交换机原理与应用

合集下载

交换机及路由器的原理与作用

交换机及路由器的原理与作用

交换机及路由器的原理与作用交换机及路由器的原理与作用介绍:本文档将详细介绍交换机和路由器的原理和作用。

交换机和路由器是网络中常见的设备,用于实现数据传输和网络连接。

以下将分别阐述交换机和路由器的原理和作用。

一、交换机1.1 原理交换机是一种网络设备,用于将接收到的数据包按照目的地址转发到相应的端口。

其原理主要包括以下几个方面:- MAC地址学习:交换机通过监听传入数据包的源MAC地址,将其与传入端口关联起来,形成MAC地址表。

- 存储和转发:交换机接收到数据包后,会将其存储并进行目的MAC地址的查找,然后将数据包转发到相应的端口。

1.2 作用交换机在网络中起到了连接设备和实现数据传输的作用。

其主要作用包括:- 实现局域网之间的数据交换:交换机可以将数据包从一个局域网转发到另一个局域网,实现不同网络之间的数据交换。

- 提供高速数据传输:由于交换机具有存储和转发的能力,可以实现高速的数据传输,提高网络的传输效率。

- 支持虚拟局域网(VLAN):交换机支持将多个局域网通过VLAN技术进行划分,实现不同子网之间的互通和隔离。

二、路由器2.1 原理路由器是一种网络设备,用于将数据包从源地址转发到目的地址。

其原理主要包括以下几个方面:- IP地址转发:路由器使用路由表来确定数据包的下一跳路径,并将数据包转发到相应的下一跳地址。

- 路由选择协议:路由器使用路由选择协议来确定最优的路径,以实现数据的快速和有效的传输。

2.2 作用路由器在网络中起到了连接不同网络和实现数据传输的作用。

其主要作用包括:- 实现互联网的连接:路由器将数据包从一个网络转发到另一个网络,实现互联网的连接和数据传输。

- 网络分割与隔离:通过路由器的路由表配置,可以将整个网络分割成多个逻辑上独立的子网,实现网络资源的隔离和管理。

- 提供安全防护:路由器支持网络地址转换(NAT)和防火墙等功能,能够提供网络安全防护。

附件:本文档无附件。

法律名词及注释:无。

交换机工作原理

交换机工作原理

交换机工作原理交换机是计算机网络中一个重要的组成部分,它能够实现对局域网内的数据处理和转发,使得网络传输更加高效和稳定。

本文将详细介绍交换机的工作原理。

一、交换机概述交换机是一种连接两个或多个数据链路的网络设备,可以让信息在局域网中被准确地传送到目标地址。

它有很多种类,包括无线交换机、路由交换机等。

它的主要作用是将数据流转发到目标地址,从而实现数据在网络中的传输。

交换机的工作原理主要分为两种方式:包交换和电路交换。

包交换使用缓存区来暂存数据包,然后再根据数据包的地址进行转发。

电路交换则直接将数据流接通到目标地址,是一种点对点的传输方式。

由于包交换可以实现多对多的连接,所以在网络中得到了广泛应用。

二、交换机的数据转发对于交换机来说,它需要进行三项工作:学习、转发和过滤。

学习是指交换机需要记录每个源地址的进入端口,转发是指将数据转发到目标地址,过滤是指交换机需要过滤掉无效数据包。

当一台设备向交换机发送数据包时,交换机需要先学习该源地址。

在交换机中设置了一个转发表,用于存储各个设备的MAC 地址,同时记录该MAC 地址对应的进入端口。

当一个数据包到达交换机时,交换机会查找该MAC 地址对应的出口端口,并向这个出口端口发送数据包。

如果交换机没有记录到源地址,它会将数据包广播出去,通过广播的方式通知其他设备信息。

当其他设备接收到该数据包时,会将源地址和端口信息发回给交换机,使得交换机可以学习新的设备。

三、交换机的广播与转发交换机的广播是指当交换机收到一个数据包时,如果该数据包的目标地址是广播地址或未知地址时,交换机会将该数据包转发到所有设备。

由于广播地址不唯一,所以这种方式不太适合大规模的网络。

交换机的转发是指当交换机收到一个数据包时,如果该数据包的目标地址已经在交换机的转发表中被记录,那么它会将数据包直接转发给目标设备。

如果该数据包的目标地址没有被记录,那么交换机会将数据包广播到所有端口,以便建立新的转发表。

交换机和路由器工作原理

交换机和路由器工作原理

交换机和路由器工作原理交换机和路由器是计算机网络中常用的两种设备,它们在网络通信中起着重要作用。

本文将分别介绍交换机和路由器的工作原理。

一、交换机的工作原理交换机是一种用于局域网的设备,它通过MAC地址进行数据包的转发。

当一台计算机发送数据包时,交换机会根据数据包中的目标MAC地址,将数据包转发到目标MAC地址所对应的端口上。

交换机在转发数据包时,会记录下源MAC地址与对应的端口,以便下次转发时能够快速找到目标端口。

交换机的工作原理可以分为两个阶段:学习阶段和转发阶段。

1. 学习阶段:当交换机收到一个数据包时,它会提取出数据包中的源MAC地址,并将该地址与接收到数据包的端口绑定起来。

如果交换机之前没有接收过该源MAC地址,则会将该地址与接收到数据包的端口绑定起来。

通过这种方式,交换机逐渐学习到网络中各个设备的MAC地址与端口的对应关系。

2. 转发阶段:当交换机收到一个数据包时,它会查找数据包中的目标MAC地址所对应的端口,并将数据包转发到该端口上。

如果交换机之前没有接收到过目标MAC地址,则会将数据包广播到所有端口上。

当目标设备回复数据包时,交换机会将源MAC地址与对应端口的绑定关系更新。

这样,交换机在转发数据包时就能够根据学习到的MAC地址与端口的对应关系,快速找到目标端口,实现数据包的高效转发。

二、路由器的工作原理路由器是一种用于连接不同网络的设备,它通过IP地址进行数据包的转发。

当一台计算机发送数据包时,路由器会根据数据包中的目标IP地址,将数据包转发到目标IP地址所在的网络。

路由器的工作原理可以分为三个阶段:接收阶段、转发阶段和发送阶段。

1. 接收阶段:当路由器接收到一个数据包时,它会提取出数据包中的目标IP地址,并查找路由表来确定数据包的下一跳。

路由表是路由器内部存储的一张表格,记录了各个网络的IP地址和对应的下一跳。

通过查找路由表,路由器可以确定数据包的下一跳地址。

2. 转发阶段:在转发阶段,路由器根据路由表确定数据包的下一跳地址,并将数据包转发到相应的接口上。

交换机的工作原理和应用

交换机的工作原理和应用

交换机的工作原理和应用一、交换机的基本概念交换机是计算机网络中的重要设备,常用于局域网或广域网中。

它的主要功能是在网络中转发数据包,实现不同设备之间的通信。

交换机通过学习MAC地址,将数据包从一个接口转发到另一个接口,提供高效的数据传输和广播控制。

二、交换机的工作原理1.MAC地址学习与转发:交换机通过监听数据帧,学习每个接口连接的设备的MAC地址,并将这些信息存储在交换表中。

当接收到一个数据帧时,交换机会查询交换表,找到目标MAC地址所对应的接口,并将数据帧转发到该接口上。

2.广播与组播处理:交换机能够根据转发表中的信息,将广播和组播数据帧仅转发到需要的接口上,而不是广播到整个网络中。

这样可以提高网络的效率,并减少网络拥塞。

3.链路聚合:交换机还可以将多个物理链路聚合成一个逻辑链路,提高链路的带宽和可靠性。

当其中一个链路发生故障时,交换机能自动切换到其他链路上,保证数据的连续传输。

4.虚拟局域网(VLAN)的支持:交换机可以根据端口或MAC地址将网络划分为多个虚拟局域网,实现不同虚拟局域网之间的隔离和通信。

这样可以增强网络的安全性和管理灵活性。

三、交换机的应用场景1.局域网接入交换机:局域网接入交换机常用于办公室、学校和家庭等场景,连接多台计算机和其他网络设备。

它可以根据数据帧的目标MAC地址,将数据包传输到目标设备,实现设备之间的通信。

2.交换机与路由器结合:交换机与路由器结合可以构建复杂的企业网络。

交换机负责局域网中的内部通信,路由器则负责连接不同的局域网和广域网,实现不同网络之间的通信。

3.数据中心交换机:数据中心交换机用于连接大量的服务器和存储设备,实现数据中心内的高速数据传输。

它通常支持更高的带宽和更大的转发能力,以满足数据中心对高性能网络的需求。

4.工业交换机:工业交换机用于工业控制系统中,提供可靠的数据传输和网络连接。

它通常具有防尘、防水、防腐蚀等特性,适用于恶劣的工业环境。

四、交换机的发展趋势1.高速转发能力:随着数据量的增加,对交换机的转发能力提出了更高的要求。

交换机的原理及应用

交换机的原理及应用

MAC地址表的静态配置
MAC地址除了象前面一样可以动态学习, 其实还可以进行静态手工配置,但一旦静态 配置某个目的地址和端号的映射关系后,交 换机就不能进行动态学习了。正因为这个特 性,我们就可以利用它来进行MAC地址与 端口的绑定
数据帧的转发
交换机数据帧的转发与HUB的区别:
交换机的冲突域局限于一个端口 上,一个站点向网络发送数据,集线 器将会向所有端口转发,而交换机将 通过对帧的识别,只将帧单点转发到 目的地址对应的端口
MAC地址学习
MAC地址表是交换机管理地址与端 口信息的资料中心,其构成形式如下:
目的MAC地址
发送端口号
E0/3 E0/5
M1 M2
地址学习过程
1、最初交换机MAC地址表为空 2、从需转发帧的源地址学习MAC 3、从广播应答帧中学习MAC
MAC地址表的老化
为保证MAC地址表中的信息能够实时反映 实际网络拓朴情况,每个动态学习到的记录 都有一个老化的时间,如果在老化时间以内, 收到相应的地址信息则刷新MAC地址表对应 记录,没有收到相应信息则删除该记录
总结
交换机是通过动态学习和维护MAC 地址表,来对帧的识别,进行帧的单点 转发进行工作的。从而有效地提高了网 络的可利用带宽,取代HUB而成为现在 局域的核心设备。
应用
以太网交换机工作原理及应用
主要内容
交换机工作原理概述 MAC地址学习 帧的转发和过滤 避免回路(在生成树协议章节另讲) 交换机工作原理的一些具体应用

交换机工作原理概述
以太网交换机是工作在数据链路层 的设备,外表和接口与HUB(集线 器)相似.它通过判断数据帧的目的 MAC地址,从而将帧从合适的端口 发送出去

