MAX3318CDBRE4中文资料
MAX038资料中文
高频信号发生器_______________概述MAX038是一种只需极少外围电路就能实现高 频、高精度输出三角波、锯齿波、正弦波、方波 和脉冲波的精密高频函数发生器芯片。
内部提供 的2.5V 基准电压和一个外接电阻和电容可以控制 输出频率范围在0.1Hz 到20MHz 。
占空比可在较大 的范围内由一个±2.3V的线性信号控制变化,便 于进行脉冲宽度调制和产生锯齿波。
频率调整和 频率扫描可以用同样的方式实现。
占空比和频率 控制是独立的。
通过设置2个TTL 逻辑地址引脚合适的逻辑电 平,能设定正弦波,方波或三角波的输出。
所有 波形的输出都是峰-峰值为±2VP -P 的信号。
低阻 抗输出能力可以达到±20mA。
____________________________性能o 频率调节范围:0.1Hz 到20MHzo 三角波, 锯齿波, 正弦波, 方波和脉冲波 o 频率和占空比独立可调 o 频率扫描范围:350:1 o 可控占空比:15%到85% o 低阻抗输出缓冲器: 0.1Ω o 低失真正弦波: 0.75% o 低温度漂移: 200ppm/°C______________型号信息TTL 逻辑地址引脚SYNC 从内部振荡器输出占 空比固定为50%的信号,不受其它波占空比的影 响,从而同步系统中其它振荡器。
内部振荡器 允许被连接着相位检波器输入端(PDI )的外部 TTL 时钟同步。
型号 MAX038CPP MAX038CWP MAX038C/D MAX038EPP MAX038EWP工作温度 0°C 到 +70°C 0°C 到 +70°C 0°C 到 +70°C -40°C 到 +85°C -40°C 到 +85°C引脚--封装 20 Plastic DIP 20 SO Dice* 20 Plastic DIP 20 SO.__________________应用精密函数信号发生器 压控振荡器 频率调制器*Contact factory for dice specifications.__________________引脚图脉宽调制器 锁相环 频率合成器FSK 发生器(正弦波和方波)________________________________________________________________ Maxim Integrated Products1For free samples & the latest literature: , or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468MAX038高频信号发生器图1. 内部结构及基本工作电路_______________ 详细说明MAX038是一种高频函数信号发生器,它可以使 用最少的外部元件而产生低失真正弦波,三角波, 锯齿波,方波(脉冲波)。
4CMC331M450AK8中文资料
2,000 h at 85 °C and full load∆ Capacitance ±20% ESR 200% of limit DCL 100% of limit3,000 h at 85 ºC with rated voltage∆ Capacitance ±10% ESR 200% of limit DCL 100% of limit500 h at 85 °C, capacitance, ESR and DCL, initial requirements10 to 55 Hz, 0.06” and 10 g max, 2 h each planeThe Type 4CMC is the PC-mount version of the high-capacitance Type DCMC screw-terminal capacitor and has about 50% more capacitance per can size through 250 V. It’s for bus filtering applications where more capacitance or smaller can size is important like welders and energy storage. It’s a much better value than a large snap-in capacitor. Its extended cathode foil assures cool operation with heatflow from the capacitor element to the can in all mounting orientations.Highlights• Much better value than large snap-in capacitor • Ripple Currents to > 50 amps at 55 °C • 3-leads for reverse proof, strong mounting • Printed-circuit mounting version of DCMC • Thermal-Pak™ extended cathode constructionSpecificationsOperating Temperature:Rated Voltage:Capacitance:Capacitance Tolerance:DC Leakage Current:Cold Impedance:Ripple Current Multipliers:EIA Ripple Life: Life Test:Shelf Life Test: Vibration: Best Value Printed Circuit Mount TypeFrequency–40 °C to +85 °C 16 to 500 Vdc210 µF to 420,000 µF ± 20%± 20%≤ 6 √CV µA, 6 max, 5 min.