vn -1 + √v2n -1 + 2aa⎤where ⎡ ⎤ indicates rounding upv n = 2/∆tn - V n -1p n = nFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESmicrosteps/s (at 12 microsteps/degrees), and its maximum acceleration is 54000 microsteps/s2. The table is quantized to a 1.0 MHz clock.Table 6. Velocity TableVelocity Position Time BetweenSteps (µs)Velocity(µSteps/s)VelocityPositionTime BetweenSteps (µs)Velocity(µSteps/s)VelocityPositionTime BetweenSteps (µs)Velocity(µSteps/s)00.00.00763802631.61522573891.1 12721736.7773772652.51532563906.3 21360773.5783742673.81542553921.6 31127188.7793722688.21552543937.0 47970125.5803692710.01562543937.0 55858170.7813662732.21572533952.6 64564219.1823642747.31582523968.3 73720268.8833612770.11592513984.1 83132319.3843582793.31602504000.0 92701370.2853562809.01612494016.1 102373421.4863542824.91622484032.3 112115472.8873512849.01632484032.3 121908524.1883492865.31642474048.6 131737575.7893472881.81652464065.0 141594627.4903442907.01662454081.6 151473678.9913422924.01672444098.4 161369730.5923402941.21682444098.4 171278782.5933382958.61692434115.2 181199834.0943362976.21702424132.2 191129885.7953342994.01712414149.4 201066938.1963323012.01722414149.4 211010990.1973303030.31732404166.7 229601041.7983283048.81742394184.1 239161091.7993263067.51752384201.7 248771140.31003243086.41762384201.7 258421187.61013223105.61772374219.4 268121231.51023213115.31782364237.3 277841275.51033193134.81792654255.3 287601315.81043173154.61802354255.3 297371356.91053153174.61812344273.5 307161396.61063143184.71822334291.8 316971434.71073123205.11832334291.8 326801470.61083103225.81842324310.3 336631508.31093093236.21852314329.0 346481543.21103073257.31862314329.0 356341577.31113063268.01872304347.8。

土壤成分分析标准物质标准值

土壤成分分析标准物质标准值

土壤成分分析标准物质标准值成分GBW07401(GSS-1)GBW07402(GSS-2)GBW07403(GSS-3)GBW07404(GSS-4)GBW07405(GSS-5)GBW07406(GSS-6)GBW07407(GSS-7)GBW07408(GSS-8)µg/gAg 0.35±0.05 0.054±0.007 0.091±0.007 0.070±0.011 4.4±0.4 0.20±0.02 0.057±0.011 0.060±0.009 As 34±4 13.7±1.2 4.4±0.6 58±6 412±16 220±14 4.8±1.3 12.7±1.1 Au (0.00055) (0.0017) (0.0055) 0.260±0.007 (0.009) (0.0008) (0.0014)B 50±3 36±3 23±3 97±9 53±6 57±5 (10) 54±4Ba 590±32 930±52 1210±65 213±20 296±26 118±14 180±27 480±23Be 2.5±0.3 1.8±0.2 1.4±0.2 1.85±0.34 2.0±0.4 4.4±0.7 2.8±0.6 1.9±0.2Bi 1.2±0.1 0.38±0.04 0.17±0.03 1.04±0.13 41±4 49±5 0.20±0.04 0.30±0.04 Br 2.9±0.6 4.5±0.7 4.3±0.8 4.0±0.7 (1.5) 8.0±0.7 5.1±0.5 2.5±0.5Cd 4.3±0.4 0.071±0.014 0.060±0.009 0.35±0.06 0.45±0.06 0.13±0.03 