交换机和路由器工作原理

交换机和路由器工作原理

交换机和路由器工作原理一、交换机的工作原理交换机是计算机网络中的一种设备,主要用于在局域网中传输数据。

它的工作原理是通过学习和转发数据帧来实现数据的传输和交换。

1. 数据帧的传输交换机通过物理接口与计算机连接,接收到计算机发送的数据帧后,会根据数据帧中的目的MAC地址进行转发。

它会在内部的转发表中查找目的MAC地址对应的接口,然后将数据帧发送到相应的接口,从而实现数据的传输。

2. 学习和转发交换机在转发数据帧的同时,会学习到源MAC地址和对应的接口信息,并将其存储在转发表中。

当接收到新的数据帧时,交换机会先查找转发表,如果找到了目的MAC地址对应的接口,就直接转发到相应的接口;如果没有找到,则会广播到所有的接口。

通过这种学习和转发的方式,交换机可以动态地更新转发表,从而提高数据传输的效率。

3. 广播和多播除了点对点的数据传输外,交换机还支持广播和多播。

当交换机接收到广播或多播数据帧时,会广播到所有的接口,从而使所有的计算机都能接收到相应的数据。

二、路由器的工作原理路由器是计算机网络中的一种设备,主要用于在不同网络之间传输数据。

它的工作原理是通过路由选择算法来确定数据的最佳传输路径,从而实现数据的路由和转发。

1. 路由选择路由器通过学习网络拓扑和路由信息来确定数据的传输路径。

它会维护一个路由表,记录了不同网络之间的连接关系和最佳路径。

当接收到数据包时,路由器会根据目的IP地址查询路由表,找到下一跳的地址,并将数据包发送到相应的接口。

2. 路由协议为了实现路由选择,路由器需要使用路由协议来交换路由信息。

常用的路由协议有RIP、OSPF和BGP等。

这些协议可以根据网络的拓扑和链路状态进行动态调整,从而实现最优路径的选择。

3. 网络分割和连接路由器可以将不同网络进行分割和连接。

当接收到数据包时,路由器会根据目的IP地址的网络前缀将数据包转发到相应的网络。

同时,路由器还可以将多个网络连接起来,实现不同网络之间的通信。

交换机的原理和作用

交换机的原理和作用

交换机的原理和作用
交换机是一种用于数据包转发的网络设备,它可以根据数据包的目的地地址进行转发,实现不同设备之间的连接和通信。

交换机的原理是通过学习和建立转发表来实现数据包的转发。

当一个数据包到达交换机时,交换机会检查数据包的目的地MAC地址,并将其与转发表中的目的地地址进行匹配。

如果匹配成功,则交换机将数据包转发到相应的端口,以便数据包到达正确的目的地。

如果匹配失败,则交换机会广播数据包到所有端口(除了发送端口),以便学习新的MAC地址和相应的转发端口。

交换机的作用主要有以下几个方面:
1. 分割冲突域:交换机可以将一个局域网(LAN)分成多个冲突域,这样可以降低网络中的冲突和碰撞,提高网络的性能和稳定性。

2. 实现广播和多播:交换机可以根据数据包的目的地址,将广播和多播数据包只转发到需要的端口,减少了网络中不必要的数据传输,提高了网络的效率。

3. 支持全双工通信:交换机的端口都是独立的通信通道,可以同时进行发送和接收,支持全双工通信,大大提高了网络的传输速度和容量。

4. 实现虚拟局域网(VLAN):交换机可以将不同的用户或设备划分到不同的虚拟局域网中,在同一个交换机中实现不同的安全隔离和管理。

5. 支持带宽控制:交换机可以根据端口的带宽需求,对数据包进行调度和优先级的控制,以实现带宽的合理分配和管理。

交换机的原理和作用

交换机的原理和作用

交换机的原理和作用
交换机是计算机网络中的一种常见设备,其原理和作用是实现局域网中不同设备间的数据传递和通信。

交换机的工作原理是通过学习和转发数据帧来实现的。

当一个数据帧进入交换机的端口时,交换机会学习源MAC地址,并将该地址与端口关联起来,以便在后续的通信中快速地转发数据。

当交换机收到目标MAC地址的数据帧时,它会将数据帧只发送到与目标地址关联的端口上,从而实现数据的快速和准确传递。

交换机的作用主要有以下几个方面:
1. 提高网络传输效率:交换机能够根据MAC地址进行数据转发,从而减少了数据冲突和冗余,提高了网络传输的效率和速度。

2. 分割冲突域:交换机能够将局域网划分为不同的冲突域,减少了冲突的可能性,提高了网络的可靠性。

3. 扩展局域网规模:交换机可以通过连接多个端口的方式扩展局域网的规模,使多个设备能够同时接入网络并进行通信。

4. 隔离广播域:交换机能够隔离广播域,将广播消息仅发送给特定的端口,减少了广播消息对网络带宽的占用。

总的来说,交换机通过学习和转发数据帧的方式,提高了网络传输的效率和速度,同时分隔了冲突域和广播域,增强了网络的可靠性和安全性,是局域网中不可或缺的设备之一。

交换机的工作原理

交换机的工作原理

交换机的工作原理交换机是计算机网络中的重要设备,它用于连接多个网络设备,并负责在网络中转发数据包。

交换机的工作原理是通过学习和转发数据帧来实现的。

下面将详细介绍交换机的工作原理。

1. 学习过程:当交换机接收到一个数据帧时,它会检查数据帧中的目标MAC地址。

交换机会将源MAC地址和对应的接口信息存储在一个地址表中,这个过程称为学习。

通过学习,交换机可以知道哪个接口连接着哪个MAC地址。

2. 转发过程:当交换机接收到一个数据帧时,它会查找地址表,找到目标MAC地址对应的接口。

如果地址表中没有目标MAC地址的记录,交换机会将数据帧广播到所有接口上,以便让目标设备回应并更新地址表。

一旦交换机知道了目标设备的位置,它就只会将数据帧转发到目标设备所在的接口上,而不会广播到所有接口上。

3. 碰撞域和广播域:交换机可以将网络划分为多个碰撞域和广播域。

碰撞域是指在同一个碰撞域内的设备之间可以同时发送数据帧,而不会发生碰撞。

广播域是指在同一个广播域内的设备可以收到广播消息。

交换机通过学习和转发数据帧,可以将网络划分为多个碰撞域,从而提高网络的性能和安全性。

4. VLAN(虚拟局域网):交换机还支持虚拟局域网(VLAN)功能。

VLAN可以将交换机的端口划分为不同的逻辑网络,即使这些端口物理上连接在同一个交换机上,也可以实现逻辑上的隔离。

VLAN可以提供更好的网络管理和安全性。

5. QoS(服务质量):交换机可以支持QoS功能,用于对不同类型的数据流进行优先级处理。

例如,对于实时音视频流,交换机可以提供更低的延迟和更高的带宽,以保证音视频的传输质量。

总结:交换机是计算机网络中的关键设备,它通过学习和转发数据帧来实现数据的传输。

交换机可以将网络划分为多个碰撞域和广播域,提高网络的性能和安全性。

此外,交换机还支持VLAN和QoS功能,提供更好的网络管理和服务质量。

交换机及路由器的原理与作用

交换机及路由器的原理与作用

交换机及路由器的原理与作用交换机及路由器的原理与作用1.介绍在计算机网络中,交换机和路由器是两个重要的设备,它们在数据传输和网络通信中发挥着至关重要的作用。

本文将详细介绍交换机和路由器的原理与作用。

2.交换机的原理与作用2.1 原理交换机是一种网络设备,用于将数据包从一个端口转发到另一个端口。

它基于目的地质(MAC地质)决定数据包的转发路径,以实现高效的数据传输。

交换机通过建立和维护一个转发表,将传入的数据包转发到正确的目标端口,从而实现网络中多个设备之间的通信。

2.2 作用交换机的作用主要体现在以下几个方面:- 实现数据包的快速转发:由于交换机基于硬件实现数据包交换,所以具有良好的转发性能,能够实现高速的数据传输。

- 分隔冲突域:交换机将每个端口视为一个独立的冲突域,可以避免数据包冲突和碰撞,提高网络的有效带宽利用率。

- 支持虚拟局域网(VLAN):交换机可以将不同的端口划分为不同的虚拟局域网,从而实现物理隔离和逻辑划分,提高网络的安全性和灵活性。

3.路由器的原理与作用3.1 原理路由器是一种网络设备,用于连接多个网络并实现不同网络之间的数据传输。

它基于网络协议和路由算法,根据数据包的目的网络地质(IP地质)决定数据包的转发路径,以实现跨网络的数据通信。

3.2 作用路由器的作用主要体现在以下几个方面:- 实现不同网络之间的连接:路由器可以将数据包从源网络转发到目标网络,通过连接多个网络,实现不同网络之间的数据传输和通信。

