统计学各章节课后习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学各章练习题答案第1章绪论(略)

第2章统计数据的描述

2.1 (1)属于顺序数据。

(2)频数分布表如下:

服务质量等级评价的频数分布

服务质量等级家庭数(频率)频率%

A1414

B2121

C3232

D1818

E1515

合计100100

(3)条形图(略)

2.2 (1)频数分布表如下:

(2)某管理局下属40个企分组表

按销售收入分组(万元)企业数(个)频率(%)

先进企业良好企业一般企业落后企业11

11

9

9

27.5

27.5

22.5

22.5

合计40 100.0 2.3 频数分布表如下:

某百货公司日商品销售额分组表

按销售额分组(万元)频数(天)频率(%)

25~30 30~35 35~40 40~45 45~50

4

6

15

9

6

10.0

15.0

37.5

22.5

15.0

合计40 100.0 直方图(略)。

2.4 (1)排序略。

(2)频数分布表如下:

100只灯泡使用寿命非频数分布

按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2

660~670 5 5

670~680 6 6

680~690 14 14

690~700 26 26

700~710 18 18

710~720 13 13

720~730 10 10

730~740 3 3

740~750 3 3

合计100 100 直方图(略)。

2.5 (1)属于数值型数据。

(2)分组结果如下:

分组天数(天)

-25~-20 6

-20~-15 8

-15~-10 10

-10~-5 13

-5~0 12

0~5 4

5~10 7

合计60

(3)直方图(略)。

2.6 (1)直方图(略)。

(2)自学考试人员年龄的分布为右偏。

2.7 (1

(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,

且平均成绩较A 班低。

2.8

2.9 L U (2)17.21=s (万元)。

2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但

单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。 2.11 x =426.67(万元);48.116=s (万元)。 2.12 (1)(2)两位调查人员所得到的平均身高和标准差应该差不多相同,因为均值和标准差的大小基本上不受样本

大小的影响。

(3)具有较大样本的调查人员有更大的机会取到最高或最低者,因为样本越大,变化的范围就可能越大。 2.13 (1)女生的体重差异大,因为女生其中的离散系数为0.1大于男生体重的离散系数0.08。 (2) 男生:x =27.27(磅),27.2=s (磅); 女生:x =22.73(磅),27.2=s (磅); (3)68%;

(4)95%。

2.14 (1)离散系数,因为它消除了不同组数据水平高地的影响。

(2)成年组身高的离散系数:024.01.1722

.4==

s v ; 幼儿组身高的离散系数:032.03

.713

.2==

s v ; 由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。 2.15

2.16 (1)方差或标准差;(2)商业类股票;(3)(略)。 2.17 (略)。

第3章 概率与概率分布

3.1设A =女性,B =工程师,AB =女工程师,A+B =女性或工程师 (1)P(A)=4/12=1/3 (2)P(B)=4/12=1/3 (3)P(AB)=2/12=1/6

(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/2

3.2求这种零件的次品率,等于计算“任取一个零件为次品”(记为A )的概率()P A 。 考虑逆事件A =“任取一个零件为正品”,表示通过三道工序都合格。据题意,有:

()(10.2)(10.1)(10.1)0.648P A =---=

于是 ()1()10.6480.352P A P A =-=-=

3.3设A 表示“合格”,B 表示“优秀”。由于B =AB ,于是

)|()()(A B P A P B P ==0.8×0.15=0.12

3.4 设A =第1发命中。B =命中碟靶。求命中概率是一个全概率的计算问题。再利用对立事件的概率即可求得脱靶的概率。

)|()()|()()(A B P A P A B P A P B P += =0.8×1+0.2×0.5=0.9 脱靶的概率=1-0.9=0.1

或(解法二):P (脱靶)=P (第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.1 3.5 设A =活到55岁,B =活到70岁。所求概率为:

()()0.63

(|)0.75()()0.84

P AB P B P B A P A P A =

=== 3.6这是一个计算后验概率的问题。

设A =优质率达95%,A =优质率为80%,B =试验所生产的5件全部优质。 P(A)=0.4,P (A )=0.6,P (B|A )=0.955, P(B |A )=0.85,所求概率为:

6115.050612

.030951

.0)|()()|()()|()()|(===

A B P A P A B P A P A B P A P B A P +

决策者会倾向于采用新的生产管理流程。

3.7 令A 1、A 2、A 3分别代表从甲、乙、丙企业采购产品,B 表示次品。由题意得:P (A 1)=0.25,P (A 2)=0.30, P (A 3)=0.45;P (B |A 1)=0.04,P (B |A 2)=0.05,P (B |A 3)=0.03;因此,所求概率分别为:

(1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= =0.25×0.04+0.30×0.05+0.45×0.03=0.0385

相关文档
最新文档