–20 °C multiple of 25 °C Z ≤ 8 for 16 to 50 V, 4 for 63 to 100 V, 3 for 160 V & up Ambient Temperature45 °C 55 °C 65 °C 75 °C 85 °C 2.002.001.731.411.0050 Hz 60 Hz 120 Hz 360 Hz 1 kHz 5 kHk-10 kHz & up6.3 to 50 V 0.800.85 1.00 1.05 1.08 1.08 1.0863 to 250 V 0.800.83 1.00 1.15 1.20 1.20 1.20300 to 5000.780.801.001.301.401.401.40Complies with the EU Directive 2002/95/EC requirement restricting the use of Lead (Pb), Mercury (Hg), Cadmium (Cd), Hexavalent chromium (Cr(VI)), PolyBrominated Biphenyls (PBB) and PolyBrominated Diphenyl Ethers (PBDE).Outline DrawingsCase DimensionsPart Numbering System4CMCType 8InsulationAKCase Code100Voltage M Tolerance382Capacitance(blank) = StraightLeads0 = Bare can 8 = PVC and Standoffs9 = Polyester and Standoffs6R3 = 6.3 V 063 = 63 V M = ±20%T = –10% +50% U = –10 +75% 382 = 3800 µF 212 = 2100 µF100 = 100 VCase InchesMillimeters Code D ± .031 L MAX C ± .015 S ± .031 E ± .031 F ± .015 D ± .78 L MAX C ± .78 S ± .78 E ± .78 F ± .38AK 1.375 1.750.500.1750.250.5534.9344.4512.70 4.45 6.3513.97 AA 1.375 2.250.500.1750.250.5534.9357.1512.70 4.45 6.3513.97 AH 1.375 2.750.500.1750.250.5534.9869.8512.70 4.45 6.3513.97 AB 1.375 3.250.500.1750.250.5534.9382.5512.70 4.45 6.3513.97 AJ 1.375 3.750.500.1750.250.5534.9395.2512.70 4.45 6.3513.97 AC 1.375 4.250.500.1750.250.5534.93107.9512.70 4.45 6.3513.97 AD 1.375 4.750.500.1750.250.5534.93120.6512.70 4.45 6.3513.97 AE 1.375 5.250.500.1750.250.5534.93133.3512.70 4.45 6.3513.97 AF 1.375 5.750.500.1750.250.5534.93146.0512.70 4.45 6.3513.97 EA 1.75 2.250.700.3750.350.9044.4557.1517.789.538.8922.86 EH 1.75 2.750.700.3750.350.9044.4569.8517.789.538.8922.86 EB 1.75 3.250.700.3750.350.9044.4582.5517.789.538.8922.86 EJ 1.75 3.750.700.3750.350.9044.4595.2517.789.538.8922.86 EC 1.75 4.250.700.3750.350.9044.45107.9517.789.538.8922.86 ED 1.75 4.750.700.3750.350.9044.45120.6517.789.538.8922.86 EE 1.75 5.250.700.3750.350.9044.45133.3517.789.538.8922.86 EF 1.75 5.750.700.3750.350.9044.45146.0517.789.538.8922.86 BA 2.00 2.250.800.4250.40 1.0050.8057.1520.3210.8010.1625.40 