- 网络地质转换(NAT):路由器可以通过网络地质转换技术,将内部网络的私有IP地质转换为外部网络的公共IP地质,实现内部网络与外部网络的互联。

- 提供网络安全功能:路由器可以实施网络地质转换、访问控制列表等安全策略,保护网络免受恶意攻击和非法访问。

法律名词及注释:- MAC地质(Media Access Control Address):是一个用来唯一标识网络设备的地质,由6个字节构成,通常以十六进制表示。

交换机和路由器的区别详解

交换机和路由器的区别详解

交换机和路由器的区别详解交换机和路由器都是在计算机网络中扮演非常重要的角色。

它们都可以用来管理网络中数据的流向,但是它们的工作原理和使用场景却有很大的不同。

在本文中,我们将详细介绍交换机和路由器的区别以及各自的优缺点,帮助读者更好地理解这两种设备之间的差异。

一、交换机的基本原理和功能交换机是一种网络设备,用于在局域网内建立数据连接。

交换机的基本原理是将从多个主机接收到的数据帧存储在其内部缓存中,然后根据数据帧的目的MAC地址将其发送到正确的目标。

当数据帧到达交换机时,交换机会检查其内部MAC地址表,并将该目标地址关联的端口标记为“已知”,从而记录下地址和端口之间的映射。

之后,每当交换机收到其他主机发送到该目标地址的数据帧时,它就会直接将这些数据帧转发到相应的端口上,而不会向所有端口广播。

这样可以减少网络中不必要的流量,提高带宽效率。

交换机在网络中有很多用途。

它可以对数据包进行转发、选择转发的路径等操作,从而实现高效的数据流控制。

由于交换机只处理MAC地址,因此它仅限于在同一子网内起作用。

如果需要在不同子网之间进行通信,则需要使用一种能够处理不同网络之间通信的设备——路由器。

二、路由器的基本原理和功能路由器是另一种网络设备,用于将数据包从一个网络发送到另一个网络。

与交换机不同,路由器不仅可以处理数据帧的源和目标MAC地址,还可以处理它们的IP地址,这使得它可以在不同子网之间转发数据。

当数据包到达路由器时,路由器会检查其目标IP地址,并使用其内部路由表来计算发送数据包的最佳路径。

路由器将数据包从一个接口接收,然后将其转发到另一个接口。

在转发数据包时,路由器还会将数据包的TTL(Time to Live)减1,以避免数据包在网络中无限循环。

路由器在网络中有许多用途。

它可以使不同子网之间的通信变得更加灵活且高效,同时还可以实现一些网络安全性控制和流量控制等功能。

由于路由器可以处理多种协议,包括TCP/IP、IPv6等,因此可用于连接不同网络类型的设备。

交换机工作原理

交换机工作原理

交换机工作原理一、交换机的工作原理1.交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。

2.交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。

3.如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。

这一过程称为泛洪(flood)。

4.广播帧和组播帧向所有的端口转发。

二、交换机的三个主要功能学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。

转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。

消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。

三、交换机的工作特性1.交换机的每一个端口所连接的网段都是一个独立的冲突域。

2.交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(惟一的例外是在配有VLAN的环境中)。

3.交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备(此处所述交换机仅指传统的二层交换设备)。

四、交换机的分类依照交换机处理帧时不同的操作模式,主要可分为两类:存储转发:交换机在转发之前必须接收整个帧,并进行错误校检,如无错误再将这一帧发往目的地址。

帧通过交换机的转发时延随帧长度的不同而变化。

直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。

由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。

五、二、三、四层交换机?多种理解的说法:1.二层交换(也称为桥接)是基于硬件的桥接。

基于每个末端站点的唯一MAC地址转发数据包。

二层交换的高性能可以产生增加各子网主机数量的网络设计。

其仍然有桥接所具有的特性和限制。

交换机的工作原理

交换机的工作原理

交换机的工作原理交换机是计算机网络中的重要设备,用于在局域网中传送数据包。

它能够根据目的地址将数据包从一个接口转发到另一个接口,实现网络中不同设备之间的通信。

下面将详细介绍交换机的工作原理。

一、交换机的基本原理交换机的基本原理是通过学习和转发实现数据包的传输。

当交换机接收到一个数据包时,它会解析数据包中的目的MAC地址,并将该地址与交换机的MAC地址表进行比对。

如果目的MAC地址在MAC地址表中已经存在,交换机就会将数据包转发到相应的接口;如果目的MAC地址不在MAC地址表中,交换机就会将数据包广播到所有其他接口,以便学习到目的MAC地址,并将其添加到MAC地址表中。

