Preparation and reactive applications of nanoporous
化学经典文献汇总
高分子1.T. Yokozawa and Y. Ohta. Transformation of Step-Growth Polymerization into Living Chain-Growth Polymerization. Chemical Review, 116: 1950–1968, 20162.X. Q. Cheng, Z. X. Wang and X. Jiang et al. Towards sustainable ultrafast molecular-separationmembranes: From conventional polymers to emerging materials. Progress in Materials Science, 92: 258-283, 20183.Stephen Mann. Life as a Nanoscale Phenomenon. Angew. Chem. Int. Ed., 47: 5306 – 5320, 2008(超标,但经典)4. A. Ciferri. Translation of Molecular Order to the Macroscopic Level. Chemical Review, 116:1353–1374, 20165. A. Gandini, T. M. Lacerda and A. J. F. Carvalho et al. Progress of Polymers from RenewableResources: Furans, Vegetable Oils, and Polysaccharides. Chemical Review, 116: 1637–1669, 20166.H. Abbasi, M. Antunes and J. I. Velasco. Recent advances in carbon-based polymernanocomposites for electromagnetic interference shielding. Progress in Materials Science, 103: 319-373, 20197.Z. Li, L. Wang and Y. Li et al. Carbon-based functional nanomaterials: Preparation, propertiesand applications. Composites Science and Technology, 179: 10-40, 20198. C. Pramanik, D. Nepal and M. Nathanson et al. Molecular engineering of interphases inpolymer/carbon nanotube composites to reach the limits of mechanical performance.Composites Science and Technology, 166: 84-96, 20189.L. Liu, C. Jia, J. He et al. Interfacial characterization, control and modification of carbon fiberreinforced polymer composites. Composites Science and Technology, 121: 56-72, 201510.J. Karger-Kocsis, H. Mahmood and A. Pegoretti. Recent advances in fiber/matrix interphaseengineering for polymer composites. Progress in Materials Science, 73: 1-43, 2015材料化学11.B. Kang , G. Ceder, Battery materials for ultrafast charging and discharging [J], Nature, 2009,458: 190-193.12.H. G. Yang, C. H. Sun, S. Z. Qiao, Anatase TiO2 single crystals with a large percentage of reactivefacets[J]. Nature, 2008, 453(7195): 638-641.13.孙世刚,陈胜利,《电化学丛书:电催化》[M],化学工业出版社, 2013年11月1日.14.Y. Xie, Y. Qian, W. Wang, S. Zhang, Y. Zhang, A Benzene-thermal synthetic route tonanocrystalline GaN. Science, 1996, 272 (5270):1926-1927.15.F. Caruso, R. A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheresby colloidal templating, Science, 1998, 282(5391):1111-4.化学16.“Research Perspectives during 40 years of the Journal of Catalysis”, Journal of Catalysis,Volume216, Issues 1-2, May-June 2003, Page 2-11.17.“With Computers from Atoms to Macromolecular Systems (从原子到大分子体系的计算机模拟)”, Enrico Clementi, Giorgina Corongiu, Progress in Chemistry(化学进展)2011, Vol.23, Issues 9,1795-1830. (第23卷第9期1795-1830,2011年9月).18.“The role of analytical chemistry in exposure science: Focus on the aquatic environment”,Chemosphere, 2019, 222, 564-583.19.“Photoredox functionalization of C-H bonds adjacent to a nitrogen atom.”Chem. Soc. Rev.,Shi, L.; Xia, W., 2012, 41 (23), 7687-97.20.“Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis,”Liang, Y.; Zhang,X.; MacMillan, D. W. C., Nature 2018,559(7712), 83-88应用化学21.M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M.Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9(6):1989-199722.S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, Abreakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J Am Chem Soc, 2017, 139(22):7504-751223.Y. Tu, X. Yang, R. Su, D. Luo, Y. Cao, L. Zhao, T. Liu, W. Yang, Y. Zhang, Z. Xu, Q. Liu, J. Wu, Q. Gong,F. Mo, R. Zhu, Diboron-assisted interfacial defect control strategy for highly efficient planarperovskite solar cells. Adv Mater, 2018, 30 (49):180508524.H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B.Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.H. Lu, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355 (6326):722-72625.J. Liang, Z. Liang, R. Zou, Y. Zhao, Heterogeneous catalysis in zeolites, mesoporous silica, andmetal-organic frameworks, Adv. Mater. 2017, 29(30): 1701139.26.M. Dong, M. Zhao, S. Ou, C. Zou, C.Wu, A Luminescent Dye@MOF Platform: EmissionFingerprint Relationships of Volatile Organic Molecules. Angew. Chem. Int. Ed. 2014, 53, 1575 –1579.27.X. Xu, B. Yan, Intelligent Molecular Searcher from Logic Computing Network Based on Eu(III)Functionalized UMOFs for Environmental Monitoring. Adv. Funct. Mater. 2017, 27, 1700247-1700258.28.N. Du, J. Song, S. Li, Y. Chi, F. Bai, Y. Xing, A Highly Stable 3D Luminescent Indium−PolycarboxylicFramework for the Turn-off Detection of UO22+,Ru3+, and Biomolecule Thiamines. ACS Appl.Mater. Interfaces 2016, 8, 28718-28726.29.J. M. Slocik, C. A. Crouse, J. E. Spowart, R. R. Naik, Biologically tunable reactivity of energeticnanomaterials using protein cages. Nano Lett. 2013, 13:2535−2540.30.H. Wang, R. J. Jacob, J. B. DeLisio, M. R. Zachariah, Assembly and encapsulation of aluminumNP’s within AP/NC matrix and their reactive properties, Combustion and Flame, 2017, 180:175–183.31.X. Jin, V. Balasubramanian, T. Selvan, et al. Highly ordered mesoporous carbon nitridenanoparticles with high nitrogen content: a metal-free basic catalyst. Angewandte Chemie International Edition, 2009, 48(42): 7884-7887.32.A. Vinu, K Ariga, T. Mori, et al. Preparation and characterization of well-ordered hexagonalmesoporous carbon nitride. Advanced materials, 2005, 17(13): 1648-1652.33.J. Senker, K. Schwinghammer, B. Lostch, et al. Crystalline carbon nitride nanosheets forimproved visible-light hydrogen evolution. Journal of the American Chemical Society, 2014, 136(5): 1730-1733.34.F. M. Zhang, J. L. Sheng, Z. D. Yang, X. J. Sun, H. L. Tang, M. Lu, H. Dong, F. C. Shen, J. Liu, and Y.Q. Lan,Rational Design of MOF/COF Hybrid Materials for Photocatalytic H2 Evolution in the Presence of Sacrificial Electron Donors. Angew. Chem. Int. Ed. 2018, 57, 12106–1211035.C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength ofmonolayer graphene. Science, 2008, 321 (5887): 385-388.36.K. Kelly, E. Coronado, L. Zhao, G. Schatz, The optical properties of metal nanoparticles: Theinfluence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107 (3): 668-677.37.M. Gratzel, Photoelectrochemical cells, Nature, 2001, 414 (6861): 338-344.38.M. Stoller, S. Park, Y. Zhu, J. An, R. Ruoff, Graphene-Based Ultracapacitors, Nano Letters, 2008,8 (10): 3498-350239.M. Moliner, C. Martinez, A. Corma, Multipore zeolites: synthesis and catalytic applications,Angew. Chem. Int. Ed. 2015, 54(12): 3560-3579.40.B. Lebeau, A. Galarneau, M. Linden, Introduction for 20 years of research on orderedmesoporous materials, Chem. Soc. Rev., 2013, 42, 3661-3662.实验中心41.Dong-Kwon Lim, Ki-Seok Jeon, Jae-Ho Hwang, et al. Highly uniform and reproduciblesurface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.Natrue nanotechnolygy, 2011, 6, 452-460.42.Jian Feng Li, Yi Fan Huang, Yong Ding, et al, Shell-isolated nanoparticle-enhanced RamanSpectroscopy.Natrue Letters, 2010, 464, 392-395.43.Ronit Freeman,Xiaoqing Liu,and Itamar Willner. Chemiluminescent and ChemiluminescenceResonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer_Substrate Complexes Using Hemin/G-Quadruplexesand CdSe/ZnS Quantum Dots. J. Am. Chem. Soc.2011, 133, 11597–11604.44.Anne M. Evans, CoreyD.DeHaven, Tom Barrett et al. Integrated, Nontargeted UltrahighPerformance Liquid Chromatography/Electrospray IonizationTandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems. Anal. Chem. 2009, 81, 6656–6667.45.Min Zhang, Xihao Zhang, Xiwen He,et al. A self-assembled polydopamine film on the surfaceof magnetic nanoparticles for specific capture of protein. Nanoscale, 2012, 4, 3141–3147. 