2015年模拟考试数学试卷及答案答题卡

合集下载

2015届高三“一模”数学模拟试卷(1)(含答案)

2015届高三“一模”数学模拟试卷(1)(含答案)

2015届高三“一模”数学模拟试卷(1)(满分150分,考试时间120分钟)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知函数1()y f x -=是函数1()2(1)x f x x -=≥的反函数,则1()f x -= .2.若集合2214x A x y ⎧⎫⎪⎪=-=⎨⎬⎪⎪⎩⎭,{}1B x x =≥,则A B = . 3.函数lg 3y x =-的定义域是.4.已知行列式cos sin 21x x =-,(0,)2x π∈,则x = .5.已知等差数列{}n a 的前n 项和为n S ,若3050S =,5030S =,则80S = . 6.函数log (3)1a y x =+-(0a >且1)a ≠的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 7.设等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若*2()31n n S n n N T n =∈+,则54a b = . 8.2310(133)x x x +++展开式中系数最大的项是 .9.电子钟一天显示的时间是从00:00到23:59,每一时刻都由4个数字组成,则一天中任一时刻显示的4个数字之和为23的概率为 .10.已知tan ,tan αβ是关于x 的方程2(23)(2)0mx m x m +-+-=(0)m ≠的两根,则tan()αβ+的最小值为.11.若不等式(0)x a ≥>的解集为[,]m n ,且2m n a -=,则a 的取值集合为 .12.如图,若从点O 所作的两条射线,OM ON 上分别有点12,M M 与点12,N N ,则三角形面积之比21212211ON ON OM OM S S N OM N OM ⋅=∆∆,若从点O 所作的不在同一平面内的三条射线,OP OQ 和OR 上, 分别有点12,P P ,点12,Q Q 和点12,R R ,则类似的结论 为 .13.圆锥的底面半径为cm 5 ,高为12cm ,则圆锥的内接圆柱全面积的最大值为 .14.已知2()(0)f x ax bx c a =++≠,且方程()f x x =无实根,现有四个命题: ① 方程[()]f f x x =也一定没有实数根;② 若0a >,则不等式[()]f f x x >对一切x R ∈恒成立; ③ 若0a <,则必存在实数0x 使不等式00[()]f f x x >成立; ④ 若0a b c ++=,则不等式[()]f f x x <对一切x R ∈成立; 其中是真命题的有 .二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的.15. “arcsin 1x ≥”是“arccos 1x ≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.248211111lim(1)(1)(1)(1)...(1)22222n n →∞+++++=( )A .1B .2C .3D .417.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若OP AB PA PB ⋅≥⋅,则实数λ的取值范围是( )A .112λ≤≤ B .112λ-≤≤C .1122λ≤≤+D .1122λ-≤≤+18.若对于满足13t -≤≤的一切实数t ,不等式222(3)(3)0x t t x t t -+-+->恒成立,则x 的取值范围为( ) A .(,2)(9,)-∞-+∞ B .(,2)(7,)-∞-+∞ C .(,4)(9,)-∞-+∞D .(,4)(7,)-∞-+∞三、解答题:(本大题满分74分)本大题共有5题,解答下列各题须在答题纸的规定区域内写出必要的步骤.19.(本题满分12分)本题共2小题,第1小题6分,第2小题6分.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+.(1)求函数()f x 的最小正周期和图像的对称轴方程;(2)求函数()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的值域.20.(本题满分12分)本题共2小题,第1小题6分,第2小题6分.设虚数12,z z 满足212z z =.(1)若12,z z 又是一个实系数一元二次方程的两个根,求12,z z ;(2)若11z mi =+(0,m i >为虚数单位),1z ≤23z ω=+,求ω的取值范围.21.(本题满分14分)本题共2小题,第1小题7分,第2小题7分.如图,在斜三棱柱111ABC A B C -中,已知AC BC =,D 为AB 的中点,平面111A B C ⊥平面11ABB A ,且异面直线1BC 与1AB 互相垂直. (1)求证:1AB ⊥平面1ACD ;(2)若1CC 与平面11ABB A 的距离为1,115AC AB =, 求三棱锥1A ACD -体积.7分.已知函数()f x 的图象在[,]a b 上连续不断,定义:若存在最小正整数k ,使 得()()f x k x a ≤-对任意[,]x a b ∈恒成立,则称函数()f x 为[,]a b 上的 “k 函数”. (1)已知函数()2f x x m =+是[1,2]上的“1函数”,求m 的取值范围; (2)已知函数()3f x x m =+是[1,2]上的“2函数”,求m 的取值范围;(3)已知函数221,[1,0)()1,[0,1),[1,4]x x f x x x x ⎧-∈-⎪=∈⎨⎪∈⎩,试判断()f x 是否为[1,4]-上的“k 函数”,若是,求出对应的k ; 若不是,请说明理由.8分.数列{},{}n n a b 满足:11,a a b b ==,且当2k ≥时,,k k a b 满足如下条件: 当1102k k a b --+≥时,111,2k k k k k a ba ab ---+==, 当1102k k a b --+<时,111,2k k k k k a ba b b ---+==。

2015中考数学模拟试题含答案(精选5套)