二、交换机的工作模式交换机有两种主要的工作模式:存储转发模式和直通模式。

1. 存储转发模式:在存储转发模式下,交换机会先接收完整的数据包,然后对数据包进行校验,确保数据包的完整性和准确性。

如果数据包没有错误,交换机会根据目的MAC地址进行转发。

这种模式可以保证数据的可靠性,但会增加延迟。

2. 直通模式:在直通模式下,交换机会在接收到数据包的同时进行转发,而不需要等待整个数据包的接收完成。

这种模式可以降低延迟,但无法检测和纠正数据包中的错误。

三、交换机的转发方式交换机的转发方式有三种:广播转发、单播转发和组播转发。

1. 广播转发:当交换机接收到一个广播数据包时,它会将该数据包转发到所有其他接口,以便所有设备都能接收到该数据包。

这种方式适用于需要向所有设备发送相同信息的情况,如网络中的ARP请求。

2. 单播转发:当交换机接收到一个单播数据包时,它会根据目的MAC地址将数据包转发到相应的接口,只有目的设备能够接收到该数据包。

这种方式适用于点对点通信,如发送电子邮件或浏览网页。

3. 组播转发:当交换机接收到一个组播数据包时,它会将该数据包转发到所有已加入该组播组的设备。

组播转发可以实现一对多的通信,适用于视频会议、多媒体流等应用。

四、交换机的决策算法交换机在转发数据包时,需要根据一定的决策算法来确定数据包的转发路径。

5口交换机原理及应用

5口交换机原理及应用

5口交换机原理及应用交换机是一种用于局域网(LAN)内部数据交换的网络设备,它能够将来自不同终端设备的数据包按照目的MAC地址进行高效传输。

交换机原理和应用十分广泛,主要包括数据包转发、网络分割、虚拟局域网(VLAN)划分、链路聚合、流量控制等功能。

首先,交换机的数据包转发原理是其最基本的功能之一。

当一台设备向网络中的另一台设备发送数据包时,交换机会根据目的MAC地址查找目标设备所在的端口,并将数据包只转发到目标端口,而不会广播到整个网络上。

这种按需转发的方式有效避免了网络拥堵和数据冲突,提高了网络的传输效率。

其次,交换机还可以实现网络分割的功能。

在较大的局域网中,交换机可以将网络划分为若干个较小的虚拟局域网(VLAN),不同VLAN间的通信需要通过路由器实现,从而增强了网络安全性和管理灵活性。

VLAN技术使得不同部门或功能的设备可以独立管理,提高了网络的可控性和安全性。

除此之外,交换机还支持链路聚合技术,可将多个物理链路组合成一个逻辑链路,提高了网络的带宽和可靠性。

通过链路聚合,可以实现网络负载均衡和冗余备份,从而提升了网络的整体性能和可用性。

此外,交换机还能够实现流量控制的功能,通过设置各个端口的优先级和带宽限制,可以对网络中的数据流进行精细化管理,从而保证重要数据的传输优先级,避免网络拥堵和资源浪费。

最后,值得一提的是,交换机也广泛应用于数据中心和企业级网络中。

在数据中心中,交换机通常作为网络核心设备,用于连接各种服务器和存储设备,支持大规模的数据传输和处理。

在企业网络中,交换机则起到连接各个部门或办公楼的作用,为各种终端设备提供稳定的网络连接。

由此可见,交换机作为局域网中一种重要的网络设备,其原理和应用相当广泛。

它利用数据包转发、网络分割、链路聚合、流量控制等技术,可以实现高效的数据交换和管理,为现代网络通信提供了强有力的支持。

同时,随着云计算、大数据等技术的发展,交换机在网络架构中的地位将会更加重要,其功能和性能也将不断得到进一步的提升。

交换机和路由器的工作原理

交换机和路由器的工作原理

交换机和路由器的工作原理一、交换机的工作原理交换机是计算机网络中常用的网络设备,用于在局域网内转发数据包。

它的主要功能是根据数据包中的目标MAC地址,将数据包从一个接口转发到另一个接口,实现局域网内的数据通信。

交换机的工作原理可以简单描述为以下几个步骤:1. MAC地址学习:交换机通过监听网络中的数据包,学习到各个接口上连接的设备的MAC地址,并将其存储在一个地址表中。

这样,当交换机收到一个数据包时,就能根据目标MAC地址查找到对应的接口。

2. 数据转发:当交换机收到一个数据包时,会查找目标MAC地址在地址表中对应的接口。

如果找到了,就将数据包转发到该接口,否则就广播到所有接口。

这样,只有目标设备能够接收到数据包,避免了数据在局域网内的冲突和冗余。

3. 冲突检测与解决:交换机会监测到网络中的冲突情况,并根据冲突检测算法来解决冲突。

常见的冲突检测算法有CSMA/CD(载波监听多路访问/碰撞检测)。

4. VLAN划分:交换机还可以根据需要将局域网划分成多个虚拟局域网(VLAN),实现不同VLAN之间的隔离和通信。

这样可以提高网络的安全性和管理灵活性。

总的来说,交换机通过学习MAC地址、转发数据包和解决冲突等机制,实现了局域网内的高效数据通信。

二、路由器的工作原理路由器是计算机网络中的一种网络设备,用于在不同网络之间转发数据包。

它的主要功能是根据数据包中的目标IP地址,将数据包从一个接口转发到另一个接口,实现不同网络之间的数据通信。

路由器的工作原理可以简单描述为以下几个步骤:1. IP地址转发:路由器通过学习网络拓扑和配置路由表,将不同网络的IP地址与对应的接口关联起来。

当路由器收到一个数据包时,会根据目标IP地址在路由表中查找到对应的接口。

2. 路由选择:当路由器收到一个数据包时,可能存在多个路径可以到达目标网络。

路由器会根据路由选择算法,选择最优的路径来转发数据包。

常见的路由选择算法有距离矢量路由选择协议(Distance Vector Routing Protocol)和链路状态路由选择协议(Link State Routing Protocol)。

