计算机组成原理实验报告审批稿

合集下载

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。

实验一,逻辑门电路实验。

在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。

逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。

在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。

实验二,寄存器和计数器实验。

在本次实验中,我们学习了寄存器和计数器的原理和应用。

寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。

通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。

实验三,存储器实验。

在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。

通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。

实验四,指令系统实验。

在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。

通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。

实验五,CPU实验。

在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。

通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。

实验六,总线实验。

在本次实验中,我们学习了计算机的总线结构和工作原理。

通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。

结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。

通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。

希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。

《计算机组成原理》实验报告一

《计算机组成原理》实验报告一

《计算机组成原理》实验报告一一、实验目的:编写程序、上机调试、运行程序是进一步学习和掌握汇编语言程序设计的必要手段。

通过本次实验, 学习、掌握运行汇编程序的相关知识。

1、二、实验内容:2、熟悉实验用微机的软、硬件配置(1)硬件: Intel Celeron 500GHz CPU、128M内存(8M作共享显存)、intel810芯片主板、集成i752显卡、maxtro20G硬盘、ps/2接口鼠标、PS/2接口键盘。

(2)软件:DOS 操作系统Windows98 seMASM汇编语言程序3、熟悉运行汇编语言所需的应用程序汇编程序使MASM连接程序使用LINK程序调试程序使用DEBUG程序4、熟悉汇编语言源程序上机操作过程(1)编辑源文件(选择可使用的文本编辑器)(2)汇编源程序文件(3)连接目标文件(4)运行可执行文件5、汇编操作举例用edit编辑myprog.asm文件;(见下图)用MASM.exe编译myprog.asm生成myprog.obj文件;C:\masm\bin> masm.exe由图中可以看出:0 个警告错误0个严格错误汇编通过, 生成mygrog.obj目标文件(如果有严格错误, 汇编不能通过, 必须返回编辑状态更改程序。

)用link.exe命令链接myhprog.obj生成myprog.exe文件!C:\masm\bin> link.exeC:\masm\bin> myprog.exe运行程序结果为:屏幕显示“Hi! This is a dollar sign terminated string.”三、实验总结:1.可以在DOS或Windows状态编辑汇编源程序2.可以使用EDIT 或记事本编辑汇编源程序, 源程序必须以.asm为扩展名。

在记事本中保存文件时, 可以加双引号“myprog.asm”,文件名就不会出现myprog.asm.txt的错误3.熟悉相关的DOS 命令cd 进入子目录mkdir 建立子目录xcopy *.* /s 拷贝当前目录下所有文件及子目录format a: 格式化A盘4.在Windows 系统下运行汇编程序, 有时会有问题, 建议大家熟悉DOS命令,DOS编辑工具, 在DOS状态下运行汇编程序。

计算机专业实训总结报告审批稿

计算机专业实训总结报告审批稿

计算机专业实训总结报告审批稿
尊敬的领导:
您好!今天我给大家带来的是计算机专业实训总结报告审批稿,以下是详细内容。

首先,感谢领导对我们实训的大力支持和关心,实训期间,我们充分发挥自身的专业特长和团队合作精神,成功完成了各项实训任务。

在本次实训过程中,我们主要进行了以下几个方面的实践:网络协议配置、软件开发、系统维护和故障处理等。

通过实践的锻炼,我们不仅加深了对计算机专业知识的理解,还提高了实际操作能力。

其次,我们在实训过程中遇到了一些问题,但通过团队成员的共同努力和老师的指导,我们都得到了很好的解决。

这些问题让我们认识到了学习的重要性,也提醒我们在以后的工作中需要继续努力提高自己。

同时,实训也让我们体会到了团队合作的重要性,只有相互信任、相互协作,才能更好地完成一个项目。

在实训中,我们也深刻感受到了计算机专业的技术更新速度之快。

每一天都有新的知识需要学习,每一个项目都需要我们不断地学习和思考。

只有不断更新知识、积极学习,才能跟上时代的步伐,才能在未来的工作中有更好的表现。

最后,我们对实训过程中的一些问题提出了一些改进意见。

首先,希望能够注重理论与实践的结合,加强实际操作能力的培养;其次,建议增加实际项目的练习机会,提高实际工作能力;再次,希望能够加强团队合作意识和沟通能力的培养。

总之,本次计算机专业实训使我们更加深入地认识到了自己的不足和需要提高的地方,也让我们更加坚定了在计算机专业领域的发展目标。

我们将继续努力学习,不断提升自己,在未来的工作中做出更大的贡献。

此致。

计算机组成原理综合性实验报告

计算机组成原理综合性实验报告

一、实验目的1、掌握微程序控制器的组成原理2、掌握微程序的编制,写入,观察微程序的运行3、掌握时序发生器,rom,寄存器的组成原理二、实验内容3、详细设计首先是微指令的编写,本次实验需要编写三条微指令:BADD,ADD 和STA。

如下表:AD LDR2 R1-X R2-Y + - P NAD 000 0 0 0 0 0 0 0 1 1 0 0 1 0 1 10 000 001 1 1 1 0 1 0 0 0 0 0 0 0 0 0 00 010 010 1 0 1 1 1 0 0 0 0 0 0 0 0 0 01 000 011 1 0 1 1 0 1 0 0 0 0 0 0 0 0 00 000 100 1 1 1 0 1 0 0 0 0 0 0 0 0 0 00 000 101 0 0 0 0 0 0 0 0 0 1 0 0 1 0 00 110 110 0 0 0 0 0 0 1 0 1 0 1 0 0 0 00 000 CPU周期与时序脉冲的分配:每条指令执行一个cpu周期,分为4个时序脉冲。