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2015年中考第一次模拟考试数学试卷附答案

2015年中考第一次模拟考试数学试卷附答案

九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。

河南省2015年中招模拟考试数学试卷(一)及答案

河南省2015年中招模拟考试数学试卷(一)及答案

洛阳市2015年中招模拟考试(一)数学试卷注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标为)4ab ac 42(2--,a b .一、选择题(每小题3分,共24分)1.下面的数中,与-2的和为O 的是 (A) 2 (B) -2 (C)12 (D)-122.下列图形中,既是轴对称图形又是中心对称图形的是3.下列运算,正确的是 (A)4a-2a=2 (B)a 6÷a 3=a 2 (C)(-a 3b )2=a 6b 2 (D)(a-b )2=a 2-b 24.洛阳某中学足球队的1 8名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是(A)15, 15 (B)15, 15.5 (C)15,16(D )16,155.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为6.不等式组13x+1>0的解集在数轴上可表示为 2-x ≥07.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D=30,下列四个结论:①OA 上BC;②BC= cm ;③sin ∠;④四边形ABOC是菱形.其中正确结论的序号是(A)①③ (B)①②③④ (C)②⑨④ (D)①③④8.已知点A为某封闭图形边界上一定点,设点P从点A出发,沿其边界顺时针匀速运动一周,设点P运动的时问为x,线段AP的长为y.表示y与x的函数关系的图象大致如下图所示,则该封闭图形可能是二、填空题(每小题3分,共21分)9.a,b是两个连续整数,若<b+_____________1 0.节约是一种美德,节约是一种智慧,据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为_______________11.玩具店进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_____________.12.如图,直线∥m//n,等边△ABC的顶点B、C份别在直线n和m上,边BC与直线n 所夹的角为25,则∠α的度数为____________13.如图,在扇形AOB中,∠AOB=90,半径OA=6.将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,整个阴影部分的而积__________.14.如图,平行于x轴的直线AC分别交抛物线y1 =X2 (x≥0)与y2=24x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=_________.15. 如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC 边的A'处,折痕所在直线同时经过边AB、AD(包括端点),设BA'=x,则x的取值范围是______________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(a+12a+)÷(a-2+32a+笔)其中a满足a2-a-2=0.17.(9分)老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有_________名,D类男生有__________名,将上面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或面树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图,在Rt△ABC中,∠ACB=90,以AC为直径的⊙○的切线,交BC于E.(1)求证:点E是边BC的中点;(2)当∠B=___________ o时,四边形ODEC是正方形.19. (9分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学们在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP行走了26米,在坡顶A处又测得该塔的塔顶B的仰角为76.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到l米).(参考数据:sin76︒≈0.97,cos76≈0.24,tan 76≈4.00)20.(9分)如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=-12x+3分别交AB,BC于点M,N,反比例函数y=kx的图像经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标。

2015年高考数学模拟试题及答案

2015年高考数学模拟试题及答案

2015年高考数学模拟试题及答案本试卷分第一卷(选择题)和第二卷(非选择题)两部分。

第一卷1至2页,第二卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

考试时间120分钟。

第一卷(选择题 共60分)注意事项:1. 作答第一卷前,请考生务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米的签字笔填写在答题卡上,并认真核对监考员所粘贴的条形码上的姓名、考试证号是否正确。

2. 第一卷答案必须用2B 铅笔填涂在答题卡上,在其他位置作答一律无效。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

参考公式:三角函数的和差化积公式sin sin 2sincos22a b a ba b +-+= sin sin 2cossin22a b a ba b +--= cos cos 2cos cos22a b a ba b +-+=cos cos 2sinsin22a b a ba b +--=- 若事件A 在一次试验中发生的概率是p ,由它在n 次独立重复试验中恰好发生k 次的概率()C (1)kk n k n n P k p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均值一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合{}1,2A =,{}1,2,3B =,{}2,3,4C =,则()AB C =(A ){}1,2,3(B ){}1,2,4(C ){}2,3,4(D ){}1,2,3,4(2) 函数123()x y x -=+∈R 的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2xy -= (D )22log 3y x=- (3) 在各项都为正数的等比数列{}n a 中,首项13a =,前三项的和为21,则345a a a ++=(A ) 33(B ) 72(C ) 84(D ) 189(4) 在正三棱柱111ABC A B C -中,若2AB =,11AA =,则点A 到平面1A BC 的距离为(A )34(B )32(C )334(D )3(5) ABC △中,3A p=,3BC =,则ABC △的周长为 (A )43sin()33B p ++ (B )43sin()36B p++(C )6sin()33B p ++ (D )6sin()36B p++(6) 抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716(B )1516(C )78(D ) 0(7) 在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4 8.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A ) 9.4,0.484 (B ) 9.4,0.016 (C ) 9.5,0.04 (D ) 9.5,0.016(8) 设a 、b 、g 为两两不重合的平面,l 、m 、n 为两两不重合的直线,给出下列四个命题:① 若a g ⊥,b g ⊥,则//a b ;② 若m a ⊂,n a ⊂,//m b ,//n b ,则//a b ;③ 若//a b ,l a ⊂,则//l b ;④ 若l a b =,m b g =,n g a =,//l g ,则//m n . 其中真命题的个数是 (A ) 1(B ) 2(C ) 3(D ) 4(9) 设1,2,3,4,5k =,则5(2)x +的展开式中k x 的系数不可能...是 (A ) 10 (B ) 40(C ) 50(D ) 80(10) 若1sin()63p a -=,则2cos(2)3pa += (A )79-(B )13- (C )13(D )79(11) 点(3,1)P -在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为(2,5)=-a 的光线,经过直线2y =-反射后通过椭圆的左焦点,则这个椭圆的离心率为 (A )33 (B )13 (C )22(D )12 (12) 四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品放在同一仓库是危险的,没有公共点的两条棱所代表的化工产品放在同一仓库是安全的.现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 (A ) 96(B ) 48(C ) 24(D ) 0S 数学试题 第 3 页(共 4 页)第二卷(非选择题 共90分)注意事项:请用书写黑色字迹的0.5毫米的签字笔在答题卡上指定区域内作答,在试题卷上作答一律无效。

2015中考数学模拟考试试卷+答案

2015中考数学模拟考试试卷+答案

山西省2015年高中阶段教育学校招生统一考试数学模拟考试试题1.2-的绝对值是(▲)A.2±B.2 C.12D.12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320、万人次.数据1320万用科学计数法表示正确的是(▲)A.113210⨯万B.213.210⨯万C.31.3210⨯万D.41.3210⨯万3.某几何体的三视图如图所示,这个几何体是(▲)A.圆柱B.三棱柱C.长方体D.圆锥4.下列等式一定成立的是(▲)A.22a a a⋅=B.22=÷aa C.22423a a a+=D.()33aa-=-5.如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,那么∠A的度数为(▲)A.140°B.60°C.50°D.40°6.一个多边形的每一个内角均为108°,那么这个多边形是(▲)A.七边形B.六边形C.五边形D.四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是(▲)A.85,90 B.85, 87.5 C.90,85 D.95,908.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1 ,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时..发光的概率为(▲)A.31B.32C.21D.619.如图,AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,那么sin∠ABD的值是(▲)A.43B.34C.35D.4510.如图,一个半径为r的圆形纸片在边长为a(a≥)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是(▲)A.23rπB.23rπC.2)rπD.2rπ二、填空题(每题3分,共18分)11.实数4的算术平方根是▲。

2015年中考数学模拟试卷及答案(含答题纸)

2015年中考数学模拟试卷及答案(含答题纸)

