机械设计减速器

合集下载

机械课程设计~二级减速器1

机械课程设计~二级减速器1

机械课程设计~二级减速器11. 引言二级减速器是机械系统中非常重要的组成部分,它可以将高速旋转的输入轴转换为低速高扭矩的输出轴。

在本文档中,我们将设计一个二级减速器,以满足特定的性能要求和应用需求。

2. 设计目标我们的二级减速器设计的目标是实现以下要求:•输入轴旋转速度:1000 RPM•输出轴旋转速度:60 RPM•输入功率:10 kW•输出扭矩:2000 Nm•效率:大于90%3. 设计流程3.1. 确定传动方式根据设计目标,我们可以选择适合的传动方式。

在这种情况下,我们可以选择齿轮传动作为二级减速器的传动方式。

齿轮传动具有高效率、可靠性和良好的承载能力。

3.2. 计算减速比根据输入和输出轴的旋转速度,我们可以计算减速比。

减速比可以通过下面的公式计算:减速比 = 输入轴旋转速度 / 输出轴旋转速度在这种情况下,减速比为:减速比 = 1000 / 60 = 16.673.3. 选择齿轮模数齿轮模数(Module)是指齿轮齿数与齿轮的直径比值。

在确定减速比和输入轴旋转速度后,我们可以选择适当的齿轮模数,以满足设计要求。

通常情况下,我们可以通过经验法则来选择合适的齿轮模数。

3.4. 计算输入轴和输出轴的齿轮齿数根据减速比和齿轮模数,我们可以计算输入轴和输出轴的齿轮齿数。

通过下面的公式可以计算齿轮齿数:输入轴齿轮齿数 = 输入轴旋转速度 / 齿轮模数输出轴齿轮齿数 = 输出轴旋转速度 / 齿轮模数在这个例子中,输入轴齿轮齿数为:输入轴齿轮齿数 = 1000 / 齿轮模数输出轴齿轮齿数为:输出轴齿轮齿数 = 60 / 齿轮模数3.5. 确定齿轮材料和尺寸根据输入功率和输出扭矩,我们可以选择合适的齿轮材料和尺寸,以确保齿轮具有足够的强度和耐久性。

3.6. 计算二级减速器的效率计算减速器的效率是非常重要的,因为它直接影响到机械系统的能量转换效率。

可以使用下面的公式来计算减速器的效率:效率 = (输出功率 / 输入功率) * 100%在这种情况下,输出功率为:输出功率 = 输出扭矩 * 输出轴旋转速度 * 2π / 603.7. 进行减速器的实际设计根据上述计算结果和设计要求,我们可以进行减速器的实际设计,并考虑到材料选择、尺寸确定、装配方式等方面的问题。

机械设计课程设计二级减速器

机械设计课程设计二级减速器

机械设计课程设计二级减速器一、教学目标本节课的教学目标是使学生掌握二级减速器的基本设计原理和方法,能够运用所学的知识进行简单的减速器设计。

具体目标如下:1.知识目标:(1)了解二级减速器的结构和工作原理;(2)掌握减速器的设计方法和步骤;(3)熟悉减速器设计中常用的标准和规范。

2.技能目标:(1)能够运用CAD软件进行减速器零件的绘制;(2)能够根据设计要求,计算并选择合适的齿轮模数、齿数等参数;(3)能够完成一级减速器的设计计算和图纸绘制。

3.情感态度价值观目标:(1)培养学生的团队合作意识和能力;(2)激发学生对机械设计的兴趣和热情;(3)培养学生的创新精神和实践能力。

二、教学内容本节课的教学内容主要包括以下几个部分:1.二级减速器的结构和工作原理;2.减速器的设计方法和步骤;3.减速器设计中常用的标准和规范;4.CAD软件在减速器设计中的应用;5.减速器设计实践操作。

三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:通过讲解二级减速器的结构、工作原理、设计方法和步骤等基本知识,使学生掌握基本概念和理论。

2.案例分析法:通过分析具体的减速器设计案例,使学生了解减速器设计的过程和注意事项。

3.实验法:安排学生进行减速器设计实验,让学生动手实践,巩固所学知识。

4.讨论法:学生进行小组讨论,培养学生的团队合作意识和能力。

四、教学资源为了保证本节课的教学质量,将准备以下教学资源:1.教材:《机械设计基础》;2.参考书:相关减速器设计手册和论文;3.多媒体资料:减速器设计原理和步骤的PPT;4.实验设备:计算机、CAD软件、减速器设计实验器材。

以上教学资源将有助于实现本节课的教学目标,提高学生的学习效果。

五、教学评估本节课的评估方式将包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和积极性。

2.作业:布置相关的减速器设计作业,要求学生在规定时间内完成,通过评估作业的质量来评估学生的理解和掌握程度。

机械设计课程设计减速器

机械设计课程设计减速器

机械设计课程设计 减速器一、课程目标知识目标:1. 学生能理解减速器的基本原理及其在机械设计中的应用。

2. 学生能掌握减速器的分类、结构特点及其设计计算方法。

3. 学生能了解减速器在工程实际中的应用案例,理解其重要性和适用范围。

技能目标:1. 学生具备运用减速器设计原理进行简单减速器设计的能力。

2. 学生能够运用相关软件(如CAD)进行减速器零件图的绘制和装配图的制作。

3. 学生能够通过实验和数据分析,评估减速器设计的合理性。

情感态度价值观目标:1. 培养学生对机械设计学科的兴趣,激发其创新意识和探索精神。

2. 增强学生的团队合作意识,使其在项目实施过程中学会互相尊重、协作与沟通。

3. 培养学生严谨的科学态度和良好的工程伦理观念,使其在设计过程中注重安全、环保和经济效益。

课程性质:本课程为机械设计课程设计,以实践为主,结合理论,培养学生的实际操作能力和工程设计能力。

学生特点:高年级本科生,已具备一定的机械设计理论基础,具有较强的动手能力和自主学习能力。

教学要求:注重理论与实践相结合,强化学生的动手操作能力和工程设计能力,提高学生在实际工程中的应用能力。

通过课程目标的分解,使学生在完成课程学习后能够达到预期的学习成果,为将来的工作和发展奠定基础。

二、教学内容1. 理论教学:a. 介绍减速器的工作原理、分类及结构特点。

b. 讲解减速器设计的基本计算方法,包括传动比、模数、齿数等参数的确定。

c. 分析减速器在机械系统中的应用,以及选用原则和注意事项。

2. 实践教学:a. 利用CAD软件进行减速器零件图和装配图的绘制。

b. 结合实际案例,进行减速器设计计算,指导学生完成设计任务。

c. 组织学生进行减速器装配和调试,分析实验数据,评估设计合理性。

3. 教学大纲:a. 第一章:减速器概述(对应教材第X章)1) 减速器的基本概念2) 减速器的工作原理及分类3) 减速器的结构特点及应用b. 第二章:减速器设计计算(对应教材第X章)1) 传动比、模数、齿数的确定2) 齿轮啮合原理及强度计算3) 其他零部件的设计计算c. 第三章:减速器设计实践(对应教材第X章)1) CAD软件应用2) 设计计算案例分析3) 实验教学及数据分析4. 教学进度安排:a. 理论教学:共X学时,每周X学时。

