五大常规探伤方法概述及其特点
无损探伤的常用方法介绍
无损探伤的常用方法介绍资料整理:无损检测资源网五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。
1、射线探伤方法射线探伤是利用射线的穿透性和直线性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。
此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。
因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。
即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
2、超声波探伤方法 人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。
频率低于20 Hz的称为次声波,高于20 kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。
根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。
当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。
五大常规探伤方法概述
五大常规探伤方法概述五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法1、射线探伤方法(RT)射线探伤是利用射线的穿透性和直线性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。
此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。
因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。
即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
2、超声波探伤方法(UT)人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。
频率低于20 Hz 的称为次声波,高于20 kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。
根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。
当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。
五大常规无损检测
五大常规无损检测PT=渗透探伤MT=磁粉探伤UT=超声波探伤RT=射线探伤ET=涡流探伤五大常规无损检测:渗透探伤、磁粉探伤、超声波探伤、射线探伤、涡流探伤,1.射线探伤也就是X光拍片简称RT,2.超声波检查简称UT,射线探伤和超声波探伤一般适用于主甲板,外板,横舱壁,内底板,上下边柜斜板等对接的焊缝。
施工者对要求射线探伤的焊缝及热影响区域进行打磨处理,消除焊缝表面的凹凸不平对底片影像显示的影响,确保无油污、无油漆、无飞溅。
射线探伤有一定的杀伤性,船方及各施工部门在X光射线探伤时段、不得靠近X光射线探伤位置半径三十米范围的警示区域,防止射线伤害人员。
3.磁粉探伤又称MT或者MPT(Magnetic Particle Testing),一般适用于对接焊缝,角焊缝,尾轴及锻钢件,铸钢等磁性材料的表面附近进行探伤的检测方法。
利用铁受磁石吸引的原理进行检查。
在进行磁粉探伤检测时,使被测物收到磁力的作用,将磁粉(磁性微型粉末)散布在其表面。
然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成图案。
指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。
磁粉探伤检测一般按照前处理→磁化→喷淋磁粉→观察→后处理的步骤进行4.渗透探伤简称PT,着色一般适用于船体对接焊缝,角焊缝等,螺旋桨叶根部,锻钢件、铸钢件表面。
当机械零部件需磁粉探伤或着色探伤时,则要将被探物件表面的油污清洁干净并摆放整齐,如果焊缝做磁粉探伤或着色探伤时,则需将焊道清洁干净,要求无油污、无油漆、无飞溅。
5.涡流检测(ET)的英文名称是:Eddy Current Testing工业上无损检测的方法之一。
给一个线圈通入交流电,在一定条件下通过的电流是不变的。
如果把线圈靠近被测工件,像船在水中那样,工件内会感应出涡流,受涡流影响,线圈电流会发生变化。
由于涡流的大小随工件内有没有缺陷而不同,所以线圈电流变化的大小能反映有无缺陷。
适用于导电材料..由于导体自身各种因素(如电导率,磁导率,形状,尺寸和缺陷等)的变化,会导致感应电流的变化,利用这种现象而判知导体性质,状态的检测方法叫做涡流检测方法.属于表面探伤法,适用于钢铁、有色金属、石墨等导电体工件,因为并不需要接触工件,所以检测速度很快,但设备昂贵。
五大常规探伤方法概述及其特点
五大常规探伤方法概述及其特点工业无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法。
本文将首先介绍五大常规探伤方法及其特点,并结合汽车维修中的特定条件和需求,选出更适合于汽车维修的探伤方法.一、五大常规探伤方法概述五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。
1、射线探伤方法射线探伤是利用射线的穿透性和直线性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