T(1)时进行取指令。

T(2)时将后继地址存到微地址寄存器中,并将p字段和控制字段存入微命令寄存器。

T(3)时将进行地址逻辑转移,若p字段为00或11则不用改变微地址寄存器中的地址,其他情况则需要通过判断op字段或进位标志c来改变微地址寄存器的值。

T(4)时将该条微命令输出。

4、测试结果以下是仿真波形:1、时序脉冲2、BADD(C=0)3、BADD(C=1)4、ADD5、STA测试结果准确5、实验总结这次实验,难度不在怎么写那些模块上,而是在对整个微程序控制器的运行过程的理解上和时序脉冲的分配上。

在读过书中的相关内容和与同学讨论后,我对这个实验的大概流程有了比较清楚的思路。

于是开始写代码。

这个过程算是很顺利,因为只要用到vhdl的基本语法就可以了。

写完后编译通过,开始仿真,才真正开始出现问题。

首先是清零信号,在一个时序脉冲后清零信号还是有效,无法将控存中的微指令存入寄存器,然后是输出的微命令持续的时间不对,有的持续一个cpu周期,有的持续两个cpu周期,通过增加输出,在仿真波形中查看op,c,地址转移逻辑的输出addr1,微地址寄存器的输出addr2等的波形,发现是时钟信号出现问题:我将时钟设为clk=‘1’了,于是将时钟改为rising_edge(clk)。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告引言计算机组成原理是计算机科学与技术的基础课程之一,通过实验可以更好地理解和掌握计算机的组成和工作原理。

本文将结合实验的过程和结果,详细论述计算机组成原理的一些关键概念和实际应用。

一、实验目的本次实验的目的是通过搭建一个简单的计算机系统,深入了解计算机的各个组成模块,如中央处理器(CPU)、存储器、输入输出设备等,并验证计算机的基本工作原理。

二、实验内容本次实验分为两个部分,第一部分是计算机系统的搭建,包括CPU的设计与实现、存储器的设计与实现等;第二部分是对已搭建的系统进行功能测试,包括寄存器的读写、指令的执行等。

1. CPU的设计与实现CPU是计算机的核心处理单元,它负责执行各种指令,并控制计算机的运行状态。

在本次实验中,我们采用了冯·诺依曼结构的单周期CPU设计,包括指令寄存器、算术逻辑单元、控制单元等组成部分。

通过在实验中的操作和执行,我们深入理解了指令的编码方式、运算的过程等。

2. 存储器的设计与实现存储器是计算机系统中的主要组成部分,用于存放指令和数据。

在本次实验中,我们设计了一个简单的存储器,采用了随机存取存储器(RAM)的结构。

通过实验中的存储器读写操作,我们了解了存储器的寻址方式、数据的存取过程等。

三、实验结果与分析经过实验的搭建和测试,我们成功完成了计算机系统的建设,并验证了其基本功能。

在测试过程中,我们发现了一些问题和改进之处,例如CPU的时钟频率过低导致指令执行速度较慢,存储器的容量不足等。

通过对这些问题的研究和分析,我们能够进一步优化和改进计算机系统的性能。

四、实验心得体会通过本次实验,我进一步加深了对计算机组成原理的理解和掌握。

实验中我不仅学到了理论知识,还通过动手搭建和操作实际的计算机系统,加深了对计算机组成原理的实际应用的理解。

同时,我也意识到计算机的设计和实现是一个综合性强的工程,需要考虑多方面的问题,如硬件的选择与优化、指令的设计与调度等。

《计算机组成原理》实验报告

《计算机组成原理》实验报告

《计算机组成原理》实验报告
一、实验目的
1.搭建并操作一个最基本的模型计算机。

2.建立对计算机组成及其原理的基本认识。

二、实验设备
1.TDN-CM+教学实验系统一套。

2.排线31条:8芯8条,6芯3条,4芯3条,2芯17条。

3.PC 机一台。

三、实验内容
1.一台简单模型计算机的结构
我们将算术逻辑运算器、控制器、寄存器、内部总线等部件搭接起来构
成一个CPU,然后再加上存储器、输入设备、输出设备即构成一台完
整的模型计算机。

其逻辑框图如下。

2.构造一台模型计算机
将组成一台计算机的基本模块组合起来。

在TDN-CM+实验系统中使用
连接导线(排线)将模型计算机的各个部件连接在一起,构成一台完整
的模型计算机。

连线图如下。

四、模型计算机的运行操作
1.打开实验系统的电源开关,点击图标CMP运行软件。

2.联机正常后,可测试连线是否正确。

先选择“【运行】--【通路图】”,再
选“【测试】--【开始】”(否则该菜单呈灰色显示),即弹出“系统测试
对话框”。

计算机组成原理实验报告

计算机组成原理实验报告

一、实验装置组成(一)硬件部分实验装置是为计算机组成原理的工作流程专门设计的。

它能够让学生通过手动和自动的操作弄清和掌握计算机工作的基本原理。

程序实验主要包括:数据传输程序各种运算程序控制转移程序数码转换程序(二)软件部分软件系统由编辑程序、编译程序、程序执行、调式程序几个部分组成,完成由源程序输入、语法分析排错、指令汇编、应用程序调试的全过程。