机械课程设计减速器

机械课程设计减速器

机械课程设计减速器简介减速器是机械领域中常见的装置,其主要功能是降低旋转速度并增加扭矩。

在许多工业领域中,减速器被广泛应用于传动系统中,起到提高设备效率和稳定工作的作用。

本文将介绍机械课程设计中涉及的减速器类型、设计原理以及相关设计要点。

减速器类型机械课程设计中常见的减速器类型有齿轮减速器、带传动减速器和蜗杆减速器等。

齿轮减速器齿轮减速器是一种通过齿轮传动来实现减速的装置。

它由两个或多个齿轮组成,其中一个齿轮称为驱动齿轮,另一个齿轮称为从动齿轮。

通过不同大小的齿轮组合,可以实现不同的减速比。

常见的齿轮减速器有圆柱齿轮减速器和锥齿轮减速器。

带传动减速器带传动减速器是一种通过传动带来实现减速的装置。

它由一根带子、两个滚轮和一个连接带子与轴的结构组成。

其中一个滚轮称为驱动滚轮,另一个滚轮称为从动滚轮。

通过调整滚轮的直径比例,可以实现不同的减速比。

带传动减速器具有结构简单、传动平稳等优点,适用于低速、大扭矩的场合。

蜗杆减速器蜗杆减速器是一种通过蜗杆和蜗轮的啮合来实现减速的装置。

蜗杆是一种螺旋形状的齿轮,蜗轮则是一个圆形齿轮。

通过蜗杆的旋转来驱动蜗轮,从而实现减速。

蜗杆减速器具有体积小、传动比大、传动平稳等特点,适用于高速、小扭矩的场合。

设计原理机械课程设计减速器的设计原理涉及到减速比的计算、齿轮参数的选择以及传动系统的稳定性分析等。

减速比计算减速比是减速器设计中重要的参数,它决定了驱动轴和从动轴的转速比。

减速比的计算可以根据应用需求来确定,通常通过下述公式计算:减速比 = 驱动轴转速 / 从动轴转速齿轮参数选择在齿轮减速器的设计中,选择合适的齿轮参数非常重要。

齿轮参数包括模数、压力角、齿数等。

模数决定了齿轮的尺寸和强度,压力角决定了齿轮的接触性能,齿数决定了传动比和轴间距。

设计时需要根据传动功率、转速和齿轮材料等因素来选择合适的齿轮参数。

传动系统稳定性分析传动系统的稳定性是指减速器在工作过程中的可靠性和稳定性。

机械设计减速器设计说明书

机械设计减速器设计说明书

机械设计减速器设计说明书一、减速器概述减速器是一种将高速旋转运动转化为低速旋转运动的机械设备,广泛应用于各种工业领域。

它通常由多个齿轮组成,通过齿轮之间的啮合传递扭矩,从而实现减速的目的。

二、设计目标与参数本次设计的减速器旨在满足以下目标:1. 减速比:减速器的减速比为30:1。

2. 输入转速:输入转速为1400转/分钟。

3. 输出转速:输出转速为46.67转/分钟。

4. 输入扭矩:输入扭矩为100牛·米。

5. 输出扭矩:输出扭矩为3333牛·米。

6. 安装方式:减速器采用卧式安装方式。

三、减速器结构与工作原理减速器主要由输入轴、齿轮箱、输出轴等部分组成。

具体结构如下:1. 输入轴:输入轴上安装有主动齿轮,与电机连接,将电机的动力传递给齿轮箱。

2. 齿轮箱:齿轮箱内安装有多组齿轮,包括主动齿轮、从动齿轮等。

通过主动齿轮与从动齿轮的啮合,实现减速作用。

3. 输出轴:输出轴上安装有从动齿轮,将从动齿轮的动力传递给负载。

工作原理:当电机带动输入轴转动时,主动齿轮将动力传递给齿轮箱内的从动齿轮。

由于齿轮之间的啮合关系,从动齿轮的转速降低,从而实现减速效果。

最后,输出轴将动力传递给负载。

四、材料选择与强度计算1. 材料选择:齿轮采用高强度铸铁材料,具有良好的耐磨性和抗冲击性能;轴采用45号钢,具有较好的强度和刚度。

2. 强度计算:根据设计参数和材料性能,对齿轮和轴进行强度计算,确保减速器的可靠性。

五、减速器装配图与零件清单1. 减速器装配图:附图1为减速器的装配图,展示了各部件的相对位置和连接方式。

2. 零件清单:列出减速器所需的所有零件清单,包括齿轮、轴、轴承、箱体等。

具体零件规格和数量根据设计参数确定。

六、减速器性能测试与评估对减速器进行性能测试,以验证其是否符合设计要求。

测试内容包括但不限于以下方面:1. 减速比测试:通过测量输入和输出转速,计算实际减速比是否符合设计要求。

2. 扭矩测试:通过测量输入和输出扭矩,验证减速器的扭矩传递能力是否满足设计要求。

机械设计基础课程设计减速器

机械设计基础课程设计减速器

机械设计基础课程设计减速器引言减速器(Reducer),又称为减速机、减速器、减速齿轮机构,是将高速运动的动力通过齿轮传动装置转换成低速高转矩的设备。

减速器广泛应用于工业生产中的传动装置,具有重要的作用。

本文将详细讨论机械设计基础课程设计中的减速器。

一、减速器的作用和原理减速器主要用于将电动机等高速运动装置的转速降低,同时增加转矩。

其作用在于匹配输入和输出的转速和扭矩,使机械装置达到最适合的工作状态。

•减速器的作用–降低输出速度:通过齿轮传动机构,将高速输入转动降低到所需要的输出速度,满足不同工作环境的要求。

–增加输出扭矩:通过齿轮传动的工作原理,能够增加输出扭矩,提供所需的动力。

–反向装置:通过减速器的设计,可以实现转向,使机械装置在不同的工况下反向运动。

•减速器的原理–齿轮传动原理:减速器主要通过齿轮的传动实现速度和扭矩的转换。

通过两个或多个齿轮的组合传动,可以实现不同的转速比。

一般来说,将大齿轮称为驱动轮,小齿轮称为从动轮。

当驱动轮转动时,从动轮相应地转动,但速度和扭矩会发生变化。

二、减速器的分类根据结构和用途的不同,减速器可以分为多种类型。

下面将详细介绍常见的几种减速器。

2.1 齿轮减速器齿轮减速器是应用最为广泛的减速器之一,其主要由齿轮、轴承、轴和外壳等组成。

根据齿轮的不同排列方式和传动原理,齿轮减速器又可以分为平行轴齿轮减速器、斜齿轮减速器、行星齿轮减速器等。

•平行轴齿轮减速器:工作原理是通过平行轴上的两个齿轮之间的啮合传动来实现速度和扭矩的转换。

广泛应用于各类机械设备。

•斜齿轮减速器:斜齿轮减速器的轴线与齿轮轮系的轴线相交,主要用于两轴不平行的情况,特别适用于转动方向需要改变的场合。

•行星齿轮减速器:行星齿轮减速器由太阳轮、行星轮和内齿轮组成,通过不同齿轮的啮合传动实现减速。

具有结构紧凑、扭矩大等优点,广泛应用于工业领域。

2.2 带传动的减速器带传动的减速器主要是通过皮带、链条等进行传动,将高速输入转动减速至低速输出。

二级减速器(机械课程设计)(含总结)_2

二级减速器(机械课程设计)(含总结)_2