当这些射线穿过物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越校此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。
因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。
即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
2、超声波探伤方法人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音频。
频率低于20Hz的称为次声波,高于20kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。
五大常规探伤方法概述及其特点
五大常规探伤方法概述及其特点工业无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法。
本文将首先介绍五大常规探伤方法及其特点,并结合汽车维修中的特定条件和需求,选出更适合于汽车维修的探伤方法。
一、五大常规探伤方法概述五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。
1、射线探伤方法射线探伤是利用射线的穿透性和直线性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
当这些射线穿过物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越校此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。
因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。
即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
2、超声波探伤方法人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音频。
频率低于20Hz的称为次声波,高于20kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。
探伤检查方法
原理:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
涡流探伤:以交流电磁线圈在金属构件表面感应产生涡流的无损探伤技术。
γ射线探伤:用放射性同位素产生的γ射线检测试件内部缺陷的设备。
金相分析:金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。
无损探伤(NDT):无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。
着色检查(TGK):主要用于表观质量检查。灵敏度分级:很低级、低级、中级三个级别。
原理:着色(渗透)探伤的基本原理是利用毛细现象使渗透液渗入缺陷,经清洗使表面渗透液去除,而缺陷中的渗透残瘤,再利用显像剂的毛细管作用吸附出缺陷中残瘤渗透液而达到检验缺陷的目的。
荧光渗透法:灵敏度分级:很低级、低级、中级、高级、超高级五个级别。紫外线灯照射时应发黄绿色或绿色荧光。
液体渗透法(PT):可检查金属和非金属的表面开口检查。原理:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。
X射线(RT):主要用于高压力部件或某些关键部件的探伤。
五种探伤介绍
1、超生波探伤仪:超声波探伤仪是一种便携式工业无损探伤仪器,它能够快速、便捷、无损伤精确的进行工件内部多种缺陷(裂纹、疏松、气孔、夹杂等)的检测、定位、评估和诊断。
2磁力探伤仪:在漏磁原理基础上建立的一种磁力探伤方法就是磁粉探伤,当磁力线穿过铁磁材及其制品时在其(磁性)不连续处将产生漏磁场,形成磁极此时浇上磁悬液或者撒上干磁粉,磁极就会吸附磁粉产生用肉眼就能直接看见的明显磁痕,磁粉探伤法可对露出表面,用肉眼或借助于放大镜的帮助也无法直接看到的微小缺陷,同样也可探测没有露出表面,埋藏在表面下几毫米的近表面缺陷。
虽然用这种方法也能对气孔、夹杂、未焊透等体积型缺陷进行探查,但是对面积型缺陷的探查更为灵敏,所以适于检查锻造、铸造、淬火、轧制、焊接、磨削、电镀、疲劳等引起的裂纹。
3、射线探伤仪:工业上常见的无损检测的方法之一,能使用电磁波对金属工件进行检测,同X线透视类似。
射线穿过材料到达底片,会使底片均匀感光,如果遇到裂缝洞孔以及气泡和夹渣等缺陷,将会在底片上显示暗影区来,这种方法能检测出缺陷的大小和形状还能测定材料厚度。
4、红外线探伤:红外热成像无损检测技术可分为被动式和主动式两种。
被动式是利用待测对象本身的发热过程来进行检测,主要用于有摩擦的运动部件、电器、治金、化工等场合。
如果对工作人为地加热(主动式)在工作中形成热流传播过程,工件中有缺陷和没有缺陷的地方因热传导率不同,造成对应表面的温度不同,使对应的红外辐射强度也不同,我们只要采用红外热像仪记录工件表五的温度场分布(红外热图像)就可以检测出工件中是否有裂纹、剥离、夹层等缺陷。
5、渗透探伤:(1)工作原理简单,对操作者的技术要求不高。
(2)应用面广,可用于多种材料的表面检测而且基本上不受工件形状和尺寸的限制。
(3)显示不受缺陷方向的限制,一次检测可同时探测不同方向的表面缺陷。
(4)检测用设备简单、成本低廉、使用方便。
(5)渗透检测对各材料的开口式缺陷(如裂纹、气孔、分层、夹杂物、折叠、熔合不良、池漏等都能进行检查。
五大常规无损检测