二、软件使用说明(一)界面说明软件系统采用集成化的窗口,各种软件功能分类设置在程序中,软件系统的主窗口界面如上图所示,现将界面各组成部位说明如下:1 ——寄存器在程序执行过程中,观察各寄存器的值2 ——存储器在程序执行过程中,观察各存储器的值3 ——信息显示当前指令对应的微程序4 ——编辑源程序从汇编状态或运行状态返回到编辑源程序状态5 ——汇编对编辑好的源程序进行汇编连接6 ——程序复位让程序指针指向程序的第一条指令7 ——运行运行已通过汇编连接的程序8 ——停止停止程序的运行9 ——单步单步运行程序(逐条指令执行)10 ——单拍单拍运行程序(逐条微指令执行)11 ——设置/取消断点设置/取消断点,调试程序时用12 ——连接/断开串行口连接/断开串行口,连通/断开程序和模型机通信13 ——源程序编辑区在该区域内编辑源程序14 ——寄存器/存储器显示区显示各寄存器/存储器的值15 ——微程序显示区显示当前指令对应的微程序(二)编辑程序编辑源程序采用文本的编辑方式,按照给定的模型机指令系统,用汇编语言格式编(三)汇编程序汇编程序先对源程序进行语法检查,排除源程序中的语法错误,再将源程序编译为机器码,在调试的窗口中显示指令行、机器码、助记符等信息。

(四)运行方式程序的运行有单拍、单步和连续执行三种方式。

单拍方式是逐条执行微程序中的微指令,屏幕显示信息(微指令、积存器和存储器状态)与实验板显示信息(微指令对应的数据流向以及相应的控制信号)互相配合,可以将单拍微指令执行的结果从不同角度显示出来,以便观察。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告
实验目的:
本实验的目的是通过进行计算机组成原理实验,深入理解计算机的基本组成和工作原理,掌握计算机硬件与软件之间的协同工作方式。

实验设备:
1. 计算机主机
2. 键盘
3. 鼠标
4. 显示器
实验步骤:
1. 打开计算机主机,并接通电源。

2. 等待计算机启动完毕,进入操作系统界面。

3. 输入用户名和密码,登录系统。

4. 在桌面上打开文本编辑器,并新建一个文档。

5. 在文档中输入一段文字,并保存文件。

6. 打开浏览器,进入互联网页面。

7. 在浏览器中输入搜索词语,并点击搜索按钮。

8. 查看搜索结果,并点击其中一个链接。

9. 在打开的页面上点击按钮或链接,进行相应操作。

10. 关闭浏览器。

11. 关闭文本编辑器,保存文档。

12. 关闭计算机主机。

实验结果:
通过完成以上步骤,我们成功地进行了计算机组成原理实验。

在电脑启动后,我们登录系统并使用了各种软件和外部设备。

计算机可以顺利地接收我们的指令,并作出相应的操作。

我们也能够通过互联网浏览页面,并进行搜索和点击链接操作。

实验总结:
通过本次实验,我们更加深入地理解了计算机的组成和工作原理。

计算机是由硬件和软件组成,硬件包括主机、键盘、鼠标、显示器等,软件包括操作系统、文本编辑器、浏览器等。

计算机的各个组件通过协同工作,实现了我们对计算和信息的处理。

掌握计算机组成原理对于我们更好地使用计算机和理解计算机科学的发展趋势具有重要意义。

CPU计算机组成原理实验报告

CPU计算机组成原理实验报告

CPU计算机组成原理实验报告实验名称:CPU计算机组成原理实验一、实验目的:1.了解计算机硬件的基本组成原理,特别是CPU的工作原理;2.掌握计算机的组装和调试技能;3.熟悉计算机操作系统的安装和配置方法;4.学习使用计算机进行基本的应用程序开发。

二、实验设备和材料:1.CPU主机:包括主板、CPU、内存、硬盘等;2.显示设备:显示器、键盘、鼠标等;3.软件:操作系统、开发工具等。

三、实验步骤:1.将主板、CPU、内存、硬盘等硬件组件组装到主机箱中,连接电源、显示器、键盘、鼠标等外设;2.打开电源,按照BIOS界面提示进行主板和硬件设置;3.插入操作系统安装光盘,根据安装界面提示进行操作系统的安装;4.安装完成后,进入操作系统,根据提示进行相应驱动程序的安装和配置;5.打开开发工具,进行编程实践。

四、实验结果与分析:通过以上步骤,成功组装了一台计算机并安装了操作系统。

在操作系统中,能够正常运行各种应用程序,并且能够进行编程开发。

通过实验,可以清楚地了解到计算机硬件的组成原理,特别是CPU的工作原理。

CPU 作为计算机的核心部件,负责指令的执行和数据的处理。

通过对CPU的组装和调试,可以更深入地了解其工作原理和操作方法。

五、实验心得与体会:通过实验,我对计算机硬件的组装和设置有了更深入的理解。

计算机硬件的组成非常复杂,需要我们仔细阅读说明书,按照步骤进行操作。

在实验过程中,我们学会了解决一些常见的硬件问题,如硬件不兼容、连接错误等。

此外,操作系统的安装和配置也是非常重要的一步,只有正确地安装和配置操作系统,才能保证计算机的正常运行。

通过这个实验,我不仅学到了理论知识,还锻炼了实际操作的能力。

计算机的组装和调试需要我们仔细、耐心地进行,一丝不苟地对待每一步操作。

只有掌握了计算机组成原理,才能更好地理解和应用计算机技术。

通过实验,我深刻地认识到计算机是一台高度复杂的机器,它可以帮助我们解决各种问题,提高工作效率。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告班级: s 学号:姓名:地点:时间:计算机组成原理实验报告一、实验目的1.深入理解基本模型计算机的功能、组成知识;2.深入学习计算机各类典型指令的执行流程;3.学习微程序控制器的设计过程和相关技术,掌握LPM_ROM的配置方法。