江西农业大学工学院机制104机械设计课程设计任务书专业班级姓名设计题号题目1: 设计带式运输机传动装置1—输送带鼓轮2—链传动3—减速器4—联轴器5—电动机题号 1 2** 3 4 5 6 F(kN) 2.1 2.2 2.4 2.7 2 2.3 v(m/s) 1.4 1.3 1.6 1.1 1.3 1.4 D(mm)450 390 480 370 420 480 题号7 8 9 10 11 12 F(kN) 2.5 2.6 2.2 2.5 2.7 2.4 v(m/s) 1.5 1.2 1.4 1.3 1.6 1.2 D(mm)450 390 460 400 500 400表中: F—输送带的牵引力 V—输送带速度D—鼓轮直径注: 1.带式输送机用以运送谷物、型砂、碎矿石、煤等。

2.输送机运转方向不变, 工作载荷稳定。

3.输送带鼓轮的传动效率取为0.97。

一、4、输送机每天工作16小时, 寿命为10年。

二、设计工作量:三、编写设计计算说明书1份。

二、绘制减速器装配图1张(1号图纸)。

三、绘制减速器低速轴上齿轮零件图1张(3号图纸)。

四、绘制减速器低速轴零件图1张(3号图纸)。

目录1.设计目的 (2)2.设计方案 (3)3.电机选择 (5)4.装置运动动力参数计算 (7)5.带传动设计 (9)6.齿轮设计 (18)7.轴类零件设计 (28)8.轴承的寿命计算 (31)9.键连接的校核 (32)10.润滑及密封类型选择 (33)11.减速器附件设计 (33)12.心得体会 (34)13.参考文献 (35)1.设计目的机械设计课程是培养学生具有机械设计能力的技术基础课。

课程设计则是机械设计课程的实践性教学环节, 同时也是高等工科院校大多数专业学生第一次全面的设计能力训练, 其目的是:(1)通过课程设计实践, 树立正确的设计思想, 增强创新意识, 培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。

机械设计基础课程设计一级减速器

机械设计基础课程设计一级减速器

机械设计基础课程设计一级减速器一、课程目标知识目标:1. 掌握一级减速器的结构组成及其工作原理;2. 了解并掌握减速器的设计方法和步骤,包括计算、选型、校核等;3. 掌握减速器主要零件的材料、加工工艺及装配要求;4. 理解并掌握减速器的强度、刚度和精度计算。

技能目标:1. 能够运用所学知识,独立完成一级减速器的设计计算;2. 能够运用CAD软件绘制减速器的零件图和装配图;3. 能够根据设计要求,选择合适的材料和加工方法,并进行简单的校核;4. 能够通过实验或模拟,分析减速器的性能,并提出优化方案。

情感态度价值观目标:1. 培养学生对机械设计基础课程的兴趣,激发学习热情;2. 培养学生的团队协作意识和沟通能力,提高解决问题的能力;3. 培养学生严谨的科学态度和良好的工程意识,注重实际操作和工程实践;4. 引导学生关注我国机械制造业的发展,树立为国家和社会作贡献的价值观。

本课程针对高年级学生,课程性质为专业核心课程。

在分析课程性质、学生特点和教学要求的基础上,将课程目标分解为具体的学习成果,以便后续的教学设计和评估。

通过本课程的学习,使学生能够掌握一级减速器的设计方法和技能,为今后从事机械设计及相关领域工作打下坚实基础。

二、教学内容1. 减速器概述:讲解减速器的作用、分类及一级减速器的特点;参考教材章节:第一章第一节。

2. 减速器设计原理:阐述一级减速器的工作原理、设计要求和计算方法;参考教材章节:第一章第二节。

3. 齿轮传动的计算:介绍齿轮传动的基本参数计算、强度校核和精度等级;参考教材章节:第二章。

4. 轴承和轴的设计:讲解轴承的类型选择、寿命计算和轴的设计计算;参考教材章节:第三章。

5. 减速器零件的加工与装配:分析减速器主要零件的加工工艺、装配要求和质量控制;参考教材章节:第四章。

6. 减速器设计实例:分析一级减速器设计实例,指导学生完成设计计算和图纸绘制;参考教材章节:第五章。

7. 减速器性能分析及优化:介绍减速器性能测试方法,分析结果并提出优化方案;参考教材章节:第六章。

机械设计课程设计二级减速器

机械设计课程设计二级减速器

机械设计课程设计二级减速器1. 简介二级减速器是一种常见的机械传动装置,通过一系列的齿轮传递转矩和降低转速。

它主要由两对齿轮组成,其中一对为驱动齿轮,另一对为从动齿轮。

本文将介绍机械设计课程中关于二级减速器的设计过程。

2. 设计过程2.1 确定传动比在设计二级减速器之前,我们首先需要确定所需的传动比。

传动比决定了驱动齿轮和从动齿轮的直径比例。

传动比的选择通常基于所需的转速和转矩输出。

2.2 选取齿轮材料齿轮材料的选择非常重要,它直接影响到减速器的寿命和性能。

常用的齿轮材料有钢、铸铁和铜合金。

在选择齿轮材料时需要考虑其机械性能、耐磨性和成本等因素。

2.3 计算齿轮参数根据所需的传动比和输入齿轮的参数,可以计算出从动齿轮的参数,包括模数、齿数、齿宽等。

通过计算可以得到合适的齿轮尺寸,以满足转矩和转速要求。

2.4 齿形设计齿形设计是二级减速器设计过程中的关键环节。

它确定了齿轮的齿形和齿廓参数,直接影响到齿轮的传动效率和噪音产生。

常用的齿形有圆弧齿、直齿和斜齿等。

在齿形设计中,需要考虑到齿轮的强度和对齿轮的加工要求。

2.5 强度计算强度计算是确保减速器在工作过程中不发生断裂或损坏的重要步骤。

在强度计算中,需要考虑到齿轮的转矩、齿宽、弯曲应力和接触应力等参数,以确定齿轮的强度是否足够。

2.6 附件设计除了齿轮外,二级减速器还需要相应的轴、轴承和润滑系统等附件。

轴的设计需要考虑到其强度和刚度,轴承的选择需要满足齿轮的转速和负载要求,润滑系统的设计需要确保齿轮运转平稳和寿命长。

3. 结论通过以上的设计过程,我们可以得到一套满足转矩和转速要求的二级减速器设计。

在实际应用中,还需要进行加工制造、装配和调试等工序,以确保减速器的正常运行。

机械设计课程中的二级减速器设计是一个综合应用多学科知识的过程,需要综合考虑力学、材料和制造等方面的知识。

机械设计基础课程设计减速器考题

机械设计基础课程设计减速器考题

机械设计基础课程设计减速器考题一、引言减速器作为机械传动系统中的重要组成部分,在工业生产中起着至关重要的作用。

本文将探讨机械设计基础课程设计中与减速器相关的考题,包括减速器的原理、设计要点以及实际应用。

二、减速器的原理减速器是一种能够降低传动速度并增加输出扭矩的装置。

它通常由输入轴、输出轴和中间的齿轮组成。

通过齿轮的啮合,输入轴的高速旋转被转换为输出轴的低速旋转。

减速器的原理可以用以下公式表示:[n_2 = ]其中,(n_2)表示输出轴的转速,(Z_1)和(Z_2)分别表示输入轴和输出轴的齿数,(_1)和(_2)分别表示输入轴和输出轴的角速度。