磁粉检测 (M T)【磁粉检测】磁粉检测(Magnetic Particle Testing,缩写符号为MT),又称磁粉检验或磁粉探伤,属于无损检测五大常规方法之一。
【磁粉检测原理】铁磁性材料工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁场,在合适的光照下形成目视可见的磁痕,从而显示出不连续性的位置、大小、形状和严重程度.【适用范围】1适用于检测铁磁性材料工件表面和近表面尺寸很小,间隙极窄的裂纹和目视难以看出的缺陷.2适用于检测马氏体不锈钢和沉淀硬化不锈钢材料,不适用于检测奥氏体不锈钢材料.3适用于检测未加工的原材料(如纲坯)和加工的半成品、成品件及在役与使用过的工件.4适用于检测管材棒材板材形材和锻钢件铸钢件及焊接件.5使用于检测工件表面和近表面的缺陷,但不适用于检测工件表面浅而宽的缺陷、埋藏较深的内部缺陷和延伸方向与磁力线方向夹角小于20度的缺陷.渗透检验Penetrant Testing(PT)通过施加渗透剂,用洗净剂去除多余部分,如有必要,施加显像剂以得到零件上开口于表面的某些缺陷的指示。
radiographic testing;RT射线探伤是利用射线穿透物体来发现物体内部缺陷的探伤方法。
射线能使胶片感光或激发某些材料发出荧光。
射线在穿透物体过程中按一定的规律衰减,利用衰减程度与射线感光或激发荧光的关系可检查物体内部的缺陷。
射线探伤分为X射线探伤、γ射线探伤、高能射线探伤和中子射线探伤。
射线对人体是有害的。
探伤作业时,应遵守有关安全操作规程,应采取必要的防护措施。
X射线探伤装置的工作电压高达数万伏乃至数十万伏,作业时应注意高压的危险。
射线探伤(x、γ)方法(RT)射线探伤要用放射源发出射线,人员受到辐射,患白血病的概率增加。
操作人员应穿好防护服,并注意放射源的妥善保存。
超声检测(UT)工业上无损检测的方法之一。
超声波进入物体遇到缺陷时,一部分声波会产生反射,发射和接收器可对反射波进行分析,就能异常精确地测出缺陷来.并且能显示内部缺陷的位置和大小,测定材料厚度等.原理超声波是频率高于20千赫的机械波。
五种探伤
UT-超声波探伤RT-射线探伤附五种无损探伤检验方法的简称和全称:目视亦叫外观VI(visual inspection)渗透PT(penetrant technique)磁粉MT(magnetic particle technique/inspection)超声波UT(ultrasonic technique)射线RT(radiographic technique)1.RT检测还是无损检测的分类??无损检测(无损探伤)nondestryctive testing(NDT)就是对焊接加工件进行非破坏性检验和测量。
1 渗透检验penetrant festing(PT)通过施加渗透剂,用洗净剂去除多余部分,如有必要,施加显像剂以得到零件上开口于表面的某些缺陷的指示。
2 磁粉检验maganetic particle testing(MT)利用漏磁和合适的检验介质发现试件表面和近表面的不连续性的无损检测方法。
3 涡流检验eddy current testing(ET)应用在试件中的涡流(由于外磁场在时间或空间上的变化而在导体表面及近表面产生的感应电流),分析试件质量信息的无损检测方法。
4 超声检验ultrasonic testing(UT)超声波在被检材料中传播时,根据材料缺陷所显示的声学性质对超声波传播的影响来探测其缺陷的方法。
5 射线检验radiographic testing(RT)利用X射线或核辐射以探测材料中的不连续性,并在记录介质上显示其图像。
磁粉检测只能对金属或焊缝表面探伤,而超声波和X光主要检测焊缝内部缺陷.轻型钢屋架焊缝探伤用超声波就合适了.根据焊缝形式选择不同的探头,根据板厚调整区间,在焊缝两边50mm宽左右打磨光亮涂上耦合剂,用探头沿焊缝垂直方向小范围移动,同时沿焊缝长方向移动,观察示波仪显示的波形判断缺陷的深度,长度等.说起来简单,操作起来是较复杂的,不是经过学习实践过的专业人员很难准确的判断缺陷,建议请专业的有资质的探伤公司来做,并出具相应的报告.一些行业对资质的要求非常严格,操作员要有专业的操作证,做探伤的公司也要有权威机构的认可,才能出具被政府或行业认可的报告.磁粉检测只能对金属或焊缝表面探伤,而超声波和X光主要检测焊缝内部缺陷.轻型钢屋架焊缝探伤用超声波就合适了.根据焊缝形式选择不同的探头,根据板厚调整区间,在焊缝两边50mm宽左右打磨光亮涂上耦合剂,用探头沿焊缝垂直方向小范围移动,同时沿焊缝长方向移动,观察示波仪显示的波形判断缺陷的深度,长度等.说起来简单,操作起来是较复杂的,不是经过学习实践过的专业人员很难准确的判断缺陷,建议请专业的有资质的探伤公司来做,并出具相应的报告.一些行业对资质的要求非常严格,操作员要有专业的操作证,做探伤的公司也要有权威机构的认可,才能出具被政府或行业认可的报告.。
模具材料无损探伤方法大全
工业无损探伤的方法很多,目前,国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法:射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。
用户应结合自身特定的条件和需求,来选购更适合于本公司的探伤产品。
1.射线探伤方法射线探伤是利用射线的穿透性和直线性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有X光和同位素发出的γ射线,分别称为X光探伤和γ射线探伤。
当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。