46.Pengzuo Chen, Tianpei Zhou, Sibo Wang, et al. Dynamic Migration of Surface Fluorine-anionson Cobalt-based Materials Realizing Enhanced Oxygen Evolution Catalysis.Angew. Chem.201809220.47.Bo Zhang, Xueli Zheng, Oleksandr Voznyy, et al.Homogeneously dispersed multimetaloxygen-evolving catalysts. Science, 352 (6283), 333-337.48.Eric J. Popczun, James R. McKone, Carlos G. Read, et al. Nanostructured Nickel Phosphide asan Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267−9270.49.Yanguang Li, Hailiang Wang, Liming Xie,et al. MoS2 Nanoparticles Grown on Graphene: AnAdvanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.50.Camillo Spoeri, Jason Tai Hong Kwan, Arman Bonakdarpour,et al. The Stability Challenges ofOxygen Evolving Electrocatalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation.Angew. Chem. 201608601.51.Xinchuan Du, Jianwen Huang, Junjun Zhang, et al. Modulating Electronic Structures ofInorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angew. Chem.201810104.52.E. L. Unger, E. T. Hoke, C. D. Bailie,et al. Hysteresis and transient behavior in current– voltagemeasurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci., 2014, 7, 3690–3698.53.Julian Burschka, Norman Pellet, Soo-Jin Moon,et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 2013, 316-320.54.Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, et al. Organometal Halide Perovskites asVisible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. 55.Nam-Gyu Park, Michael Grätzel, Tsutomu Miyasaka,et al. Towards stable and commerciallyavailable perovskite solar cells. Nature Energy, 2016, 1 , 1-8.56.Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka, et al. Efficient Hybrid Solar Cells Basedon Meso-Superstructured Organometal Halide Perovskites.Science, 338(6107), 643-647. 57.Tomas Leijtens , Giles E. Eperon , Nakita K. Noel ,et al. Stability of Metal Halide PerovskiteSolar Cells. Adv. Energy Mater. 2015, 5,1-23.58.Jingbi You, LeiMeng, Tze-Bin Song,et al. Improved air stability of perovskite solar cells viasolution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-82.。
陶瓷基复合材料的研究进展及其在航空发动机上的应用
陶瓷基复合材料的研究进展及其在航空发动机上的应用摘要:综述了陶瓷基复合材料(CMCs) 的研究进展。
就CMCs的增韧机理、制备工艺和其在航空发动机上的应用进展作了详细介绍。
阐述了CMCs研究和应用中存在的问题。
最后,指出了CMCs的发展目标和方向。
关键词:陶瓷基复合材料;航空发动机;增韧机理;制备工艺The Research Development of Ceramic Matrix Compositesand Its Application on AeroengineAbstract: The development and research status of ceramic matrix composites were reviewed in this paper. The main topics include the toughening mechanisms, the preparation progress and the application on aeroengine were introduced comprehensively. Also, the problems in the research and application of CMCs were presented. Finally, the future research aims and directions were proposed.Keywords: Ceramic matrix composites, Aeroengine, Fiber toughening,Preparation progress1 引言推重比作为发动机的核心参数,其直接影响发动机的性能,进而直接影响飞机的各项性能指标。
高推重比航空发动机是发展新一代战斗机的基础,提高发动机的工作温度和降低结构重量是提高推重比的有效途径[1]。
现有推重比10一级的发动机涡轮进口温度达到了1500~1700℃,如M88-2型发动机涡轮进口温度达到1577℃,F119型发动机涡轮进口温度达到1700℃左右,而推重比15~20一级发动机涡轮进口温度将达到1800~2100℃,这远远超过了发动机中高温合金材料的熔点温度。
ICT CH Prep + FS Seals 混合结晶封封闭系统说明书
Introduction The ICT CH Prep + FS Seals system is a hybrid concrete sealer, utilizing the benefits of reactive penetrating sealing technology and a micro-coating technology in a two-part system. This sealer provides excellent stain and abrasion resistance, requiring minimal maintenance for years of quality use and abuse.The conditions where this sealer will be used are as varied as the number of people who will use it. This guide provides information about how to apply this sealer, but we fully expect this sealer to respond differently to all of the varied conditions it will face. We always recommend a small-scale test to determine suitability.Preparation: Before You BeginConcrete Surface Preparation Preparing the concrete surface before sealing is an important first step to ensure success with any sealer. The concrete must meet three conditions before starting with the sealer application:• It should be properly • It should be properly • It should be clean and dry. Curing Standard practice is the allow the concrete to cure for 5-7 days after casting, adhering to good concrete curing practices. This ensures the cement matrix is maturing and the internal moisture ICT CH Prep + FS Seals Reactive Sealer Application GuideAcid Etching: Acid etching provides a "tooth" for the sealer and dissolves any weak materialin the substrate that may prohibit sealer from fully penetrating and adhering. Etching is mostoften performed on cream finishes, or concrete that’s left untouched after it is demolded.Keep in mind acid etching mainly affects the cement paste, and will not change the surface ofexposed glass, tile, or exposed stone such as quartz or granite. Etching may not entirely remove surface residue like wax or form release agents. For that we recommend light scrubbing witha non-woven abrasive pad. Muriatic acid substitutes are not recommended with ICT reactivesealers. These types of acids can cause inconsistent reactions with the sealer. After acid etching, rinse well with clean water to remove any acid residue.Wet Sanding: A popular and easy way to lightly work the surface without exposing sand grains is to hand-sand the surface using Buddy Rhodes hand pads. Use a 400-grit hand pad, as coarser grit can leave scratches and can be too aggressive. The hand pads should always be used wet to prevent scratching the concrete surface. They're a great way to remove surface residue and tolightly smooth the concrete’s surface. A wet-sanded surface can be etched to further enhancethe microscopic tooth.Dry Sanding: A method of opening the surface of the concrete or smoothing the surface ofthe concrete with processing methods that do not depend on the use of water. These methodsinclude using the BR hand pads dry, or using mechanical equipment such as orbital sanders or rotary polishers with dry diamonds pads. All tooling should be attached to vacuum equipment to control any dust that may occur during the surface processing.Cleaning & DryingThe concrete surface should be cleaned after it has been profiled, since etching or sanding concrete creates very fine residue that must be removed before sealing. Non-woven abrasive pads can be used to remove the fine residue. Rinse well with clean water. After cleaning, allow the concrete to fully dry prior to applying sealer. Dry concrete lets the sealer penetrate into the concrete, whereas wet, damp or barely dry concrete does not. A good rule of thumb is to wait a minimum of 12 hours for the concrete to dry following total saturation. Cooler shop temperatures will slow evaporation, so if the temperature is below 70°F/21°C, give the concrete more time to dry out. When in doubt, wait 24 hours.EnvironmentICT CH Prep + FS Seals is a Reactive Sealer that benefits from warm concrete conditions. Ideal temperatures for sealer application are between 70°F-95°F (21°C-35°C). Temperatures below 70°Fwill slow down evaporation and the cure time of the sealer. Temperatures above 95°F will increase the chance of the sealer flashing off too quickly, usually resulting in application marks.Moisture and humidity also play an important role with the sealer. Because the sealer is diluted with water, it’s important that the moisture from the Priming and Finish applications dry out between applications. The sealer won’t begin to fully crosslink (cure) until the water that’s in the freshly applied sealer has evaporated. Higher humidity will slow the cure time.Tools and Materials Required for Sealer Application• Small Trigger Spray Bottles• Microfiber Sponges• Microfiber Cloth• Clean Water• Timer2ICT CH