BH 2.00 2.750.800.4250.40 1.0050.8069.8520.3210.8010.1625.40 BB 2.00 3.250.800.4250.40 1.0050.8082.5520.3210.8010.1625.40 BJ 2.00 3.750.800.4250.40 1.0050.8095.2520.3210.8010.1625.40 BC 2.00 4.250.800.4250.40 1.0050.80107.9520.3210.8010.1625.40 BD 2.00 4.750.800.4250.40 1.0050.80120.6520.3210.8010.1625.40 BE 2.00 5.250.800.4250.40 1.0050.80133.2520.3210.8010.1625.40 BF2.005.750.800.4250.401.0050.80146.0520.3210.8010.1625.40RatingsESR Max. 25 ºC 120 Hz 20 kHz (mΩ) (mΩ)Ripple Amps,85 ºC 120 Hz 20 kHz (A) (A)Nominal Size D X L (in)ESR Max. 25 ºC 120 Hz 20 kHz (mΩ) (mΩ)Ripple Amps,85 ºC 120 Hz 20 kHz (A) (A)Nominal Size D X L (in)Cap.(µF)Catalog Part NumberCap.(µF)Catalog Part Number 16 Vdc (20 Vdc Surge)2000004CMC204M016AF8 10.38.216.919.0 1 3/8 X 5 3/4 330004CMC333M016AK8 34.227.2 5.7 6.4 1 3/8 X 1 3/4 2200004CMC224M016EC8 1310.315.217 1 3/4 X 4 1/4 550004CMC553M016AA821.216.98.49.4 1 3/8 X 2 1/4 2400004CMC244M016BJ8 11.79.315.617.5 2 X 3 3/4 770004CMC773M016AH8 18.314.69.310.4 1 3/8 X 2 3/4 2500004CMC254M016ED8 11.59.21719 1 3/4 X 4 3/4 790004CMC793M016EA8 23.018.39.210.4 1 3/4 X 2 1/4 2800004CMC284M016EE8 10.58.418.921.2 1 3/4 X 5 1/4 990004CMC993M016AB814.811.811.112.4 1 3/8 X 3 1/4 2800004CMC284M016BC8 11.49.115.917.8 2 X 4 1/4 1100004CMC114M016EH8 17.413.811.412.7 1 3/4 X 2 3/4 3100004CMC314M016EF8 9.77.721.023.5 1 3/4 X 5 3/4 1200004CMC124M016AJ8 12.810.212.514.0 1 3/8 X 3 3/4 3300004CMC334M016BD8 10.78.516.919 2 X 4 3/4 1200004CMC124M016BA817.714.110.011.2 2 X 2 1/4 3700004CMC374M016BE8 10.08.018.120.3 2 X 5 1/4 1400004CMC144M016AC8 12.59.913.315.0 1 3/8 X 4 1/4 4200004CMC424M016BF89.07.219.822.22 X 5 3/41400004CMC144M016EB815.812.612.914.4 1 3/4 X 3 1/4 25 Vdc (30 Vdc Surge) 1500004CMC154M016BH8 14.511.611.913.3 2 X 2 3/4 220004CMC223M025AK8 63.250.4 4.2 4.7 1 3/8 X 1 3/4 1600004CMC164M016AD8 11.59.114.516.2 1 3/8 X 4 3/4 370004CMC373M025AA8 23.919.17.98.8 1 3/8 X 2 1/4 1800004CMC184M016AE8 10.88.615.817.7 1 3/8 X 5 1/4 520004CMC523M025AH8 20.616.48.89.8 1 3/8 X 2 3/4 1800004CMC184M016EJ8 15.012.013.615.3 1 3/4 X 3 3/4 540004CMC543M025EA8 22.918.39.310.4 1 3/4 X 2 1/4 1900004CMC194M016BB812.39.813.615.22 X3 1/4670004CMC673M025AB816.613.210.511.71 3/8 X 3 1/4Typical Performance CurvesESR Max.25 ºC 120 Hz 20 kHz (mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)ESR Max.25 ºC120 Hz 20 kHz(mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)Cap. (µF)Catalog PartNumberCap.