三、减速器的设计要点3.1 齿轮的选择在减速器的设计中,齿轮的选择是非常关键的。

齿轮的模数、齿数、轮齿厚度等参数都会直接影响到减速器的性能。

为了保证减速器的工作稳定性和传动效率,需要根据实际需求选择合适的齿轮。

3.2 齿轮的布局齿轮的布局也是减速器设计中需要考虑的重要因素。

合理的齿轮布局可以减小齿轮传动的轴向力和径向力,降低噪音和振动。

常见的齿轮布局有平行轴、交叉轴和垂直轴等形式。

3.3 轴承的选择在减速器中,轴承的选择直接关系到减速器的使用寿命和运行稳定性。

合适的轴承能够减小齿轮传动的摩擦和磨损,提高传动效率。

因此,在设计减速器时,需要根据负载和转速等参数选择适当的轴承类型和规格。

3.4 润滑与密封减速器的润滑和密封也是设计中需要考虑的重要因素。

良好的润滑能够减小齿轮传动的摩擦和磨损,提高传动效率。

同时,合适的密封措施能够防止外界杂质进入减速器内部,延长减速器的使用寿命。

四、减速器的实际应用减速器在工业生产中有着广泛的应用。

以下是几个常见的减速器应用场景:4.1 机械传动系统减速器常常用于机械传动系统中,如汽车变速器、工程机械的传动系统等。

通过减速器的作用,可以将发动机输出的高速旋转转换为车轮或工具的低速旋转,提供足够的扭矩。

4.2 机器人技术减速器在机器人技术中也有着重要的应用。

机械课程设计二级减速器

机械课程设计二级减速器

机械课程设计二级减速器一、课程目标知识目标:1. 让学生掌握二级减速器的结构原理,理解其工作过程及在各领域中的应用。

2. 使学生了解并掌握减速器设计中涉及的计算方法,如齿轮传动、轴承寿命等。

3. 帮助学生掌握机械设计的基本流程,包括设计要求分析、方案设计、计算校核等。

技能目标:1. 培养学生运用CAD软件进行二级减速器零部件的绘制和装配能力。

2. 培养学生运用相关计算公式和软件进行二级减速器参数计算和校核的能力。

3. 提高学生实际操作能力,能够根据设计要求完成二级减速器的组装和调试。

情感态度价值观目标:1. 激发学生对机械设计的兴趣,培养其创新意识和实践能力。

2. 培养学生严谨的科学态度和团队协作精神,使其在设计和制作过程中体验到合作与分享的快乐。

3. 增强学生的环保意识,使其在设计过程中注重节能和可持续发展。

课程性质:本课程为机械设计实践课程,结合理论知识,注重培养学生的实际操作能力和创新能力。

学生特点:学生已具备一定的机械基础知识,具有较强的求知欲和动手能力,但缺乏实际设计经验。

教学要求:教师应结合学生特点,采用任务驱动、分组合作等教学方法,引导学生主动参与,注重理论与实践相结合,提高学生的综合能力。

通过本课程的学习,使学生能够将理论知识应用于实际工程设计中,达到学以致用的目的。

二、教学内容1. 理论知识:- 二级减速器的基本结构、原理及其应用领域。

- 齿轮传动原理,齿轮参数的计算与选择。

- 轴承类型及选用,轴承寿命计算。

- 减速器设计中涉及的力学知识,如强度计算、刚度计算等。

2. 实践操作:- 利用CAD软件进行二级减速器零部件的绘制、装配。

- 根据设计要求,进行二级减速器的参数计算和校核。

- 二级减速器的组装、调试及性能测试。

3. 教学大纲:- 第一周:二级减速器基本结构、原理学习,了解其应用领域。

- 第二周:齿轮传动原理学习,进行齿轮参数计算与选择。

- 第三周:轴承类型及选用,轴承寿命计算方法学习。

机械设计基础课程设计减速器的说明书

机械设计基础课程设计减速器的说明书

机械设计基础课程设计减速器的说明书机械设计基础课程设计减速器的说明书一、设计背景减速器是机械传动系统中常用的一种装置,用于降低驱动设备的转速并提高输出扭矩。

在机械设计基础课程中,学生需要通过设计一个减速器来理解和应用各种机械元件的原理和设计方法。

本说明书旨在介绍该减速器的设计原理、结构、材料和性能等方面的内容。

二、设计原理该减速器采用齿轮传动的原理实现减速功能。

通过齿轮的啮合,将输入轴的高速旋转转换为输出轴的低速旋转。

设计中需要考虑齿轮的模数、齿数、螺旋角等参数,以及齿轮的材料和硬度等。

三、结构设计该减速器的结构包括输入轴、输出轴、齿轮、轴承和外壳等主要部件。

输入轴通过轴承固定在外壳上,输出轴与输入轴通过齿轮相连。

齿轮通过齿轮轴和轴承固定在外壳内。

四、材料选择为了确保减速器的稳定性和耐用性,设计中需要选用适当的材料。

通常情况下,输入轴和输出轴可以选用高强度的合金钢,齿轮可以选用优质的硬质合金钢,轴承可以选用耐磨损的滚珠轴承。

五、性能要求设计中需要考虑减速器的性能要求,包括承载能力、传动效率、噪音和寿命等方面。

减速器应能承受输入扭矩,并保证输出扭矩的稳定性。

传动效率应尽可能高,噪音应尽可能低,并保证减速器的使用寿命。

六、安全注意事项在使用和维护减速器时,需要注意以下事项:1. 定期检查减速器的工作状态,发现异常应及时处理。

2. 避免过载使用减速器,以免导致损坏。

3. 维护时应使用适当的润滑油,确保齿轮和轴承的正常润滑。

4. 使用前应确保减速器的安装牢固,防止产生松动或脱落。

七、总结通过本减速器的设计,学生可以深入了解减速器的原理和设计方法,并通过实际操作提高其机械设计的能力。

减速器是各种机械设备中不可或缺的重要部件,其设计和使用对机械系统的正常运行至关重要。

希望通过本课程设计能够培养学生的综合能力和创新思维。

大三机械设计课程设计减速器

大三机械设计课程设计减速器

大三机械设计课程设计减速器1. 减速器的定义减速器是一种可有效提高动力机构的转矩和增加动力机构的速度的机械装置,它能有效地减小电机或其他动力机构的输出转矩和输出转速,以允许机械运行更加稳定、高效。

