二次函数平移
二次函数的平移
二次函数的平移二次函数是数学中常见且重要的一类函数,它的一般形式是y =ax^2 + bx + c,其中a、b、c是常数,且a不等于0。
二次函数具有许多有趣的性质和特点,其中之一就是平移。
平移是指通过改变函数的参数,使得函数图像在平面上发生水平或垂直方向的移动。
接下来,我们将探讨二次函数的平移及其应用。
一、水平平移水平平移是指二次函数图像在水平方向上的移动。
要实现水平平移,我们只需要通过改变常数b来实现。
当b大于0时,函数图像向左平移;当b小于0时,函数图像向右平移。
具体来说,当b的绝对值越大,平移的幅度越大。
例如,考虑二次函数y = x^2。
如果我们要将该函数向左平移2个单位,则可以将其改写为y = (x + 2)^2。
在这个新的函数中,对于任意的x值,我们都将x的值增加2,从而使函数图像整体向左平移2个单位。
二、垂直平移垂直平移是指二次函数图像在垂直方向上的移动。
要实现垂直平移,我们只需要通过改变常数c来实现。
当c大于0时,函数图像向上平移;当c小于0时,函数图像向下平移。
具体来说,当c的绝对值越大,平移的幅度越大。
举个例子,考虑二次函数y = x^2。
如果我们要将该函数向上平移3个单位,则可以将其改写为y = x^2 + 3。
在这个新的函数中,对于任意的x值,我们都将函数值增加3,从而使函数图像整体向上平移3个单位。
三、平移的应用平移在数学中有着广泛的应用,尤其是在图形的移动和变化中。
例如,在物理学中,我们经常需要描述物体的运动轨迹。
如果一个物体在某个坐标系下沿二次函数的轨迹运动,通过平移二次函数的图像,我们可以很方便地观察物体在平面上的运动情况。
此外,平移还可以用于解决实际问题中的几何和经济学等相关内容。
例如,在房地产市场中,我们需要分析不同城市的房价变化趋势。
通过平移二次函数的图像,我们可以比较不同城市之间的房价偏移程度,进而作出相关的决策。
总结:二次函数的平移是通过改变函数的参数来实现的。
专题05二次函数中的平移、旋转、对称(五大题型)解析版
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
二次函数像的平移伸缩和翻转规律
二次函数像的平移伸缩和翻转规律二次函数的平移、伸缩和翻转规律是描述二次函数图像变化的重要概念。
通过改变二次函数的系数和常数项,我们可以对其图像进行平移、伸缩和翻转操作,从而得到不同形状和位置的二次函数图像。
下面将详细介绍二次函数图像的平移、伸缩和翻转规律。
1. 平移规律平移是指将二次函数图像沿着坐标轴的方向移动一定的距离。
在二次函数y = ax^2 + bx + c中,平移操作主要通过改变常数项c实现。
1.1 向上或向下平移当常数项c增加时,二次函数图像将向上平移,反之则向下平移。
平移的距离与c的绝对值成正比,即常数项c增加1个单位,图像上移1个单位;常数项c减少1个单位,图像下移1个单位。
1.2 向左或向右平移当常数项c保持不变,而系数b增加时,二次函数图像将向左平移;反之则向右平移。
平移的距离与b的绝对值成正比,即系数b增加1个单位,图像左移1个单位;系数b减少1个单位,图像右移1个单位。
2. 伸缩规律伸缩是指将二次函数图像在坐标轴的方向上进行拉伸或压缩。
在二次函数y = ax^2 + bx + c中,伸缩操作主要通过改变系数a实现。
2.1 垂直方向伸缩当系数a增加时,二次函数图像在垂直方向上将被拉伸;反之,当系数a减少时,图像将被压缩。
伸缩的比例与a的绝对值成正比,即系数a增加1个单位,图像在y轴方向上拉伸1倍;系数a减少1个单位,图像在y轴方向上压缩1倍。
2.2 水平方向伸缩当系数a保持不变,而系数b增加时,二次函数图像在水平方向上将被压缩;反之,当系数b减少时,图像将被拉伸。
伸缩的比例与b的绝对值成正比,即系数b增加1个单位,图像在x轴方向上压缩1倍;系数b减少1个单位,图像在x轴方向上拉伸1倍。
3. 翻转规律翻转是指将二次函数图像关于某条直线对称。
在二次函数y = ax^2+ bx + c中,翻转操作主要通过改变系数a的正负实现。
3.1 关于x轴翻转当系数a为正时,二次函数图像将关于x轴翻转;当系数a为负时,图像不发生翻转。
二次函数一般式的平移
二次函数一般式的平移
二次函数一般式是y=ax+bx+c,其中a、b、c为常数,代表二次函数的特征参数。
平移是将函数图像沿x、y轴方向移动一定距离的操作。
本文将介绍如何通过平移的方式改变二次函数的图像位置。
首先,我们考虑二次函数沿x轴方向平移。
如果要将二次函数
y=ax+bx+c向右平移h个单位,我们只需要将x替换为x-h,即可得到平移后的函数式为y=a(x-h)+b(x-h)+c。
同理,如果要将二次函数向左平移h个单位,可以将x替换为
x+h,即可得到平移后的函数式为y=a(x+h)+b(x+h)+c。
其次,我们考虑二次函数沿y轴方向平移。
如果要将二次函数