Prep + FS Seals Application StagesStage 1 requires multiple Primer Applications using CH Prep. Stage 2 requires multiple Finish Applications using FS Seals. Stage 3 requires an application of Clean and Set.Stage 1: CH Prep Primer ApplicationsFirst Primer Application Technique: Begin by preparing a mixture of 1 part CH Prep to1 part Water. Dampen a microfiber sponge with clean water. Pour some of the CH Prep +Water mixture onto the surface of the concrete. Using the damp microfiber sponge, spreadthe mixture across the entire surface until it is fully covered with a clear film of sealer. Loadthe mixture into a spray bottle. Continue to spray and wipe the mixture onto the surface,maintaining an even, thin film for 10 minutes. Ensure the sealer does not puddle or dry out.Allow the first primer application to dry for 30 minutes. Rinse the applicator sponge with clean water.Second Primer Application Technique: Dampen a microfiber sponge with clean water. Lightly spray a thin coat of the CH Prep + Water mixture onto the sponge and the concrete surface.Wipe the mixture over the concrete surface to achieve a thin, evenly wet film of sealer. Keep the surface wet for 7 minutes. Allow the second primer application to dry for 30 minutes. Rinse the applicator sponge with clean water.Optional Additional Primer Application Technique: Apply full strength CH Prep for 1 to 2applications, keeping the surface wet for about 1 minute. Continuous wiping helps work thesealer into the surface and into any pinholes that may remain. Allow 30 minutes of dry timebetween applications.Wait at least 2 hours before proceeding with the finish applications. Remember that by priming you are adding water into the concrete. ICT, like many sealers, must dry in order for it to begin cross-linking, which is critical for achieving the stain and scratch resistance it offers. Moisture in the concrete, and moisture in previous coats of sealer will slow curing, as will cold and damp shops. Good practice is to be patient and wait longer.Stage 2: FS Seals Finish ApplicationsFinish Application Technique: The finish is applied in methods similar to the primer, except each coat of finish needs to be kept wet for only about 1 minute. This is because the finish does not need to soak in like the primer. Load full strength FS Seals into a spray bottle. Dampen amicrofiber sponge with clean water. Lightly spray a thin coat of FS Seals onto the sponge andthe concrete surface. Wipe the FS Seals over the concrete surface to achieve a thin, evenly wet film of sealer. Keep the surface wet for 1 minute. Allow the finish application to dry for 30minutes. Repeat these steps for up to 4 finish applications.The number of finish applications depends on the stain resistance required for a project. This usually ranges from 1 to no more than 4 applications: 1 application for surfaces that will seeaverage use from expected staining agents, 4 applications for surfaces that will see high use and exposure (commercial kitchens, for example). Be aware that more than 4 applications builds up layers that slow the overall cure of the sealer system. This can ultimately lower the performance of the sealer.Tip: If excess material needs to be removed from the surface, first squeeze out the microfiber sponge, then even out the excess sealer that remains on the concrete. 3: Dampen a paper towel with Clean and Clean and Set residue.Vinegar Multi-Surface Cleaner 4Contact Us Anytime With Questions About Your Project: • Toll-free: (877) 706-5303。
酚醛树脂介绍(英文)-Phenolic Resins
Three reaction sequences must be considered: 1. Formaldehyde addition to phenol. 2. Chain growth or prepolymer formation. 3. Cross linking or curing reaction.
mechanism
Medium (pH)
Acidic medium(1-5)
Molar ratio P/F
1:0.80
Type of poly branched
NOVOLAC (THERMOSETTING
ONE STAGE PROCESS
RESITE CURED RESINS TWO STAGE PROCESS
Phenolic Resin Chemistry
Formaldehyde Reactions -Monomers react with formaldehyde under different conditions to make different products -Reacting under acid conditions yields thermoplastic resins (Novolaks) -Reacting under base conditions yields reactive resins (Resoles) -Resole resins can be used for curing of elastomers
甲壳素脱乙酰酶
甲壳素脱乙酰酶的研究进展摘要:甲壳素是一种天然含氮多糖类物质,脱乙酰基后生成壳聚糖。
由于其资源丰富、结构与性能独特而被广泛应用。
目前,壳聚糖的制备大多采用碱法使甲壳素脱乙酰基,由于此法所用碱液浓度高,反应时间长,产品质量不稳定,且对环境造成严重污染。
而采用酶法可以有效避免以上问题,且利用甲壳素脱乙酰酶的作用,可制备出具有高脱乙酰度且性能独特的壳聚糖。
关键词:甲壳素;脱乙酰酶;壳聚糖。
Abstract:Chitin is a kind of natural nitrogen polysaccharides material, acetyl off to create chitosan. Because of its rich resources, structure and performance of unique and widely used. At present, the preparation of chitosan is used mostly to take off the acetyl chitin exists, because this method used high concentration of lye, reaction time long, the product quality is not stable, and causing serious pollution to the environment. And the enzymatic can effectively avoid above problem, and the use of chitin deacelation enzyme function, can be prepared by a high deacelation degree and performance of the unique chitosan.Key words: chitin; deacetylase; chitosan.1. 甲壳素及壳聚糖概述甲壳素是1811年由法国学者布拉克诺(H. Braconnot)发现的,1823年由欧吉尔(A. Odier)从甲壳动物外壳中提取出来,并命名为chitin,译名为几丁质,又名甲壳质、壳多糖,化学名称为β-(1-4)-2-乙酰氨基-2-脱氧-D-葡萄糖,是N-乙酰-D-葡萄糖胺以β-1,4糖苷键连接起来的直链多聚物[1]。
快速固化通用粘合剂 封装剂说明书
A rapid-curing, general purpose adhesive/encapsulant. It forms a clear, hard, rigid bond or coating in minutes.FEATURESRECOMMENDED APPLICATIONS! 7-minute fixture time !Cures fast for quick metal-to-metal bonding ! 100% reactive, no solvents and repairs! Good dielectric strength ! Pots and encapsulates electronic components ! Good solvent resistanceand assemblies!Bonds metals, fabrics, ceramics, glass, wood ! Seals against dust, dirt and contamination and concrete (in combinations)! Fast-curing, thin set, bonding above 40o FPRODUCT DATAPhysical Properties - (uncured)Color.......................................................................................................................................Clear Mix Ratio By Volume.................................................................................................................1:1Mixed Viscosity................................................................................................8,000-10,000 cps Working Time 28 Grams @ 75o F..............................................................................4 minutes Functional Cure @ 75o F...........................................................................................45 minutes Coverage (Based on 25 ml)........................................................................152 sq.in. @ .010"Specific Volume............................................................................................................23.7 in 3/lb.% Solids by Volume. (100)Performance Characteristics - (7 days cured @ 75o F)Adhesive tensile shear, ASTM D1002*.........................................................................................................................1,400 psi Operating temperature, dry..................................................................................................................................