9.反比例函数 y=
k (k≠0 )的图象经过两点 A(x1 ,y1 ), B(x2 ,y 2) ,当 x 1 <x 2 <0 x
时,y 1 > y2 。则一次函数 y=-2x+k 不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 G,点 F 是 CD 上一点,且满足
PQ 的值 AQ
(2)连接 CM,设动点 P 的横坐标为 t。当 t 为何值时,△APQ 与△CMN 相似? (三)图 2 中,点 E 在 Y 轴上满足∠OAE=30°。 (二)中的直线 PQ 交 AE 于点 F,将∠ OAE 沿直线 PQ 翻折,点 A 落在射线 AO 上的点 G 处。当△EFG 是直角三角形时,试确定 点 Q 的坐标。
图1
图2
参考简答 一.选择题 ABBCC DCDCC 二.填空题 11.x≤3 12.6 13.16π 15.76 16.(1)(2)(3) 三.解答题 17.3 18.化简得
14。100,50
2 x(x 1) 。X 只能取 2,原式= 3 x 1
19.(1)略 (5 分) (2)矩形 (5 分) 20.(1)50, 5 次, 图中 5 次有 16 人图略 (2)112 (3)
2015 年中考数学模拟试卷
广办武元中学 一、选择题(每小题 3 分,共 30 分) 1.-3 的相反数是( ) A. 3 B.-3 C.胡启
1 3
D.
1 3

2.不等式 3X-5<1 的解集在数轴上表示是( A B D ) . C.
C 3. 如图所示的几何体的俯视图是( A. B.
D.
第 3 题图

2015中考模拟考试试题数学科参考答案

2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。

(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。

2015年初三中考模拟数学(试卷、答卷、答案)

2015年初三中考模拟数学(试卷、答卷、答案)

2014学年第二学期九年级数学阶段检测试题卷考生须知:1.本试卷分试题卷和答题卡两部分.满分120分,考试时间100分钟; 2.答题前,必须在答题卡填写校名、班级、姓名,正确涂写考试号;3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π.一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( ) A. 3)3(2=-B.3=-C. 3)3(2=D. 3=-3. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x = 4.如图,点A 在直线BG 上,AD ∥BC ,AE 平分∠GA D .若∠CBA =80°, 则∠GAE =()A .60°B .50°C .40°D .30° 5.若四个数据2,x ,3,5的中位数是4,则有( )A .4x =B .6x =C .5x ≥D .5x ≤6.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( ) A .4π B .3π C .2π D .2π7.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分(△ABC)的面积为( )A .cm 2B .cm 2C .cm 2D .cm 28. 已知⊙O 半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为B. ⊙2O 中,45°圆周角所对弦长为C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm(第2题)G EDCBA(第7题)(第9题)9. 如图,正方形OABC 的一个顶点O 是平面直角坐标系的原点,顶点A ,C 分别在y 轴和x 轴上, P 为边OC 上的一个动点,且BP ⊥PQ , BP=PQ ,当点P 从点C 运动到点O 时,可知点Q 始终在某函数图象上运动,则其函数图象是( ) A .线段 B .圆弧C .抛物线的一部分D . 不同于以上的不规则曲线.10. 已知关于x ,y 的方程组⎩⎨⎧-=+-=+a y x a y x 34321323 其中 1 ≤ a ≤ 3,给出下列结论:①⎪⎪⎩⎪⎪⎨⎧==5152y x 是方程组的解;② 当a =2时,53=+y x ; ③ 当a =1时,方程组的解也是方程x – y =a 的解; ④ 若x ≤ 1 , 则y 的取值范围是52-≥y .其中正确的是( ) A .①② B .②③ C . ②③④ D . ①③④二、 认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11. 使代数式1313--x x 有意义的x 的取值范围是 . 12. 如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 直径AB 的 延长线于点D ,若∠D=40°,则∠A 的度数为 13.△ABC 中,∠C=90°,sin 3A =,AB =AC = 14.无论a 取什么实数,点P (12-a ,3-a )都在直线l 上,Q (m ,n )是直线l 上的点, 则2)12(--n m 的值为. 15.在等腰Rt △ABC 中,∠C = 90°,AC =C 作直线l ∥AB ,F 是直线l 上的一点,且 AB = AF ,则点F 到直线BC 的距离为 16.如图,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点, 动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q .当CQ =12CE 时,EP +BP = ; 当CQ=1nCE 时,EP +BP = .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17.(本小题满分6分) 阅读材料,解答问题: 观察下列方程:① 23x x +=; ②65x x +=; ③127x x+=;…; (1)按此规律写出关于x 的第4个方程为 ,第n 个方程为 ;(2)直接写出第n 个方程的解,并检验此解是否正确.18.(本题满分6分)如图,已知□ABCD 水平放置在平面直角坐标系xOy 中,若点A ,D 的坐标分别为()()2,5,0,1-,点()3,5B 在反比例函数()0ky x x=>图像上. (1)求反比例函数ky x=的解析式 (2)将□ABCD 沿x 轴正方向平移10个单位后,能否使点C 落在反比例函数ky x=的图像上?并说明理由?19. (本题满分8分)一凸透镜MN 放置在如图所示的平面直角坐标系中,透镜的焦点为F (1,0),物体AB 竖直放置在x 轴上,B 点的坐标为(-2.5,0),AB =2.我们知道通过光心的光线AO 不改变方向,平行主轴的光线AE 通过透镜后过焦点F ,两线的交点C 就是A 的像,这样能得到物体AB 的像CD . (1)求直线AC ,EC 的函数表达式; (2)求像CD 的长.20.(本小题满分10分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):FC根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 人,男生最喜欢“乒乓球”项目的有 人; (2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(本题10分)对于平面直角坐标系 x Oy 中的点P (a ,b ),若点P '的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”. 