(µF)Catalog PartNumber780004CMC783M025EH8 19.0015.1010.9012.20 1 3/4 X 2 3/4 50 Vdc (65 Vdc Surge)820004CMC823M025AJ8 14.3011.4011.8013.20 1 3/8 X 3 3/4 100004CMC103M050AK8 44.3035.30 5.00 5.70 1 3/8 X 1 3/4 830004CMC833M025BA8 19.0015.2010.9012.20 2 X 2 1/4 170004CMC173M050AA8 27.3021.807.408.20 1 3/8 X 2 1/4 970004CMC973M025AC8 13.9011.1012.6014.20 1 3/8 X 4 1/4 240004CMC243M050AH8 23.4018.708.209.20 1 3/8 X 2 3/4 1000004CMC104M025BH8 15.5012.4013.0014.60 2 X 2 3/4 270004CMC273M050EA8 28.2022.508.409.40 1 3/4 X 2 1/4 1000004CMC1003M025EB8 17.3013.8012.3013.80 1 3/4 X 3 1/4 310004CMC313M050AB8 18.9015.109.8011.00 1 3/8 X 3 1/4 1100004CMC114M025AD8 12.8010.2013.8015.40 1 3/8 X 4 3/4 330004CMC333M050BA8 27.9022.309.0010.10 2 X 2 1/4 1200004CMC124M025AE8 11.909.5015.0016.80 1 3/8 X 5 1/4 360004CMC363M050EH8 21.2016.9010.3011.50 1 3/4 X 2 3/4 1200004CMC124M025EJ8 16.4013.0013.1014.60 1 3/4 X 3 3/4 380004CMC383M050AJ8 16.2013.0011.1012.40 1 3/8 X 3 3/4 1300004CMC134M025BB8 12.7010.1015.2017.00 2 X 3 1/4 390004CMC393M050EB8 20.3016.2011.3012.70 1 3/4 X 3 1/4 1400004CMC144M025AF8 11.409.1016.1018.00 1 3/8 X 5 3/4 450004CMC453M050AC8 15.7012.5011.9013.30 1 3/8 X 4 1/4 1500004CMC154M025EC8 14.1011.2014.6016.30 1 3/4 X 4 1/4 470004CMC473M050AD8 14.9011.9012.7014.30 1 3/8 X 4 3/4 1600004CMC164M025BJ8 12.5010.0017.1019.20 2 X 3 3/4 470004CMC473M050BH8 19.6015.6011.6013.00 2 X 2 3/4 1700004CMC174M025ED8 12.5010.0016.3018.30 1 3/4 X 4 3/4 480004CMC483M050EJ8 19.2015.3012.1013.50 1 3/4 X 3 3/4 1900004CMC194M025EE8 11.309.0018.2020.40 1 3/4 X 5 1/4 530004CMC533M050AE8 13.9011.0013.9015.60 1 3/8 X 5 1/4 1900004CMC194M025BC8 12.209.7017.4019.50 2 X 4 1/4 560004CMC563M050BB8 16.3013.0013.4015.00 2 X 3 1/4 2100004CMC214M025EF8 10.508.3020.2022.60 1 3/4 X 5 3/4580004CMC583M050EC8 16.5013.1013.5015.10 1 3/4 X 4 1/4 2200004CMC224M025BD8 11.409.1018.6020.80 2 X 4 3/4600004CMC603M050AF8 13.2010.5015.0016.80 1 3/8 X 5 3/4 2500004CMC254M025BE8 10.608.5019.9022.30 2 X 5 1/4670004CMC673M050ED8 14.5011.6015.1017.00 1 3/4 X 4 3/4 2800004CMC284M025BF8 9.607.6021.8024.40 2 X 5 3/4680004CMC683M050BJ8 15.0012.0015.6017.50 2 X 3 3/435 Vdc (40 Vdc Surge) 760004CMC763M050EE8 13.1010.5016.9018.90 1 3/4 X 5 1/4 