0.08±0.02 0.13±0.02 Ce 70±4 402±16 39±4 136±11 91±10 66±6 98±11 66±7C1 70±9 62±10 57±11 (39) (76) 95±7 100±6 68±12Co 14.2±1.0 8.7±0.9 5.5±0.7 22±2 12±2 7.6±1.1 97±6 12.7±1.1Cr 62±4 47±4 32±4 370±16 118±7 75±6 410±23 68±6Cs 9.0±0.7 4.9±0.5 3.2±0.4 21.4±1.0 15±1 10.8±0.6 2.7±0.8 7.5±0.7Cu 2l±2 16.3±0.9 11.4±1.1 40±3 144±6 390±14 97±6 24.3±1.2 Dy 4.6±0.3 4.4±0.3 2.6±0.2 6.6±0.6 3.7±0.5 3.3±0.3 6.6±0.6 4.8±0.4Er 2.6±0.2 2.1±0.4 1.5±0.3 4.5±0.7 2.4±0.3 2.2±0.3 2.7±0.5 2.8±0.2Eu 1.0±0.1 3.0±0.2 0.72±0.04 0.85±0.07 0.82±0.04 0.66±0.04 3.4±0.2 1.2±0.1F 506±32 2240±112 246±26 540±25 603±28 906±45 321±29 577±24Ga 19.3±1.1 12±1 13.7±0.9 31±3 32±4 30±3 39±5 14.8±1.1 Gd 4.6±0.3 7.8±0.6 2.9±0.4 4.7±0.5 3.5±0.3 3.4±0.3 9.6±0.9 5.4±0.5Ge 1.34±0.20 1.2±0.2 1.16±0.13 1.9±0.3 2.6±0.4 3.2±0.4 1.6±0.3 1.27±0.20 Hf 6.8±0.8 5.8±0.9 6.8±0.8 14±2 8.1±1.7 7.5±0.8 7.7±0.5 7.0±0.8Hg 0.032±0.004 0.015±0.003 0.060±0.004 0.59±0.05 0.29±0.03 0.072±0.007 0.061±0.006 0.017±0.003 Ho 0.87±0.07 0.93±0.12 0.53±0.06 1.46±0.12 0.77±0.08 0.69±0.05 1.1±0.2 0.97±0.08 I 1.8±0.3 1.8±0.2 1.3±0.2 9.4±1.1 3.8±0.5 19.4±0.9 19±2 1.7±0.2In 0.08±0.02 0.09±0.03 0.031±0.010 0.12±0.03 4.1±0.6 0.84±0.18 0.10±0.03 0.044±0.013 La 34±2 164±11 21±2 53±4 36±4 30±2 46±5 36±3Li 35±1 22±1 18.4±0.8 55±2 56±2 36±1 19.5±0.9 35±2Lu 0.41±0.04 0.32±0.05 0.29±0.02 0.75±0.06 0.42±0.05 0.42±0.05 0.35±0.06 0.43±0.04 Mn 1760±63 510±16 304±14 1420±75 1360±71 1450±82 1780±113 650±23Mo 1.4±0.1 0.98±0.11 0.31±0.06 2.6±0.3 4.6±0.4 18±2 2.9±0.3 1.16±0.10 N 1870±67 630±59 640±50 1000±62 610±31 740±59 660±62 370±54Nb 16.6±1.4 27±2 9.3±1.5 38±3 23±3 27±2 64±7 15±2Nd 28±2 210±14 18.4±1.7 27±2 24±2 2l±2 45±2 32±2Ni 20.4±1.8 19.4±1.3 12±2 64±5 40±4 53±4 276±15 31.5±1.8P 735±28 446±25 320±18 695±28 390±34 303±30 1150±39 775±25Pb 98±6 20±3 26±3 58±5 552±29 314±13 14±3 21±2土壤成分分析标准物质标准值(续)土壤成分分析标准物质标准值成分GBW07401(GSS-1)GBW07402(GSS-2)GBW07403(GSS-3)GBW07404(GSS-4)GBW07405(GSS-5)GBW07406(GSS-6)GBW07407(GSS-7)GBW07408(GSS-8)µg/gRb 140±6 88±4 85±4 75±4 117±6 237±8 16±3 96±4ReS (310) 210±43 123±14 180±36 (0.00053)410±54(0.00012)260±43 250±36 (126)Sb 0.87±0.21 1.3±0.2 0.44±0.08 6.3±1.1 35±5 60±7 0.42±0.09 1.0±0.2Sc 11.2±0.6 10.7±0.6 5.0±0.4 20±2 17±1 15.5±0.9 28±2 11.7±0.7 Se 0.14±0.03 0.16±0.03 0.09±0.02 0.64±0.14 1.6±0.2 1.34±0.17 0.32±0.05 0.10±0.01 Sm 5.2±0.3 18±2 3.3±0.2 4.4±0.4 4.0±0.4 3.8±0.4 10.3±0.4 5.9±0.4Sn 6.1±0.7 3.0±0.3 2.5±0.3 5.7±0.9 18±3 72±7 3.6±0.7 2.8±0.5Sr 155±7 187±9 380±16 77±6 42±4 39±4 26±4 236±13Ta 1.4±0.2 0.78±0.19 