此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器,也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的,因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感,即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤,另,射线探伤价格一般较贵。
2.超声波探伤方法人们的耳朵能直接接收到的声波频率范围通常是20Hz到20kHz,即音(声)频。
频率低于20Hz的称为次声波,高于20kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常,用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。
五大常规无损检测原理
五大常规无损检测原理无损检测技术不破坏零件或材料,可以直接在现场进行检测,而且效率高。
目前,最常用的无损检测主要有五种:超声检测(Ultrasonic Testing)、射线检测(Radiographic Testing)、磁粉检测(Magnetic particle Testing)、渗透检测(Penetrant Testing)、涡流检测(Eddy current Testing)。
超声检测原理超声波是频率高于20千赫的机械波。
在超声探伤中常用的频率为0.5-5兆赫。
这种机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射。
这种反射现象可被用来进行超声波探伤,最常用的是脉冲回波探伤法探伤时,脉冲振荡器发出的电压加在探头上(用压电陶瓷或石英晶片制成的探测元件),探头发出的超声波脉冲通过声耦合介质(如机油或水等)进入材料并在其中传播,遇到缺陷后,部分反射能量沿原途径返回探头,探头又将其转变为电脉冲,经仪器放大而显示在示波管的荧光屏上。
根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。
除回波法外,还有用另一探头在工件另一侧接受信号的穿透法。
利用超声法检测材料的物理特性时,还经常利用超声波在工件中的声速、衰减和共振等特性。
射线检测原理射线的种类很多,其中易于穿透物质的有X射线、γ射线、中子射线三种。
这三种射线都被用于无损检测,其中X射线和γ射线广泛用于锅炉压力容器焊缝和其他工业产品、结构材料的缺陷检测,而中子射线仅用于一些特殊场合。
射线检测最主要的应用是探测试件内部的宏观几何缺陷(探伤)。
按照不同特征,例如使用的射线种类、记录的器材、工艺和技术特点等,可将射线检测分为许多种不同的方法。
射线照相法是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损的检测方法。
该方法是最基本的,应用最广泛的一种射线检测方法。
五种常规无损探伤方法比较
1.直观显示缺陷的形状、位置、大小
2.灵敏度高,可检缺陷最小宽度约为1μm
3.几乎不受试件大小和形状的限制
4.检测速度快、工艺简单、费用低廉
5.操作简便、仪器便于携带
1.只能用于铁磁性材料
2.只能发现表面和近表面缺陷
3.对缺陷方向性敏感
4.能知道缺陷的位置和表面长度,但不知道缺陷的深度
检测铸件、银件、焊缝和机械加式零件等铁磁性材料的表面和近表面缺陷(如裂纹)
渗透
1.设备简单,操作简便,投资小
2.效率高(对复杂试件也只需一次检验)
3.适用范围广(对表面缺陷,一般不受试件材料种类及其外形轮廓限制)
1.只能检测开口于表面的缺陷,且不能显示缺陷深度及缺陷内部的形状和尺寸
2.无法或难以检查多孔的材料,检测结果受试件表面粗糙度影响
3.难于定量控制检验操作程序,多凭检验人员经验、认真程度和视力的敏锐程度
用于检验有色和褐色金属的铸件、焊接件以及各种陶瓷、塑料、玻璃制品的裂纹、气孔、分层、缩孔、疏松、折叠及其他开口于表面的缺陷
涡流
1.适于自动化检测(可直接以电信号输出)
2.非接触式检测,无需耦合剂且速度快
3.适用范围较广(既可检测缺陷也可检测材质、形状与尺寸变化等)
1.只限用于导电材料
2.对形状复杂试件及表面下较深部位的缺陷检测有困难,检测结果尚不直观,判断缺陷性质、大小及形状尚难
用于钢铁、有色金属等导电材料所制成的试件,不适于玻璃、石头和合成树脂等非金属材料
超声波
1.适于内部缺陷检测,探测范围大、灵敏度高、效率高、操作简单
2.适用广泛、适用灵活、费用低廉
1.探伤结果显示不直观,难于对缺陷作精确定性和定量
2.一般需用耦合剂合材料的铸、银、焊接与板材
机械零件探伤方法与发展趋势
机械零件探伤方法与发展趋势一、五大无损探伤方法无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法。
五大常规方法是指射线探伤法、超声波探伤法、涡流探伤法、磁粉探伤法和渗透探伤法。
1、射线探伤方法射线探伤是利用射线的穿透性和直线性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。
此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。
因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。
即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
2、超声波探伤方法人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。
频率低于20Hz的称为次声波,高于20kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。
根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。