交换机的原理和作用

交换机的原理和作用

交换机的原理和作用交换机是网络通信设备的一种类型,用于将数据包从一个网络节点转发到另一个网络节点。

它是在OSI模型的第二层,即数据链路层中工作的设备。

交换机的主要原理是根据MAC地址进行转发和过滤数据包,其作用是提供高速、可靠的局域网连接和数据传输。

交换机的工作原理如下:1. MAC地址学习:当一个数据包到达交换机时,交换机会读取数据包中的源MAC地址,并将该地址与相应的端口关联起来。

交换机会将这些学习到的MAC 地址保存在一个地址表中,以便后续的数据包转发。

2. 过滤和转发:当数据包到达交换机时,交换机会查找目标MAC地址在地址表中的条目,并将该数据包转发到对应的端口上。

如果交换机找不到目标MAC 地址的条目,它会将数据包广播到所有端口,以便找到目标设备。

3. 决策:交换机根据不同的决策方式来决定是否转发数据包。

最常用的决策方式是根据目标MAC地址,但也可以基于其他因素,如VLAN标记、IP地址等。

交换机可以根据这些决策方式来提供更精确的数据包转发和网络分段。

交换机的作用如下:1. 提供高速连接:交换机的硬件设计和工作原理使得它能够提供高速的数据传输。

与集线器相比,交换机可以实现同时传输多个数据包,并且可以同时在多个端口上进行转发。

2. 实现数据过滤:交换机可以根据源MAC地址和目标MAC地址来过滤数据包。

这样可以确保只有目标设备才能接收到相应的数据包,提高网络的安全性。

3. 提供网络分段:通过VLAN技术,交换机可以将一个局域网划分为多个逻辑子网。

这样可以提高网络的性能和安全性,同时还能减少广播和冲突的影响。

4. 支持网络虚拟化:交换机可以部署虚拟局域网(VLAN)和虚拟交换机,从而实现网络的虚拟化。

这种虚拟化技术可以提高网络的弹性和灵活性,简化网络管理和配置。

5. 提供负载平衡:交换机可以通过链路聚合(LACP)和端口镜像等技术来实现负载平衡。

这样可以将流量均匀地分配到多个链路上,提高网络的带宽利用率和传输效率。

交换机的工作原理

交换机的工作原理

交换机的工作原理1、交换机的定义局域网交换机拥有许多端口,每个端口有自己的专用带宽,并且可以连接不同的网段。

交换机各个端口之间的通信是同时的、并行的,这就大大提高了信息吞吐量。

为了进一步提高性能,每个端口还可以只连接一个设备。

为了实现交换机之间的互连或与高档服务器的连接,局域网交换机一般拥有一个或几个高速端口,如100MB以太网端口、FDDI端口或155MB ATM端口,从而保证整个网络的传输性能。

2、交换机的定义通过集线器共享局域网的用户不仅是共享带宽,而且是竞争带宽。

可能由于个别用户需要更多的带宽而导致其他用户的可用带宽相对减少,甚至被迫等待,因而也就耽误了通信和信息处理。

利用交换机的网络微分段技术,可以将一个大型的共享式局域网的用户分成许多独立的网段,减少竞争带宽的用户数量,增加每个用户的可用带宽,从而缓解共享网络的拥挤状况。

由于交换机可以将信息迅速而直接地送到目的地能大大提高速度和带宽,能保护用户以前在介质方面的投资,并提供良好的可扩展性,因此交换机不但是网桥的理想替代物,而且是集线器的理想替代物。