0.76±0.15 3.1±0.3 1.8±0.3 5.3±0.6 3.9±0.6 1.05±0.25 Tb 0.75±0.06 0.97±0.26 0.49±0.06 0.94±0.09 0.7±0.1 0.6l±0.08 1.3±0.2 0.89±0.08 Te 0.058±0.020 (0.033) 0.039±0.013 0.16±0.06 (5) 0.4±0.l (0.047) 0.045±0.010 Th 11.6±0.7 16.6±0.8 6.0±0.5 27±2 23±2 23±2 9.1±0.7 11.8±0.7Ti 4830±160 2710±80 2240±80 10800±310 6290±210 4390±120 20200±500 3800±120 Tl 1.0±0.2 0.62±0.20 0.48±0.05 0.94±0.25 1.6±0.3 2.4±0.5 0.21±0.06 0.58±0.06 Tm 0.42±0.06 0.42±0.11 0.28±0.05 0.70±0.10 0.41±0.04 0.40±0.06 0.42±0.05 0.46±0.07 U 3.3±0.4 1.4±0.3 1.3±0.3 6.7±0.8 6.5±0.7 6.7±0.7 2.2±0.4 2.7±0.4V 86±4 62±4 36±3 247±14 166±9 130±7 245±2l 81±5W 3.1±0.3 1.08±0.22 0.96±0.12 6.2±0.5 34±2 90±7 1.2±0.2 1.7±0.2Y 25±3 22±2 15±2 39±6 21±3 19±2 27±4 26±2Yb 2.7±0.3 2.0±0.2 1.7±0.2 4.8±0.6 2.8±0.4 2.7±0.4 2.4±0.4 2.8±0.2Zn 680±25 42±3 31±3 210±13 494±25 97±6 142±11 68±4Zr %SiO2 245±12 219±15 246±14 500±42 272±16 220±14 318±37 229±12 62.60±0.14 73.35±0.18 74.72±0.19 50.95±0.14 52.57±0.16 56.93±0.18 32.69±0.18 58.61±0.13Al2O3 14.18±0.14 10.31±0.10 12.24±0.09 23.45±0.19 21.58±0.15 21.23±0.16 29.26±0.34 11.92±0.15 TFe2O3 5.19±0.09 3.52±0.07 2.00±0.05 10.30±0.11 12.62±0.18 8.09±0.13 18.76±0.33 4.48±0.05 FeO (1.27) 0.57±0.07 0.50±0.06 (0.41) (0.22) (0.57) (1.05) 1.22±0.05 MgO 1.81±0.08 1.04±0.04 0.58±0.04 0.49±0.05 0.61±0.06 0.34±0.05 0.26±0.03 2.38±0.07 CaO 1.72±0.06 2.36±0.05 1.27±0.05 0.26±0.04 (0.10) 0.22±0.03 0.16±0.02 8.27±0.12 Na2O 1.66±0.04 1.62±0.04 2.7l±0.06 0.11±0.02 0.12±0.02 0.19±0.02 0.08±0.02 1.72±0.04 K2O 2.59±0.04 2.54±0.05 3.04±0.05 1.03±0.06 1.50±0.04 1.70±0.06 0.20±0.02 2.42±0.04 H2O+(5.0) (2.9) (1.9) (10.1) (8.8) (8.9) (13.7) (3.3)CO2 1.12±0.09 (0.97) (0.13) (0.12) (0.10) (0.084) (0.11) 5.97±0.16 Corg. 1.80±0.16 0.49±0.07 0.51±0.03 0.62±0.08 (0.32) 0.81±0.09 0.64±0.07 (0.30)TC 2.11±0.19 0.75±0.10 0.55±0.05 0.65±0.10 (0.35) 0.83±0.10 0.67±0.09 1.93±0.13 LOI (8.59) 4.4±0.2 2.67±0.13 (10.9) (9.1) (10.0) (14.3) 9.12±0.17土壤成分分析标准物质标准值(续)成分GBW07423 洪泽湖积物(GSS-9)GBW07424松嫩平原(GSS-10)GBW07425辽河平原(GSS-11)GBW07426新疆北部(GSS-12)GBW07427 华北平原(GSS-13)GBW07428 四川盆地(GSS-14)GBW07429 长江平原区(GSS-15)GBW07430珠江三角洲(GSS-16)Ag 0.076±0.013 0.083±0.010 0.098±0.007 0.078±0.007 0.067±0.006 0.084±0.007 0.15±0.02 0.14±0.02 As 8.4±1.3 8.9±0.9 7.4±0.5 12.2±0.8 10.6±0.8 6.5±1.3 21.7±1.2 18±2B 52±4 35±3 36±3 55±5 53±3 46±3 63±2 63±4Ba 520±43 613±12 634±10 492±20 500±15 608±13 716±16 411±18Be 2.2±0.1 2.4±0.1 2.25±0.08 2.04±0.06 1.90±0.05 2.44±0.06 2.7±0.1 3.8±0.3Bi 0.29±0.06 0.27±0.02 0.28±0.01 0.30±0.02 0.29±0.02 