汽车维修中的五大常规探伤方法及其选取
些 . 用 照相 底 片接 收 , 感 光量 就大 些 , 可 以从 若 则 就 底 片 上反 映 出 缺 陷垂 直 于射 线方 向 的平 面投 影 : 若 用 其它 接 收器 来 接 收 , 同样 可 以用仪 表 来 反 映缺 也 陷垂直 于射 线方 向的平 面投 影 和射线 的 透过 量 。由 此 可见 , 般 情况 下 , 线 探 伤是 不 易 发 现裂 纹 的 , 一 射 或 者说 , 射线 探伤 对 裂纹是 不 敏感 的 。因此 , 线探 射
习 惯 上 称 为 漏 磁探 伤 , 常借 缺 陷 , 比磁 粉 探伤 更 卫生 , 霍 它 但不 如 前者 直 观 。由于 目前磁 力探 伤 主要用 磁粉 来 显示 缺 陷 , 因此 , 们 有 时 把 磁 粉 探 伤 直 接 称 为 磁 人
反 射 面 则 越 大 , 反 射 的 能量 也 就 越 大 , 其 因此 可 根 据 反射 能量 的大 小来 查 知各 缺 陷 ( 当量 ) 的大小 。常 用 的探 伤 波形 有 纵 波 、 波 、 面波 等 , 二 者适 用 横 表 前 于 探 测 内部 缺 陷 , 者 适 宜 于探 测 表 面缺 陷 , 对 后 但 表 面 的条件要 求 高 。 磁 粉 探 伤 法 磁 粉 探 伤 是 建 立 在 漏 磁 原 理 基 础 上的一种 磁力 探 伤方法 。当磁 力 线穿 过铁 磁材 料
五 大 常 规 探 伤 方 法 概 述
汽 车 维 修 中 的 五 大 常规 探 伤 方 法 是 指 射 线 探
伤 法 、 声 波 探 伤 法 、 粉 探 伤 法 、 流 探 伤 法 和 渗 超 磁 涡
透 探伤 法 。 射 线探 伤 法 射 线 探 伤 是 利 用 射 线 的 穿 透 性 和 直线性 来 探伤 的方 法 。这 些射 线 虽然 不会 像 可见
五大常规无损检测
磁粉检测 (M T)【磁粉检测】磁粉检测(Magnet ic Partic le Testin g,缩写符号为M T),又称磁粉检验或磁粉探伤,属于无损检测五大常规方法之一。
【磁粉检测原理】铁磁性材料工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁场,在合适的光照下形成目视可见的磁痕,从而显示出不连续性的位置、大小、形状和严重程度.【适用范围】1适用于检测铁磁性材料工件表面和近表面尺寸很小,间隙极窄的裂纹和目视难以看出的缺陷.2适用于检测马氏体不锈钢和沉淀硬化不锈钢材料,不适用于检测奥氏体不锈钢材料.3适用于检测未加工的原材料(如纲坯)和加工的半成品、成品件及在役与使用过的工件.4适用于检测管材棒材板材形材和锻钢件铸钢件及焊接件.5使用于检测工件表面和近表面的缺陷,但不适用于检测工件表面浅而宽的缺陷、埋藏较深的内部缺陷和延伸方向与磁力线方向夹角小于20度的缺陷.渗透检验Pe netra nt Testin g(PT)通过施加渗透剂,用洗净剂去除多余部分,如有必要,施加显像剂以得到零件上开口于表面的某些缺陷的指示。
radiographic testing;RT射线探伤是利用射线穿透物体来发现物体内部缺陷的探伤方法。
射线能使胶片感光或激发某些材料发出荧光。
射线在穿透物体过程中按一定的规律衰减,利用衰减程度与射线感光或激发荧光的关系可检查物体内部的缺陷。
射线探伤分为X射线探伤、γ射线探伤、高能射线探伤和中子射线探伤。
射线对人体是有害的。
探伤作业时,应遵守有关安全操作规程,应采取必要的防护措施。
X射线探伤装置的工作电压高达数万伏乃至数十万伏,作业时应注意高压的危险。
无损检测常规检测方法
Nea rfiel d Farfield
Phased Array Probe
ROWA – Core Flaws Testing
SI Gate Entrance Echo
40 °
A-SCAN 1: EE
Position 4
ห้องสมุดไป่ตู้
Setting EE gate for triggering
Gate EE
Gate Core Flaw 22°
超声波纵波反射法(直探头)缺陷波形表现方式
Phase Array Basics – Relation
Sound field
Virtual Probe
Single Element Probe
Counterpiece for probe
Sound field of a virtual probe is equal to the sound field of a single probe with the same size
Position 3
0 °
Gate Back Wall Echo
Position 2
SI
Position 1
EE
1.BWE
2.BWE
1st BWE
A-SCAN 2:
Setting BWE gate + core flaw gate
Gate BWE Gate Core Flaw
EE
1.BWE
GE Sensing & Inspection Technologies
无损检测常规检测方法 五大常规
超声波探伤
超声检测:是根据超声波与物质的相互作用,超声波在弹性 介质中的传播和在异质界面上的反射、折射等原理探测缺陷 的检测方法。 超声波探伤特点: ①、对裂纹、缩孔、白点、宏观夹杂等危险性缺陷灵敏度高。 ②、探测厚度范围大,几毫米至几米。 ③、适于各种管材、棒材、锻件、板材以及复合材料等检测。 ④、评定不直观、定性困难。
术语知识--五大无损检测方法
一、常用压力容器无损检测方法有:射线(RT)、超声波(UT)、磁粉(MT)、渗透 (PT)、涡流(ET)、目视(VT))、泄露(LT)、声发射(AE)。
优先采用射线(RT),一般角焊缝采用渗透(PT),当不能使用射线的特殊情况使用其他的方法。
在常规无损检测中法主要应用:射线和超声:内部缺陷。