目前,减速器已经广泛应用于电器、汽车、机床等机械领域,它可以帮助机械传动装置有效地实现速度和转矩要求。

2. 减速器的结构与原理减速器有很多种结构,它们的工作原理类似。

它的基本结构由几个部件组成。

首先是一个输入端,它将输入的动力传递到减速器。

其次是几个减压轮,它们将输入的能量转换为速度,而且可以在接触轮系齿轮以外完成操作。

然后是减速器的输出端,它将减速器输出的动力传递给机械传动装置。

3. 减速器的应用减速器广泛应用于人们所需要的各种行业,比如汽车行业、电器行业、冶金行业及机械行业等。

它不但可以降低动力机构的输出转矩和输出转速,而且可以实现机械传动的动力控制,从而保证机械运行的稳定及安全。

比如汽车减速器可以帮助实现汽车的把挡,有效地减少变速箱和发动机转速之间的差距;它还可以改善转向系统的动力性能、操纵性能和稳定性;冶金行业中,减速器用于降低电动机转速,有利于减少噪音,提高机械的使用寿命。

4. 大三机械设计课程设计减速器大三机械设计课程设计减速器的几个重要阶段:首先,了解减速器的基本结构知识,如减速轮系、减速机轴承及应用性能等。

其次,计算减速器的参数,包括输入转速、输入转矩、输出转速、输出转矩、减速比等。

然后,根据计算出来的参数,选择合适的减速器规格,并设计出相应的零部件。

最后,根据减速器设计出来的零部件进行实践组装,并检查零件,并分析减速器的性能评价指标与设计指标。

通过大三机械设计课程设计的减速器可以使学生们了解减速器的基本原理及其结构,更加熟悉减速器的参数计算及其零部件的设计,加深对减速器的了解,学习的内容更有助于减速器的应用。

机械课程设计二级减速器设计

机械课程设计二级减速器设计

二、电动机的选择:(1)电动机型号的选择:根据电动机转速P 电=5.5kw ,传动不逆转,则同步转速n=1500rpm;选择电动机型号Y132S-4,P 额=7.5KW ,满载电流I=11.6A ,效率η=85.5%,功率因数cos φ=0.84;堵转电流/额定电流=7.0A;堵转转矩/额定转矩=2.2;最大转矩/额定转矩=2.2(2)电动机主要外形和安装尺寸如下: 三、确定传动装置的总传动比和分配传动比1. 确定总传动比:4286.2735960===总电总n n i 电n 为电动机满载转速;总n 为盘磨机主轴转速;总i 为传动装置总传动比2.分配传动比:锥总i i i i ⋅⋅=21;21i i 分别为两对斜齿轮的传动比;3~2=锥i ,取5.2=锥i ,则有97.105.24286.2721===⋅锥总i i i i21)3.1~2.1(i i = 63.31=∴i 02.32=i四、计算传动装置的运动和动力参数为进行传动件的设计计算,要推算出各轴的转速和转矩(或功率),如将传动装置各轴由高速至低速依次定为1轴、2轴……同时每对轴承的传动效率η1=0.99 圆柱齿轮的传动效率η2=0.96 联轴器的传动效率η3=0.99 圆锥齿轮的传动效率η4=0.95则可按电动机到工作机运动传递路线推算,得到各轴的运动和动力参数。

1.计算各轴转速:m in /9601r n n m == m in /9602r n n m ==min /46.26463.3960123r i n n ===min /57.8702.346.264234r i n n ===min /57.8745r n n == min /03.355.257.8756r i n n ===锥 m n 为电动机满载转速;654321n n n n n n 分别为轴1至轴6的转速;2.各轴输入功率:kw P P d 5.51==kw P P d 39.599.099.05.5122=⨯⨯=⋅=η 3112ηηη⨯= kw P P 12.596.099.039.52323=⨯⨯=⋅=η 2123ηηη⨯= kw P P 87.496.099.012.53434=⨯⨯=⋅=η 2134ηηη⨯= kw P P 77.499.099.087.44545=⨯⨯=⋅=η 3145ηηη⨯= kw P P 49.495.099.077.45656=⨯⨯=⋅=η 4156ηηη⨯=5645342312ηηηηη分别为相邻两轴间的传动效率 3.各轴输出功率:kw P P d 5.5'1==kw P P 34.599.039.512'2=⨯=⋅=η kw P P 76.299.079.213'3=⨯=⋅=ηkw P P 82.499.087.414'4=⨯=⋅=η kw P P 72.499.077.415'5=⨯=⋅=η kw P P 45.499.049.416'6=⨯=⋅=η4.各轴输入转矩:m N n P T d ⋅=⨯=⨯=71.549605.595509550电电m N T T d ⋅==71.541m N T T ⋅=⨯⨯=⋅=62.5399.099.071.541212ηm N i T T ⋅=⨯⨯⨯=⋅⋅=99.18496.099.063.362.5323123η m N i T T ⋅=⨯⨯⨯=⋅⋅=96.53096.099.002.399.18434234η m N T T ⋅=⨯⨯=⋅=39.52099.099.096.5304545η m N i T T ⋅=⨯⨯⨯=⋅⋅=57.122395.099.05.239.5205656η锥5.各轴输出转矩:m N T T d ⋅==71.54'1m N T T ⋅=⨯=⋅=08.5399.062.5312'2η m N T T ⋅=⨯=⋅=14.18399.099.18413'3ηm N T T ⋅=⨯=⋅=65.52599.096.53014'4η m N T T ⋅=⨯=⋅=19.51599.039.52015'5η m N T T ⋅=⨯=⋅=33.121199.057.122316'6η根据上述运算过程,运动和动力参数计算结果整理于下表:五、传动零件的设计计算1.高速齿轮的计算注:参考资料未标表示机械设计第八版,机原为机械原理表1 高速级圆柱斜齿轮1传动参数表2.低速齿轮的计算表2 低速级圆柱斜齿轮传动参数表3.锥齿轮的计算注:课设-机械设计课程设计指导书表3锥齿轮传动参数表六、轴的计算计算及说明结果1.轴的初选:材料45钢 []55~35=t τ 97~1120=Amm n P A d n 7.7719605.391003302==≥ 66.1805.117.77=⨯ mm n P A d 26.8564.4625.12100333303==≥ 19.2805.126.85=⨯ mm n P A d 38.1787.574.87100334404==≥ 4005.138.17=⨯ mm n P A d 37.9187.574.77100335505==≥ mm n P A d 50.4235.034.49100336606==≥ 对于直径100mm d ≤的轴,轴径增大5%至7%2.轴的校核P362表15-1P370表15-3 P371 P371材力第3章切向力N d T F t 87.394674.931099.18422333=⨯⨯==P231七、键联接的选择和计算1.键的选择键2 10 8 0.4-0.6 42 0.063 5.0 3.3 0.25-0.4键3 10 8 0.4-0.6 62 0.063 5.0 3.3 键41490.4-0.6700.1555.03.32.键的校核:计算及说明结果低速轴上键4的校核:[]MPa p 120~100=σ[]p p dkl T σσ<=⨯⨯⨯==6.856245096.5302000200082==hk机械手册P581表7-3机械手册P580八、滚动轴承的选择和计算1.轴承的选择序号轴承代号基本尺寸基本额定负荷KN 极限转速 安装尺寸 质量 dDBCC脂润滑 r dDrkg1 7305AC 25 62 17 21.5 15.8 9500 19.1 32 55 1 0.23 2 7306AC 30 72 19 25.2 18.5 8500 31.1 37 65 1 0.35 3 7310AC 50 110 27 55.5 44.556003360 100 2 1.32计算及说明结果2.轴承的校核 查表可知,68.0=e派生轴向力N F V d 34.120944.177868.068.0F 11=⨯==N F V d 126.19595.28668.068.0F 22=⨯==34.1209116.1297126.19599.110112=>=+=+d d a F F F左边为放松边,右边为压紧边N F F F d a a 116.1297126.19599.110121=+=+=P322表13-7N F F d a 126.19522==e F F V a >==73.044.1778116.129711,则41.01=X ,87.01=Y e F F V a ===68.095.286126.19522,则12=X ,02=Y 轴承受轻微冲击,则载荷系数2.1=p fNF F f P a V p 18.2229)116.129787.044.177841.0(2.1)(11111=⨯+⨯⨯=Y +X =N F F f P a V p 34.344)95.2861(2.1)(22222=⨯⨯=Y +X =左轴承h P C n L h 636161094.218.22295550057.8760106010⨯=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⨯=ε左h h L L >左 ,符合要求。