0.35±0.02 1.16±0.06 1.44±0.11 Br 3.7±0.4 5.8±0.4 2.8±0.2 2.1±0.3 4.0±0.4 1.7±0.3 2.7±0.3 2.6±0.3Cd 0.10±0.02 0.105±0.013 0.125±0.012 0.15±0.02 0.13±0.01 0.20±0.02 0.21±0.02 0.25±0.02 Ce 74±4 70±4 65±3 57±2 66±3 80±2 93±4 133±5Cl 45±9 216±14 98±12 (50) 80±10 50±4 83±15 78±6Co 14±2 11.7±0.5 11.6±0.4 12.6±0.3 11.3±0.5 14.6±0.7 17.6±0.7 13.6±0.6Cr 75±5 58±2 59±3 59±2 65±2 70±3 87±4 67±3Cs 8.3±0.7 6.5±0.4 6.0±0.4 7.2±0.4 6.0±0.4 7.0±0.3 8.9±0.4 13.9±0.7 Cu 25±3 19±1 21.4±1.2 29±1 21.6±0.8 27.4±1.1 37±2 32±2Dy 4.7±0.4 4.7±0.3 4.2±0.4 4.9±0.3 4.5±0.3 4.8±0.3 6.2±0.4 7.4±0.5Er 2.8±0.4 2.75±0.17 2.46±0.07 2.9±0.2 2.57±0.12 2.6±0.3 3.4±0.2 3.8±0.2Eu 1.30±0.13 1.25±0.04 1.18±0.04 1.22±0.04 1.18±0.05 1.36±0.06 1.56±0.06 1.66±0.07 F 504±19 452±16 425±17 592±45 545±32 619±39 652±48 790±44Ga 16.7±1.7 18±1 17.2±1.0 16.8±0.5 15.0±0.4 18.8±0.8 20.5±1.0 25.1±1.2 Gd 5.4±0.8 5.2±0.3 4.7±0.3 5.1±0.3 4.9±0.3 5.5±0.5 6.8±0.5 8.5±0.7Ge 1.32±0.09 1.31±0.08 1.3±0.1 1.3±0.1 1.27±0.07 1.42±0.11 1.63±0.08 1.70±0.12 Hf 6.6±1.2 9.5±0.7 7.7±0.5 5.5±0.4 7.0±0.5 6.4±0.3 7.6±0.4 8.2±0.4Hg 0.032±0.003 0.033±0.004 0.060±0.009 0.021±0.005 0.052±0.006 0.089±0.004 0.094±0.004 0.46±0.05 Ho 1.03±0.10 0.97±0.04 0.89±0.05 1.01±0.04 0.92±0.03 0.93±0.04 1.23±0.07 1.41±0.08 I 2.8±0.6 3.2±0.2 1.6±0.1 1.4±0.2 2.4±0.2 0.9±0.2 2.3±0.2 1.3±0.1In (0.08) 0.055±0.015 0.047±0.013 0.058±0.007 0.044±0.009 0.057±0.006 0.145±0.021 0.095±0.027 La 38±2 35.5±1.7 34±2 29±2 34±2 41±2 47±2 67±3Li 38±2 30.6±1.5 30±2 36±2 31.5±1.5 39±3 44±3 51±3Lu 0.43±0.04 0.46±0.03 0.41±0.02 0.46±0.02 0.41±0.02 0.42±0.02 0.54±0.02 0.58±0.05 Mn 520±24 681±13 572±14 774±19 580±12 688±15 963±20 441±20Mo 0.4±0.1 0.52±0.04 0.60±0.04 0.96±0.06 0.48±0.03 0.65±0.06 0.92±0.07 1.15±0.07 N % 0.130±0.010 0.126±0.011 0.095±0.010 0.055±0.006 0.072±0.009 0.081±0.012 0.094±0.010 0.102±0.011 Nb 14.4±2.1 16.5±0.7 13.8±0.6 12±1 14±1 14.4±0.6 18.6±1.3 26±1Nd 32±3 32±2 30±2 27.9±1.2 30±2 36±3 41±2 57±4Ni 33±3 26±1 25.4±1.3 32±1 28.5±1.2 33±2 41±1 27.4±0.9P 480±31 500±27 483±24 708±9 833±35 730±28 560±18 972±34Pb 25±3 22±2 24.7±1.4 19±2 21.6±1.2 31±1 38±2 61±2Pr 8.5±0.8 8.5±0.5 7.9±0.5 7.0±0.4 7.9±0.5 9.2±0.6 10.3±0.8 14.6±1.1土壤成分分析标准物质标准值成分GBW07423 洪泽湖积物(GSS-9)GBW07424松嫩平原(GSS-10)GBW07425 辽河平原(GSS-11)GBW07426新疆北部(GSS-12)GBW07427 华北平原(GSS-13)GBW07428 四川盆地(GSS-14)GBW07429 长江平原区(GSS-15)GBW07430珠江三角洲(GSS-16)Rb 102±8 108±3 110±4 94±3 91±3 108±4 116±3 173±5Re ng/g (0.08) (0.10) (0.14) (0.15)S 241±22 270±24 217±23 154±15 (160) 173±21 176±22 261±26Sb(DA) 