磁粉和涡流:表面的近表面。
渗透:表面开口缺陷。
二、涡流检测:ET ,Eddy current testing给线圈一个交流电,在一定条件下通过的电流是不变的。
如果把线圈靠近被测工件,工件内会产生涡流,受涡流的影响,线圈电流也会发生变化,由于涡流的大小随工件内有没有缺陷而不同,所以,根据线圈电流变化的大小反映有无缺陷。
(仅能反映试件表面或近表面处的情况,不适用检测金属材料深层的内部缺陷,无法判定具体位置。
)根据试件的形状和检测目的不同,常用以下三种线圈:1.穿过式:管材、棒材、线材,可发现裂纹、夹杂、凹坑等。
2.探头式:局部检测,金属板、管或其他零件,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳裂纹。
3.插入式:也称内部探头,检查管道内壁的腐蚀程度。
也可测量镀层和涂膜的厚度。
检测对象必须是导电材料。
三、射线检测:RT, Radiology testing物体上缺陷会改变物体对射线(X射线)的衰减,引起透射射线强度的变化,采用一定的检测方法,比如胶片感光,来检测射线强度,就可以判断缺陷的位置和大小。
(反映内部质量情况,不损伤被检物,直观成像,方便实用。
对人体有副作用甚至一定伤害,环境污染。
)射线检测基本原理关系式:△L/L=(U-U′) △T/1+n△L/L:物体对比度,L是射线强度,△L是射线强度增量,U:物质线衰减系数,U′:缺陷线衰减系数,△T:射线照射方向上的厚度差,n:散射比。
按检测技术可以分为:照相、实时成像、层析检测。
按检测方式分:固定、移动式。
分类:胶片成像工艺、数字成像工艺。
四种应用类型:质量检测:铸造、焊接工艺缺陷检测。
常用无损探伤及使用原则说课讲解
常用无损探伤及使用原则工业无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法.本文将首先介绍五大常规探伤方法及其特点,并结合电厂管道焊接的特定条件和需求,选出适合探伤方法。
除以上五大常规方法外,近年来又有了红外,声发射等一些新的探伤方法.五大常规方法是指:1、射线探伤法 RT:检测内部有气孔,夹渣、未焊透等体积型缺陷,不易发现裂纹等面积型缺陷。
2、超声波探伤法 UT:纵波,横波适用于探测内部缺陷, 表面波适宜于探测表面缺陷,但对表面的条件要求高.3、磁粉探伤法 MT:能探查气孔, 夹杂,未焊透等体积型缺陷, 但更适于检查因淬火, 轧制, 锻造,铸造,焊接,电镀,磨削,疲劳等引起的裂纹。
4、涡流探伤法 ET:能确定表面及近表面缺陷的位置和相对尺寸5、渗透探伤法 PT。
能确定表面开口缺陷的位置、尺寸和形状。
一、射线探伤方法:射线探伤是利用射线的穿透性和直线性来探伤的方法. 这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收.常用于探伤的射线有 x 光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤.当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小.此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔,夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影; 若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的.因此,射线探伤对气孔,夹渣,未焊透等体积型缺陷最敏感.即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
火力发电厂金属监督五大常规无损检测的特点及应用范围
火力发电厂金属监督五大常规无损检测的特点及应用范围一、射线检测射线检测是五大常规无损检测方法之一,简称RT。
1、射线检测原理射线检测是利用射线强大的穿透力以及使感光物质感光等特性进行对工件的质量状态的检验。
射线穿透有缺陷的工件时,工件各部分对射线的吸收率不同,这样能量不同的射线在照相底片上形成的图像黑度就会有所不同。
通过观察射线底片图像,对照检验标准就可知道被检工件质量是否符合要求。
图2.1.1 射线检测原理图由于射线在胶片上形成的只是潜影,故还需要对胶片进行暗室处理,使其显影,然后无损检测人员才能根据底片影像对其评定记录。
2、射线检测的特点射线检测的优点和局限性概况如下:(1)检测结果有直接记录——底片。
由于底片上记录的信息十分丰富,且可以长期保存,从而使射线检测成为各种无损检测方法中记录最真实、最直观、最全面、可追踪性最好的检测方法。
(2)可以获得缺陷的投影图像,缺陷定性定量准确。
各种无损检测方法中,射线检测对缺陷定性是最准的。
在定量方面,对体积型缺陷(气孔、夹渣类)的长度、宽度尺寸的确定也很准,其误差大致在零点几毫米。
但对面积型缺陷(如裂纹、未熔合类),如缺陷端部尺寸(高度和张口宽度)很小,则底片上影像尖端延伸可能辨别不清,此时定量数据会偏小。
(3)体积型缺陷检出率很高。
而面积型缺陷的检出率受到多种因素影响体积型缺陷是指气孔、夹渣类缺陷。
一般情况下,射线检测大致可以检出直径在试件厚度1%以上的体积型缺陷,但在薄试件中,受人眼分辨率的限制,可检出缺陷的最小尺寸大致在0.5mm左右。
面积型缺陷是指裂纹、未熔合类缺陷,其检出率的影响因素包括缺陷形态尺寸、透照厚度、透照角度、透照几何条件、源和胶片种类、像质计灵敏度等。
由于厚工件影像细节显示不清,所以一般来说厚试件中的裂纹检出率较低,但对薄试件,除非裂纹或未熔合的高度和张口宽度极小,否则只要照相角度适当,底片灵敏度符合要求,裂纹检出率还是足够高的。
五大常规无损检测技术的原理和特点