例如:P (1,4)的“2属派生点”为P '(1+42,214⨯+),即P '(3,6). (1) ①点P (-1,-2)的“2属派生点”P '的坐标为____________;②若点P 的“k 属派生点” P '的坐标为(3,3),请写出一个符合条件的点P 的坐标_________; (2)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P '点,且△OPP '为等腰直角三角形,求k 的值.22.(本题满分12分)如图,在矩形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE △,且点G 在矩形ABCD 内部,再延长BG 交DC 于点F .(1)求证: A 、G 、D 三点在以点E 为圆心,EA 的长为半径的圆上; (2)若AD =,求DCDF的值; (3)若DC k DF =,求ADAB的值.23.(本小题满分12分)已知抛物线232y ax bx c =++(1)若1,1a b c ===-求该抛物线与x 轴的交点坐标;(2)若1,23a cb ==+且抛物线在22x -≤≤区间上的最小值是-3,求b 的值; (3)若++1a b c =,是否存在实数x ,使得相应的y 的值为1,请说明理由.第21题图2014学年第二学期九年级数学阶段检测答题卷一、选择题:(每小题3分,共30分)二、填空题:(每小题4分,共24分)11.____________________. 12.___________________. 13.___________________.14.___________________. 15.__________________. 16.________ ,_________.三、解答题:(共66分)17、(本题6分)(1),(2)18、(本题8分)解方程:(1)(2)(1)(2)20、(本题10分)(1),(2)请将条形统计图补充完整;(3)21、(本小题10分)(1)①,②(2)(第19题)(1)C (2)(3)23、(本题12分) (1)(2)(3)2014学年第二学期九年级数学阶段检测答案卷一、选择题:(每小题3分,共30分)二、填空题:(每小题4分,共24分) 11.____31>x _____. 12._____25°_____. 13. ____ _6 _____. 14._____ 16 ___. 15.____ 16._ 12 , 6(n-1)_., 三、解答题(本题有7小题,共66分) 17、(本题满分6分) (1)920=+x x ,-------------------------1分 12)1(+=++n xn n x ---------------2分 (2)1,21+==n x n x --------------------2分 检验----------------------------------1分 18、(本题满分8分)解:(1)A (-2.5,2),代入kx y =得2=-2.5k ……. ……1分(若下一步解析式正确,而此方程不列,不扣这1分) 得 AC 的解析式为x y 54-=……………………………1分 E(0,2),F(1,0)代入⎩⎨⎧=+=+=02b k b b kx y 得…………………….1分得CE 的解析式:22+-=x y ……………………………1分(2)⎪⎩⎪⎨⎧+-=-=2254x y x y ………………………………………….2分 解得y=-34…………………………….1分 (x=35解错不扣分)答: CD=34厘米.……………………………..1分(第18题)19、(本题满分8分)20、(本题满分10分)解:(1) 女生最喜欢“踢毽子”项目的有 10 人,(2) 男生最喜欢“乒乓球”项目的有 20 人;----------------------------------------4分 (2)补充条形统计图如右图;---------------2分 (3)193509450%28400=⨯+⨯. 所以估计该校喜欢“羽毛球”项目的学生总人数为193人.---------------------------------------------4分21、(本小题满分10分)解:(1)①(-2,-4); ……………………………………………………………3分②答案不唯一,只需横、纵坐标之和为3即可,如(1,2) .………3分 (2)±1; ………………………………………………………………………4分22、(本题满分12分) (1)证明:∵E 是AD 的中点∴AE=DE∵ABE △沿BE 折叠后得到GBE △ ∴AE=EG …………1分 ∴AE=DE= EG …………2分CF (2)连接EF ,则90EGF D ∠=∠=°,EG AE ED EF EF ===,.Rt Rt EGF EDF ∴△≌△GF DF ∴=设AB a =,DF b =,则有BC =,CF DC DF a b =-=-,由对称性有BG AB a ==,BF BG GF a b ∴=+=+.在Rt BCF △中,222BC CF BF +=,即222)()()a b a b +-=+, 34a b ∴=, ∴43a b = ∴43DC a DF b == …………6分(3)由(2)知,GF DF =.设DF x BC y ==,,则有.GF x AD y ==, ∵DC k DF= DC k DF =∙,DC AB BG kx ∴===.(1)1CF k x BF BG GF k x ∴=-=+=+,().在Rt BCF △中,222BC CF BF +=,即222[1][(1)]y k x k x +-=+().2y ∴=…………13分AD y AB kx k∴== …………10分23、(本题满分12分)解(1)当1==b a ,1-=c 时,抛物线为1232-+=x x y ,∵方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. --------------------------------3分(2)1,23a cb =-=,则抛物线可化为222y x bx b =+++,其对称轴为x b =-, 当2x b =--<时,即2b >,则有抛物线在2x =-时取最小值为-3,此时-23(2)2(2)2b b =-+⨯-++,解得3b =,合题意--------------5分当2x b =->时,即2b <-,则有抛物线在2x =时取最小值为-3,此时-232222b b =+⨯++,解得95b =-,不合题意,舍去.--------------7分 当2b --≤≤2时,即2b -≤≤2,则有抛物线在x b =-时取最小值为-3,此时23()2()2b b b b -=-+⨯-++,化简得:250b b --=,解得:b =(不合题意,舍去),12b -=. --------------9分综上:3b =或12b =(3)由1y =得2321ax bx c ++=,2412(1)b a c ∆=--22222412()412124(33)b a a b b ab a b ab a =---=++=++22334[()]24b a a =++, .0,0>∆≠a 所以方程2321ax bxc ++=有两个不相等实数根,即存在两个不同实数0x ,使得相应1y =.-------------------------12分。