y=ax+bx+c向上平移k个单位,我们只需要在函数式中加上k,即可得到平移后的函数式为y=ax+bx+c+k。
同理,如果要将二次函数向下平移k个单位,只需要在函数式中减去k,即可得到平移后的函数式为y=ax+bx+c-k。
通过以上方法,我们可以轻松地将二次函数沿x、y轴方向平移。
需要注意的是,平移后二次函数的图像不会改变形状,只会改变位置。
- 1 -。
二次函数向上下左右平移规律
二次函数向上下左右平移规律二次函数可以通过平移来改变其位置,包括向上、向下、向左、向右平移。
在进行二次函数平移时,需要调整函数的常数项和线性项,而二次项保持不变。
首先,我们来讨论二次函数向上平移的规律。
当二次函数向上平移时,整个函数图像相对于标准的二次函数图像整体上移。
要进行向上平移,可以通过增加函数的常数项来实现。
如果标准二次函数为f(x) = ax^2 +bx + c,我们可以将其向上平移h个单位,得到新的二次函数为f(x) =ax^2 + bx + (c + h)。
这样,整个函数图像的每个点都上移了h个单位。
接下来,我们来讨论二次函数向下平移的规律。
当二次函数向下平移时,整个函数图像相对于标准的二次函数图像整体下移。
要进行向下平移,可以通过减少函数的常数项来实现。
如果标准二次函数为f(x) = ax^2 + bx + c,我们可以将其向下平移h个单位,得到新的二次函数为f(x) =ax^2 + bx + (c - h)。
这样,整个函数图像的每个点都下移了h个单位。
接下来,我们来讨论二次函数向左平移的规律。
当二次函数向左平移时,整个函数图像相对于标准的二次函数图像整体左移。
要进行向左平移,可以通过增加函数的线性项来实现。
如果标准二次函数为f(x) = ax^2 + bx + c,我们可以将其向左平移k个单位,得到新的二次函数为f(x) =a(x + k)^2 + b(x + k) + c。
这样,整个函数图像的每个点都左移了k个单位。
最后,我们来讨论二次函数向右平移的规律。
当二次函数向右平移时,整个函数图像相对于标准的二次函数图像整体右移。
要进行向右平移,可以通过减少函数的线性项来实现。
如果标准二次函数为f(x) = ax^2 +bx + c,我们可以将其向右平移k个单位,得到新的二次函数为f(x) = a(x - k)^2 + b(x - k) + c。
这样,整个函数图像的每个点都右移了k 个单位。
二次函数的平移与垂直变换
二次函数的平移与垂直变换二次函数是高中数学中的一个重要概念,它是指一个以x的二次方作为最高次项的函数。
在图像的表示中,二次函数的平移与垂直变换是非常常见的操作。
本文将介绍二次函数的平移与垂直变换的概念和应用,并通过具体的例子进行解析。
一、平移变换平移是指将函数的图像沿着x轴或y轴的方向进行移动。
对于二次函数,平移可以分为水平平移和垂直平移两种情况。
1.水平平移水平平移是指将函数的图像沿着x轴的方向进行移动。
具体而言,当二次函数的公式为y=a(x-h)²+k时,其中h表示水平平移的单位数。
当h为正数时,图像会向右移动h个单位;当h为负数时,图像会向左移动h个单位。
例如,考虑二次函数y=x²,我们可以通过改变h的值来实现水平平移。
当h=2时,原来的抛物线图像会向右平移2个单位,变为y=(x-2)²。
同样地,当h=-3时,图像会向左平移3个单位,变为y=(x+3)²。
2.垂直平移垂直平移是指将函数的图像沿着y轴的方向进行移动。
具体而言,当二次函数的公式为y=a(x-h)²+k时,其中k表示垂直平移的单位数。
当k为正数时,图像会向上移动k个单位;当k为负数时,图像会向下移动k个单位。
举个例子,考虑二次函数y=x²,我们可以通过改变k的值来实现垂直平移。
当k=3时,原来的抛物线图像会向上平移3个单位,变为y=x²+3。
同样地,当k=-4时,图像会向下平移4个单位,变为y=x²-4。
二、垂直变换垂直变换是指对函数的图像进行纵向的拉伸或压缩。
对于二次函数来说,这可以通过改变a的值来实现。
当a>1时,图像会被纵向拉伸;当0<a<1时,图像会被纵向压缩。
具体来说,当二次函数的公式为y=ax²时,参数a的变化会影响曲线的形状。
举个例子,考虑二次函数y=x²,我们可以通过改变a的值来实现垂直变换。
当a=2时,原来的抛物线图像将被纵向拉伸,变为y=2x²。
二次函数的平移问题
二次函数的平移问题关于二次函数的平移变换问题二次函数的平移变换可以分为上下平移和左右平移两种情况。
1.上下平移对于原函数y=ax²+bx+c,若要进行上下平移,可以进行以下变换:向上平移m个单位,得到平移后的函数y=ax²+bx+c+m;向下平移m个单位,得到平移后的函数y=ax²+bx+c-m。
需要注意的是,m为正数,若m为负数,则对应的加(减)号需要改为减(加)号。
一般称这种变换为上加下减或上正下负。
2.左右平移对于原函数y=ax²+bx+c,若要进行左右平移,可以进行以下变换:先将函数化为顶点式y=a(x-h)²+k;向左平移n个单位,得到平移后的函数y=a(x-h+n)²+k;向右平移n个单位,得到平移后的函数y=a(x-h-n)²+k。