0.85±0.13 0.68±0.09 0.61±0.06 1.05±0.07 0.86±0.06 0.73±0.08 1.9±0.2 1.7±0.2Sb(T) (1.1) (0.94) (0.82) (1.17) (0.99) (0.81) (1.9) (1.9)Sc 12.1±1.2 10.2±0.3 10.0±0.3 12.6±0.4 10.5±0.3 11.7±0.3 14.8±0.5 14.0±0.5 Se 0.15±0.03 0.21±0.02 0.20±0.02 0.16±0.02 0.16±0.02 0.16±0.02 0.31±0.02 0.51±0.05 Sm 6.2±0.5 6.0±0.2 5.5±0.2 5.6±0.4 5.6±0.3 6.4±0.3 7.8±0.3 10.4±0.5 Sn 3.4±0.5 3.4±0.4 3.1±0.4 2.8±0.4 3.3±0.4 3.1±0.3 4.5±0.5 12.4±0.8Sr 172±9 226±5 182±5 240±5 195±4 152±5 115±4 68±4Ta 1.1±0.2 1.3±0.2 1.05±0.14 0.85±0.07 1.02±0.09 1.08±0.09 1.52±0.15 2.8±0.2Tb 0.86±0.14 0.84±0.05 0.76±0.05 0.84±0.06 0.80±0.03 0.87±0.06 1.08±0.07 1.3±0.1Te (0.035) (0.17)Th 12.8±1.6 11.3±0.4 10.8±0.6 10±1 11.0±0.5 12.7±0.5 14.5±0.8 28±2Ti % 0.424±0.023 0.427±0.006 0.392±0.006 0.392±0.007 0.382±0.011 0.406±0.013 0.527±0.020 0.578±0.026Tl 0.6±0.1 0.58±0.05 0.62±0.02 0.51±0.04 0.52±0.05 0.63±0.03 0.67±0.04 1.12±0.08 Tm 0.44±0.08 0.42±0.03 0.38±0.03 0.44±0.05 0.40±0.03 0.41±0.03 0.53±0.04 0.57±0.05 U 2.1±0.4 2.25±0.12 2.2±0.1 2.4±0.2 2.19±0.12 2.45±0.12 3.0±0.2 5.9±0.3V 90±12 74±3 74±2 86±4 74±2 86±2 119±3 105±4W 1.9±0.1 1.66±0.10 1.65±0.12 1.64±0.10 1.6±0.1 1.5±0.1 2.8±0.2 5.8±0.2Y 26±2 26.5±0.9 23.6±0.7 26.4±0.9 24.5±0.7 25±1 33±2 38±3Yb 2.6±0.4 2.81±0.14 2.54±0.13 2.9±0.2 2.6±0.2 2.53±0.12 3.5±0.2 3.8±0.2Zn 61±5 60±4 65±5 78±5 65±3 96±3 94±4 100±8Zr 233±7 350±12 270±9 195±7 257±9 227±8 272±8 275±11%SiO2 61.69±0.33 65.50±0.12 69.42±0.28 60.01±0.27 64.88±0.29 64.51±0.36 63.63±0.20 63.81±0.16 Al2O3 13.28±0.12 13.80±0.11 13.14±0.06 13.27±0.11 11.76±0.10 14.43±0.13 15.27±0.10 17.85±0.12 TFe2O3 4.8±0.1 4.17±0.03 4.21±0.06 4.71±0.04 4.11±0.04 5.32±0.06 6.44±0.07 5.44±0.05 FeO (1.4) (1.1) (0.9) 1.39±0.07 1.25±0.11 (0.8) 1.06±0.15 (0.8)MgO 1.52±0.18 1.30±0.03 1.20±0.04 2.43±0.07 2.05±0.04 1.90±0.06 1.80±0.06 0.84±0.05CaO 5.0±0.1 2.62±0.06 1.33±0.03 5.83±0.06 5.0±0.1 2.45±0.05 1.53±0.04 0.40±0.04 Na2O 1.28±0.05 2.14±0.06 1.98±0.07 2.00±0.06 1.86±0.07 1.59±0.07 1.26±0.05 0.33±0.02 K2O 1.98±0.05 2.65±0.05 2.70±0.04 2.62±0.05 2.27±0.04 2.46±0.07 2.36±0.04 2.50±0.04 H2O+(4.7) (3.5) (3.0) (3.6) (2.8) (4.0) (4.7) (5.8)CO2 2.9±0.2 (0.8) (0.18) 3.9±0.4 3.34±0.14 (1.1) (0.56) (0.1) Corg. 1.1±0.1 1.35±0.07 1.07±0.06 (0.47) 0.62±0.08 0.79±0.07 0.78±0.05 0.97±0.12 TC 1.9±0.2 1.57±0.16 1.12±0.11 (1.5) 1.53±0.12 1.09±0.15 0.93±0.12 1.00±0.15。

LSHT Torqmotors

LSHT Torqmotors