2015年中考模拟测试(一)数学附答案

2015年中考模拟测试(一)数学附答案

5.半径为 1,圆心角为 60°的扇形的面积是 π A.3 1 B.6 π C.6 1 D.3
y 3 y= 3 x 1 O 1 x
6.如图,在平面直角坐标系中,x 轴上一点 A 从点(-3,0)出发沿 x 轴向右平移,当以 A 3 为圆心,半径为 1 的圆与函数 y= 3 x 的图像相切时,点 A 的坐标变为 A. (-2,0) C. (- 3,0) B. (- 3,0) 或( 3,0) D. (-2,0)或(2,0)
19. (8 分)如图,在矩形 ABCD 中,点 F 是 CD 中点,连接 AF 并延长交 BC 延长线于点 E, 连接 AC. (1)求证:△ADF≌△ECF; (2)若 AB=1,BC=2,求四边形 ACED 的面积.
B A D F C (第 19 题) E
班 人
级 数
甲 班 42
乙 班 36
丙 班 ▲
y 120
O
1
2
3
x
(第 25 题)
26. (9 分)已知,如图,在矩形 ABCD 中,AB=6cm,BC=8cm,动点 E、F 同时从 B 点出发, 点 E 沿射线 BC 方向以 5cm/s 运动, 点 F 沿线段 BD 方向以 4cm/s 运动, 当点 F 到达 D 时, 运动停止,连接 DE,设运动时间为 t(s) . (1)请判断△DEF 的形状,并说明理由; (2)线段 DE 的中点 O 的运动路径长 ▲ cm; (3)当 t 为何值时,△DEF 的外接圆与矩形 ABCD 的边相切?
(1)图(1)中,甲班参考人数占 ▲ ﹪,丙班有
▲ 人参考;
(2)若经计算得出丙班的合格率为 90%,将图(2)补充完整; (3)求上学期期末初三年级数学成绩的平均合格率.