与网桥和集线器相比,交换机从下面几方面改进了性能:(1)通过支持并行通信,提高了交换机的信息吞吐量。

(2)将传统的一个大局域网上的用户分成若干工作组,每个端口连接一台设备或连接一个工作组,有效地解决拥挤现像。

这种方法人们称之为网络微分段(Micro一segmentation)技术。

(3)虚拟网(VirtuaI LAN)技术的出现,给交换机的使用和管理带来了更大的灵活性。

我们将在后面专门介绍虚拟网。

(4)端口密度可以与集线器相媲美,一般的网络系统都是有一个或几个服务器,而绝大部分都是普通的客户机。

客户机都需要访问服务器,这样就导致服务器的通信和事务处理能力成为整个网络性能好坏的关键。

交换机就主要从提高连接服务器的端口的速率以及相应的帧缓冲区的大小,来提高整个网络的性能,从而满足用户的要求。

一些高档的交换机还采用全双工技术进一步提高端口的带宽。

交换机与路由器的工作原理

交换机与路由器的工作原理

交换机与路由器的工作原理
交换机和路由器是计算机网络中常用的设备,它们都有不同的工作原理和功能。

交换机的工作原理:
1. 交换机工作在OSI模型的第二层——数据链路层。

它通过学习MAC地址表来转发数据帧。

2. 当一个数据帧到达交换机时,交换机会查看数据帧中的源MAC地址,并将其与MAC地址表中已经学习到的地址进行比对。

3. 如果MAC地址表中存在目标MAC地址,交换机会根据目标地址找到对应的接口,并将数据帧转发到该接口。

4. 如果MAC地址表中不存在目标MAC地址,交换机会将数据帧广播到所有接口,以寻找目标设备。

同时,交换机会更新MAC地址表。

5. 交换机通过过滤和转发的方式,将数据帧从一个接口转发到另一个接口,以实现设备之间的通信。

路由器的工作原理:
1. 路由器工作在OSI模型的第三层——网络层。

它通过查找路由表来转发IP数据包。

2. 路由器根据目标IP地址来查找路由表,以确定数据包的下一个跳。

3. 路由表中存储了不同网络之间的连接信息,可以确定数据包应该通过哪个接口发送。

4. 路由器使用路由算法,如最短路径优先(SPF)算法,来确定最佳路径和跳数,以实现数据包的转发。

5. 路由器将数据包从一个接口接收,并通过另一个接口发送,以使数据包达到目标网络和设备。

总结:
交换机和路由器在计算机网络中扮演不同的角色。

交换机负责局域网内的设备之间的通信,通过MAC地址表来转发数据帧。

而路由器负责不同网络之间的数据转发,使用路由表和路由算法来决定数据包的最佳路径。

交换机的工作原理

交换机的工作原理

交换机的工作原理
交换机属于存储转发设备,是网络的核心设备,交换机根据所接收帧的目的MAC地址对帧进行存储转发或者过滤,其工作的基本原理如下。

(1)交换机可以在同一时刻实现多个端口之间的数据传输。

为了保证交换机能够根据MAC地址确定将MAC帧发送到某个端口,这就需要在交换机内部创建目的MAC地址到端口的映射关系,即转发表。

(2)交换机刚通电时,转发表为空。

交换机每收到一个数据帧时,它首先会记录数据帧的源端口和源MAC地址的映射关系,并将其添加到转发表中,交换机采用逆向学习法逐步建立起转发表。

只要有一个主机向网络中发送数据,交换机就可以自主学习到该主机的MAC地址,从而更新转发表中的项目。

(3)交换机会读取数据帧的目的MAC地址,在转发表中查找该目的MAC地址对应的端口。

(4)若转发表中有该目的MAC地址的表项,交换机就把帧从表项指明的端口发送出去。

(5)若转发表中没有该目的MAC地址的表项,则交换机将该帧发送到除源端口以外的其他所有端口。

(6)考虑到网络的拓扑结构会时常更新,为转发表的每个表项设置一个生存期。

当一个表项的生存期到期后,则删除该表项;同
样,转发表通过自主学习创建一个新表项时,也会为其设定一个生存期。

交换机 硬件原理

交换机 硬件原理

交换机硬件原理交换机是一种网络设备,具有将数据从一个端口转发到另一个端口的功能。

它能够实现局域网内部不同设备之间的通信。

交换机在硬件层面上实现了数据包的转发和路由功能。

交换机的硬件原理主要涉及以下几个方面:1. 存储与转发:交换机通过存储并转发数据包的方式实现转发功能。

当一个数据包到达交换机的某个端口时,交换机会将该数据包存储在内存中,并对其进行解析和验证。

在确定目标端口后,交换机会使用自身的转发表决定将该数据包转发到哪个端口。

2. MAC地址表:交换机使用MAC地址表来实现数据包的转发。

MAC地址是网络接口设备(如计算机、服务器、路由器)的唯一标识,在数据包中被用于确定数据包的目标地址。

交换机会通过监听每个端口上的数据包,从中提取目标MAC地址,并将其与对应的端口建立映射关系。

当交换机收到一个数据包并需要转发时,它会查询MAC地址表,找到目标MAC地址对应的端口,并将数据包转发到该端口。

3. 端口速度和带宽:交换机的各个端口可以支持不同的速度和带宽。

这是通过端口的物理接口实现的,如RJ45接口、光纤接口等。

不同的交换机可以支持不同速率的数据传输,例如10Mbps、100Mbps、1000Mbps(也称为1Gbps)等。

4. 缓冲区管理:交换机的每个端口都有一个缓冲区,用于临时存储数据包。

当交换机的各个端口同时接收到大量数据包时,缓冲区可以暂时存储这些数据包,并按照一定的调度算法决定优先转发哪些数据包。

缓冲区的大小会影响交换机的性能和处理能力。

5. VLAN隔离:交换机支持虚拟局域网(VLAN)功能,可以将不同端口上的设备划分为不同的虚拟网络。