LSHT Torqmotors™ and Nichols™ MotorsBG Series Brake MotorHY13-1590-011/US,EU Exceptional Strength andDurability in a High Performance Motor/Brake PackageThis brake motor consists of a BG Series motor integrat-ed into a wet disc, spring applied, hydraulically released brake. Standard holding capacity is 12,000 lb in of holding torque. The brake is front mounted for reliable operation even in the event of a system failure. The brake release port is capable of pressures to 3000 PSI.Technical Information /TechnischeInformation / Segni/Informacion TecnicaRated Brake Holding Capacity Minimum Full @ Zero Release Pressure Release Pressure Nm (in-lbs) bar (PSI)1350 (12,000)22 (315)12,000 in-lbs is standard holding capacity. For other holding capacities, see page 287.For performance data curves, see TG section.Shaded areas indicate custom order components. Standard pricing and delivery terms may not apply to these* shuttle port position as viewed from the shaft end of the motor with theports up (12:00)** Not applicable to TA365&390, TB365&390, TC365&390, TE365&390,TG625,785&960, TH625,785&960Shaded areas indicate custom order components. Standard pricing and delivery terms may not apply to theseLSHT Torqmotors™ and Nichols™ MotorsBG Series Brake MotorHY13-1590-011/US,EURadial Load / Radiale Wellenbelastung Charges Radiale / Carga Radial The maximum load curve is defined by bearing static load ca-pacity. This curve should not be exceeded at any time includ-ing shock loads.Die maximale radiale Wellenbelastungskurve ist definiert als maximale statische Last ohne Drehzahl. Sie gilt als Grenze und sollte keinesfalls überschritten werden.La courbe de charge maximale est définie par la capacité de charge statique portante. Cette courbe ne devrait être dépassée en aucun moment y compris pour les charges par à-coups.La curva de carga máxima queda definida por la capacidad de carga estática del cojinete. No se deben superar los valores de esta curva, ni siquiera con cargas provisorias de impacto.The dynamic side load curve is based on uni-directional steady state loads for L 10 bearing life at 3 x 106 revolutions.Die zulässige auslegbare radiale Wellenbelastungskurve ist unter ruhenden, einseitig statisch gerichtetenLastverhältnissen auf eine L 10 Lebensdauer mit 3 x 106 Umdrehungen kalkuliert.La courbe de charge latérale permise se base sur des charges unidirectionnelles en régime permanent pour le roulement L 10 à 3 x 106 révolutions.La curva de valores admisibles de carga lateral estábasada en cargas constantes para cojinetes L 10 a 3 x 106 revoluciones.Wheel Mount/RadnabengehauseMonture