4.在掌握部件单元电路实验的基础上,进一步将单元电路组成系统,构造一台基本模型计算机。

5.定义五条机器指令,并编写相应的微程序,上机调试,掌握计算机整机概念。

掌握微程序的设计方法,学会编写二进制微指令代码表。

6.通过熟悉较完整的计算机的设计,全面了解并掌握微程序控制方式计算机的设计方法。

二、实验原理1.在部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本实验将能在微过程控制下自动产生各部件单元控制信号,实现特定的功能。

实验中,计算机数据通路的控制将由微过程控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期,全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。

2.指令格式(1)指令格式采用寄存器直接寻址方式,其格式如下:其中IN为单字长(8位二进制),其余为双字长指令,XX H 为addr对应的十六进制地址码。

为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序。

1,存储器读操作(KRD ):下载实验程序后按总清除按键(CLR )后,控制台SWA 、SWB 为“0 0”时,可对RAM 连续手动读入操作。

2,存储器写操作(KWE ):下载实验程序后按总清除按键(CLR )后,控制台SW A 、SWB 为“0 1”时,可对RAM 连续手动写操作。

3、启动程序(RP ):下载实验程序后按总清除按键(CLR )后,控制台SW A 、SWB 为“1 1”时,即可转入到微地址“01”号“取指令”微指令,启动程序运行。

根据以上要求设计数据通路框图,如图5-1所示。

表6-1 24位微代码定义:242322212019 18 17 16 15 14 1312 11 10 987 6 5 4 3 2 1 S3 S2 S1 S0 MCnWEA9A8ABCuA5uA4uA3uA2uA1uA0表6-2 A 、B 、C 各字段功能说明:A 字段 B 字段 C 字段 15 14 13 选择 1211 10 选择 9 8 7 选择 0 0 0 0 0 0 0 0 0 0 0 1 LDRi 0 0 1 RS-B 0 0 1 P (1) 0 1 0 LDDR1 0 1 0 0 1 0 0 1 1 LDDR2 0 1 1 0 1 11 0 0 LDIR 1 0 01 0 0 P (4) 1 0 1 LOAD 1 0 1 ALU-B 1 0 1 LDAR 11 0 LDAR110 PC-B110 LDPC24(1) uA5—uA0:微程序控制器的微地址输出信号,是下一条要执行的微指令的微地址。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告实验名称:计算机组成原理实验报告摘要:本实验旨在通过对计算机组成原理的实际操作,加深对计算机硬件组成和工作原理的理解。

通过实验,我们深入学习了计算机的基本组成部分,包括中央处理器(CPU)、存储器(内存和外存)、输入输出设备等,并通过实际操作和数据收集,探究了这些组成部分的工作原理和性能评估。

1. 引言计算机组成原理是计算机科学与技术专业中的一门重要课程,它涉及到计算机硬件的基本组成和工作原理。

通过实验,我们可以更深入地了解计算机的内部结构和工作原理,加深对计算机组成原理的理解。

2. 实验目的本实验的目的是通过实际操作,加深对计算机组成原理的理解,具体目标包括:- 理解计算机的基本组成部分,包括中央处理器(CPU)、存储器(内存和外存)、输入输出设备等;- 掌握计算机组成部分的工作原理,包括指令执行过程、数据传输过程等;- 学习使用性能评估工具,对计算机组成部分进行性能评估;- 分析实验结果,总结实验中的问题和经验。

3. 实验设备和材料- 计算机硬件:包括主机、显示器、键盘、鼠标等;- 实验软件:计算机组成原理实验软件;- 实验材料:实验指导书、实验报告模板等。

4. 实验方法4.1 实验步骤本实验分为以下几个步骤:1) 打开计算机并登录操作系统;2) 启动计算机组成原理实验软件;3) 根据实验指导书的要求,完成实验任务;4) 记录实验过程中的关键数据和观察结果;5) 关闭计算机组成原理实验软件;6) 关机并退出操作系统。

4.2 实验内容本实验包括以下几个内容:1) CPU性能评估:通过实验软件模拟CPU的运行过程,使用性能评估工具记录CPU的运行时间、指令执行速度等关键数据,并进行分析和比较。

2) 存储器性能评估:通过实验软件模拟存储器的读写过程,使用性能评估工具记录存储器的读写速度、延迟等关键数据,并进行分析和比较。

3) 输入输出设备性能评估:通过实验软件模拟输入输出设备的工作过程,使用性能评估工具记录输入输出设备的响应时间、传输速度等关键数据,并进行分析和比较。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告计算机组成原理实验报告引言:计算机组成原理是计算机科学与技术专业的重要课程之一,通过实验可以更好地理解和掌握计算机的组成原理。