这样可以实现对不同的用户或部门进行隔离,并在不同的虚拟网络间实现数据的转发。

总之,交换机的硬件原理是通过存储与转发数据包、使用MAC地址表实现转发、控制端口速度和带宽、管理缓冲区、支持VLAN隔离等方式来实现局域网内部设备之间的通信。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交换机原理与应用一、基本以太网1、以太网标准:以太网是Ethernet的意思,过去使用的是十兆标准,现在是百兆到桌面,千兆做干线。

常见的标准有:10BASE-2 细缆以太网10BASE-5 粗缆以太网10BASE-T 星型以太网100BASE-T 快速以太网1000BASE-T 千兆以太网2、接线标准星型以太网采用双绞线连接,双绞线是8芯,分四组,两芯一组绞在一起,故称双绞线。

8芯双绞线只用其中4芯:1、2、3、6。

常见接线方式有两种:568B接线规范:白橙橙白绿蓝白蓝绿白棕棕1 2 3 4 5 6 7 8568A接线规范:白绿绿白橙蓝白蓝橙白棕棕1 2 3 4 5 6 7 8将568B的1和3对调,2和6对调,就得到568A。

3、接线方法两边采用相同的接线方式叫做平接,两边采用不同的接线方式叫扭接。

不同的设备之间连接,使用平接线;相同的设备连接使用扭接线。

电脑、路由器与集线器、交换机连接时使用平接线。

这是因为网线中的4条线,一对是输入,一对是输出,输入应该与输出对应。

如果将1和3连接,2和4连接,相当于自己的输出送给自己的输入。

这样可以使网卡进入工作状态,阻止空接口关闭,而影响有些程序的运行。

二、交换机原理与应用1、冲突域和广播域交换机是根据网桥的原理发展起来的,学习交换机先认识两个概念:(1)冲突域:冲突域是数据必然发送到的区域。

HUB是无智能的信号驱动器,有入必出,整个由HUB组成的网络是一个冲突域。

交换机的一个接口下的网络是一个冲突域,所以交换机可以隔离冲突域。

冲突域(collision domain)在以太网中,如果某个CSMA/CD网络上的两台计算机在同时通信时会发生冲突,那么这个CSMA/CD网络就是一个冲突域。

如果以太网中的各个网段以中继器连接,因为不能避免冲突,所以它们仍然是一个冲突域。

使用交换机可有效避免冲突。

而集线器则不行!因为交换机可以利用物理地址进行选路,它的每一个端口为一个冲突域。

而集线器不具有选路功能,只是将接受到的数据以广播的形式发出,极其容易产生广播风暴。

它的所有端口为一个冲突域。

用网桥划分多个缆段,多个缆段之间没有冲突,但一个缆段中有冲突(各个缆段中用HUB连接),一个缆段中的一个冲突是一个冲突域,一个冲突域(即同一缆段中的)都能收到所有被发送的帧,因为HUB是完全复制的因为交换设备可以分隔冲突信号,我们可以利用交换设备将几个分离的网络组合为一个大的互联的以太网。

冲突域是在同一个网络上两个比特同时进行传输则会产生冲突;在网路内部数据分组所产生与发生冲突的这样一个区域称为冲突域,所有的共享介质环境都是一个冲突域,在共享介质环境中一定类型的冲突域是正常行为。

对网络进行分段的原因是:分离流量并创建更小的冲突域来使用户获得更高的带宽则网络很快会被流量所阻塞总的来说,冲突域就是连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合,或以太网上竞争同一带宽的节点集合.(2)广播域:广播数据时可以发送到的区域是一个广播域。

交换机和集线器对广播帧是透明的,所以用交换机和HUB组成的网络是一个广播域。

路由器的一个接口下的网络是一个广播域。

所以路由器可以隔离广播域。

冲突域(物理分段)连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。

这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。

在OSI模型中,冲突域被看作是第一层的概念,连接同一冲突域的设备有Hub,Reperter或者其他进行简单复制信号的设备。

也就是说,用Hub或者Rep eater连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。

而第二层设备(网桥,交换机)第三层设备(路由器)都可以划分冲突域的,当然也可以连接不同的冲突域。

简单的说,可以将Repeater等看成是一根电缆,而将网桥等看成是一束电缆。

广播域接收同样广播消息的节点的集合。

如:在该集合中的任何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被认为是该广播帧的一部分。

由于许多设备都极易产生广播,所以如果不维护,就会消耗大量的带宽,降低网络的效率。

由于广播域被认为是OSI 中的第二层概念,所以象Hub,交换机等第一,第二层设备连接的节点被认为都是在同一个广播域。

而路由器,第三层交换机则可以划分广播域,即可以连接不同的广播域。

注:一个VLAN是一个广播域,VLAN可以隔离广播,划分VLAN的其中的一个目的就是隔离广播。

打个通俗的比喻来帮助理解:局域网好比一栋大楼,每个人(好比主机)有自己的房间(房间就好比网卡,房号就是物理地址,即MAC地址),里面的人(主机)人手一个对讲机,由于工作在同一频道,所以一个人说话,其他人都能听到,这就是广播(向所有主机发送信息包),只有目标才会回应,其他人虽然听见但是不理(丢弃包),而这些能听到广播的所有对讲机设备就够成了一个广播域。