五大常规无损检测技术的原理和特点一、射线检测(RT)射线检测(RadiographicTesting),业内人士简称RT,是工业无损检测(NondestructiveTesting)的一个紧要专业门类。
射线检测紧要的应用是探测工件内部的宏观几何缺陷。
依照不同特征,可将射线检测分为多种不同的方法,例如:X射线层析照相(X—CT)、计算机射线照相技术(CR)、射线照相法,等等。
射线照相法,利用X射线管产生的X射线或放射性同位素产生的γ射线穿透工件,以胶片作为记录信息的器材的无损检测方法。
该方法是最基本、应用广泛的的一种射线检测方法,也是射线检测专业培训的紧要内容。
(一)射线照相法的原理射线检测,本质上是利用电磁波或者电磁辐射(X射线和γ射线)的能量。
射线在穿透物体过程中会与物质发生相互作用,因吸取和散射使其强度减弱。
强度衰减程度取决于物质的衰减系数和射线在物质中穿透的厚度。
假如被透照物体(工件)的局部存在缺陷,且构成缺陷的物质的衰减系数又不同于试件(例如在焊缝中,气孔缺陷里面的空气衰减系数远远低于钢的衰减系数),该局部区域的透过射线强度就会与四周产生差别。
把胶片放在适当位置使其在透过射线的作用下感光,经过暗室处理后得到底片。
射线穿透工件后,由于缺陷部位和完好部位的透射射线强度不同,底片上相应部位等会显现黑度差别。
射线检测员通过对底片的察看,依据其黒度的差别,便能识别缺陷的位置和性质。
(二)射线照相法的特点1、适用范围适用于各种熔化焊接方法(电弧焊、气体保护焊、电渣焊、气焊等)的对接接头,也能检查铸钢件,在特殊情况下也可用于检测角焊缝或其他一些特殊结构工件。
2、射线照相法的优点①缺陷显示直观:射线照相法用底片作为记录介质,通过察看底片能够比较准确地推断出缺陷的性质、数量、尺寸和位置。
②容易检出那些形成局部厚度差的缺陷:对气孔和夹渣之类缺陷有特别高的检出率。
③射线照相能检出的长度和宽度尺寸分别为毫米数量级和亚毫米数量级,甚至更少,且将近不存在检测厚度下限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五大常规探伤方法概述及其特点工业无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法。
本文将首先介绍五大常规探伤方法及其特点,并结合汽车维修中的特定条件和需求,选出更适合于汽车维修的探伤方法。
一、五大常规探伤方法概述五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。
1、射线探伤方法射线探伤是利用射线的穿透性和直线性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
当这些射线穿过物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越校此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。
因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。
即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
2、超声波探伤方法人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音频。
频率低于20Hz的称为次声波,高于20kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。
根据超声波在介质中传播的速度和传播的时间,就可知道缺陷的位置。
当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷的大校常用的探伤波形有纵波、横波、表面波等,前二者适用于探测内部缺陷,后者适宜于探测表面缺陷,但对表面的条件要求高。
3、磁粉探伤方法磁粉探伤是建立在漏磁原理基础上的一种磁力探伤方法。
当磁力线穿过铁磁材料及其制品时,在其不连续处将产生漏磁场,形成磁极。
此时撒上干磁粉或浇上磁悬液,磁极就会吸附磁粉,产生用肉眼能直接观察的明显磁痕。
因此,可借助于该磁痕来显示铁磁材料及其制品的缺陷情况。
磁粉探伤法可探测露出表面,用肉眼或借助于放大镜也不能直接观察到的微小缺陷,也可探测未露出表面,而是埋藏在表面下几毫米的近表面缺陷。
用这种方法虽然也能探查气孔、夹杂、未焊透等体积型缺陷,但对面积型缺陷更灵敏,更适于检查因淬火、轧制、锻造、铸造、焊接、电镀、磨削、疲劳等引起的裂纹。
磁力探伤中对缺陷的显示方法有多种,有用磁粉显示的,也有不用磁粉显示的。
用磁粉显示的称为磁粉探伤,因它显示直观、操作简单、人们乐于使用,故它是最常用的方法之一。
不用磁粉显示的,习惯上称为漏磁探伤,它常借助于感应线圈、磁敏管、霍尔元件等来反映缺陷,它比磁粉探伤更卫生,但不如前者直观。
由于目前磁力探伤主要用磁粉来显示缺陷,因此,人们有时把磁粉探伤直接称为磁力探伤,其设备称为磁力探伤设备。
4、涡流探伤方法涡流探伤是由交流电流产生的交变磁场作用于待探伤的导电材料,感应出电涡流。
如果材料中有缺陷,它将干扰所产生的电涡流,即形成干扰信号。
用涡流探伤仪检测出其干扰信号,就可知道缺陷的状况。
影响涡流的因素很多,即是说涡流中载有丰富的信号,这些信号与材料的很多因素有关,如何将其中有用的信号从诸多的信号中一一分离出来,是目前涡流研究工作者的难题,多年来已经取得了一些进展,在一定条件下可解决一些问题,但还远不能满足现场的要求,有待于大力发展。
涡流探伤的显著特点是对导电材料就能起作用,而不一定是铁磁材料,但对铁磁材料的效果较差。
其次,待探工件表面的光洁度、平整度、边介等对涡流探伤都有较大影响,因此常将涡流探伤用于形状较规则、表面较光洁的铜管等非铁磁性工件探伤。