本篇实验报告将介绍我们在计算机组成原理实验中所进行的实验内容和实验结果。

实验一:逻辑门电路设计在这个实验中,我们学习了逻辑门电路的设计和实现。

通过使用门电路,我们可以实现与门、或门、非门等基本逻辑运算。

我们首先学习了逻辑门电路的真值表和逻辑代数的基本运算规则,然后根据实验要求,使用逻辑门电路设计了一个简单的加法器电路,并通过仿真软件进行了验证。

实验结果表明,我们设计的加法器电路能够正确地进行二进制数的加法运算。

实验二:数字逻辑电路实现在这个实验中,我们进一步学习了数字逻辑电路的实现。

通过使用多路选择器、触发器等数字逻辑元件,我们可以实现更复杂的逻辑功能。

我们首先学习了多路选择器的原理和使用方法,然后根据实验要求,设计了一个4位二进制加法器电路,并通过数字逻辑实验板进行了搭建和测试。

实验结果表明,我们设计的4位二进制加法器能够正确地进行二进制数的加法运算。

实验三:存储器设计与实现在这个实验中,我们学习了存储器的设计和实现。

存储器是计算机中用于存储和读取数据的重要组成部分。

我们首先学习了存储器的基本原理和组成结构,然后根据实验要求,设计了一个简单的8位存储器电路,并通过实验板进行了搭建和测试。

实验结果表明,我们设计的8位存储器能够正确地存储和读取数据。

实验四:计算机硬件系统设计与实现在这个实验中,我们学习了计算机硬件系统的设计和实现。

计算机硬件系统是计算机的核心部分,包括中央处理器、存储器、输入输出设备等。

我们首先学习了计算机硬件系统的基本原理和组成结构,然后根据实验要求,设计了一个简单的计算机硬件系统,并通过实验板进行了搭建和测试。

实验结果表明,我们设计的计算机硬件系统能够正确地进行指令的执行和数据的处理。

结论:通过这些实验,我们深入学习了计算机组成原理的相关知识,并通过实践掌握了计算机组成原理的基本原理和实现方法。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告实验目的:本次实验旨在通过构建一个简单的计算机系统,了解和掌握计算机组成原理的基本知识和相关操作技能。

实验仪器和材料:1.计算机硬件:CPU、内存、硬盘、主板等。

2. 操作系统:Windows。

3. 实验软件:C++ 编程语言、IDE(如Visual Studio)。

4.实验文档:笔记本电脑。

实验原理:1.CPU:中央处理器,是计算机系统的核心组成部分,负责所有数据的处理和执行。

2.内存:主要用于存储计算机程序和数据,是计算机系统的临时存储器。

3.硬盘:主要用于长期存储计算机程序、数据和操作系统等。

4.主板:是计算机系统的主要组成部分,承载了CPU、内存、硬盘等主要硬件,并提供各种接口和插槽。

5.操作系统:是计算机系统的核心软件,负责管理和协调各种硬件和软件资源,为用户提供友好的界面和功能。

实验步骤:1.准备实验材料和工具,搭建计算机系统。

将CPU、内存、硬盘等硬件安装到主板上,连接好相应的电源线和数据线,确保硬件正常工作。

2. 启动计算机,在操作系统中打开C++编程语言的IDE(如Visual Studio)。

3. 编写一个简单的程序,例如输出"Hello, world!"。

4.进行编译和链接,生成可执行文件。

5.运行程序,观察计算机系统的运行情况。

6.分析程序的运行结果,查看计算机系统的资源占用情况。

7.修改程序,并再次进行编译、链接和运行,观察结果。

实验结果和分析:通过以上实验步骤,我们成功搭建了一个计算机系统,并在操作系统中编写、编译和运行了一个简单的程序。

从实验结果可以看出,计算机系统能够正常工作,在屏幕上正确地输出了"Hello, world!"。

根据程序的运行情况,我们可以观察到计算机系统的CPU占用率、内存占用率和硬盘读写速度等性能指标。

在修改程序并重新运行后,我们可以观察到不同的运行结果,进一步分析计算机系统的性能和资源占用情况。

计算机组成原理的实验报告

计算机组成原理的实验报告

计算机组成原理的实验报告一、实验目的本次实验的主要目的是深入理解计算机组成原理中的关键概念和组件,通过实际操作和观察,增强对计算机硬件系统的认识和掌握能力。

具体包括:1、了解计算机内部各部件的工作原理和相互关系。

2、熟悉计算机指令的执行流程和数据的传输方式。

3、掌握计算机存储系统的组织和管理方法。

4、培养分析和解决计算机硬件相关问题的能力。

二、实验设备本次实验使用的设备包括计算机、逻辑分析仪、示波器以及相关的实验软件和工具。

三、实验内容1、运算器实验进行了简单的算术运算和逻辑运算,如加法、减法、与、或等操作。

观察运算结果在寄存器中的存储和变化情况。

2、控制器实验模拟了指令的取指、译码和执行过程。

分析不同指令对计算机状态的影响。

3、存储系统实验研究了内存的读写操作和地址映射方式。

考察了缓存的工作原理和命中率的计算。

4、总线实验观察数据在总线上的传输过程和时序。

分析总线竞争和仲裁的机制。

四、实验步骤1、运算器实验步骤连接实验设备,将运算器模块与计算机主机相连。

打开实验软件,设置运算类型和操作数。

启动运算,通过逻辑分析仪观察运算过程中的信号变化。

记录运算结果,并与预期结果进行比较。

2、控制器实验步骤连接控制器模块到计算机。

输入指令序列,使用示波器监测控制信号的产生和变化。

分析指令执行过程中各个阶段的状态转换。

3、存储系统实验步骤搭建存储系统实验电路。

进行内存读写操作,改变地址和数据,观察存储单元的内容变化。

分析缓存的替换策略和命中率的影响因素。

4、总线实验步骤连接总线模块,配置总线参数。

多个设备同时发送数据,观察总线的仲裁过程。

测量数据传输的时序和带宽。

五、实验结果与分析1、运算器实验结果加法、减法等运算结果准确,符合预期。

逻辑运算的结果也正确无误。

观察到在运算过程中,寄存器的值按照预定的规则进行更新。

分析:运算器的功能正常,能够准确执行各种运算操作,其内部的电路和逻辑设计合理。

2、控制器实验结果指令能够正确取指、译码和执行,控制信号的产生和时序符合指令的要求。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告一、实验目的通过本次实验,我们旨在深入了解计算机组成原理的相关知识,并通过实际操作,加深对计算机组成原理的理解。