2015-2016年九年级数学中考模拟试卷及答题卡、答案

2015-2016年九年级数学中考模拟试卷及答题卡、答案

2015-2016学年度中考模拟考试数学试题(总分150分 ,考试时间120分钟) (注意:请把答案填写在答题卷上,写在试题卷上无效。

) 一、选择题(本大题共6小题,每小题4分, 共24分.)1. 3-的倒数是( ).A.31- B. 31 C.3- D.32. 现在网购越来越多地成为人们的一种消费方式,在2015年的“五一”劳动节网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,数字57000 000 000用科学计数法表示为( ).9111091057.1057.0.107.5.107.5.⨯⨯⨯⨯D C B A3. 在函数121-+-=x x y 中,自变量x 的取值范围是( ). A.1-≥x B.1->x C.211≠->x x 且 D.211≠-≥x x 且 4. 如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO 绕点B 逆时针旋转60°得到⊿CBD ,若点B 的坐标为(2,0),则点C 的坐标为( ).)2,3.()1,3.()3,2.()3,1.(----D C B A(第4题图) (第5题图) (第6题图)5. 如图,在△AB C 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙O 的半径为( ).A. 2.3B. 2.4C. 2.5D. 2.6 6.如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为62. 其中真命题的序号是( ).A. ①B. ②C. ③D. ④ 二、填空题(本大题共8小题,每小题4分, 共32分.) 7. 直线y=3-x+5不经过的象限为第______象限.8.因式分解:32a 4=ab - .9.把二次函数212y x x =-化为形如()2y a x h k =-+的形式: .10.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是 . 11.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为的中点.若∠A=40°,则∠B= 度.12.正比例函数y 1=mx (m >0)的图象与反比例函数y 2=(k≠0)的图象交于点A (n ,4)和点B ,AM ⊥y 轴,垂足为M .若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是 .(第11题图) (第13题图) (第14题图) 13. 如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D′,点C 落在C′处.若AB=6,AD′=2,则折痕MN 的长为 .14. 如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P周长为1. 点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0). 设点M 转过的路程为m (0<<1m ). 随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为 .三、解答题(本大题共10小题,共94分.解答要写出必要的文字说明、证明过程或演算步骤.)15.(10分)(1)计算:20)3(45cos 4)2015(8-+︒---π;(5分)(2)解分式方程:24321121--=-x x ;(5分) 16. (6分) 化简:21)412(2+-÷-++a a a a a 。

2015年中考数学模拟考试试题和答案

2015年中考数学模拟考试试题和答案

2015年中考数学模拟数学试卷总分:120分 时间:120分钟一、选择题:(每小题3分,共36分)1、若分式52-x 有意义,则x 的取值范围是( ) A .5≠x B .5-≠x C .5>x D .5->x2、关于x 的一元二次方程0222=+-k x x 有实数根,则k 的取值范围是( ) A .21<k B.21≤k C.21>k . D.21≥k 3、下面与3是同类二次根式的是( )A.2B.12C.13-D.18 4、下列运算正确的是( )A.624a a a =⋅ B 23522=-b a b a C.523)(a a =- D.63329)3(b a ab =5、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同, 但乙的成绩比甲的成绩稳定,那么两者的方差的大小关系是( )。

A.22乙甲S S <B.22乙甲S S >C.22乙甲S S = D.不能确定6、如图,已知直线a ∥b,直线c 与a 、b 分别交于A 、B ,且1201=∠,则=∠2( ) A .60B .150C . 30D .1207、在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43 D. 55 8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A . 等边三角形 B . 平行四边形 C . 正方形 D . 等腰梯形9、已知关于x 的一元二次方程02=+-c bx x 的两根分别为,2,121-==x x 则b 与c 的值分别为( )A .2,1=-=c bB .2,1-==c bC .2,1==c bD .2,1-=-=c b10、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )。

11、如图,直线)0(>=t t x 与反比例函数xy x y 1,2-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆ABC 的面积为( ) A .3 B .t 23 C .23D .不能确定12、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④a b S S BCG EOF =∆∆.其中结论正确的个数是( )A . 4个B . 3个C . 2个D . 1个二、选择题:(每小题3分,共18分)13、因式分解:=-a a 43.14、某市棉花产量约378000吨,将378000用科学计数法表示应是______________吨. 15、已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= . 16、如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若cm AB 52=,cm OC 1=,则⊙O 的半径长为 。

2015年中考模拟试卷 答案 答题卡

2015年中考模拟试卷   答案 答题卡

2015年中考模拟试卷数学卷考生须知:1. 本试卷分试题卷和答题卷两部分。

满分120分,考试时间120分钟。

2. 答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4. 考试结束后,上交试题卷和答题卷。

一.仔细选一选(本小题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。

1. 下列计算正确的是( )A .-2+∣-2∣=0 B. 02÷3=0 C. 248= D.2÷3×13=2 2.抛掷三枚均匀的硬帀,三枚都是同一面朝上的概率是 ( )(原创) A.12 B. 23 C. 14 D. 132的相反数的倒数的积是( )(原创)A .4- B. 16- C. -4.化简22x y y x x y+--的结果( )(原创) A. x y -- B. y x - C. x y - D. x y +5. Rt △ABC 中,斜边AB =4,∠B =060,将△ABC 绕点B 旋转060,顶点C 运动的路线长是( ) A.3π B. π C. 23π D. 43π6.在△ABC ∣1cos 2C -∣=0,且∠B ,∠C 都是锐角,则∠A 的度数是 ( )(改编自05年中考第10题)A. 015 B. 060 C. 075 D. 0307.点P 在第三象限内,P 到X 轴的距离与到y 轴的距离之比为2:1P 的坐标为 ( )(改编自08年中考第3题)A .(1,2)- B. (2,1)-- C. (1,2)-- D. (1,2)- 8.要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水,假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需要安装这种喷水龙头的个数最少是 ( )A.3B.4C.5D.6 9.已知方程32530a a a -+=三个根分别为1a ,2a ,3a ,则计算123()a a a ++213()a a a ++312()a a a +的值( )(原创)A .5- B.6 C. 6- D.310.如图,钝角等腰三角形AOB ,EFG 的顶点O ,B ,E 在x 轴上,A ,F 在函数0)y x =〉图像上,且AE 垂直X 轴于点E ,∠ABO =∠FGE =0120,则F 点的坐标为( )(原创)A. B. 1)C. 3(,22 D. 1(22二.认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解:2(2)8a b ab +- =____12平坦的草地上有A ,B ,C 三个小球,若已知A 球与B 球相距3米,A 球与C 球相距1米,则B 球与C 球的距离可能的范围为____13. 函数y =x 的取值范围____14. 如图,正三角形ABC 内接于圆O ,AD ⊥BC 于点D 交圆于点E ,动点P 在优 弧BAC 上,且不与点B ,点C 重合,则∠BPE 等于 ____(原创)15. 已知如图,平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点C ,点D 的坐标分别为 (0,4),(5,0),12OC OA =,点P 在BC 边上运动(不与B ,C 重合),当△ODP 是腰长为5的等腰三角形时,点P 的坐标为____ (改编自09年片月考卷第18题)16. 点P (a,-a )在曲线y 上,则点P 叫做曲线y 上的一个不动点,那么若曲线25y x x k =++不存在这样的不动点,则k 的取值范围是___(原创) 三.全面答一答(本题有8小题,共66分)17.(本小题满分6分)若关于x 的方程2233x m x x -=--无解,求m 的值 18. (本小题满分6分) 学校操场上有一块如图所示三角形空地,量得AB =AC =10米,∠B =022.5,学校打算种上草皮,并预定 53.610⨯平方厘米草皮,请你通过计算说明草皮是否够用。