à roue/ Montaje de ruedaEquation to Calculate the Expected Radial Bearing Life Gleichung zur Ermittlung der LagerlebensdauerEquation to calculate the dynamic bearing life for a given load:Bestimmung der erlaubten radialen Wellenbelastung mit vorgegebener LastUse F a , F b and S in equation to determine hours of L 10 bearing life.Die Lebensdauer in Stunden ergibt sich durch einsetzen von F a , F b , und S in die nachstehende Formel.3 x 106{ F a }3.33L = 60 x S F bWhere / Mit: S = Shaft Speed RPM / Abtriebswellendrehzahl in min -1 L = Life In Hours / Lebensdauer in StundenF a = Dynamic side load defined by above curve at a distance from mounting flange. / Erlaubte radiale Wellenbelastung als Function der LaengeF b = Application side load. / Anwendungsseitige Wellenbelastung Note: Calculations are based on L bearing life per ISO 281.Length "L" "L" Poids/PesoWeight / Gewicht Length "L""L"Code: ASFront Mounting / Front Bolting, 7/8-14 SAE O-RingCode: BM*Poids/Peso Weight / Gewicht Code AS Code BM 0140 0170 0195 0240 0280 0335 0405 0475 0530 0625 0785 0960kg 28.4 28.7 28.9 29.3 29.7 30.1 30.1 30.7 31.3 32.8 34.3 36.1 (lb) (62.6) (63.2) (63.7) (64.5) (65.4) (66.3) (67.6) (69.1) (70.7) (72.3) (75.7) (79.5) mm 233.2 236.4 239.6 244.3 249.1 255.4 262.8 271.3 277.7 287.2 306.3 325.3 (in) (9.18) (9.31) (9.43) (9.62) (9.81) (10.06) (10.35) (10.68) (10.93) (11.31) (12.06) (12.81)0140 0170 0195 0240 0280 0335 0405 0475 0530 0625 0785 0960kg 27.3 27.5 27.8 28.1 28.5 28.9 29.5 30.2 30.9 31.7 33.2 34.9 (lb) (60.2) (60.8) (61.3) (62.1) (63.0) (63.9) (65.2) (66.7) (68.3) (69.9) (73.3) (77.1) mm 192.3 195.3 198.6 203.2 208.0 214.4 221.7 230.4 236.7 246.1 265.2 284.2 (in) (7.57) (7.69) (7.82) (8.00) (8.19) (8.44) (8.73) (9.07) (9.32) (9.69) (10.44) (11.19)Length "L""L"Code: CSRear Mounting/Thru Bolting, 7/8-14 SAE O-Ring0140 0170 0195 0240 0280 0335 0405 0475 0530 0625 0785 0960kg 27.3 27.5 27.8 28.1 28.5 28.9 29.5 30.2 30.9 31.7 33.2 34.9 (lb) (60.2) (60.8) (61.3) (62.1) (63.0) (63.9) (65.2) (66.7) (68.3) (69.9) (73.3) (77.1) mm 192.3 195.3 198.6 203.2 208.0 214.4 221.7 230.4 236.7 246.1 265.2 284.2 (in) (7.57) (7.69) (7.82) (8.00) (8.19) (8.44) (8.73) (9.07) (9.32) (9.69) (10.44) (11.19)Poids/Peso Weight / Gewicht Code CSCode: CBRear Mounting/Thru-Bolting, 7/8-14 SAE Rear PortCode A & C1 1/4" KeyedCode: 051 1/4" 14 Tooth SplineCode: 081 1/4" TaperCode: 191 3/8" J501 Taper Code: 62SAE 14 Tooth Spline。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档