150004CMC153M035AK8 63.2050.40 4.20 4.70 1 3/8 X 1 3/4820004CMC823M050BC8 14.3011.4016.1018.00 2 X 4 1/4 250004CMC253M035AA8 23.9019.107.908.80 1 3/8 X 2 1/4850004CMC853M050EF8 12.109.6018.8021.10 1 3/4 X 5 3/4 350004CMC353M035AH8 20.6016.408.809.80 1 3/8 X 2 3/4910004CMC913M050BD8 12.7010.1017.6019.80 2 X 4 3/4 380004CMC383M035EA8 22.7018.109.3010.40 1 3/4 X 2 1/41000004CMC104M050BE8 11.809.4019.0021.30 2 X 5 1/4 450004CMC453M035AB8 16.6013.2010.5011.70 1 3/8 X 3 1/41200004CMC124M050BF8 10.508.4020.7023.20 2 X 5 3/4 520004CMC523M035EH8 19.0015.1010.9012.20 1 3/4 X 2 3/463 Vdc (75 Vdc Surge)550004CMC553M035AJ8 14.3011.4011.8013.20 1 3/8 X 3 3/475004CMC752M063AK8 44.1035.10 5.10 5.70 1 3/8 X 1 3/4 560004CMC563M035BA8 19.0015.2010.9012.20 2 X 2 1/4120004CMC123M063AA8 26.8021.407.408.30 1 3/8 X 2 1/4 650004CMC653M035AC8 13.9011.1012.6014.20 1 3/8 X 4 1/4160004CMC163M063EA8 28.2022.508.309.30 1 3/4 X 2 1/4 670004CMC673M035EB8 17.3013.8012.3013.80 1 3/4 X 3 1/4160004CMC163M063AH8 23.5018.808.209.20 1 3/8 X 2 3/4 680004CMC683M035BH8 15.5012.4013.0014.60 2 X 2 3/4210004CMC213M063AB8 18.7014.909.9011.10 1 3/8 X 3 1/4 750004CMC753M035AD8 12.8010.2013.8015.40 1 3/8 X 4 3/4220004CMC223M063EH8 21.2016.9010.3011.50 1 3/4 X 2 3/4 830004CMC833M035EJ8 16.4013.0013.1014.60 1 3/4 X 3 3/4260004CMC263M063AJ8 16.9013.5010.9012.20 1 3/8 X 3 3/4 840004CMC843M035AE8 11.909.5015.2017.10 1 3/8 X 5 1/4260004CMC263M063BA8 27.7022.109.0010.10 2 X 2 1/4 870004CMC873M035BB8 12.7010.1015.2017.00 2 X 3 1/4290004CMC293M063EB8 20.9016.7011.2012.50 1 3/4 X 3 1/4 930004CMC933M035AF8 11.409.1016.1018.10 1 3/8 X 5 3/4300004CMC303M063AC8 17.3013.8011.3012.70 1 3/8 X 4 1/4 1000004CMC104M035EC8 14.1011.2014.6016.30 1 3/4 X 4 1/4330004CMC333M063BH8 19.5015.5011.6013.00 2 X 2 3/4 1100004CMC114M035BJ8 12.5010.0017.1019.20 2 X 3 3/4350004CMC353M063AD8 15.7012.5012.4013.90 1 3/8 X 4 3/4 1100004CMC114M035ED8 12.5010.0016.3018.30 1 3/4 X 4 3/4360004CMC363M063EJ8 20.0016.0011.8013.20 1 3/4 X 3 3/4 1300004CMC134M035EE8 11.309.0018.2020.40 1 3/4 X 5 1/4380004CMC383M063AE8 14.5011.5013.8015.50 1 3/8 X 5 1/4 1300004CMC134M035BC8 12.209.7017.4019.50 2 X 4 1/4430004CMC433M063EC8 17.2013.7013.2014.80 1 3/4 X 4 1/4 1400004CMC144M035EF8 10.508.3020.2022.60 1 3/4 X 5 3/4440004CMC443M063AF8 13.7010.9014.7016.50 1 3/8 X 5 3/4 1500004CMC154M035BD8 