需要注意的是,n为正数,若n为负数,则对应的加(减)号需要改为减(加)号。
一般称这种变换为左加右减或左正右负。
例题:1.将抛物线y=-x²向左平移一个单位,再向上平移三个单位,平移后的表达式为()A。
y=-(x-1)²+3B。
y=-(x+1)²+3C。
y=-(x-1)²-3D。
y=-(x+1)²-32.抛物线y=x²+bx+c向右平移两个单位,再向下平移三个单位,得到的抛物线表达式为y=x²-2x-3,则b、c的值分别为()A。
b=2,c=2B。
b=2,c=0C。
b=-2,c=-1D。
b=-3,c=23.将函数y=x²+x的图像向右平移a(a>0)个单位,得到函数y=x²-3x+2的图像,则a的值为()A。
1B。
2C。
3D。
44.已知二次函数y=x²-bx+1(-1≤b≤1),当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。
下列关于抛物线移动方向的描述中,正确的是()A。
二次函数专题—函数图像的平移
二次函数专题(3)——函数图像的平移我们知道图像的平移,图像本身不会发生改变,只是图像的位置发生改变。
函数图像的平移也是遵循这样原理,只是我们在平移过程中函数的解析式也发生改变,这节专题主要就是探讨函数平移与解析式的计算。
1. 基础情境:点坐标平移①水平平移:纵坐标不变横坐标加减我们以A(1,2)为例,把A往右平移2个单位到A’,很明显A’的纵坐标不变,但是横坐标变为了1+2=3,即A’(3,2);同理把A往左平移2个单位到A’’(-1,2)②竖直平移:横坐标不变,纵坐标加减我们以A(1,2)为例,把A往上平移三个单位到A’,很明显A’的横坐标不变,但是纵坐标变为了2+3=5,即A’(1,5);同理把A往下平移三个单位到A’’(1,-1),如下图:2. 函数平移:一次函数图像平移①水平平移问题:我们以y=2x+2为例,把它向右平移2个单位,那么新的图像函数解析式为何?分析:由于平移过后仍然是条直线,两点决定一条直线,所以我们选取两个特殊点就可以算出新的函数表达式。
解答:选取原一次函数上两点(0,2)、(-1,0),经过平移后这两点坐标变为(2,2)和(1,0),计算得y=2x-2.观察:平移后,一次函数的系数k(2)不变,b减小了两倍(由2变为-2)推广:对于所有一次函数y=kx+b,向右平移2个单位的函数解析式怎么求?分析:可以按照上面的思路,取特殊点求取新的一次函数解析式解答:方法一:坐标法取两个特殊点(0,b)、(1,k+b),经过平移后这两点坐标变为(2,b)和(3,k+b),计算函数表达式得y=kx+b-2k。
这个式子我们还可以改写成这样y=(k-2)x+b。
反思:解析法特殊点法虽然可以帮助我们解决问题,但是需要计算,有没有更加快速的计算一次函数解析式方法?有!我们回到最初函数的定义,比如坐标系中有一个点A(x,y),其中y=kx+b 代表是x与y之间的等量关系。
如果把A(x,y)向右平移2单位变成A’(m,y),此时m=x+2。
二次函数的平移规律
.
• 分析:把把x轴,y轴分别向上、向右平移2个 单位,也可以看成把抛物线向下,向左平移2 个单位.
例3.如果要得到 y x2 6x 7 的图像,需
将 y x2 的 图像( )
A.先向左平移3个单位长度,再向上平移2个单 位长度
B.先向右平移3个单位长度,再向下平移2个单 位长度
C.先向右平移3个单位长度,再向上平移2个单 位长度
例1.在平面直角坐标系中,将抛物线 y 2x 2
向下平移3个单位长度,再向左平移2个单位
长度,所得抛物线的解析式是
.
y 2x2向下平移3个单位得 y 2x2 3
y 2x2 3
例2.在平面直角坐标系中,如果抛物线 y 2x2 不动, 而把x轴,y轴分别向上、向右平移2个单位,那么在
新坐标系下抛物线的解析式是
D.先向左平移3个单位长度,再向下平移2个单 位长度二次函数一般式直接平移
• 例4.已知抛物线 y x2 2x 1 向右平移
3个单位长度,向下平移2个单位长度得到
的函数解析式是
.
总结:二次函数的平移规律: 上下平移后变化,上加下减; 左右平移括号里面变化,左加右减. 也可以说成: 上下平移函数值y变化,上加下减; 左右平移自变量x变化,左加右减
九年级数学上册
二次函数的平移规律
二次函数的平移规律
• 二次函数的解析式一共有5种形式
1 y ax2 2y ax2 k
3y ax h2
4y ax h2 k
5y ax2 bx c
1 y ax2 2y ax2 k 3y ax h2 4y ax h2 k 5y ax2 bx c
由(1)经过上下平移得到(2), 即上下平移后变化,上加下减 由(1)经过左右平移得到(3) 即左右平移括号里面变化,左加右减. 由(1)经过上下平移和左右平移得到(4) (4)式和(5)式可以互相转化.