-40o F to +200o F Cured density ASTM D792.......................................................................................................................................1.10 gm/cm 3Cured hardness, ASTM D2240...............................................................................................................................................85D Dielectric strength ASTM D149 (volts/mil).............................................................................................................490 volts/mil **********************"bondlinethickness.Chemical Resistance: 7 days room temperature cure (30 days immersion @ 75o F)KeroseneVG Methanol U 3% Hydrochloric Acid VG Toluene VG Chlorinated Solvent U AmmoniaVG 10% Sulfuric Acid VG10% Sodium Hydroxide VGKey:VG = Very GoodF = FairU = UnsatisfactoryPLEASE CONSULT FACTORY FOR OTHER CHEMICALS.Epoxies are very good in saturated salt solution, leaded gasoline, mineral spirits, ASTM #3 oil and propylene glycol.Epoxies are generally not recommended for long-term exposure to concentrated acids and organic solvents.ITW Devcon, 30 Endicott St., Danvers, MA 019235-MINUTE EPOXYAPPLICATION INFORMATIONSurface Preparation:5-Minute Epoxy works best on clean surfaces. Surfaces should be solvent-wiped, free of heavy deposits of grease, oil, dirt or other contaminants, or cleaned with industrial cleaning equipment such as vapor phase degreasers or hot aqueous baths. Abrading or roughing the surfaces of metals will increase the microscopic bond area significantly and optimize the bond strength.MIXING:Proper homogeneous mixing of the two epoxy components of resin and hardener are essential for the curing and development of stated strengths. Always mix the two components with clean tools, preferably of a disposable design. For small amounts, use Devcon's 25 ml Dev-Tube TM package or the 50ml. Dev-Pak with Mark 5 Applicator. If used with a static mix nozzle, the epoxy can be dispensed, metered, mixed, and directly applied to the surfaces to be bonded.APPLICATION:Apply mixed epoxy directly to one surface in an even film or as a bead. Assemble with the mating part within the recommended working time. Obtain firm contact between the parts to minimize any gap and ensure good contact of the epoxy with the mating part. A small amount of epoxy should flow out the edges to show there is adequate gap filling. For very large gaps, apply epoxy to both surfaces and spread to cover the entire area, or make a bead pattern which will allow flow throughout the joint.Let bonded assemblies stand for the recommended functional cure time before handling. They are capable of withstanding processing forces at this point, but should not be dropped, shock loaded, or heavily loaded. CURE:Cure time for 5-Minute Epoxy is 3/4 to 1 hour for a functional cure. Full bond strength is reached in 16 hours. STORAGE AND SHELF LIFE:Devcon Epoxy Adhesives should be stored in a cool, dry place when not used for a long period of time. A shelf life of 3 years from date of manufacture can be expected when stored at room temperature 70o F (22o C) in their original containers.PRECAUTION:For complete safety and handling information, please refer to the appropriate Material Safety Data Sheets prior to using this product.For technical assistance, please call 1-800-933-8266.ORDERING INFORMATION: *Stock No.Unit Size Stock No.Unit Size1425025 ml Dev-Tube14280Mark 5 applicator gun142102-1/2 oz. (2 tubes)14285Mark 5 mix nozzle1420015 oz. (2 tubes)14410400ml manual applicator146309 lb. (1 gal.)14400400ml pneumatic applicator1427050ml Mark 5 (Dev-Pak)142911/4" dia. mix nozzleDA051380ml cartridge142921/2" dia. mix nozzleWarranty: Devcon will replace any material found to be defective. Because the storage, handling and application of this material is beyond our control, we can accept no liability for the results obtainedDisclaimer: All information on this data sheet is based on laboratory testing and is not intended for design purposes. ITW Devcon makes no representations or warranties of any kind concerning this data.1/4/00。
固化剂硫醇当量的测定方法
固化剂硫醇当量的测定方法Determining the equivalent amount of thiol in a curing agent is crucial in various industries such as pharmaceuticals, cosmetics, and food. The thiol equivalent is a measure of the reactive functionality of the curing agent, and it is essential to accurately determine this value for quality control and formulation purposes. There are several methods for determining the thiol equivalent of a curing agent, and each method has its advantages and limitations.确定固化剂硫醇当量在制药、化妆品和食品等各个行业中非常关键。
硫醇当量是固化剂反应功能性的衡量标准,准确测定这个数值对于质量控制和配方设计至关重要。
有几种方法可以确定固化剂硫醇当量,每种方法都有其优点和局限性。
One common method for determining the thiol equivalent of a curing agent is titration with a standard solution of a known concentration. In this method, a known amount of the curing agent is reacted with a standard solution of a chemical reagent, and the amount of reagent consumed is used to calculate the thiol equivalent. This method is relatively simple and can provide accurateresults, but it requires careful handling of the reagents and precise measurements.一种常用的确定固化剂硫醇当量的方法是使用已知浓度的标准溶液进行滴定。
FDA原料药和制剂稳定性试验问答
201308 FDA指南:ANDA:原料药和制剂稳定性试验问答(中英文)C. Drug Product Manufacturing and Packaging药品生产和包装Q1: Can the split bulk solution filled into different fill volumes be considered different batches?将散装溶液装入不同分装体积应作为不同批号吗?A1: No. Split filling one batch of bulk solution into different fill volume sizes does not constitute discrete batches.不。
分装一个批号散装溶液至不同分装体积不构成分批。
Q2: Can you clarify the packaging recommendations for the submission batches for blow-fill-seal containers?可否说明一下对吹瓶/灌装/封口的包装形式申报批有什么包装方面的建议?A2: Blow-fill-seal containers are not an exception from regular packaging and are usually packaged inside a secondary container or a carton. The secondary packaging should be included in all three batches. ICH Q1A(R2) addresses secondary packaging usefulness (see section II, B, 4, Drug ProductContainer Closure System (2.2.4)).吹瓶/灌装/封口的包装形式仍是常规包装的一种,通常还会有外包装或纸箱包装。
富兰克林名言 英语
富兰克林名言英语Franklin's Famous QuotesBenjamin Franklin, one of America's founding fathers, was not only a renowned inventor and statesman but also a prolific writer. Throughout his life, Franklin shared his wisdom and insights through his famous quotes. These quotes continue to inspire and motivate people around the world. In this article, we will explore some of Franklin's most memorable quotes and their significance in today's world.1. "An investment in knowledge pays the best interest."Franklin understood the value of education and continuous learning. He emphasized the importance of investing in knowledge, recognizing that it is an asset that continues to grow and provide benefits throughout life. In today's rapidly changing world, this quote reminds us of the significance of continuous education and personal development. By investing time and effort in expanding our knowledge, we increase our chances of success and personal growth.2. "Well done is better than well said."This quote emphasizes the importance of actions rather than mere words. Franklin believed that true accomplishments come from taking decisive action rather than merely talking about them. This quote encourages us to focus on delivering results and following through on our commitments. It serves as a reminder that our actions hold more weight than our intentions, reinforcing the idea that actions speak louder than words.3. "Tell me and I forget. Teach me and I remember. Involve me and I learn."Franklin recognized that active participation and engagement are crucial for effective learning. This quote highlights the importance of experiential learning and hands-on experiences. It stresses that true understanding and retention can be achieved through direct involvement and active participation in the learning process. In today's educational landscape, this quote advocates for student-centered learning approaches, where learners are actively engaged in the learning process rather than passively receiving information.4. "An investment in knowledge always pays the best