而这些对讲机就是集线器(HUB),每个对讲机都像是集线器上的端口,大家都知道对讲机在说话时是不能收听的,必须松开对讲键才能收听,这种同一时刻只能收或者发的工作模式就是半双工。

而且对讲机同一时刻只能有一个人说话才能听清楚,如果两个或者更多的人一起说就会产生冲突,都没法听清楚,所以这就构成了一个冲突域。

广播域(Broadcast domain)网络中的一组设备的集合。

即同一广播包能到达的所有设备成为一个广播域。

当这些设备中的一个发出一个广播时,所有其他的设备都能接收到这个广播帧。

HUB和SWITC H的所有端口都是在一个广播域里,路由器上的每个端口自成一个广播域。

有一天楼里的人受不了这种低效率的通信了,所以升级了设备,换成每人一个内线电话(交换机SWITCH,每个电话都相当于交换机上的一个端口),每人都有一个内线号码(逻辑地址即IP地址)。

(这里要额外说一下IP地址和MAC地址转译的问题,常见的二层交换机只识别MAC地址,它内置一个MAC地址表,并不断维护和更新它,来确定哪个端口对应那台主机的MAC地址,而我们所用的通信软件都是基于IP的,IP地址和MAC 地址的转换工作,就由ARP地址解析协议来完成。

)在最开始时,没人知道哪个号码对应哪个人,所以要想打电话给某个人得先广播一下:“xxx,你的号码是多少?”“我的号码是xxxx”。

这样你就有了目标的号码,所有的内线号码就是通过这种方式不断加入电话簿中(交换机的MAC地址表),下次可以直接拨到他的分机号码上去而不用广播了。

大家都知道电话是点对点的通信设备,不会影响到其他人,起冲突的只会限制在本地,一个电话号码的线路相当于一个冲突域,只有再串连分机时,分机和主机之间才会有冲突的发生,这个冲突不会影响到外面其他的电话。

而电话号码就像是交换机上的端口号,也就是说交换机上每个端口自成一个冲突域,所以整个大的冲突域被分割成若干的小冲突域了。

而且,电话在接听的同时可以说话,这样的工作模式就是全双工。

这就是交换机比集线器性能更好的原因之一。

这样的工作模式就是全双工。

这就是交换机比集线器性能更好的原因之一。

网络互连设备可以将网络划分为不同的冲突域、广播域。

但是,由于不同的网络互连设备可能工作在OSI模型的不同层次上。

因此,它们划分冲突域、广播域的效果也就各不相同。

如中继器工作在物理层,网桥和交换机工作在数据链路层,路由器工作在网络层,而网关工作在OSI模型的上三层。

而每一层的网络互连设备要根据不同层次的特点完成各自不同的任务。

下面我们讨论常见的网络互连设备的工作原理以及它们在划分冲突域、广播域时各自的特点。

1、传统以太网操作传统共享式以太网的典型代表是总线型以太网。

在这种类型的以太网中,通信信道只有一个,采用介质共享(介质争用)的访问方法(第1章中介绍的CSMA/CD介质访问方法)。

每个站点在发送数据之前首先要侦听网络是否空闲,如果空闲就发送数据。

否则,继续侦听直到网络空闲。

如果两个站点同时检测到介质空闲并同时发送出一帧数据,则会导致数据帧的冲突,双方的数据帧均被破坏。

这时,两个站点将采用"二进制指数退避"的方法各自等待一段随机的时间再侦听、发送。

在图1中,主机A只是想要发送一个单播数据包给主机B。

但由于传统共享式以太网的广播性质,接入到总线上的所有主机都将收到此单播数据包。

同时,此时如果任何第二方,包括主机B也要发送数据到总线上都将冲突,导致双方数据发送失败。

我们称连接在总线上的所有主机共同构成了一个冲突域。

当主机A发送一个目标是所有主机的广播类型数据包时,总线上的所有主机都要接收该广播数据包,并检查广播数据包的内容,如果需要的话加以进一步的处理。

我们称连接在总线上的所有主机共同构成了一个广播域。

图1传统以太网2、中继器(Repeater)中继器(Repeater)作为一个实际产品出现主要有两个原因:第一,扩展网络距离,将衰减信号经过再生。

第二,实现粗同轴电缆以太网和细同轴电缆以太网的互连。

通过中继器虽然可以延长信号传输的距离、实现两个网段的互连。

但并没有增加网络的可用带宽。

如图2所示,网段1和网段2经过中继器连接后构成了一个单个的冲突域和广播域。

图2中继器连接的网络3、集线器(HUB)集线器实际上相当于多端口(在本章,我们常用"端口"一词代替"接口"这个术语)的中继器。

集线器通常有8个、16个或24个等数量不等的接口。

集线器同样可以延长网络的通信距离,或连接物理结构不同的网络,但主要还是作为一个主机站点的汇聚点,将连接在集线器上各个接口上的主机联系起来使之可以互相通信。

如图3所示,所有主机都连接到中心节点的集线器上构成一个物理上的星型连接。

但实际上,在集线器内部,各接口都是通过背板总线连接在一起的,在逻辑上仍构成一个共享的总线。

因此,集线器和其所有接口所接的主机共同构成了一个冲突域和一个广播域。

图3集线器连接的网络4、网桥(Bridge)网桥(Bridge)又称为桥接器。

和中继器类似,传统的网桥只有两个端口,用于连接不同的网段。

和中继器不同的是,网桥具有一定的"智能"性,可以"学习"网络上主机的地址,同时具有信号过滤的功能。

如图4所示,网段1的主机A发给主机B的数据包不会被网桥转发到网段2。

因为,网桥可以识别这是网段1内部的通信数据流。

同样,网段2的主机X发给主机Y的数据包也不会被网桥转发到网段1。

可见,网桥可以将一个冲突域分割为两个。

其中,每个冲突域共享自己的总线信道带宽。

图4网桥连接的网络但是,如果主机C发送了一个目标是所有主机的广播类型数据包时,网桥要转发这样的数据包。

网桥两侧的两个网段总线上的所有主机都要接收该广播数据包。

相关文档
最新文档