二次函数的平移缩放与反转变换解析
二次函数的平移缩放与反转变换解析二次函数是数学中常见且重要的函数形式之一。
在图像的变换过程中,平移、缩放和反转是常用的操作。
本文将详细解析二次函数在平移、缩放和反转变换中的数学原理和具体方法。
一、平移变换平移变换是指将二次函数图像沿着横轴或纵轴方向移动一定的单位长度。
对于一般的二次函数y = ax^2 + bx + c来说,平移变换可以通过改变常数项c实现。
1. 沿横轴方向的平移当c的值发生变化时,二次函数图像将在纵轴上进行平移。
若c增加,则图像向上平移;若c减少,则图像向下平移。
具体而言,当c增加k个单位时,二次函数图像上的所有点的纵坐标都将增加k个单位;当c减少k个单位时,二次函数图像上的所有点的纵坐标都将减少k个单位。
例如,对于二次函数y = x^2,若c增加2个单位,则图像上的任意一点(x, y)的纵坐标y都将增加2个单位,即变为x^2 + 2;若c减少2个单位,则图像上的任意一点(x, y)的纵坐标y都将减少2个单位,即变为x^2 - 2。
2. 沿纵轴方向的平移当b的值发生变化时,二次函数图像将在横轴上进行平移。
若b增加,则图像向右平移;若b减少,则图像向左平移。
具体而言,当b增加k个单位时,二次函数图像上的所有点的横坐标都将增加k个单位;当b减少k个单位时,二次函数图像上的所有点的横坐标都将减少k个单位。
例如,对于二次函数y = x^2,若b增加2个单位,则图像上的任意一点(x, y)的横坐标x都将增加2个单位,即变为(x + 2)^2;若b减少2个单位,则图像上的任意一点(x, y)的横坐标x都将减少2个单位,即变为(x - 2)^2。
二、缩放变换缩放变换是指将二次函数图像在横轴和纵轴方向上进行拉伸或压缩。
对于一般的二次函数y = ax^2 + bx + c来说,缩放变换可以通过改变系数a实现。
1. 沿横轴方向的缩放当a的值发生变化时,二次函数图像将在横轴方向上进行拉伸或压缩。
若a增加,则图像在横轴方向上被拉伸;若a减少,则图像在横轴方向上被压缩。
二次函数平移问题
二次函数平移问题 Revised by Petrel at 2021二次函数的平移问题我们从两个方面进行了一些探讨,概括出二次函数平移后其解析式的变化规律.一.当解析式为一般式y=ax2+bx+c(a≠0)时1.向上或向下平移时,二次函数解析式的变化规律.将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c+n 将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c-n 两式比较:可得抛物线向上平移n个单位,常数项上加n,即解析式由y=ax2+bx+c变为y=ax2+bx+c+n;同理可推出抛物线向下平移n个单位,常数项上减去n,即解析式由y=ax2+bx+c变为y=ax2+bx+c-n2.向左或向右平移时,解析式的变化规律.将抛物线向左平移m个单位长度后,得到的新抛物线的解析式为y=a(x+m)2+b(x+m)+c将抛物线向右平移m个单位长度后,得到的新抛物线的解析式为y=a(x-m)2+b(x-m)+c两式比较,可得出抛物线向左平移m个单位,自变量上减去m,即解析式由y=ax2+bx+c变为y=a(x+m)2+b(x+m)+c;同理可推出抛物线向右平移m个单位,自变量上加上m,即解析式由y=ax2+bx+c变为y=a(x-m)2+b(x-m)+c3.将抛物线向左平移m个单位长度后,再将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=a(x+m)2+b(x+m)+c+n将抛物线向左平移m个单位长度后,再将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=a(x+m)2+b(x+m)+c-n将抛物线向右平移m个单位长度后,再将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=a(x-m)2+b(x-m)+c+n将抛物线向右平移m个单位长度后,再将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=a(x-m)2+b(x-m)+c-n二.当解析式为顶点式y=a(x-h)2+k(a≠0)时1.向上或向下平移时,解析式的变化规律.将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=a(x-h)2+k+n 将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=a(x-h)2+k-n 将抛物线向上平移n个单位,有点的平移规律可知,顶点坐标由(h,k)变为(h,k+n)所以抛物线的解析式由y=a(x-h)2+k变为y=a(x-h)2+k+n将抛物线向下平移n个单位,有点的平移规律可知,顶点坐标由(h,k)变为(h,k-n)所以抛物线的解析式由y=a(x-h)2+k变为y=a(x-h)2+k-n比较两个解析式可得出向上平移n个单位,括号外加n,同理可推出向下平移n个单位括号外减去n.即抛物线解析式由y=a(x-h)2+k变为y=a(x+m-h)2+k-n2.向右或向左平移时,解析式的变化规律.将抛物线向左平移m个单位长度后,得到的新抛物线的解析式为y=a(x-h+m)2+k 将抛物线向右平移m个单位长度后,得到的新抛物线的解析式为y=a(x-h-m)2+k将抛物线向左平移m 个单位,由点的平移规律可知,顶点坐标由(h,k)变为(h-m,k),所以抛物线解析式由y=a(x-h)2+k 变为y=a[x-(h-m)]2+k=a (x-h+m)2+k将抛物线向右平移m 个单位,由点的平移规律可知,顶点坐标由(h,k)变为(h+m,k),所以抛物线解析式由y=a(x-h)2+k 变为y=a[x-(h+m)]2+k=a (x-h-m)2+k两解析式比较可得出图像向左平移m 个单位,括号内加上m ,即抛物线解析式由y=a(x-h)2+k 变为y=a (x-h+m)2+k ;同理可推出向右平移m 个单位括号内减去m ,即抛物线解析式由y=a(x-h)2+k 变为y=a (x-h-m)2+k综上所述,当解析式为顶点式时,解析式的变化规律为上加下减括号外,左加右减括号内;解析式为一般式时,解析式的变化规律为左加右减自变量,上加下减常数项3.将抛物线向左平移m 个单位长度后,再将抛物线向上平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h+m)2+k+n将抛物线向左平移m 个单位长度后,再将抛物线向下平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h+m)2+k-n将抛物线向右平移m 个单位长度后,再将抛物线向上平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h-m)2+k+n将抛物线向右平移m 个单位长度后,再将抛物线向下平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h-m)2+k-n二次函数的平移练习题1.把抛物线y=-x 2向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为()A.y=-(x-1)2+3B.y=-(x+1)2+3C.y=-(x-1)2-3D.y=-(x+1)2-32.