interest."This quote reinforces Franklin's belief in the long-term benefits of education. By referring to knowledge as an investment, he prompts us to recognize that the effort and resources we put into acquiring knowledge will always yield the highest returns. It encourages us to view education not as an expense but as an investment in our future. This mindset shift can motivate individuals to prioritize their educational pursuits and reap the rewards that come with it.5. "By failing to prepare, you are preparing to fail."This quote emphasizes the significance of preparation and planning. Franklin believed that proper preparation is essential for achieving success in any endeavor. It serves as a reminder to be proactive rather than reactive, advocating for strategic thinking and deliberate action. Whether it is preparing for a project, an exam, or any other life challenge, this quoteencourages individuals to invest time and effort in thorough preparation, setting the stage for success.6. "Do not fear mistakes. You will know failure. Continue to reach out."Franklin understood the value of failures and setbacks in the learning process. This quote encourages us not to be afraid of making mistakes, as they are stepping stones towards success. It urges individuals to embrace failure as an opportunity for growth and learning, encouraging resilience and perseverance. By highlighting the importance of reaching out and trying again, this quote inspires individuals to learn from their mistakes and continue on the path to success.7. "An investment in knowledge always pays the best interest."Franklin's belief in the power of knowledge is reiterated in this quote. It reminds us that investing in education and continuous learning is a wise decision that always pays off. By expanding our knowledge and skillset, we enhance our personal and professional prospects, opening doors to new opportunities. This quote emphasizes the long-term benefits of investing in intellectual growth and encourages individuals to make education a priority in their lives.In conclusion, Benjamin Franklin's famous quotes serve as timeless wisdom, providing valuable insights and guidance in various aspects of life. From the importance of education to the power of action and the significance of learning from failures, his words continue to resonate with individuals seeking inspiration and growth. Franklin's quotes stand the test of time and remind us of the enduring relevance of his wisdom in our lives today.。
化学专业英语词汇
前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical chemistry 生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in functional polym ers有机硅高分子研究进展 Progresses in organosi licon polymers高分子科学实验方法 Scientific experimental methods of polymers高分子设计与合成 The design and synthesis o f polymers反应性高分子专论 Instructions to reactive p olymers网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering information有序分子组合体概论 Introduction to Organize d Molecular Assembilies两亲分子聚集体化学 Chemistry of amphiphilic aggregates表面活性剂体系研究新方法 New Method for stu dying Surfactant System微纳米材料化学 Chemistry of Micro-NanoMater ials 分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueou s Dispersions溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry 分子反应动力学 Molecular Reaction Dynamic 计算量子化学 Computational Quantum Chemistr y群论 Group Theory分子模拟理论及软件应用 Theory and Software of Molecular Modelling & Application价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry 无机化学前沿领域导论 Introduction to Forwar d Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistry in Extr action表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry 现代电化学实验技术 Modern Experimental Tech niques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: The ory and Application立体化学与手性合成 Stereochemistry and Chir al Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Sy nthesis超分子化学 Supramolecular Chemistry 分子设计与组合化学 Molecular Design and Com binatorial Chemistry纳米材料化学前沿领域导论 Introduction to Na no-materials Chemistry纳米材料控制合成与自组装 Controlled-synthes is and Self-assembly of Nano-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolecular Che mistry液晶材料基础 Basics of Liquid Crystal Mater ials现代实验技术 Modern analytical testing tech niques色谱及联用技术 Chromatography and Technolog y of tandem发光分析及其研究法 Luminescence analysis an d Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytica l Chemistry电分析化学 Electroanalytical chemistry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic chemistry高聚物结构与性能 Structures and properties of polymers有机硅化学 Organosilicon chemistry功能高分子 Functional polymers有机硅高分子 Organosilicon polymers高分子现代实验技术 Advanced experimental te chnology of polymers高分子合成新方法 New synthetic methods of p olymers液晶与液晶高分子 Liquid crystals and liquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process of polymer s聚合物复合材料 Composite materials高等化工与热力学 Advanced Chemical Engineer ing and Thermodynamics高等反应工程学 Advanced Reaction Engineerin g高等有机化学 Advanced Organic Chemistry 高等有机合成 Advanced Organic synthesis 有机化学中光谱分析 Spectrum Analysis in Org anic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry 中间体化学与工艺学 Intermediate Chemistry a nd Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis and Technolo gy of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Contr ol动量热量质量传递 Momentum, Heat and Mass Tr ansmission化工分离工程专题 Separation Engineering 耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering informa tion新型功能材料的模板组装 Templated Assembly o f Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of sur factants高分子溶液与微乳液 Polymer Solutions and Mi croemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafine powder 分散体系流变学 The Rheolgy of Aqueous Dispe rsions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Chemistry价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application计算量子化学 Computational Quantum Chemistr y分子模拟软件及其应用 Software of Molecular Modelling & its Application分子反应动力学 Molecular Reaction Dynamic 分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemistry物理化学 Physical Chemistry结构化学 structural Chemistry 现代分析与测试技术(试验为主) Modern Analysi s and Testing Technology(experimetally)高等无机化学 Advanced Inorganic Chemistry 近代无机物研究方法 Modern Research Methods for Inorganic Compounds萃取化学研究方法 Research Methods for Extra ction Chemistry单晶培养 Crystal Culture固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry卟啉酞箐化学 Chemistry of Porphyrine and Ph thalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chem istry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Ho mogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized Food Chemistr y无机药物化学 Inorganic Pharmaceutical Chemi stry电极过程动力学 Kinetics on Electrode Proces s电化学研究方法 Electrochemical Research Met hods生物物理化学 Biological Physical Chemistry 波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry 合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synt hesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation of Proces s Devices石油化工典型设备 Common Equipment of Petroc hemical Industry 化工流态化工程 Fluidization in Chemical Ind ustry化工装置模拟与优化 Analogue and Optimizatio n of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System and Optimiza tion高等化工热力学 Advanced Chemical Engineerin g and Thermodynamics超临界流体技术及应用 Super Cratical Liguid Technegues and Applications膜分离技术 Membrane Separation Technegues溶剂萃取原理和应用 Theory and Application o f Solvent Extraction树脂吸附理论 Theory of Resin Adsorption 中药材化学 Chemistry of Chinese Medicine 生物资源有效成分分析与鉴定 Analysis and Det ection of Bio-materials相平衡理论与应用 Theory and Application o f Phase Equilibrium计算机在化学工程中的应用 Application of Com puter in Chemical Engineering微乳液和高分子溶液 Micro-emulsion and High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering Analysis腐蚀电化学原理与应用 Principle and Applicat ion of Corrosion Electrochemistry腐蚀电化学测试方法与应用 Measurement Method and Application of Corrosion Elect rochemistry耐蚀表面工程 Surface Techniques of Anti-cor rosion缓蚀剂技术 Inhabitor Techniques腐蚀失效分析 Analysis of Corrosion Destroy 材料表面研究方法 Method of Studying Materia l Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthe sis化学工艺与设备 Chemical Technology and Appa ratuas功能材料概论 Functional Materials Conspectu s油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension M aterials手性药物化学 Symmetrical Pharmaceutical Che mistry 光敏高分子材料化学 Photosensitive Polymer M aterials Chemistry纳米材料制备与表征 Preparation and Characte rization of Nanostructured materials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materia ls Chemistry●化学常用词汇汉英对照表1●氨 ammonia氨基酸 amino acid铵盐 ammonium salt饱和链烃saturated aliphatic hydrocarbon苯 benzene变性 denaturation不饱和烃unsaturated hydrocarbon超导材料superconductive material臭氧 ozone醇 alcohol次氯酸钾potassium hypochlorite醋酸钠sodium acetate蛋白质 protein氮族元素nitrogen group element碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀 electrochemical corrosion电解质 electrolyte电离平衡ionization equilibrium电子云electron cloud淀粉 starch淀粉碘化钾试纸starch potassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃 arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂 soap分馏fractional distillation酚 phenol复合材料 composite干电池 dry cell干馏dry distillation甘油 glycerol高分子化合物 polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素 nuclide化学电源chemical power source化学反应速率chemical reaction rate化学键chemical bond化学平衡chemical equilibrium还原剂reducing agent磺化反应sulfonation reaction霍尔槽 Hull Cell极性分子polar molecule极性键 polar bond加成反应addition reaction加聚反应addition polymerization甲烷 methane碱金属alkali metal碱石灰 soda lime结构式structural formula聚合反应 po1ymerization可逆反应reversible reaction空气污染指数 air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键 ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化 cracking裂解 pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖 maltose煤 coal酶 enzyme摩尔 mole摩尔质量molar mass品红magenta或fuchsine葡萄糖 glucose气体摩尔体积 molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitution reaction醛 aldehyde炔烃 alkyne燃料电池 fuel cell弱电解质weak electrolyte石油 Petroleum水解反应hydrolysis reaction四氯化碳carbon tetrachloride塑料 plastic塑料的降解plastic degradation塑料的老化plastic ageing酸碱中和滴定acid-base neutralization titration酸雨 acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物derivative of hydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量 amount of substance物质的量浓度 amount-of-substance concentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量relative molecular mass相对原子质量 relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银 silver nitrate溴的四氯化碳溶液solution of bromine in carbon tetrachloride溴化钠 sodium bromide溴水 bromine water溴水 bromine water盐类的水解 hydrolysis of salts盐析 salting-out焰色反应 flame test氧化剂 oxidizing agent氧化铝 aluminium oxide氧化铁 iron (III) oxide乙醇 ethanol乙醛 ethana1乙炔 ethyne乙酸 ethanoic acid乙酸乙酯 ethyl acetate乙烯 ethene银镜反应silver mirror reaction硬脂酸 stearic acid油脂 oils and fats有机化合物 organic compound元素周期表periodic table of elements元素周期律 periodic law of elements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期 period族 group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂 test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚 pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱 hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应 exothermic reaction 放热反应 precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化 to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics 热力学第一定律10. Heat and Work 热与功11. Endothermic and Exothermic Processes 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalystsi. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product Constant Ksp 溶度积常数49. Precipitation and separation of Ions 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-Reduction Equations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons 电子的波动性63. Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, and Mass Numbers 同位素,原子数,质量数77. Periodic Properties of the Elements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers, and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations in Octahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planar Complexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium, Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon, Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide, Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates and Carbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation of Silicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus, Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, Phosphoric Acid 氨,硝酸,磷酸143. Phosphorates, phosphorus Halides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur, Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine, Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision 精密度188. relative standard deviation 相对标准偏差(RSD)189. coefficient variation 变异系数(CV)190. confidence level 置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure 有效数字194. standard solution 标准溶液195. titration 滴定196. stoichiometric point 化学计量点197. end point 滴定终点198. titration error滴定误差199. primary standard 基准物质200. amount of substance 物质的量201. standardization 标定202. chemical reaction 化学反应203. concentration 浓度204. chemical equilibrium 化学平衡205. titer 滴定度206. general equation for a chemical reaction 化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid 乙酸212. hydronium ion 水合氢离子213. electrolyte 电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition 质子平衡217. zero level 零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein 酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand 配位体228. ethylenediamine tetraacetic acid乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number 配位数232. lone pair electron孤对电子233. chelate compound 螯合物234. metal indicator 金属指示剂235. chelating agent 螯合剂236. masking 掩蔽237. demasking 解蔽238. electron 电子239. catalysis催化240. oxidation 氧化241. catalyst 催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry 碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD) 255. dissolved oxygen 溶解氧(DO) 256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions 多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell 吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t 316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e 326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction 单分子消除反应336. unimolecular nucleophilic substitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物。
果胶-壳聚糖复合水凝胶的制备及性能研究开题报告