机械课程设计减速器

机械课程设计减速器

机械课程设计减速器减速器是一种机械传动装置,可以将输入轴的高速旋转运动转换成输出轴的低速旋转运动。

它通常由一组齿轮组成,不同齿轮之间的齿轮比可以实现不同的速度减小。

在设计减速器时,可以按照以下步骤进行:1. 确定需求:首先明确需要减速的速比、输入轴和输出轴的转速、扭矩等需求。

2. 选择齿轮类型:根据需求选择合适的齿轮类型,常见的有直齿轮、斜齿轮、锥齿轮等。

3. 计算齿轮参数:根据速比和齿轮类型,计算齿轮的模数、齿数、齿向、压力角等参数。

这些参数可以根据标准齿轮的设计手册,或者使用齿轮设计软件进行计算。

4. 设计齿轮传动系统:根据计算的齿轮参数,设计齿轮的位置、轴距、法兰等部件。

为了确保传动的可靠性和高效性,应注意保持适当的轴距、齿轮精度和精确的对中。

5. 考虑润滑和冷却:为了提高减速器的使用寿命和运行效率,需要设计适当的润滑和冷却系统。

可以通过添加润滑油池和冷却器等部件来实现。

6. 进行强度计算:对设计的减速器进行强度计算,包括齿轮和轴承的强度计算。

确保设计的减速器在使用过程中不会发生断裂或变形。

7. 进行动力学仿真:使用仿真软件对减速器进行动力学仿真,检查设计的合理性和性能。

通过仿真结果可以优化设计,避免潜在的问题。

8. 进行样机制作和测试:根据设计图纸制作减速器的样机,并进行测试。

测试包括负载测试、噪声测试、运行稳定性测试等。

9. 根据测试结果进行优化:根据测试结果,对设计进行优化,解决可能存在的问题,提高减速器的性能和可靠性。

10. 完善设计文档:完成减速器的设计文档,包括图纸、参数表、设计计算等,以便于生产和使用。

机械设计课程设计-减速器

机械设计课程设计-减速器

机械设计课程设计-减速器1、减速机在自动生产线中的作用1)降低驱动系统中的最终转速,换句话说就是提高伺服电机在使用过程中的转速,让电机的日常使用尽量接近其额定转速运行,这样不仅可以让伺服电机比较恒定的输出扭矩,提供更高的定位精度,也可以最大限度的保证电机的使用效率和使用寿命,我们来举个例子,如果你的机械手用伺服电机加齿轮齿条的传动方式,齿轮的直径我们选择D=72mm,在伺服电机额定转速3000r/min的时候,那么机械手的运行速度S=2∏r*3000/1000=678m/min,这个速度太快了,我们根本就用不了这么快的速度,例如我们通常只能用到100 m/min的速度,那就意味着伺服电机必须一直恒定在440r/min的转速,而这个转速的输出特性对于电机来说是不好的,离额定转速太远了,那怎么办呢?我们减速,选择一个1:7的减速机,那100m/min的运行速度要求的时候,伺服电机刚好在3000r/min左右,这样就可以让伺服电机在额定转速下工作运行,这才是最佳的匹配方式。

2)提升驱动系统的最终扭矩,很多时候,我们选择一个伺服电机,主要考虑的参数就是扭矩和功率,扭矩的大小直接决定了伺服电机的使用范围,也决定你的设计是否成功,但是很多时候,无论从结构上还是成本上我们都不足以去支撑选择一个单纯用伺服电机驱动就能满足我们的现实情况对扭矩的需求。

也就是说结构和成本要求我们选个小的伺服电机,但是这个伺服电机的扭矩太小了,满足不了现实应用,那怎么办?这时候就需要用到减速机,而且恰好上面我们也提到了,为了充分的榨取伺服电机的能效,我们需要利用减速机来提高伺服电机的使用转速,这真是天作之合了,没有比这更完美的事情了,例如上我们我们举的那个例子,如果减速比为1:7的话,那伺服电机的扭矩就会被放大7倍,那我们在选择伺服电机的时候,就可以选择一个比时间需要扭矩小很多的电机,不但最大限度的节约了成本,也改善了设计上的结构处理。

减速器机械设计课程设计

减速器机械设计课程设计

减速器机械设计课程设计说到减速器,大家一定都不陌生。

那种转动起来啪啪作响,轻松把高速变成低速的家伙,在工业界可是随处可见的宝贝。

你想想啊,减速器就像一个高手,可以把“猛冲”的马儿收回缰绳,放慢速度,帮助设备实现精准控制。

咱们今天就来聊聊减速器的设计,别看这小小的设计任务,背后可是大有学问!哎呀,细节一多,脑袋都有点大了,但也就是这个“小”设计,才决定了整个系统的稳定性和效率呢。

先说说减速器的基本构成吧。

减速器其实并不复杂,几个齿轮、轴承、壳体,简单几个零件拼在一起就能完成大任务。

可是呢,光是这些零件可不能随便凑合。

哎呀,不是随便拼个玩具那么简单!要考虑齿轮的啮合、轴承的承载能力,甚至是壳体的材料,不能太重也不能太脆弱。

好比你去买一只新鞋,鞋子合不合脚自己知道,别让它在你跑步的时候崴了脚,麻烦事一大堆!我们得考虑到减速器的传动比。

这一块就像是给马儿绑了个小鞭子,马快不行,得让它慢下来,速度掌握得恰到好处。

传动比的选择可不是瞎选的,要根据实际需要来,马儿跑得太慢也不行,慢了效率低,太快了控制不住。

选择合适的传动比,就像是调配一个得心应手的食谱,恰到好处,不多也不少,才能让机器跑得又稳又省力。

你说,这设计的时候需要考虑到的东西多得很,不光是尺寸、齿轮的啮合,还有温度、噪音、振动的控制。

你别以为机器就只是个死物,仔细设计,它比人还讲究!比如齿轮的啮合面,设计不好,磨损太快,或者传动效率低,那就大事不妙了。

我们要把齿轮表面的处理搞得光滑细腻,像抚摸婴儿的皮肤一样细致,别让它们粗糙得像沙子一样摩擦,磨坏了可不好看。

而且齿轮的材质选择也有门道,太硬了怕脆,太软了又怕磨损,得挑选合适的材料,就像选自己喜欢的椅子一样,既要舒适又要耐用。

说到减速器的壳体,也得讲究。

你想,减速器一工作就得承受巨大的压力,运转过程中产生的热量也得散出去。

选择合适的材料,能够有效降低噪音,保证整个设备的稳定运行。

很多时候,大家可能忽略了减速器外壳的设计。

《机械设计》第18章-减速器和变速器(正式)