抛物线y=x 2+bx+c 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为y=x 2-2x-3,则b 、c 的值为()A.b=2,c=2B.b=2,c=0C.b=-2,c=-1D.b=-3,c=23.将函数y=x 2+x 的图像向右平移a (a >0)个单位,得到函数y=x 2-3x+2的图像,则a 的值为()A.1B.2C.3D.44.已知二次函数y=x 2-bx+1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是()A.先往左上方移动,再往右下方移动B.先往左下方移动,再往左上方移动B.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动5.已知抛物线C :y=x 2+3x-10,将抛物线C 平移得到抛物线C ′.若两条抛物线C 、C ′关于直线x=1对称,则下列平移方法正确的是()A.将抛物线C 向右平移2.5个单位B.将抛物线C 向右平移3个单位C.将抛物线C 向右平移5个单位D.将抛物线C 向右平移6个单位6.把二次函数y=-41x 2-x+3用配方法化成y=a(x-h)2+k 的形式 A.y=-41(x-2)2+2B.y=41(x-2)2+4C.y=-41(x+2)2+4D.y=(21x-21)2+3 7.在平面直角坐标系中,将二次函数y=2x 2的图象向上平移2个单位,所得图象的解析式为A .y=2x 2-2B .y=2x 2+2C .y=2(x-2)2D .y=2(x+2)28.将抛物线y=2x 2向下平移1个单位,得到的抛物线是( )A .y=2(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=2x 2-19.将函数y=x 2+x 的图象向右平移a(a >0)个单位,得到函数y=x 2-x+2的图象,则a 的值为()A .1B .2C .3D .410.把抛物线y=-2x 2向右平移2个单位,然后向上平移5个单位,则平移后抛物线的解析式为()A.y=-2(x-2)2+5B.y=-2(x+2)2+5C.y=-2(x-2)2-5D.y=-2(x+2)2-511.在平面直角坐标系中,先将抛物线y=x 2+x-2关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()A .y=-x 2-x+2B .y=-x 2+x-2 C.y=-x 2+x+2 D .y=x 2+x+212.在平面直角坐标系中,将抛物线y=x 2+2x+3绕着它与y 轴的交点旋转1800,所得抛物线的解析式是()A .y=-(x+1)2+2B .y=-(x-1)2+4C .y=-(x-1)2+2D .y=-(x+1)2+413.要得到二次函数y=-x 2+2x-2的图象,需将y=-x 2的图象().A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位14.若二次函数y=(x-m)2-1,当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是()A .m =1B .m >1C .m ≥1D .m ≤115.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x-m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为( )A .13B .7C .5D .816.抛物线y=ax 2向左平移5个单位,再向下移动2个单位得到抛物线17.二次函数y=-2(x+3)2-1由y=-2(x-1)2+1向_____平移______个单位,再向_____平移______个单位得到18.抛物线y=3(x+2)2-3可由抛物线y=3(x+2)2+2向平移个单位得到19.将抛物线y=53(x-3)2+5向右平移3个单位,再向上平移2个单位,得到的抛物线是 20.把抛物线y=-(x-1)2-2是由抛物线y=-(x+2)2-3向平移个单位,再向_____平移_____个单位得到21.把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________22.抛物线y =x 2-5x+4的图像向右平移三个单位,在向下平移三个单位的解析式23.已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 24.已知a+b+c=0,a ≠0,把抛物线y=ax 2+bx+c 向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式 25.已知二次函数y =-x 2-4x-5.①指出这个二次函数图象的开口方向、对称轴和顶点坐标;②把这个二次函数的图象上、下平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式;③把这个二次函数的图象左、右平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式。
二次函数中的平移、翻折、对称、旋转、折叠问题
二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
二次函数的平移
二次函数的平移二次函数是数学中的一种基本函数,其代数表达式形式为f(x) =ax^2 + bx + c(a ≠ 0)。
在平面直角坐标系中,二次函数的图像通常呈现出一种弧形,这种弧形被称为抛物线。
二次函数的平移就是将原来的抛物线在平面上移动或改变位置的过程。
一、平移的基本概念平移是指将图形在平面上按照某个方向和距离进行移动,而不改变其形状和大小。
在二次函数中,平移可以分为水平平移和垂直平移两种情况。
1. 水平平移水平平移是指将二次函数图像沿着x轴的正方向或负方向进行移动。
当把二次函数f(x) = ax^2 + bx + c沿x轴正方向平移h个单位时,新的函数表达式变为f(x) = a(x - h)^2 + b(x - h) + c。
其中,h为平移的距离。
当h为正值时,表示向右平移;当h为负值时,表示向左平移。
2. 垂直平移垂直平移是指将二次函数图像沿y轴的正方向或负方向进行移动。
当把二次函数f(x) = ax^2 + bx + c沿y轴正方向平移k个单位时,新的函数表达式变为f(x) = a(x^2 + b + c + k)。
其中,k为平移的距离。
当k为正值时,表示向上平移;当k为负值时,表示向下平移。
二、平移对二次函数图像的影响平移操作会改变二次函数图像的位置,进而影响图像的顶点和轴对称性。
1. 顶点的变化二次函数图像的顶点是图像的最高或最低点,其坐标为顶点坐标(h, k)。
在进行水平平移时,顶点的横坐标会发生变化,新的顶点坐标为(h + X, k)。
在进行垂直平移时,顶点的纵坐标会发生变化,新的顶点坐标为(h, k + Y)。
2. 轴对称性的变化二次函数图像相对于顶点有一条垂直于x轴的对称轴。
进行平移操作后,对称轴的位置也会发生变化。
在进行水平平移时,对称轴的方程为x = h + X。
在进行垂直平移时,对称轴的方程为y = k + Y。