2015年初三一模数学试卷及答案

2015年初三一模数学试卷及答案

2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。

分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。

2015年5月数学模拟试题及答案

2015年5月数学模拟试题及答案

2015年学业水平考试模拟数学试题2015.5注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷,为选择题,36分;第Ⅱ卷,为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将自己的姓名、准考证号、考试科目、试卷类型填涂在答题纸上。

考试结束,试题和答题纸一并收回。

3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

4.第Ⅱ卷的答案和解题过程,必须用蓝黑钢笔或圆珠笔答在答题纸的有效范围内。

第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,涂在答题纸上,每小题选对得3分. 错选、不选或多选均记零分.)1.下列四个实数中,绝对值最大的数是().A.﹣5 B.-C.2D.42.下列问题中,不适合用全面调查的是().A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱3.把右图中的三棱柱展开,所得到的展开图是().4.下列根式化简后被开方数是3的是().A B C D5.下列等式从左到右的变形,属于因式分解的是().A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)6.一组数据按从大到小的顺序排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据的众数为( ).A .6B .8C .9D .107.如图,一副分别含有30°和45°角的两个直角三角板,拼成如 下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度 数是( ).A .15°B .25°C .30°D .10°8.某河堤的横断面如图所示,堤高BC=6米,迎水坡AB的坡度为1:,则AB 的长为( ).A .12B .4米C .5米D .6米9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( ).A .23π B .23πC .πD .π 10.如果一个三角形的两边长分别是方程x 2﹣8x+15=0的两个根,那么连结这个三角形三边的中点,得到的三角形的周长可能是( ).A .5.5B .5C .4.5D .4 11.如图,的顶点与坐标原点重合,,AO =3BO ,当A 点在反比例函数()图象上移动时,B 点坐标满足的函数解析式是( ).A .1(0)y x x =-<B . 3(0)y x x =-<C . 1(0)3y x x =-<D . 1(0)9y x x=-< 12.如图,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( ).A .45 B .1 C .712D .94第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)13.已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4,﹣1)的对应点D 的坐标为___________. 14.不等式组的解集中,整数解的个数是 __________个.15.如图,梯形ABCD 中,AD ∥BC ,AD=4,AB=5,BC=10,CD 的垂直平分线交BC 于E ,连结DE ,则四边形ABED 的周长等于 .16.如图,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向 依次在射线上描点并连线,若将各条射线所描的点依 次记为1,2,3,4,5,6,7,8,…,那么所描的 第2013个点在射线 上.17.如图,以点P (2,0)M (a ,b )是⊙P 上的一点,则ba的最大值是 .18.如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在格点..上(小正方形的顶点).P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D 构成的三角形与△ABC 相似.写出所有..符合条件的三角形 .三、解答题(本大题共6小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)为了提高学生书写汉字、识别汉字的能力,进一步提高汉语水平,我区举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:(1)求出表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G . (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证CDADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDADCF DE =成立?并证明你的结论.21.(本题满分11分)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.E FG ABCD第24题图①第24题图②ABCDF GE如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连结P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?第22题图①第22题图②如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)过点C的直线与以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE 的解析式.2015中考数学二模试题答案及评分标准一、选择题:ADBCD DAABA AB二、填空题:13.(1,2) 14.6 15.19 16.OE 1718.△DP 2P 5、△DP 2P 4、△DP 4P 5(每个1分)三、解答题 19.解:(1)表中a 的值是:a =50﹣4﹣8﹣16﹣10=12(名).------------------------------------3分(2)根据题意画图如下:---------------------------------------------------------------------------------5分(3)本次测试的优秀率是%44%100501012=⨯+. 答:本次测试的优秀率是44%.------------------------------------------------------------------7分(4)用A 表示小宇B 表示小强,C 、D 表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,--------------------9分则小宇与小强两名男同学分在同一组的概率是61122=.----------------------------------10分 20.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∵DE ⊥CF ,∴∠ADE+∠DFG=90°,又∵∠DCF+∠DFG=90°,∴∠ADE =∠DCF ,--------------------------------------------------------------------------------2分∴△ADE ∽△DCF ,∴DCADCF DE =.------------------------------------------------------------4分(2)当∠B+∠EGC =180°时,DCADCF DE =成立,证明如下: ------------------------------5分在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .-------------------------6分∵AB ∥CD ,∴∠A =∠CDM ,-------------7分∵∠B+∠EGC =180°,∴∠BEG+∠FCB =180°, 又∵∠AED+∠BEG =180°,∴∠AED =∠FCB , ∴∠CMF =∠AED .--------------------------------------------------------------------------------8分∴△ADE ∽△DCM ,∴DCADCM DE =,即DC AD CF DE =.-------------------------------------10分21.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:,--------------------------------------------------------------------3分解得:,答:A 、B 两种型号电风扇的销售单价分别为250元、210元;-------------------------4分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,-------------------------------------------------------7分解得:a ≤10.答:A 种型号的电风扇最多采购10台;------------------------------------------------------8分(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,---------------------- ------10分解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.--------------------11分22.解:(1)证明:∵AB =AC ,∠BAC =∠BPC =60°.∴△ABC 为等边三角形.------------------------------------------------------------- ----------1分∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,--------------- ---------2分又∠APC =∠ABC =60°,∴∠BAC =90°, ------------------------------------ ----------3分∴AC =A P ·tan60°=3AP .--------------------------------------------------------- -------4分ME GF D C B A 第24题图②(2)解:连结AO 并延长交PC 于E ,交BC 于F ,过点E 作EG ⊥AC 于G ,连结OC . ------------------------------------------------------ ---------5分∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF .--------------------------------6分∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a ,∴OF =7a ,AF =32a .----------------------------------8分在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a . 在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aa EG a EG 402432=-,∴EG =12a .-------------------------------------------------------10分 ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF . ---------------------------------------------11分23.解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,---------------------------------1分300×(12﹣10)=300×2=600,即政府这个月为他承担的总差价为600元.---------------------------------------------3分 (2)依题意得,w=(x ﹣10)(﹣10x+500)---------------------------------------------------4分=﹣10x 2+600x ﹣5000=﹣10(x ﹣30)2+4000---------------------------------------------5分 ∵a=﹣10<0,∴当x=30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.-------------------------7分 (3)由题意得:﹣10x 2+600x ﹣5000=3000,解得:x 1=20,x 2=40.------------------------------------8分 ∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000. 又∵x ≤25,∴当20≤x ≤25时,w ≥3000.--------------9分 设政府每个月为他承担的总差价为p 元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.---11分 ∵k=﹣20<0,∴p 随x 的增大而减小, ∴当x=25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.---------12分24.解:(1)由题意,设抛物线的解析式为y=a (x ﹣4)2﹣(a ≠0)∵抛物线经过点(0,2),∴a (0﹣4)2﹣=2,解得a= ∴y=(x ﹣4)2﹣,即:y=x 2﹣x+2.----------2分 当y=0时,x 2﹣x+2=0,解得x=2或x=6GE FAP O第22(2)题图∴A(2,0),B(6,0).-----------------------------3分(2)存在.---------------------------------------------------------4分如图,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小.------------6分∵B(6,0),C(0,2),∴OB=6,OC=2,∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2.--------------------------8分(3)如图,连接ME,∵CE是⊙M的切线,∴ME⊥CE,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE.∵在△COD与△MED中,∴△COD≌△MED(AAS),∴OD=DE,DC=DM.--------------------------------10分设OD=x,则CD=DM=OM﹣OD=4﹣x,则Rt△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2,∴x=,∴D(,0).----------------------------------------------11分设直线CE的解析式为y=kx+b,∵直线CE过C(0,2),D(,0)两点,则,解得:∴直线CE的解析式为y=﹣+2.-----------------------------------------------------------12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年模拟数学试题卷(全卷三个大题,共23小题,共6页;满分120分,考试时间120分钟)参考公式:二次函数y=ax 2+bx+c 的顶点坐标是)4ab 4ac ,2a b (2--.一、选择题(本题有8小题,每小题3分,共24分.请选出各题中唯一的正确选项,不选、多选、错选, 均不给分) 1.﹣3的相反数为( )A 、3B 、13C 、﹣3D 、13-2.已知地球上海洋面积约为316 000 000km 2,316 000 000这个数用科学记数法可表示为( ) A .3.16×109 B .3.16×108 C .3.16×107 D .3.16×106 3.如图所示的是零件三通的立体图,则这个几何体的俯视图是( )A B C D4.已知反比例函数1y x-=,下列结论中正确的是( )A .图象经过点(1,1)B .图象在第一、三象限C .当1>x 时,10y -<<D .当0<x 时,y 随着x 的增大而减小5.如图,在Rt △ABC 中,90C ∠=︒,4AC =,3BC =,则tan A 的值为( ) A .34 B .43 C .35 D .456.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积为( ) A .15π B .24π C .30π D .39π7.已知⊙O 1和⊙O 2的半径分别为2cm 和5cm ,两圆的圆心距是3cm ,则两圆的位置关系是( )A .内含B .外切C .内切D .相交8.某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周的平均每天体育活动时间的中位数和众数依次是( )A .40分,40分B .50分,40分C .50分,50分D .40分,50分(第5题图)主视方向(第3题图)6(第16题图)二、填空题(本题有6小题,每小题3分,共18分) 9.计算:23()a .10.如图,已知//,,35AB CD BC ABE C BEC ∠∠=︒∠平分,则的度数是 . 11.某校艺术节演出中,5位评委给某个节目打分如下:9分,9.2分,8.9分,8.8分,9.1分,则该节目的平均得分是分.12.阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 . 13.如图,在平面直角坐标系xoy 中,直线AB 过点A (-4,0),B (0,4),⊙O 的半径O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的 最小值为 .14.如图,已知直线y =2x +6交y 轴于点A ,点B 是这条直线上的一点,并且位于第一象限,点P 是直线x=8上的一动点,若△APB 是等腰直角三角形,则点B 的坐标为 .三、简答题(本题有9小题,共78分)15.(本题10分)(1)计算:101()(2013)3π-+-+ (2)解方程:xx x -=+--23123(第8题图)(第12题图)AD(第15题图)16.(本题6分)如图,图①,图②均为76 的正方形网格,点A ,B ,C 在格点(小正方形的顶点)上.(1)在图①中确定格点D ,并画出一个以A ,B ,C ,D 为顶点的四边形,使其为轴对称图形;(2)在图②中确定格点E ,并画出一个以A ,B ,C ,E 为顶点的四边形,使其为中心对称图形.17.(本题8分)如图,在□ABCD 中,分别延长BA ,DC 到点E ,使得AE=AB ,CH=CD ,连接EH ,分别交AD ,BC 于点F ,G 。