《机械设计》第18章-减速器和变速器(正式)
宽V带无级变速器
第十八章 减速器和变速器
(1) 滚轮——平板式变速器 组成: 主动轮、从动盘、弹簧。
主动轮
单击动画
I
r1
潘存云教授研制
从动平盘
弹簧
r2
II
第十八章 减速器和变速器
工作原理:
调整主动轮的位置,就改变了r2 的大小,从而实现
无级变速。
接触点的速度:
v =ω2 r2 = r1 ω1 传动比: i12 =ω1 / ω2 =r2 / r1
分流式双级圆柱 齿轮减速器
两级锥齿轮— 圆柱齿轮减速器
第十八章 减速器和变速器
产品实例:
潘存云教授研制
展开式三级圆柱齿轮减速器
第十八章 减速器和变速器
二、蜗杆减速器
特点:结构紧凑、传动比大、工作平稳、噪声较小、
传动效率低。
类型:
S
S
S
f
下蜗杆式 f
潘存云教授研制
潘存云教授研制
侧蜗杆式
其中 S——低速级, f ——高速级
无级变速器的传动比在设计预定的范围内无级地 进行改变。
实现无级变 速的方法
机械无级变速 本章介绍的内容
电气无级变速
可控硅调速 变频调速
电气无级变速 ——压动机调速
第十八章 减速器和变速器
工作原理:
依靠摩擦传动,改变主动件和从动件的输出半径, 实现传动比的无变化。
类型:
滚轮——平板式变速器 类 钢球无级变速器 型 菱锥无级变速器
级进行变速,有级变速器的类型见下页。
第十八章 减速器和变速器
有级变速器 类型
I
潘存云教授研制
塔轮变速器
滑移齿轮变速器
I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计减速器机械设计减速器设计说明书系别: 班级:姓名:学号:指导教师: 职称:2 四、....................3 五、.............................5 六、......................6七、......................10八、.................................14九、............................32十、 .............................3536十二、 ..........................37十三、 ...............................37十四、 .......................40十五、 ...............................40十六、 ...............................设计任务书传动装置总体设计方案选择电动机计算传动装置运动学和动力学参数链传动设计计算减速器高速级齿轮传动设计计算减速器低速级齿轮传动设计计算轴的设计滚动轴承寿命校核键联接设计计算联轴器的选择减速器的密封与润滑减速器附件减速器箱体主要结构尺寸设计小结设计任务书1.1设计题目二级圆锥-斜齿圆柱减速器,拉力F=7000N速度v=0.4m/s,直径D=383mm 每天工作小时数:24小时,工作年限(寿命):10年,每年工作天数:300 天,配备有三相交流电源,电压380/220V。

1.2设计步骤1.传动装置总体设计方案2.电动机的选择3.确定传动装置的总传动比和分配传动比4.计算传动装置的运动和动力参数5.链传动设计计算6.减速器内部传动设计计算7.传动轴的设计8.滚动轴承校核9.键联接设计10.联轴器设计11.润滑密封设计传动装置总体设计方案2.1传动方案传动方案已给定,后置外传动为链传动,减速器为二级圆锥圆柱齿轮减速器2.2该方案的优缺点二级圆锥圆柱齿轮减速机承载能力强,体积小,噪声低,适用于入轴、出轴成直角布置的机械传动中。

三、选择电动机3.1电动机类型的选择按工作要求及工作条件选用三相异步电动机,封闭式结构,电压380V, 丫系列。

3.2确定传动装置的效率查表得:联轴器的效率:n仁0.99滚动轴承的效率:n 2=0.98闭式圆柱齿轮的效率:n 4=0.98闭式圆锥齿轮的效率:n 3=0.97链传动的效率:n c=0.96工作机的效率:n w=0.95加=巾X琥X W X如X兔x % = 07923.3计算电动机容量工作机所需功率为FX V7000 X 0.4Pw1000二1000 一曲电动机所需额定功率:P w 2.8P d = — = 7—_='3.S4kW % 0,792工作转速:60 X 1000 X V 60 X 1000 X 0.4%= =7TX 383 =经查表按推荐的合理传动比范围,链传动比范围为:2〜6, 二级圆锥齿轮减速器传动比范围为:6〜16,因此理论传动比范围为:12〜96。

可选择的电动机转速范围为nd=ia x nw=(12〜96) x 19.96=240--1916r/min。

进行综合考虑价格、重量、传动比等因素,选定电机型号为:丫160M1-8的三相异步电动机,额定功率Pen=4kW满载转速为nm=720r/min,同步转速为nt=750r/min。

电机主要尺寸参数图3-1 电动机3.4确定传动装置的总传动比和分配传动比(1)总传动比的计算由选定的电动机满载转速nm和工作机主动轴转速nw,可以计算出传动装置总传动比为:%720=36.0722)分配传动装置传动比取链传动比:ic=3锥齿轮(高速级)传动比h = 0.25 X i = 3贝血速级的传动比为i2 = 4.01减速器总传动比i b— X 12 = 12.03四、计算传动装置运动学和动力学参数4.1电动机输出参数P o=n0 = nm = 720rpm9550000 X —= 9550000 X 3 54720 = 4695417Pd354nw19964.2高速轴的参数尸T = A) x "1 = 3* 54 X O 99 = 3. 5别 n | 二用二 720rpn.P\3.5T\ 二 9550000 X 一 二 9650000 X — = 46423. til 炉册n | 7204.3中间轴的参数鬥 I 二戶I X X #3 二 £5 X 0. 98 X 0.97 = 3.n\ 720绚1 二 一^ = —— 二 240//J®Ji 3P\\3.33T\X 二 9550000 X 一 = 9550000 X — = 132506. 2E4.4低速轴的参数X 0.98 X 0.98 = 3. 2kH36 07 2卫240_=59. 85rpff. ^24. 0]flj] Till 二 9550000 X 一二 95500004.5工作机的参数flv二flj[ kW XX f]2 mj 【 59. 85/4V =19. 95rp/z3用 Av 二 9550000 X 一二 9550000zqv加=內X 力X 灯4二3- 33土 2X 応以叭5柿2.8X = 1340350. 88^^.丄七p * 3 JX X 77= 3.2 X 0. 96 X 0.98i c 3 i 1 31 2 4 0 10. 98 X ().95 = 2五、链传动设计计算1.确定链轮齿数由传动比取小链轮齿数Z仁25,因为链轮齿数最好为奇数,大链轮齿数Z2=i X Z1=75,所以取Z2=77。