三、示例假设原二次函数为f(x) = x^2,在水平方向上平移3个单位,垂直方向上平移2个单位。
二次函数平移规律
二次函数平移规律二次函数被广泛应用于物理学和工程学领域,它涵盖了物理学系统和工程结构的公共特征。
在实际应用中,我们通常需要对二次函数进行平移操作,而平移后的二次函数如何求解呢?下面我们将详细介绍二次函数的平移规律。
一、概念我们知道,二次函数的一般形式是$f(x)=ax^2+bx+c$,其中,$a$为二次项系数,$b$为一次项系数,$c$为常数项。
如果二次函数中的$x$换成$x-h$,那么这个二次函数就发生了平移,平移量为$h$。
平移后的二次函数一般形式为:$f(x)=a(x-h)^2+k$其中,$h$为横向平移量,$k$为纵向平移量。
二、特例讨论1、横向平移当二次函数$f(x)=ax^2+bx+c$中的$x$变成$x+h$时,其曲线向左平移$h$个单位,因为$x$增大了$h$单位。
平移后的函数为:$g(x)=f(x-h)=a(x-h)^2+b(x-h)+c$展开后得到$g(x)=ax^2+(b-2ah)x+(ah^2-bh+c)$。
我们可以看出,二次项的系数$a$没有改变,这说明平移操作不会改变二次函数的开口方向。
关键在于一次项的系数$b$,平移后$b$变成了$b-2ah$。
因此,如果$h>0$,则二次函数向左平移;如果$h<0$,则二次函数向右平移。
2、纵向平移当二次函数$f(x)=ax^2+bx+c$中的$c$变成$c+k$时,其曲线向上平移$k$个单位,因为$c$增加了$k$个单位。
平移后的函数为:$g(x)=f(x)+k=ax^2+bx+(c+k)$同样的,二次项的系数$a$没有改变。
一次项的系数$b$也没有改变,只有常数项改变了。
因此,如果$k>0$,则二次函数向上平移;如果$k<0$,则二次函数向下平移。
三、例题解答1、已知二次函数$y=x^2-4x+3$,将该函数向右平移4个单位,得到新函数$y_1$,求$y_1$的解析式。
解:按照以上平移规律,将$x$换成$x+4$,得到新函数$y_1$的解析式为:$y_1=(x+4)^2-4(x+4)+3$展开后得到$y_1=x^2+1$,因此,新函数$y_1$的解析式为$y_1=x^2+1$。
二次函数平移
二次函数平移二次函数平移(Quadratic Function Transformation)二次函数是一种常见的数学函数,其具有形如f(x) = ax^2 + bx + c 的表达式。
其中,a、b、c是实数常数,x是自变量。
在数学中,我们经常需要对函数进行平移变换,以便更好地理解和研究。
本文将详细介绍二次函数平移的概念、方法和一些具体例子。
一、二次函数平移的概念在二次函数平移中,我们通过改变二次函数的各项系数来实现函数图像的平移。
这些系数主要是a、b、c。
其中,a决定函数的开口方向(凹向上或凹向下)、大小和对称轴的方向;b决定对称轴的位置;c 决定函数图像和y轴的相对位置。
二、二次函数平移的方法1. 水平平移:对于二次函数f(x) = ax^2 + bx + c,当x的值增加或减少时,函数图像沿x轴方向发生平移。
我们可以通过改变b的值来实现水平平移。
当b为正数时,图像向左平移;当b为负数时,图像向右平移。
例:考虑二次函数f(x) = x^2 - 2x + 1,如果我们将b的值改为2,则函数图像向左平移2个单位。
2. 垂直平移:对于二次函数f(x) = ax^2 + bx + c,当x的值不变时,函数图像沿y轴方向发生平移。
我们可以通过改变c的值来实现垂直平移。
当c为正数时,图像向上平移;当c为负数时,图像向下平移。
例:考虑二次函数f(x) = x^2 - 2x + 1,如果我们将c的值改为2,则函数图像向上平移2个单位。
3. 对称轴的位置:对于二次函数f(x) = ax^2 + bx + c,对称轴的位置与b的值有关。
对称轴可以通过-x=-b/2a来确定。
当b的值增加时,对称轴向左移动;当b的值减少时,对称轴向右移动。
例:考虑二次函数f(x) = x^2 - 2x + 1,如果我们将b的值改为-1,则对称轴向右移动1个单位。
三、二次函数平移的例子1. 水平平移的例子:考虑二次函数f(x) = x^2 - 4x + 4。
二次函数平移问题
二次函数平移问题 SANY GROUP system office room 【SANYUA16H-二次函数的平移问题我们从两个方面进行了一些探讨,概括出二次函数平移后其解析式的变化规律.一.当解析式为一般式y=ax2+bx+c(a≠0)时1.向上或向下平移时,二次函数解析式的变化规律.将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c+n 将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c-n 两式比较:可得抛物线向上平移n个单位,常数项上加n,即解析式由y=ax2+bx+c变为y=ax2+bx+c+n;同理可推出抛物线向下平移n个单位,常数项上减去n,即解析式由y=ax2+bx+c变为y=ax2+bx+c-n2.向左或向右平移时,解析式的变化规律.将抛物线向左平移m个单位长度后,得到的新抛物线的解析式为y=a(x+m)2+b(x+m)+c将抛物线向右平移m个单位长度后,得到的新抛物线的解析式为y=a(x-m)2+b(x-m)+c两式比较,可得出抛物线向左平移m个单位,自变量上减去m,即解析式由y=ax2+bx+c变为y=a(x+m)2+b(x+m)+c;同理可推出抛物线向右平移m个单位,自变量上加上m,即解析式由y=ax2+bx+c变为y=a(x-m)2+b(x-m)+c3.将抛物线向左平移m个单位长度后,再将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=a(x+m)2+b(x+m)+c+n将抛物线向左平移m个单位长度后,再将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=a(x+m)2+b(x+m)+c-n将抛物线向右平移m个单位长度后,再将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=a(x-m)2+b(x-m)+c+n将抛物线向右平移m个单位长度后,再将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=a(x-m)2+b(x-m)+c-n二.当解析式为顶点式y=a(x-h)2+k(a≠0)时1.向上或向下平移时,解析式的变化规律.将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=a(x-h)2+k+n 将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=a(x-h)2+k-n 将抛物线向上平移n个单位,有点的平移规律可知,顶点坐标由(h,k)变为(h,k+n)所以抛物线的解析式由y=a(x-h)2+k变为y=a(x-h)2+k+n将抛物线向下平移n个单位,有点的平移规律可知,顶点坐标由(h,k)变为(h,k-n)所以抛物线的解析式由y=a(x-h)2+k变为y=a(x-h)2+k-n比较两个解析式可得出向上平移n个单位,括号外加n,同理可推出向下平移n个单位括号外减去n.即抛物线解析式由y=a(x-h)2+k变为y=a(x+m-h)2+k-n2.