11.409.1018.6020.80 2 X 4 3/4470004CMC473M063BB8 16.2012.9013.4015.00 2 X 3 1/4 1700004CMC174M035BE8 10.608.5020.0022.40 2 X 5 1/4500004CMC503M063ED8 15.2012.2014.8016.60 1 3/4 X 4 3/4 1900004CMC194M035BF8 9.607.6021.7024.40 2 X 5 3/4530004CMC533M063BJ8 15.1012.0015.6017.40 2 X 3 3/4570004CMC573M063EE8 13.8011.0016.5018.50 1 3/4 X 5 1/4ESR Max.25 ºC 120 Hz 20 kHz (mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)ESR Max.25 ºC120 Hz 20 kHz(mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)Cap. (µF)Catalog PartNumberCap.(µF)Catalog PartNumber590004CMC593M063BC8 14.5011.5016.0017.90 2 X 4 1/4220004CMC223M100AF8 20.1016.0012.1013.60 1 3/8 X 5 3/4 640004CMC643M063EF8 12.7010.1018.4020.60 1 3/4 X 5 3/4220004CMC223M100EC8 21.9017.5011.7013.10 1 3/4 X 4 1/4 690004CMC693M063BD8 12.8010.2017.6019.70 2 X 4 3/4260004CMC263M100ED8 19.3015.4013.2014.70 1 3/4 X 4 3/4 790004CMC793M063BE8 11.609.2019.1021.40 2 X 5 1/4260004CMC263M100BJ8 23.6018.8012.5013.90 2 X 3 3/4 890004CMC893M063BF8 10.708.5020.6023.10 2 X 5 3/4300004CMC303M100EE8 17.3013.8014.7016.50 1 3/4 X 5 1/480 Vdc (100 Vdc Surge) 300004CMC303M100BC8 20.2016.1013.5015.20 2 X 4 1/4 56004CMC562M080AK8 59.6047.50 4.40 4.90 1 3/8 X 1 3/4330004CMC333M100EF8 15.8012.6016.4018.40 1 3/4 X 5 3/4 85004CMC852M080AA8 36.2028.80 6.407.20 1 3/8 X 2 1/4350004CMC353M100BD8 17.8014.2014.9016.70 2 X 4 3/4 120004CMC123M080EA8 38.4030.607.208.00 1 3/4 X 2 1/4400004CMC403M100BE8 16.1012.8016.3018.20 2 X 5 1/4 120004CMC123M080AH8 31.5025.107.107.90 1 3/8 X 2 3/4450004CMC453M100BF8 14.7011.7017.5019.60 2 X 5 3/4 150004CMC153M080AB8 31.6025.207.608.50 1 3/8 X 3 1/4160 Vdc (200 Vdc Surge)170004CMC173M080EH8 34.0027.108.109.10 1 3/4 X 2 3/415004CMC152M160AK8 81.7065.20 3.70 4.20 1 3/8 X 1 3/4 180004CMC183M080BA8 32.8026.108.309.30 2 X 2 1/425004CMC252M160AA8 51.8041.30 5.30 6.00 1 3/8 X 2 1/4 190004CMC193M080AJ8 25.2020.108.9010.00 1 3/8 X 3 3/435004CMC352M160AH8 37.5029.90 6.507.30 1 3/8 X 2 3/4 220004CMC223M080AC8 20.9016.7010.3011.50 1 3/8 X 4 1/437004CMC372M160EA8 47.1037.50 6.10 6.90 1 3/4 X 2 1/4 220004CMC223M080EB8 30.5024.309.3010.40 1 3/4 X 3 1/445004CMC452M160AB8 29.6023.607.808.80 1 3/8 X 3 1/4 230004CMC233M080BH8 23.1018.4010.7011.90 2 X 2 3/448004CMC482M160BA8 35.4028.207.208.10 2 X 2 1/4 260004CMC263M080AD8 19.1015.2011.2012.60 