实际传动比i=z2/z1=3.082.确定链条型号和节距查表得工况系数KA=1.1小链轮齿数系数:K z= 1.22取单排链,则计算功率为:P ca= K Z X P = 1.1 X 1.22 X 3.2kWZ = 4.294/clV选择链条型号和节距:根据Pca=4.294kW n1=59.85r/min,查图选择链号16A-1,节距p=25.4mm 3.计算链长初选中心距= 40 x p = 40 X 254 = 1016mm则,链长为:z\ +勺+X 2 X 1016 25 + 77 25. --- + ------- + -- 25.4 2101X [ 20 77 ] = 13Z 714节辺X川取Lp=133节采用线性插值,计算得到中心距计算系数f1=0.24532则链传动的最大中心距为:^max= f1xpx[2xL fJ- (zj + z2)] = 0.24532 x 25.4 x [2 x 132.714 -mm计算链速v,确定润滑方式Z! X Z? X p 25 X 59.85 X 25.4 60 X 1000 _ 60 X 1000二0.633,合适按v=0.633m/s,链号16A,查图选用滴油润滑。

4.作用在轴上的力有效圆周力:25 + 77)] += 10183% 4,294J = 1000 x 一= 1000 x ---- 6784川| £v0.633作用在轴上的力朽8 1* 15 X Fr = 1.15 X 6784 = 7802A 链轮尺寸及结构分度圆直径六、减速器高速级齿轮传动设计计算6.1选精度等级、材料及齿数1.由选择小齿轮40Cr (调质),齿面硬度217〜286HBS大齿轮ZG35CrMo(调质),齿面硬度190〜240HBS2.选小齿轮齿数Z1=34,则大齿轮齿数Z2=Z1X i=34 X 3=103。

实际传动比i=3.0293.压力角a =20°。

6.2按齿面接触疲劳强度设计1.由式试算小齿轮分度圆直径,即1 4 X X T血 M 1 -------- ; ---------- ——X、申” X 11 -0. 5 X X uP3,5丁1 =955 x 106 x - x f? = 9.55 x 106 x 0.99 = 46423.617V*mmT2 = Ti xi1xr] = 46423.61 x 3 x 0.99 X 0.98 = 13250675^*mm初选载荷系数Kt=1.4由表7-5,取齿宽系数© R=0.3由表7-6,查得弹性系数ZE=189.8MPa Z E1 8 98Z H24 9由表7-12查取节点区域系数ZH=2.49由图7- 18杳取接触疲劳强度极限online二800^, oHlinQ= 560^ 小齿轮应力循环次数%=60 X 7? X j X Lh= 60 X 720 X 1 X 24 X 300 X 10 X 109大齿轮应力循环齿数7^ = — =3川 :"=L 037 X 109u3由图7-19查得接触疲劳寿命系数禺二0. 965,.乐二0. 999 (允许局部点蚀)取安全系数SH=1,由式(7-18 )得许用接触应力,,x 800 x 0-965Mi =——g——=——j——=772MPa,, HHm2 x Z N2 560 x 0.999=——飞——=——-r----- =559MPQ£49 X 189.559 丿2.计算圆周速度vd nt j = d,it X (1 —0.5 X (pg) —65.87 X (1 —0.5 X 0.3) = 55.99mm3.计算当量齿宽系数© db 31.245^ =^ =T5W = 0-564.计算载荷系数查表得使用系数KA=1.25查图得动载系数KV=1.093 3. 11TI x d ml x rt n x 55.99 x720 2.11<kt鼻J4 X E4 X 46423.61Jo. 3 X(1-(X5 X 0.3)2 X 3X X取齿间载荷分配系数:KHa =1查表得齿向载荷分布系数:KHB =1.29 实际载荷系数为K H=K A X K V X K Ha x K 邓=L25 x 1-093 x 1 x 1.29 = 17626.计算模数右71.118mt = — = ----- = 2.09m?nZi 34取标准模数m=2.5mm6.3确定传动尺寸1.实际传动比103K,=, ,=, 3.029 ?n?nz1 34大端分度圆直径dj = Zi X m = 34 X 2.5 = 85mm d2 = ^2 x m = 103 X 2.5 = 257.5mm3.齿宽中点分度圆直径d m j = ci] x (1 —0.5 x <pR)= 85 x (1 —0.5 x 0.3) = 72.2Smmd m2 =(1 —0.5 X <pR)= 257,5 X (1 - 0,5 X 0*3) = 218,875mmZE1892.计算分锥角⑴= arctan — = arctan\uJ=18.26791°= 90 -18.26791° = 7173209°8ZH25.按实际载荷系数算得的分度圆直径4.锥顶距为斤二 £ X Jj 2十 1 二 X J3. 0292+ 1 二 135. 57 她5.齿宽为 b = <pR X /? = 0.3 X 135.57 = 40.671mm取 b=41mm 校核齿根弯曲疲劳强度K X F*2 & 2 宀(1-0.5 山 * % X “ w W由表7-4查取齿形系数与应力校正系数Y FX = 2. 442, Y F 2 = 114 Ysi = 1.653,心二 2*91由图7-17查得% = 0. 879, = 0. 88由图7-16查得弯曲疲劳极限ff= 600 娠』、© Fh 滙=480 妒自取SF=1.25,由式(7-16 )得许用弯曲应力校核齿根弯曲疲劳强度x Y Sal = 20S.17MPa < [“h = 422MP 血Y p a 2 * S Q 2P2 = dpi x ---- ——=164,77WPti < [<7F]2 = 338MPci* Fal x YSal故弯曲强度足够6.4计算锥齿轮传动其它几何参数(1)计算齿根高、齿顶高、全齿高及齿厚 h a = mx h*n = 2.5mmkf = mx (h 爲 + E ;J = 3mmh = (h a + 附)=m x(2幅i + <?:) = 5,5mmm 3 m m^Fmin X YST X Y N}=600L25x 2 x 0.879 =422MPa [疔F 』aFlim2- --- X YST X480YN2 二〒^X 0.88 = 33RMP 口_ K5 fJflbxmx(1 一0”5 蚀)nms = —- = 3<927mm£i(2)分锥角(由前面计算)= 18.268°52 =71.732°(2)计算齿顶圆直径£1 =+ 2 X 知X cos (^1) = 89.75mm d a2 =吐 + 2 x h盘X cos{62)= 259.07mm(3)计算齿根圆直径dfi = X 好X cos (61) = 79,3mm dy2 = ti2- 2 x Kf x cos ((52) =255.62mm注:h二=1. 0, c R= 0. 2(4)计算齿顶角9 a1 = 9 a2=atan(ha/R)=1 ° 3'23"(5)计算齿根角9 f1= 9 f2=atan(hf/R)=1 ° 16'3"(6)计算齿顶锥角S a1 = S 1+9 a1=19° 19'27"S a2=S 2+9 a2=72° 47'18"(7)计算齿根锥角S f1= S 1- 9 f1=17 ° 0'0"七、减速器低速级齿轮传动设计计算7.1选精度等级、材料及齿数1.由选择小齿轮40Cr (调质),齿面硬度217〜286HBS大齿轮ZG35CrMo(调质),齿面硬度190〜240HBS2.选小齿轮齿数Z1=26,则大齿轮齿数Z2=Z1X i=26 X 4.01=105。

相关文档
最新文档