求证:△AEF ≌△CHG .(第17题图)(第16题图①) (第16题图②)18.(本题8分)如图,AB 为⊙O 的直径,BC 为⊙O 的切线,AC 交⊙O 于点E ,D 为AC上一点, ∠AOD =∠C . (1)求证:OD ⊥AC ; (2)若AE =8,3tan 4A =,求OD 的长.19.(本题8分)在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点(),P m n 的横坐标,第二个数作为点(),P m n 的纵坐标,则点(),P m n 在反比例函数8y x=的图象上的概率一定小于在反比例函数6y x=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点(),P m n 的情形;(2)分别求出点(),P m n 在两个反比例函数的图象上的概率,并说明谁的观点正确.20.(本题9分)如图,抛物线22y ax =+与y 轴交于点A ,抛物线上的一点P 在第四象限,连接AP 与x 轴交于点C ,12AC CP =,且S △AOC =1,过点P 作PB ⊥y 轴于点B . (1)求BP 的长;(2)求抛物线与x 轴的交点坐标.(第18题图)yx(第20题图)21.(本题9分)某县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如右图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x 天后一次性出售,则x 天后这批蘑菇的销售单价为 元, 这批蘑菇的销售量是 千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售..总金额...为100000元;(销售总金额=销售单价×销售量). (3)将这批蘑菇存放多少天后一次性出售可获得最大利润....?最大利润是多少? 22.(本题10分) 如图,在直角坐标系xoy 中,△ABC 的顶点坐标为A (—8,0),B (3,0),C (0,4).动点P 从点A 出发,沿着AB 以每秒1个单位长度的速度向终点B 运动;动点Q 从点B 出发,沿着射线BC ,以每秒1个单位长度的速度运动,当点P 到达B 时,点Q 也停止运动.P ,Q 两点同时开始运动,设运动时间为t 秒. (1)求线段BC 的长度;(2)当△APQ 为等腰三角形时,求t 的值;(3)设△APQ 的外接圆的圆心为M ,当点C 在⊙M 上时,请求出t 的值.23.(10分)(2014年云南省)已知如图平面直角坐标系中,点O 是坐标原点,矩形ABCD是顶点坐标分别为A (3,0)、B (3,4)、C (0,4).点D 在y 轴上,且点D 的坐标为(0,﹣5),点P 是直线AC 上的一动点.(1)当点P 运动到线段AC 的中点时,求直线DP 的解析式(关系式);(2)当点P 沿直线AC 移动时,过点D 、P 的直线与x 轴交于点M .问在x 轴的正半轴上是否存在使△DOM 与△ABC 相似的点M ?若存在,请求出点M 的坐标;若不存在,请说明理由;(第21题图)(第22题备用图)(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.、2015年模拟考试数学一、选择题(每小题3分,共24分)二、填空题(每小题3分,共18分)9.6a ; 10.110°;111.9; 12.6080x ≤≤;13;14.(4,14);834(,)33;1650(,)33三、解答题(共78分) 15.(本题10分) (1)解:原式=3+1-4 =0(1+2+2分)(1分)(2)解:去分母得:x-3+x-2=-3 (2分) 移项,合并同类项得:2x=2 ∴x=1(2分)经检验x=1是原方程的解 ∴原方程的解x=1. (1分) 16.(本题6分).解:(1)有以下答案供参考:……………3分(2)有以下答案供参考:……………3分17.(本题8分)证明: ∵ □ABCD∴ AB=CD,∠BAD=∠BCD AB ∥CD (2分)ABCEABC EAB D ABCDC∴∠EAF=∠HCG ∠E=∠H(2分)∵ AE=AB,CH=CD(1分)∴ AE=CH(1分)∴△AEF≌△CHG. (2分)18.(本题8分)(1)证明:∵BC是⊙O的切线,AB为⊙O的直径∴∠ABC=90°,∠A+∠C=90°,(1分)又∵∠AOD=∠C,∴∠AOD+∠A=90°,(1分)∴∠ADO=90°,(1分)∴OD⊥AC.(1分)(2)解:∵OD⊥AE,O为圆心,∴D为AE中点,(1分)∴1AD=AE=42,(1分)又3tan4A=,∴OD=3. (2分)19.(本题8分)解:(1)列表如下:………………………………………………………………2分画树状图如下:………………………………………………………………2分(2)由树状图或表格可知,点(),P m n共有36种可能的结果,且每种结果出现的可能性相同,点(2,4),(4,2)在反比例函数8yx=的图象上,……………1分点 (2,3),(3,2),(1,6),(6,1)在反比例函数6y x=的图象上, …………………1分 故点(),P m n 在反比例函数8y x =概率是21.3618= 在6y x =的图象上的概率是41.369=………9分 所以小明的观点正确. ………………………………………………………2分20.(本题8分)解:(1)当0=x 时,2=y ,∴2=OA …………………………1分 ∵121=⋅=OA OC S AOC ∆ ∴1=OC …………………………1分 ∵轴y PB ⊥ ∴BP ∥OC∴ABP ∽AOC ∆∆ …………………………1分∴31AP AC BP OC AB AO === ∴3BP =,6AB =,4OB = …………………………1分(2)由(1)得P (3,-4)将点P (3,-4)代入22+=ax y 得,294+=-a∴32-=a∴2322+-=x y …………………………2分当0=y 时,02322=+-x∴31=x ,32-=x∴抛物线与x 轴的交点坐标是(3,0),(3-,0)…………………………2分21.(本题10分)解:(1)()x 1.010+ ()x 106000- ………………1分(2)()()1000001060001.010=-+x x ……………………1分化简得2500400000x x -+= 解得x 1=100,……………1分x 2=400(舍去) ……………1分胡经理销售将这批蘑菇存放100天后,一次性出售所得的销售总金额达到100000元.……………1分(3)设最大利润为W ,由题意得W()()x x x 2406000101060001.010-⨯--+=x x 2602+-=16900)130(2+--=x ,……………1分∵x ≤110,∴当x =110时,W 最大值=16500……………1分答:存放110天后出售这批香菇可获得最大利润16500元.……………1分 22.(本题10分)(1)∵B (3,0),C (0,4) ∴OB=3,OC=4, …………………(1分) ∵∠BOC =90°∴BC=5 (2)当AP=PQ 时,如图 作QH ⊥X 轴,垂足为H ,∵BQ=t,在Rt △BHQ 中,QH=45∴22224()5PQ PH HB t =+=∴22248()(11)55t t t +-=解得125,11t t ==当QP=AQ 时, 如图作QI ⊥X 轴,垂足为I ,∵BI=1112t -∴11132cos 5tB t -== 解得t=10当AP=AQ 时, 如图 ∵22243()(11)55AQ t t =+- ∴222243()(11)55AQ t t AP t =+-==解得t=556………………………………(2分)23(本题10分)解:(1)过点P 作PH ∥OA ,交OC 于点H ,如图1所示.∵PH ∥OA ,∴△CHP ∽△COA . ∴==.∵点P 是AC 中点,∴CP =CA .∴HP =OA ,CH =CO .∵A (3,0)、C (0,4),∴OA =3,OC =4.∴HP =,CH =2.∴OH =2.∵PH ∥OA ,∠COA =90°,∴∠CHP =∠COA =90°.∴点P 的坐标为(,2).设直线DP 的解析式为y =kx +b ,∵D (0,﹣5),P (,2)在直线DP 上, ∴ ∴∴直线DP 的解析式为y =x ﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.2015年模拟考试数学答题卷二、填空题(每小题3分,共18分)9.______;10.______;11.______;12.______;13.______;14.______三、解答题(共78分)15.(本题10分)16.(本题6分)17.(本题8分)18.(本题8分)19.(本题8分)20.(本题8分)21.(本题10分)22.(本题10分) 23(本题10分)。

相关文档
最新文档