具体目的如下:1.了解计算机的基本组成部件,包括CPU、内存、输入/输出设备等;2.学习计算机的基本工作原理,包括数据的输入、存储、处理和输出;3.熟悉计算机指令的执行过程,包括指令的取址、译码和执行;4.通过实验,巩固对计算机硬件及其工作方式的理解。

二、实验内容本次实验主要包括以下几个部分的内容:1.CPU的组成和工作原理2.存储器的组成和工作原理3.输入/输出设备的组成和工作原理4.计算机指令的执行过程三、实验装置和材料1.计算机主机2.显示器3.键盘4.鼠标5.实验板6.逻辑门集成电路7.示波器8.万用表四、实验步骤1.将计算机主机、显示器、键盘和鼠标连接好,并确保正常运行;2.连接实验板和逻辑门集成电路,搭建一个简单的逻辑电路;3.使用示波器和万用表测量逻辑电路的信号波形和电压;4.编写一个简单的汇编程序,包括输入、存储、处理和输出过程;5.使用计算机主机执行编写的汇编程序,并观察程序的执行过程。

五、实验结果与分析在本次实验中,我们成功地搭建了一个简单的逻辑电路,并使用示波器和万用表对其进行了测量。

通过测量,我们发现信号的电压和波形符合预期。

这说明逻辑电路的组成是正确的,能够正常工作。

在编写的汇编程序的执行过程中,我们观察到输入的数据被存储到内存中,并经过CPU的处理后,最终输出到显示器上。

这验证了计算机的基本工作原理,即数据的输入、存储、处理和输出。

六、实验总结通过本次实验,我们深入了解了计算机组成原理的相关知识,对计算机的基本组成部件、工作原理和指令执行过程有了更深入的理解。

通过实际操作,我们学会了如何搭建一个简单的逻辑电路,并对其进行测量和观察。

总体而言,本次实验对于我们进一步学习和掌握计算机组成原理非常有帮助。

通过实际操作和实验结果的观察,我们对计算机的工作方式有了更加清晰的认识。

计算机组成原理 实验报告

计算机组成原理 实验报告
1算术逻辑运算单元ALU(Arithmetic and Logic Unit)
ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。在某些CPU中还有专门用于处理移位操作的移位器。
通常ALU由两个输入端和一个输出端。整数单元有时也称为IEU(Integer Execution Unit)。我们通常所说的“CPU是XX位的”就是指ALU所能处理的数据的位数。
置S3、S2、S1、S0和Cn的数值,并观察数据总线LED显示灯显示的结果。如置S3、S2、S1、
S0为0010加法运算。
如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明
请看附录一),方法是:打开软件,选择联机软件的“【实验】—【运算器实验】”,打开运算器
实验的数据通路图,如图1-1-6所示。进行上面的手动操作,每按动一次ST按钮,数据通路图
会有数据的流动,反映当前运算器所做的操作,或在软件中选择“【调试】—【单节拍】”,其作
用相当于将时序单元的状态开关KK2置为‘单拍’档后按动了一次ST按钮,数据通路图也会反
映当前运算器所做的操作。
重复上述操作,并完成表1-1-2。然后改变A、B的值,验证FC、FZ的锁存功能。
计算机组成原理实验报告
实验一 基本运算器实验
一、
1.了解运算器的组成结构
2.掌握运算器的工作原理
3.深刻理解运算器的控制信号
二、
PC机一台、TD-CMA实验系统一套
三、实验原理
1.(思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。

计算机组成原理实验报告

计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。

2.了解通用寄存器的构成和运用。

二、实验要求掌握通用寄存器R3~R0的读写操作。

三、实验原理实验中所用的通用寄存器数据通路如下图所示。

由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。

图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。

RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。

DRCK信号为寄存器组打入脉冲,上升沿有效。

准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。

图2-3-3 通用寄存器数据通路四、实验内容1.实验连线2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表。

通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表。

通用寄存器“手动/搭接”源编码④通用寄存器的读出五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。

实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能。

二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。

三、实验原理实验中所用的运算器数据通路如图2-3-1所示。

ALU运算器由CPLD描述。

运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。

计算机组成原理实验报告_2

计算机组成原理实验报告_2

计算机组成原理实验报告——微程序控制器实验1.一. 实验目的:2.能看懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及执行流程。

并可以自己设计几条指令, 并理解其功能, 格式及执行流程, 在教学计算机上实现。

3.深入理解计算机微程序控制器的功能与组成原理4.深入学习计算机各类典型指令的执行流程5.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念6.学习微程序控制器的设计过程和相关技术二. 实验原理:微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三大部分组成。

其工作原理分为:1.将程序和数据通过输入设备送入存储器;2.启动运行后从存储器中取出程序指令送到控制器去识别, 分析该指令要求什么事;3.控制器根据指令的含义发出相应的命令(如加法、减法), 将存储单元中存放的操作数据取出送往运算器进行运算, 再把运算结果送回存储器指定的单元中;4、运算任务完成后, 就可以根据指令将结果通过输出设备输出三. 微指令格式:1)微地址形成逻辑TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址.下地址的形成由下地址字段及控制字段中的CI3—SCC控制.当为顺序执行时,下地址字段不起作用.下地址为当前微指令地址加1;当为转移指令(CI3—0=0011)时,由控制信号SCC提供转移条件,由下地址字段提供转移地址.2)控制字段控制字段用以向各部件发送控制信号,使各部件能协调工作。