向右或向左平移时,解析式的变化规律.将抛物线向左平移m个单位长度后,得到的新抛物线的解析式为y=a(x-h+m)2+k 将抛物线向右平移m个单位长度后,得到的新抛物线的解析式为y=a(x-h-m)2+k将抛物线向左平移m 个单位,由点的平移规律可知,顶点坐标由(h,k)变为(h-m,k),所以抛物线解析式由y=a(x-h)2+k 变为y=a[x-(h-m)]2+k=a (x-h+m)2+k将抛物线向右平移m 个单位,由点的平移规律可知,顶点坐标由(h,k)变为(h+m,k),所以抛物线解析式由y=a(x-h)2+k 变为y=a[x-(h+m)]2+k=a (x-h-m)2+k两解析式比较可得出图像向左平移m 个单位,括号内加上m ,即抛物线解析式由y=a(x-h)2+k 变为y=a (x-h+m)2+k ;同理可推出向右平移m 个单位括号内减去m ,即抛物线解析式由y=a(x-h)2+k 变为y=a (x-h-m)2+k综上所述,当解析式为顶点式时,解析式的变化规律为上加下减括号外,左加右减括号内;解析式为一般式时,解析式的变化规律为左加右减自变量,上加下减常数项3.将抛物线向左平移m 个单位长度后,再将抛物线向上平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h+m)2+k+n将抛物线向左平移m 个单位长度后,再将抛物线向下平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h+m)2+k-n将抛物线向右平移m 个单位长度后,再将抛物线向上平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h-m)2+k+n将抛物线向右平移m 个单位长度后,再将抛物线向下平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h-m)2+k-n二次函数的平移练习题1.把抛物线y=-x 2向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为() A.y=-(x-1)2+3B.y=-(x+1)2+3C.y=-(x-1)2-3D.y=-(x+1)2-32.抛物线y=x 2+bx+c 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为y=x 2-2x-3,则b 、c 的值为()A.b=2,c=2B.b=2,c=0C.b=-2,c=-1D.b=-3,c=23.将函数y=x 2+x 的图像向右平移a (a >0)个单位,得到函数y=x 2-3x+2的图像,则a 的值为()A.1B.2C.3D.44.已知二次函数y=x 2-bx+1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是()A.先往左上方移动,再往右下方移动B.先往左下方移动,再往左上方移动B.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动5.已知抛物线C :y=x 2+3x-10,将抛物线C 平移得到抛物线C ′.若两条抛物线C 、C ′关于直线x=1对称,则下列平移方法正确的是()A.将抛物线C 向右平移2.5个单位B.将抛物线C 向右平移3个单位C.将抛物线C 向右平移5个单位D.将抛物线C 向右平移6个单位6.把二次函数y=-41x 2-x+3用配方法化成y=a(x-h)2+k 的形式 A.y=-41(x-2)2+2B.y=41(x-2)2+4C.y=-41(x+2)2+4D.y=(21x-21)2+3 7.在平面直角坐标系中,将二次函数y=2x 2的图象向上平移2个单位,所得图象的解析式为A .y=2x 2-2B .y=2x 2+2C .y=2(x-2)2D .y=2(x+2)28.将抛物线y=2x 2向下平移1个单位,得到的抛物线是( )A .y=2(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=2x 2-19.将函数y=x 2+x 的图象向右平移a(a >0)个单位,得到函数y=x 2-x+2的图象,则a 的值为()A .1B .2C .3D .410.把抛物线y=-2x 2向右平移2个单位,然后向上平移5个单位,则平移后抛物线的解析式为()A.y=-2(x-2)2+5B.y=-2(x+2)2+5C.y=-2(x-2)2-5D.y=-2(x+2)2-511.在平面直角坐标系中,先将抛物线y=x 2+x-2关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()A .y=-x 2-x+2B .y=-x 2+x-2 C.y=-x 2+x+2 D .y=x 2+x+212.在平面直角坐标系中,将抛物线y=x 2+2x+3绕着它与y 轴的交点旋转1800,所得抛物线的解析式是()A .y=-(x+1)2+2B .y=-(x-1)2+4C .y=-(x-1)2+2D .y=-(x+1)2+413.要得到二次函数y=-x 2+2x-2的图象,需将y=-x 2的图象().A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位14.若二次函数y=(x-m)2-1,当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是()A .m =1B .m >1C .m ≥1D .m ≤115.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x-m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为( )A .13B .7C .5D .816.抛物线y=ax 2向左平移5个单位,再向下移动2个单位得到抛物线17.二次函数y=-2(x+3)2-1由y=-2(x-1)2+1向_____平移______个单位,再向_____平移______个单位得到18.抛物线y=3(x+2)2-3可由抛物线y=3(x+2)2+2向平移个单位得到19.将抛物线y=53(x-3)2+5向右平移3个单位,再向上平移2个单位,得到的抛物线是 20.把抛物线y=-(x-1)2-2是由抛物线y=-(x+2)2-3向平移个单位,再向_____平移_____个单位得到21.把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________22.抛物线y =x 2-5x+4的图像向右平移三个单位,在向下平移三个单位的解析式23.已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 24.已知a+b+c=0,a ≠0,把抛物线y=ax 2+bx+c 向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式 25.已知二次函数y =-x 2-4x-5.①指出这个二次函数图象的开口方向、对称轴和顶点坐标;②把这个二次函数的图象上、下平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式;③把这个二次函数的图象左、右平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式。