开题报告题目:果胶-壳聚糖复合水凝胶的制备及性能研究参考文献[1] WU J,WEI W,WANG L Y,et al.A thermosensitive hydrogel based on quaternized chitosan andpoly ( ethylene glycol) for nasal drug delivery system[J].Biomaterials,2007,28(13):232. [2] CHEN L Y,TIAN Z G,DU Y M.Synthesis and pH sensitivity of carboxymet hyl chitosan2based polyampholyte hydrogels for protein carrier matrice s[ J].Biomaterials,2004,25( 17) : 3725-3732.[3] MAJET I N V,RAVI K.A review of chitin and chitosan applications[J].Reactive andFunctional Polymers,2000,46(1):1227.[4] Liu LS,Won YJ,Cooke PH.(2005).Pectin/poly(lactide-co-glycolide) composite matrices forbiomedical applications.Biomaterials,24,3201-3210.[5] 丁小斌,孙宗华,万国祥,等.热敏性高分子包裹的磁性微球的合成.高分子报,1998,5:628.[6] Kwon I C,Bze Y H,Okano T,et al.Dru from electric current sensitive polymers.Rel,1991,17(2):149.[7] 李文俊,王汉夫,卢玉华,等.壳聚糖.聚丙烯酸配合物半互穿聚合物网络膜及其对pH和离子的刺激响应.高分子学报,1997,1:106.[8] 卓仁禧,张先正.温度及pH敏感聚(丙烯酸) /聚( N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究.高分子学报,1998,1:39.[9] 顾雪蓉,朱育平.凝胶化学.北京:化学工业出版社,2005.1.[10] 邹新禧.超强吸水剂.北京:化学工业出版社,2002.473.[11] 吴季怀,林建明,魏月琳,等.高吸水保水材料.北京:化学工业出版社,2005.1.[12] Wichterle O,Lim D.Hydrophilic gels in biologic use.Nature,1960,185:117.[13] 刘锋,卓仁禧.温度pH敏感水凝胶的合成及其在生物大分子控制释放中的应用[J].高分子材料科学与工程,1998,14(2):54257.[14] COVIELLOA T, GRASSIB M,LAPASIN R,et al.Scleroglucan / borax: Biomaterials, 2003,24(16):278922798.characterization of a novel hydrogel system suitable for drugdelivery[J].[15] LIU Y Y,SHAO Y H,LV J.Preparation,properties and controlled release behaviors of pH:induced thermosensitive amphiphilic gels[J].Biomaterials,2006,27(21) : 4016-4024.[16] NICOLE J E, KELLY R S,WEIYUAN J K.Synthesis and physicochemical analysis of gelati n: based hydrogels for drug carrier matrices [J].Biomaterials,2003,24(3): 509-522.[17] Liu SQ,Tong YW,Yang YY (2005).Incorporation and in vitro release of doxorubicin inthermally sensitive micells made from poly (N-isopropylacrylamide-co-N,N-dimethyl-acrylamide)-b-poly(D,L-lactide-co- glycolide) with varying compositions.Biomaterials,26: 5064-5074.[18] Lee ES,Na K,Bae YH (2003).Polymeric micelle for tumor pH and folate-mediated targeting.JControl Release,91:103-113.[19] Chaterji S,Kwon IK,Park K.(2007).Smart polymeric gels: Redefining the limits of biomedicaldevices.Progress in Polymer Science,32:1083-1122.[20] Lin Shuliu,Marshall L Fishman,Joseph Kost (2003).Pectin-based systerns for colon-specificdrug delivery via oral route.Biomaterials,(24)19: 3333.。
化学课程英文名称
下面是散文两篇,不需要的可以编辑删除闲时翻翻古书,觉陶公形象非一般君子之所比也,于是细细读之,连缀成篇以为学习之楷模。
陶渊明一生,大约可分三个阶段:出仕前(公元365--392年),出仕中(公元393--405年),归园田(公元406--427年)。
他所处的时代,正值东晋末季。
其间战乱频繁,国无宁日。
公元420年东晋灭亡,刘裕建刘宋王朝,陶渊明成亡国遗老,时55岁。
刘义龙元嘉四年(公元427年)十一月,他含恨离世,享年63岁。
29岁时才出仕,任过一些小小祭酒,参军职务。
直到41岁时,其叔太常陶夔见其贫苦提用于小邑彭泽县令。
夕思鸡鸣,及晨愿乌迁“的寒士,可悲,可叹!然而这样的结局又在情理之中。
“宁困穷以济意,不委曲而累己“,他在作彭泽令邮至见,吏请曰:应束带见之。
渊明曰:我岂能为五斗米折腰向乡里小儿!即日解绶去职。
赋《归去来》。
”孤高,不愿与世俗同流合污,这是他的性格,也是他在那个时代家世没落的重要原因。
不仅如此,疾恶如仇,是他又一性格特点。
《读山海经》是其代表作。
共十三首,第一首发端,二至十二首咏读书之所记,末首写了齐桓公不听管仲而任用奸臣易牙竖刁,继而为乱,桓公饥渴而死。
他大呼“明处天鉴,为恶不可履“!在他心里“猛志固常在”,他要效仿刑天,他要学习精卫,其济世壮志不亦显乎!他欣赏荊苛,“其人虽己殁,千载有余情“,封建时代,剑客轼君为大逆不道,正因他认为秦始皇独裁,残忍,自然也就该杀!不然起了“隐士“。
隐士者,“达则兼济天下,穷则独善其身。
“《归园为“久在樊笼里”,而田园则成为他宁静闲适的修身养性之处,虽有人指责他“乐天安命”“洁身自好”,我们不妨看看那狂放不羁的马氏而遭杀害吗?那素有济世之志而守正不阿的阮籍,也不得不发出“时无英雄,遂使竖子成名“的慨叹,在“终身履薄冰“的恶劣环境下纵酒谈玄,佯狂放荡度余生!陶渊明也有过“弱龄寄事外“之官鬻爵贪腐成性的时代,凭着他的性格情趣,归隐或许是其最为呢?复肯仕“,他“所著文章,皆题其年月”,不书晋氏年号,“唯云甲陶渊明渴望理想社会,57岁时写的《桃花源诗并记》,充分反映了他这种思想。
无载体镥-177_分离技术研究进展
无载体镥-177分离技术研究进展李 波1,2,3, 胡映江1,2,3, 吴建荣1,2,3, 王 磊1,2,3, 陈云明1,2,3, 张劲松1,2,3, 罗 宁1,2,3(1. 中国核动力研究设计院,成都 610213;2. 同位素及药物国家工程研究中心,成都 610213;3. 四川省放射性同位素工程技术研究中心,成都 610213)摘要:医用同位素是核医学诊疗的物质基础。
利用核医学技术对恶性肿瘤、心脑血管、神经退行性疾病等重大疾病进行诊断与治疗具有不可替代的优势。
镥-177(177Lu )具有优异的核物理和化学性质,近年来,欧美发达国家已将其广泛应用于靶向核素治疗研究及临床应用,其标记物对神经内分泌肿瘤、前列腺癌等肿瘤的诊断和治疗展示出良好效果。
177Lu 已被公认为是目前最具前景和市场活力的靶向放射性诊疗一体化核素之一,预计未来全球对177Lu 的需求呈爆发式增长。
本研究综述了177Lu 的制备原理、国内外分离工艺研究现状、未来市场需求和应用前景。
关键词:中子辐照;有载体177Lu ;无载体177Lu ;放化分离;靶向放射性核素治疗中图分类号:TL92+3 文献标志码:A 文章编号:1000-7512(2024)02-0185-10doi :10.7538/tws.2023.youxian.067No-Carrier-Added Lutetium-177 Separation Technology StatusLI Bo 1,2,3, HU Yingjiang 1,2,3, WU Jianrong 1,2,3, WANG Lei 1,2,3,CHEN Yunming1,2,3, ZHANG Jinsong1,2,3, LUO Ning1,2,3(1. Nuclear Power Institute of China , Chengdu 610213, China ;2. National Engineering Research Center of Isotope and Medicine , Chengdu 610213, China ;3. Radioisotope Engineering Technology Research Center of Sichuan , Chengdu 610213, China )Abstract: Medical isotopes are the substantial basis of the diagnostic and therapeutic nuclear medicine. There are irreplaceable advantages for utilizing the nuclear medical technology to diagnose and treat the malignant tumors, cardiovascular and cerebrovascular diseases, neurodegenerative diseases and other major diseases. Lutetium-177 (177Lu) has excellent nuclear physical and chemical properties. In recent years, 177Lu has been widely used in the research and clinical application of targeted nuclide therapy in the western developed countries, and the radio-labeled compounds have showed the good effects in the diagnosis and treatment of tumors, including neuroendocrine tumors,prostate cancer, metastatic disease in bone and etc. 177Lu has been recognized as one of the most promising and dynamic economical theranostic targeted medical radio-isotopesand the global demand for 177Lu can be expected to grow explosively in the future. In this text, the preparation principle of177Lu and current research status of177Lu separation technology domestically or收稿日期:2023-08-07;修回日期:2023-10-24通信作者:罗 宁第37卷 第2期同 位 素Vol. 37 No. 22024年 4 月Journal of IsotopesApr. 2024internationally, the future market demand and the application prospect were briefly introduced.Key words: neutron irradiation; carrier-added (CA) 177Lu; no-carrier-added 177Lu; radiochemical separation; targeted radionuclide therapy根据在《临床肿瘤杂志》(CA Cancer J Clin)上发布的权威数据,2020年,全世界估计有1 929万新癌症病例和近1 000万癌症患者死亡,其中中国新发癌症457万人,占全球23.7%,癌症死亡人数300万,占癌症死亡总人数30%。
Reactive distillation
Reactive distillation in methyl acetate synthesis
Setup
• Typically, reactive
distillation equipment comprises a reactive column, with the feed input, with directly attached stripping and enriching columns with the outputs.
Reactive distillation
CME 566
Advance separation
Fangzhou Ma
Outline
• • • • • • •
Introduction
Setup Principle Benefits Difficulties Application Status and Future
• Sakuth, Michael, Dieter Reusch, and Ralf Janowsky.
"Reactive distillation." Ullmann's Encyclopedia of Industrial Chemistry (2008).
Question?
• Reactive distillation can also be seen as the frontrunner in the field of process intensification.
Reference
• Harmsen, G. Jan. "Reactive distillation: the front-runner of
Benefits
席夫碱在催化剂领域的应用
席夫碱在催化剂领域的应用∗刘秀然;范彩虹;唐关平;许想姣【摘要】Schiff base containing the characteristics of an imine and a methyleneimine group (-RC=N-) is a class of organic compound, which is formed by condensation of amine and reactive carbonyl groups. Because of its special properties in the field of catalysis, more and more attention has been focused on by chemists. The preparation and application of the metalcomplex catalysts of the Schiff base have been a very active field, which has achieved a lot of results. The different types of Schiff base complexes in the polymerization catalysis namely, progress in four areas of catalytic asymmetric cyclopropanation reaction, aspects of the catalytic oxidation of olefins, electric catalysis and some research results were described.%席夫碱主要是指含有亚胺或甲亚胺特性基团(-RC=N-)的一类有机化合物,通常席夫碱是由胺和活性羰基缩合而成,因其在催化领域有着特殊的性能,越来越多的受到化学家们的关注。
壳聚糖和壳寡糖的制备及应用
壳聚糖和壳寡糖的制备及应用常海洋1,2赵安琪1王婧1圣志存1*(1江苏农牧科技职业学院,江苏泰州225300;2泰州学院,江苏泰州225300)摘要壳聚糖和壳寡糖因其生物相容性、降解性、无毒和多种生物活性等特性,在食品、化妆品、复合材料、废水处理和生物医药等众多领域广泛应用。
本文介绍了壳聚糖和壳寡糖的研究历史、制备原料,分析了壳聚糖的制备工艺(包括脱蛋白工艺、脱盐工艺、脱色工艺、脱乙酰工艺)和应用领域以及壳寡糖的制备方法(包括化学降解法、物理降解法、酶降解法)和应用领域,以期为壳聚糖和壳寡糖及其衍生产品的研究利用提供一定的参考。
关键词壳聚糖;壳寡糖;研究历史;制备工艺;制备方法;应用中图分类号O636.1文献标识码A文章编号1007-5739(2024)05-0161-04DOI :10.3969/j.issn.1007-5739.2024.05.039开放科学(资源服务)标识码(OSID ):Preparation and Application of Chitosan and OligochitosanCHANG Haiyang 1,2ZHAO Anqi 1WANG Jing 1SHENG Zhicun 1*(1Jiangsu Agri-animal Husbandry Vocational College,Taizhou Jiangsu 225300;2Taizhou University,Taizhou Jiangsu 225300)Abstract Chitosan and oligochitosan are widely used in many fields such as food,cosmetics,composite materials,wastewater treatment and biomedicine due to their biocompatibility,biodegradability,non toxicity and various biological activities.This paper introduced the research history and raw materials of chitosan and oligochitosan,analyzed the pre-paration process (including deproteinization process,desalination process,decolorization process,deacetylation process)and application fields of chitosan,as well as the preparation methods (chemical degradation method,physical degrada-tion method,enzyme degradation method)and application fields of oligochitosan,in order to provide references for theresearch and utilization of chitosan and oligochitosan and their derivative products.Keywordschitosan;oligochitosan;research history;preparation process;preparation method;application壳聚糖是由N-乙酰-D-葡萄糖胺和D-葡萄糖胺组成的直链多糖,通常由甲壳素脱乙酰制得;壳寡糖,又称低聚壳聚糖(通常<7000Da ),是壳聚糖降解成带有氨基的小分子寡糖[1]。