控制字段中各控制信号有如下几类:①对运算器部件为了完成数据运算和传送功能, 微指令向其提供了24位的控制信号, 包括:4位的A、B口地址, 用于选择读写的通用积存器3组3位的控制码I8-I6、I5-I3、I2-I6, 用于选择结果处置方案、运算功能、数据来源。

3组共7位控制信号控制配合的两片GAL20V83位SST, 用于控制记忆的状态标志位2位SCI, 用于控制产生运算器低位的进位输入信号2位SSH, 用于控制产生运算器最高, 最地位(和积存器)移位输入信号②对内存储器I/O和接口部件, 控制器主要向它们提供读写操作用到的全部控制信号, 共3位, 即MRW③对CPU内部总线数据来源的控制, 主要通过3位编码标记为DCD, 来选择把哪一组数据发送到内部总线(IB)上。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告班级:学号:姓名:地点:时间:实验一存储器实验一.实验目的1、掌握FPGA中lpm_ROM的设置,作为只读存储器ROM的工作特性和配置方法。

2、用文本编辑器编辑mif文件配置ROM,学习将程序代码以mif格式文件加载于lpm_ROM中;3、在初始化存储器编辑窗口编辑mif文件配置ROM;4、验证FPGA中mega_lpm_ROM的功能。

二实验原理AL TERA的FPGA中有许多可调用的LPM (Library Parameterized Modules)参数化的模块库,可构成如lpm_rom、lpm_ram_io、lpm_fifo、lpm_ram_dq的存储器结构。

CPU中的重要部件,如RAM、ROM可直接调用他们构成,因此在FPGA中利用嵌入式阵列块EAB可以构成各种结构的存储器,lpm_ROM是其中的一种。

lpm_ROM有5组信号:地址信号address[ ]、数据信号q[ ]、时钟信号inclock、outclock、允许信号memenable,其参数都是可以设定的。

由于ROM是只读存储器,所以它的数据口是单向的输出端口,ROM中的数据是在对FPGA现场配置时,通过配置文件一起写入存储单元的。

图3-1-1中的lpm_ROM有3组信号:inclk——输入时钟脉冲;q[23..0]——lpm_ROM的24位数据输出端;a[5..0]——lpm_ROM的6位读出地址。

实验中主要应掌握以下三方面的内容:(1)lpm_ROM的参数设置;(2)lpm_ROM中数据的写入,即LPM_FILE初始化文件的编写;(3)lpm_ROM的实际应用,在GW48_CP+实验台上的调试方法。

三实验内容(1)用图形编辑,进入mega_lpm元件库,调用lpm_rom元件,设置地址总线宽度address[]和数据总线宽度q[],分别为6位和24位,并添加输入输出引脚,如图3-1-1设置和连接。

(2)设置图3-1-1为工程。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理实验报告YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】计算机组成原理实验报告班级: s 学号:姓名:地点:时间:计算机组成原理实验报告一、实验目的1.深入理解基本模型计算机的功能、组成知识;2.深入学习计算机各类典型指令的执行流程;3.学习微程序控制器的设计过程和相关技术,掌握LPM_ROM的配置方法。

4.在掌握部件单元电路实验的基础上,进一步将单元电路组成系统,构造一台基本模型计算机。

5.定义五条机器指令,并编写相应的微程序,上机调试,掌握计算机整机概念。

掌握微程序的设计方法,学会编写二进制微指令代码表。

6.通过熟悉较完整的计算机的设计,全面了解并掌握微程序控制方式计算机的设计方法。

二、实验原理1.在部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本实验将能在微过程控制下自动产生各部件单元控制信号,实现特定的功能。

实验中,计算机数据通路的控制将由微过程控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期,全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。

2.指令格式(1)指令格式采用寄存器直接寻址方式,其格式如下:位 765 4 3 2 10功能OP-CODE rs rd其中,OP-CODE为操作码,rs为源寄存器,rd为目的寄存器,并规定:Rs或rd 选定的寄存器0001 10 R0 R1 R2助记符机器指令码Addr地址码功能说明IN ADD addr STA addr OUT addr JMP addr0 0H1 0H XX H2 0H XX H3 0H XX H4 0H XX H“INPUT”中的数据→R0R0+[addr] ->R0R0 -> [addr][addr] -> BUSaddr →PC其中IN为单字长(8位二进制),其余为双字长指令,XX H 为addr对应的十六进制地址码。

为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序。

1,存储器读操作(KRD):下载实验程序后按总清除按键(CLR)后,控制台SWA、SWB为“0 0”时,可对RAM连续手动读入操作。

2,存储器写操作(KWE):下载实验程序后按总清除按键(CLR)后,控制台SWA、SWB为“0 1”时,可对RAM连续手动写操作。

图6-1 数据通路框图3、启动程序(RP ):下载实验程序后按总清除按键(CLR )后,控制台SWA 、SWB 为“1 1”时,即可转入到微地址“01”号“取指令”微指令,启动程序运行。

根据以上要求设计数据通路框图,如图5-1所示。

表6-1 24位微代码定义:表6-2 A 、B 、C 各字段功能说明:24位微代码中各信号的功能(1) uA5—uA0:微程序控制器的微地址输出信号,是下一条要执行的微指令的微地址。