5、渗透探伤方法渗透探伤是利用毛细现象来进行探伤的方法。
对于表面光滑而清洁的零部件,用一种带色或带有荧光的、渗透性很强的液体,涂覆于待探零部件的表面。
若表面有肉眼不能直接察知的微裂纹,由于该液体的渗透性很强,它将沿着裂纹渗透到其根部。
然后将表面的渗透液洗去,再涂上对比度较大的显示液。
放置片刻后,由于裂纹很窄,毛细现象作用显著,原渗透到裂纹内的渗透液将上升到表面并扩散,在白色的衬底上显出较粗的红线,从而显示出裂纹露于表面的形状,因此,常称为着色探伤。
若渗透液采用的是带荧光的液体,由毛细现象上升到表面的液体,则会在紫外灯照射下发出荧光,从而更能显示出裂纹露于表面的形状,故常常又将此时的渗透探伤直接称为荧光探伤。
此探伤方法也可用于金属和非金属表面探伤。
其使用的探伤液剂有较大气味,常有一定毒性。
除以上五大常规方法外,近年来又有了红外、声发射等一些新的探伤方法。
二、汽车维修中探伤的特定条件及要求汽车在制造过程中,经过了一系列的探伤,层层把关均完好无损,才作为合格产品出厂。
汽车到达用户手里后,在运行中一些零部件常常承受着交变应力。
在长期交变应力的作用下,原来完好的零部件也将产生疲劳裂纹。
这种疲劳裂纹一般都是起始于零部件表面,再从外表逐渐向内发展,即属于表面裂纹。
有的转动零部件在过热或交变应力作用下,产生了表面裂纹后,又有可能因转动碾磨而在该表面产生一层织密的覆盖层,遮盖了其裂纹,变成了未露出表面的近表面裂纹。
初期的表面裂纹一般十分微小,用肉眼或借助于放大镜也难于观察到,而对近表面裂纹,则是不可能观察到的。
具有这种初期微小裂纹的零部件,并不马上就断裂,但是,已具有了隐患。
因此,汽车维修中的探伤任务主要是探知其零部件是否有极细微的表面和近表面裂纹,以消除汽车在行驶中的安全隐患;其次,经过运行后的各零部件表面状况不如新出厂时的好,而是根据运行情况各有所异;再次,汽车维修中待探查的各零部件外表形态的尺寸大小各异,即品种多、数量少;另外,其工作场地一般也不如制造厂的条件好;同时,工期一般又要求更急。
因此,我们只能结合维修中的这些特定条件和需求,来选取更为适合汽车维修的探伤方法。
三、探伤在汽车维修中的应用在汽车维修中的待探零部件主要是用钢铁材料制成,探伤的目的主要是探查有无表面和近表面裂纹。
通过上述几种探伤方法的比较可知:磁粉探伤对铁磁质零部件的表面和近表面探伤灵敏度都比较高,且无毒,对零部件的形状、表面要求和技术要求以及投资要求都较低,而且直观、方便。
因此,在汽车维修的无损探伤方法中,目前采用磁粉探伤法比较好。
事实上,在汽车制造厂中对汽车的零部件,主要也是采用磁粉探伤。
人们在对其进行大量磁粉探伤的基础上,对一些汽车零部件,如曲轴、凸轮轴、连杆、气门、活塞销、油嘴等制订了相应的磁粉探伤标准。
在汽车维修中,对零部件的磁粉探伤可借鉴这些标准,以增大探伤的可靠性。
而其它探伤方法,目前因在对汽车零部件探伤中用得少,还无相应的探伤标准。
(慧聪汽车维修保养网)无损检测:无损探伤常用的方法以及常用设备时间:2012-09-17 10:33来源:杰创立仪器仪表网作者:测振仪点击: 264次无损检测英文名字叫NDT (Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。
从事无损检测的人员需要接受专业的培训,获得资质才能持证上岗。
各个国家、区域、机构针对无损检测培训资质认证均有不同的要求,受训前应该了解清楚,选择合适的标准、机构进行相关的培训与考核。
无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。
常用的无损检测方法:射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT) 四种。
其他无损检测方法:涡流检测(ET)、声发射检测(AT)、热像/红外(TIR)、泄漏试验(LT)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)等。
下面我们简单介绍下常见的几种如下:1、射线探伤方法射线探伤是利用射线的穿透性和直线超声波探伤仪性来探伤的方法。
这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。
此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
因此,用射线来照射待探超声波探伤仪伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。
由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。
因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。
即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。
2、超声波探伤方法人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。
频率低于20 Hz的称为次声波,高于20kHz的称为超声波。
工业上常用数兆赫兹超声波来探伤。
超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理超声波探伤仪。
根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。
当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。
常用的探伤波形有纵波、横波、表面波等,前二者适用于探测内部缺陷,后者适宜于探测表面缺陷,但对表面的条件要求高。
3、磁粉探伤方法磁粉探伤是建立在漏磁原理基础上的一种磁力探伤方法。