二次函数的平移与缩放知识点总结
二次函数的平移与缩放知识点总结二次函数是高中数学中一种重要的函数类型,它的图像呈现出一条弧线状,常常用来描述质量、面积、体积等与自变量平方成正比的关系。
在学习二次函数时,我们需要了解其平移和缩放的概念,本文将对二次函数的平移与缩放进行知识点总结。
一、平移的概念及性质平移是指将函数图像在平面上沿着x轴或y轴方向移动的操作。
具体而言,二次函数平移的一般形式为f(x) = a(x - h)^2 + k,其中(a ≠ 0)为常数,(h, k)为平移的坐标。
平移可以使得二次函数的图像向左、向右、向上或向下进行移动,其具体效果与平移的坐标有关。
二、平移的规律与示例1. 沿x轴的平移:当二次函数表示为f(x) = a(x - h)^2 + k时,平移的横坐标移动的方向和距离与h有关。
当h > 0时,图像向右平移|h|个单位;当h < 0时,图像向左平移|h|个单位。
例如,考虑二次函数f(x)= x^2,如果进行平移f(x-3),则图像向右平移3个单位。
2. 沿y轴的平移:仍然考虑二次函数f(x) = a(x - h)^2 + k,平移的纵坐标移动的方向和距离与k有关。
当k > 0时,图像向上平移|k|个单位;当k < 0时,图像向下平移|k|个单位。
例如,对于二次函数f(x) = x^2,如果进行平移f(x) + 3,则图像向上平移3个单位。
三、缩放的概念及性质缩放是指通过改变二次函数图像的形状和大小来对其进行操作。
具体来说,二次函数缩放的一般形式为y = a f(x),其中(a ≠ 0)是缩放的比例因子,f(x)是原始二次函数。
四、缩放的规律与示例1. 沿x轴的缩放:当a > 1时,二次函数的图像在x轴方向上变得更窄;当0 < a < 1时,二次函数的图像在x轴方向上变得更宽。
例如,对于二次函数f(x) = x^2,如果进行缩放0.5f(x),则图像在x轴方向上变为原来的一半宽。
第5章 二次函数——平移——学好二次函数的法宝
二次函数的平移与缩放
二次函数的平移与缩放二次函数是一种常见的数学函数形式,其一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a不等于0。
在这篇文章中,我们将探讨二次函数的平移和缩放以及如何在二维平面中对其进行图形变换。
一、平移平移是指将函数图像沿着坐标轴上下左右方向移动的操作。
对于二次函数y=ax^2+bx+c来说,平移可以通过改变常数b和常数c实现。
1. 沿x轴平移当我们想要将二次函数沿x轴平移时,只需要改变常数c的值即可。
若c>0,则图像向上平移;若c<0,则图像向下平移。
平移的距离与常数c的绝对值成正比。
2. 沿y轴平移相对于沿x轴平移,沿y轴平移需要更改常数b的值。
当b>0时,图像向右平移;当b<0时,图像向左平移。
平移的距离与常数b的绝对值成正比。
3. 综合平移如果我们需要进行综合平移,即同时沿x轴和y轴方向移动,我们可以同时改变常数b和常数c的值。
二、缩放缩放是指通过改变二次函数中的参数a的值来改变函数图像的形状和幅度。
1. a的绝对值大于1当a的绝对值大于1时,函数图像会在x轴的方向上发生压缩,图像将变得更瘦高。
a的绝对值越大,图像的压缩程度也越高。
2. 0 < a的绝对值 < 1当0 < a的绝对值 < 1时,函数图像会在x轴的方向上发生伸展,图像将变得更矮胖。
a的绝对值越小,图像的伸展程度也越高。
3. a的值为负数当a的值为负数时,函数图像将上下翻转。
这种情况下,函数图像的顶点将变为最低点,变为最低点处的y值也会变为最高点处的y值。
三、综合平移与缩放在实际应用中,我们常常需要同时进行平移和缩放来对二次函数进行变换。
这样可以更好地适应我们的需求,并绘制出我们想要的图像形状和位置。
综上所述,二次函数的平移与缩放是通过改变函数中的常数a、b和c的值来实现的。
平移是通过改变常数b和常数c的值来实现图像在坐标轴上的上下左右移动。
缩放是通过改变常数a的值来改变函数图像的形状和幅度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数y=a(x-h)2+k的图象与性质及二次函数平移
一、学习目标:
1.复习二次函数y=ax2图像和性质;
2.复习一次函数平移规律并借此猜想二次函数平移规律,通过画图探索验证猜想,从而掌握二次函数平移规律;
3.掌握二次函数y=a(x-h)2+k的图象与性质.
二、知识探索:
探索一:
在同一直角坐标系中,画出二次函数y=x2 y=x2+1,y=x2-1的图象.
描点并画图
观察图象得:
2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;
把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________位置________________.
探索二:
画出二次函数y=(x+1)2,y= (x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.
先列表:
描点并画图.
2.请在图上把抛物线y=x也画上去(草图).
①抛物线y=(x+1)2,y=x2,y=(x-1)2的形状大小____________.
②把抛物线y=x2向______平移_______个单位,就得到抛物线y=(x+1)2;
把抛物线y=x2向______平移_______个单位,就得到抛物线y=(x-1)2.
3.抛物线y=x2,y=(x+1)2与y=(x-1)2的形状_____________位置________________.
探索三:
画出函数y=(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.
由图象归纳:
2.把抛物线y=x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=(x+1)2-1.
3.平移口诀:
三、总结归纳:
2.抛物线y=a (x-h)2+k与y=ax2形状___________,位置________________.
3. 二次函数平移口诀:
四、课堂练习
2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.
3.顶点坐标为(-2,3),开口方向和大小与抛物线y=1
2x
2相同的解析式为()
A.y=1
2(x-2)
2+3 B.y=1
2(x+2)
2-3
C.y=1
2(x+2)
2+3 D.y=-1
2(x+2)
2+3
4.二次函数y=(x-1)2+2的最小值为__________________.
5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.
6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.
五、目标检测
2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()
A B C D
4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.
5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)。