(2) S3、S2、Sl 、S0:由微程序控制器输出的ALU 操作选择信号,以控制执行16种算术操作或16种逻辑操作中的某一种操作。

(3) M :微程序控制输出的ALU 操作方式选择信号端。

M =0执行算术操作;M =l 执行逻辑操作。

(4) Cn :微程序控制器输出的进位标志信号,Cn =0表示ALU 运算时最低位有进位,Cn =1则表示无进位。

(5)WE :微程序控制器输出的RAM 控制信号。

当/CE =0时,如WE =0为存储器读;如WE =1为存储器写。

(6) A9、A8——译码后产生CS0、CS1、CS2信号,分别作为SW_B、RAM、LED的选通控制信号。

(7) A字段(15、14、13)——译码后产生与总线相连接的各单元的输入选通信号(见表6-1)。

(8) B字段(12、11、10)——译码后产生与总线相连接的各单元的输出选通信号。

(9) C字段(9、8、7)——译码后产生分支判断测试信号P(1)~P(4)和LDPC信号。

系统涉及到的微程序流程见图6-2。

当执行“取指令”微指令时,该微指令的判断测试字段为P(1)测试。

由于“取指令”微指令是所有微程序都使用的公用微指令,因此P(1)的测试结果出现多路分支(见图6-2左图)。

用指令寄存器的高4位(IR7-IR4)作为测试条件,出现5路分支,占用5个固定地址单元。

控制台操作为P(4)测试(见图6-2右图),它以控制台信号SWB、SWA 作为测试条件,出现了3路分支,占用3个固定微地址单元。

当分支微地址单元固定后,剩下的其它地方就可以一条微指令占用控制存储器的一个微地址单元,随意填写。

注意:微程序流程图上的微地址为8进制!当全部微程序设计完毕后,应将每条微指令代码化,表6-2即为图6-2的微程序流程图按微指令格式转化而成的“二进制微代码表”。

表6-2 二进制微代码表指令寄存器(IR):指令寄存器用来保存当前正在执行的一条指令。

当执行一条指令时,先把它从内存取到缓冲寄存器中,然后再传送至指令寄存器。

指令划分为操作码和地址码段,由二进制数构成,为了执行任何给定的指令,必须对操作码进行测试“P(1)”,通过节拍脉冲T4的控制,以便识别所要求的操作。

指令译码器: 根据指令中的操作码强置微控制器单元的微地址,使下一条微指令指向相应的微程序首地址。

三、实验步骤执行程序:(1)按1次系统复位键8,并置键8为高电平,使CPU 允许正常工作;PC>AR PC+1 01 01ED82RAM>BUS BUS->IR00C048 02 P(1)IN SW->R0 10001001(DR1)-(DR2)->R001 PC->AR PC+11101ED8303 00B005 RAM->BUS BUS->DR2 R0->DR1 04 05 619A010601PC->AR PC+1(DR1)+1->R0 12 SUN INC 01DEC PC->AR PC+113(DR1)-1->R0 01PC->AR PC+114RAM->BUSBUS->DR2 R0->DR1 (DR1与(DR2)->R0AND OR 15PC->AR PC+116DR1的非->R0 01010101ED87 059A01 07 27 01ED98F59A0130 01ED9APC->AR PC+1RAM->BUSBUS->DR2 R0->DR1(DR1)或(DR2)->R03132 00B01C 01A21D B99A0101ED9E00B020 33 34 01A221 E99A013536 37 40 4101A206 RAM->BUSBUS->AR 00E004R0->DR101A217 R0->DR1 01A129 RAM->BUS BUS->AR 00E01B RAM->BUS BUS->AR 42 00E01F R0->DR1 43NOT 099A0101ED9E01A223(2)控制开关(键4、键3)设置为SWB、SWA=1,1,处于程序执行方式,控制台:RP(11);(3)通过键2、键1输入运算数据,如56H,按4次单步键7,产生2个脉冲,执行2条微指令,进入到图6-1控制台的RP(11),此时的微指令地址是“23”,微指令码MC=008001;IN=56H(4)再用键7产生1个脉冲,执行1条微指令,微程序流程进入图6-2左的“运行微程序”的最上块:此时PC=00送地址寄存器AR=00,PC自动加1,PC=01,MC=00ED82,IN=56;1.实验中遇到的主要问题和分析解决问题的思路自己动手才能发现问题,从而解决问题,实验的初期大家都是在认真阅读与理解实验文档,从而了解基本模型计算机的功能、组成知识,理解微指令的设计过程与方法,从而深入学习计算机各类典型指令的执行流程。

在学习微程序控制器的设计过程和相关技术,同时掌握了LPM_ROM的配置方法,在掌握部件单元电路实验的基础上,进一步将单元电路组成系统,构造一台基本模型计算机。

通过定义五条机器指令,并编写相应的微程序,上机调试,从而掌握了计算机整机概念。

掌握微程序的设计方法,学会编写二进制微指令代码表,通过熟悉较完整的计算机的设计,全面了解并掌握微程序控制方式计算机的设计方法。

在此次试验过程中,我们出现更改而忘记更改中的数据,导致程序运行错误,后经过认真检查才发现问题所在。

通过动手实验,自己之前很多不懂的东西都弄懂了。

2.通过实验,自己的学习经验和切身体会,以及对教学实验的意见和建议。

通过这次模型机设计的实验,自己了解到了微指令与微程序,了解到微程序和微指令的区别,已经程序流程。

通过这次实验自己了解到中存的是微程序入口地址,通过入口找到了在的微指令,根据微指令来执行具体的微程序操作。

通过这次实验,我对于课本上的知识点有了更深刻的认识。

相关文档
最新文档