几丁质壳聚糖及其衍生物在食品工业中的应用
几丁质/壳聚糖及其衍生物在食品工业中的应用刘高强1,刘卫星1,2(1.中南林业科技大学生命科学与技术学院,湖南长沙410004;2.浙江科技学院经济管理学院,浙江杭州310023)摘要几丁质/壳聚糖由于其独特的分子结构而具有很多特殊功能。
几丁质/壳聚糖及其衍生物在食品、纺织、印染、造纸、医药、农业、环保、化工等行业有着广阔的应用。
在食品工业中,可作为保健食品基料、抗菌剂、果蔬保鲜剂、液体食品的澄清剂、食用包装膜、食品废水处理、饮用水净化剂、固定化酶载体、食品加工剂、霉菌污染检测、肉制品抗氧化剂等。
关键词几丁质;壳聚糖;衍生物;功能性食品;食品工业中图分类号Q53文献标识码 A 文章编号0517-6611(2006)15-3796-02A pp lic a t ion o f Ch it in an dits D e riv a t iv e s in F oo d In du s tryLI U G a o-q ia n g e t a l(C o llege o f L ife S cien ce and T e chn o logy,C en tra l S ou th U n ive rsity o f F o re stry&T ech n o log y,C h an gsh a,H u n an410004)A b s tra c t C h itin/C h itosan h a s m an y i m por tan t fun ction s du e to its pa r ticu la r stru ctu re.I t h as been app lica ted i n m an y fie l d s,in clud in g food,te x tile, pape r m ak in g,m ed ic i n a l,ag ricu ltu ra l an d ch em ica l i n du od in du stry,ch itin/ch ito san an d its de riva tive s can be u sed infu n ction a l food,an ti m i-crob ia l prepa ra tion,re fresh i n g p repa ra tion,cla rifica tion p repa ra tion,ed ible fil m,trea tm en t o f w a ste w a te r,pu r ifica tion o f w a te r,en zym e i m m ob iliza tion, food processin g,a m ea su re o f m o ld con tam in a tion o f ag ricu ltu ra l co m m oditie s an d food p rodu c ts,an tio x ida tion p repara tionfo r m u scle fo ods,e tc.K e y w o rd s C h iti n;C h ito san;D e r iva tives;F u n ction a l food;F ood indu s try几丁质(C h it in),又名甲壳素、甲壳质等,分布十分广泛,是许多低等动物特别是节肢动物如虾、蟹、昆虫等外壳的重要成分(约含10%~30%)[1],也存在于低等植物如菌藻类和真菌的细胞壁中。
PVC发泡术语中英对照
PVC发泡术语中英对照1) foamed polyvinyl chloride发泡PVC例句>>2) PVC foamingPVC发泡1.A wood-like PVC foaming material was made by the process of coloring and clouding.阐述了应用色拉、云纹工艺制作的仿木纹PVC发泡材料的物理特性、生产配料工艺、制作的模具类型以及试验与应用等方面的内容。
更多例句>>3) PVC foamed sheetPVC发泡片1.This paper studied the formula of EVA hot melt adhesive used for PVC foamed sheet and PP artificial paper, and designed the adhesive technology, discussed the effect of the amount of EVA resin, the adhesive temperature, the amount of VAc in EVA and MI on the Peel strength.研制了PP人造纸与PVC发泡片材粘合用EVA热熔胶并对其粘合工艺进行了设计。
4) PVC crusting and foamingPVC结皮发泡5) PVC low foamed boardPVC低发泡板材1.The article introduces the product performance, raw and auxiliary materials, production process and equipment of PVC low foamed board as well as the importance of substituting wood with plastics.本文介绍PVC低发泡板材的产品性能、原辅材料、生产工艺设备及以塑代木的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract
SiC nanoporous membranes have been prepared by chemical-vapor deposition/chemical-vapor infiltration of two different precursors, namely tri-isopropylsilane (TPS) and 1,3-disilabutane (DSB). Both precursors produce nanoporous membranes. The TPS-derived membranes are hydrothermally stable, while the DSB membranes produced, so far, are not. SiC nanoporous membranes have also been prepared by conventional dip-coating techniques using a novel pre-ceramic polymeric precursor allyl-hydridopolycarbosilane (AHPCS), a partially allyl-substituted hydridopolycarbosilane (HPCS). These membranes are stable in air-treatment at 450 ◦C, but have, so far, also proven unstable to high-temperature steam. The nanoporous hydrogen selective SiC membranes show promise for application in membrane reactors for the water gas shift and steam reforming reactions. ᭧ 2004 Elsevier Ltd. All rights reserved.
Richard J. Cioraa, Babak Fayyazb, Paul K.T. Liua, Varaporn Suwanmethanondb, Reyes Malladab, Muhammad Sahimib, Theodore T. Tsotsisb,∗
aMedia and Process Technology Inc, 1155 William Pitt Way, Pittsburgh, PA 15238, USA bDepartment of Chemical Engineering, University of Southern California, 925 Bloom Walk, HED 216 Los Angeles, CA 90089-1211,J. Ciora et al. / Chemical Engineering Science 59 (2004) 4957 – 4965
Membrane reactors (MR) have been previously applied to these two reactions (Sanchez and Tsotsis, 2002) utilizing mostly metal (Pd, Pt, and their alloys) membranes. Using such noble metal membranes is dictated by the fact that other available membranes cannot withstand the high temperatures required (e.g., polymeric membranes), are sensitive to steam (e.g., SiO2 membranes), or are not permselective enough towards H2 (e.g., Al2O3 or zeolite membranes) under the prevailing high temperature, pressure, and steam conditions. Noble metal membranes perform well (Sanchez and Tsotsis, 2002); however, they are costly, are susceptible to deactivation from coke and sulfur impurities, and must be handled with great care to avoid embrittlement and mechanical failure. SiC membranes show, as a result, good potential for SMR and WGS MR applications. The performance of our group’s SiC membranes in high-temperature steam environments, relevant to the aforementioned two reactive applications, is discussed in this paper. Using the experimentally determined transport characteristics of one of the SiC membranes, we have modeled its performance in a SMR MR, in order to demonstrate its potential for this application.
Chemical Engineering Science 59 (2004) 4957 – 4965
/locate/ces
Preparation and reactive applications of nanoporous silicon carbide membranes
∗ Corresponding author. Tel.: +1-213-740-2069; fax: +1-213-740-8053. E-mail address: tsotsis@ (T.T. Tsotsis).
0009-2509/$ - see front matter ᭧ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.ces.2004.07.015
Keywords: Silicon carbide; Membranes; Catalytic membrane reactor; Steam reforming
1. Introduction
Membranes find industrial applications in the separation of gas and liquid mixtures. Polymeric membranes are generally utilized in applications that occur at low temperatures and unreactive environments. Several applications exist, however, for which polymeric membranes may not be appropriate because their use is limited to temperatures below 150 ◦C. As a result, in recent years there has been a considerable effort to produce high-temperature ceramic (alumina, silica, zeolite), and metal (Pd, Pt, Ag, and their alloys) membranes, with improved properties. They have, so far, all proven unsatisfactory in terms of performance and/or material stability, however, in high-temperature applications, particularly in the presence of steam. A new membrane, which shows potential to overcome some of these difficulties,
is made of SiC (Suwanmethanond et al., 2000). SiC is a promising material, having high fracture toughness, good thermal shock resistance, and being capable of withstanding high temperatures and corrosive environments (Somiya and Intomata, 1991).
In this paper we present the results of our research on the preparation of SiC nanoporous membranes. Two different approaches have been utilized. One involves the use of chemical-vapor deposition (CVD)/chemical-vapor infiltration (CVI) techniques. We have utilized two different precursors, and have succeeded in preparing defect-free nanoporous membranes. The second approach involves the pyrolysis of pre-ceramic polymeric precursors. In contrast with prior efforts, a polymeric precursor that is capable of producing pure SiC membranes was selected. We envision the SiC membranes to eventually be utilized in reactive applications with the water gas shift (WGS) and methane steam reforming (SMR) reactions, where the membrane has to function in the presence of high-temperature steam.