1 3/8 X 4 3/452004CMC522M160EH8 29.0023.108.309.30 1 3/4 X 2 3/4 270004CMC273M080EJ8 25.1020.0010.5011.80 1 3/4 X 3 3/455004CMC552M160AJ8 23.5018.7029.3032.80 1 3/8 X 3 3/4 290004CMC293M080AE8 17.7014.1012.5014.00 1 3/8 X 5 1/466004CMC662M160AC8 20.2016.1010.5011.70 1 3/8 X 4 1/4 300004CMC303M080BB8 19.2015.3012.3013.80 2 X 3 1/468004CMC682M160EB8 22.5017.9010.2011.50 1 3/4 X 3 1/4 320004CMC323M080AF8 16.7013.3013.3014.90 1 3/8 X 5 3/471004CMC712M160AD8 18.6014.8011.4012.80 1 3/8 X 4 3/4 320004CMC323M080EC8 21.5017.1011.8013.20 1 3/4 X 4 1/471004CMC712M160BH8 26.5021.209.0010.10 2 X 2 3/4 370004CMC373M080BJ8 18.0014.3014.3016.00 2 X 3 3/480004CMC802M160AE8 16.8013.4012.6014.20 1 3/8 X 5 1/4 370004CMC373M080ED8 18.9015.1013.3014.90 1 3/4 X 4 3/483004CMC832M160EJ8 18.5014.7011.7013.10 1 3/4 X 3 3/4 430004CMC433M080BC8 15.9012.6015.3017.10 2 X 4 1/490004CMC902M160AF8 19.2015.3012.4013.90 1 3/8 X 5 3/4 430004CMC433M080EE8 17.0013.6014.8016.60 1 3/4 X 5 1/493004CMC932M160BB8 20.6016.4010.8012.10 2 X 3 1/4 480004CMC483M080EF8 15.6012.4016.6018.60 1 3/4 X 5 3/4100004CMC1002M160EC8 15.8012.6013.1014.60 1 3/4 X 4 1/4 500004CMC503M080BD8 13.6010.8017.1019.10 2 X 4 3/4110004CMC113M160BJ8 16.9013.5013.3014.90 2 X 3 3/4 580004CMC583M080BE8 12.209.7018.6020.90 2 X 5 1/4120004CMC123M160ED8 13.9011.1014.7016.50 1 3/4 X 4 3/4 650004CMC653M080BF8 11.208.9020.1022.50 2 X 5 3/4130004CMC133M160EE8 12.509.9016.5018.40 1 3/4 X 5 1/4 100 Vdc (125 Vdc Surge) 130004CMC133M160BC8 14.5011.6014.5016.20 2 X 4 1/4 38004CMC382M100AK8 58.6046.70 4.40 4.90 1 3/8 X 1 3/4150004CMC153M160EF8 11.409.1018.4020.60 1 3/4 X 5 3/4 63004CMC632M100AA8 35.6028.30 6.507.20 1 3/8 X 2 1/4160004CMC163M160BD8 12.8010.2015.9017.80 2 X 4 3/4 81004CMC812M100AH8 32.8026.20 2.20 2.50 1 3/8 X 2 3/4180004CMC183M160BE8 11.509.2017.4019.50 2 X 5 1/4 82004CMC822M100EA8 39.2031.207.107.90 1 3/4 X 2 1/4200004CMC203M160BF8 10.508.4018.8021.00 2 X 5 3/4 100004CMC103M100AB8 32.9026.207.408.30 1 3/8 X 3 1/4200 Vdc (250 Vdc Surge)110004CMC113M100BA8 35.9028.707.908.90 2 X 2 1/412004CMC122M200AK8 105.2060.40 3.10 4.10 1 3/8 X 1 3/4 120004CMC123M100EH8 34.7027.708.009.00 1 3/4 X 2 3/419004CMC192M200AA8 66.6038.20 4.50 5.90 1 3/8 X 2 1/4 130004CMC133M100AJ8 31.7025.307.908.90 1 3/8 X 3 3/427004CMC272M200AH8 48.0027.60 5.407.20 1 3/8 X 2 3/4 150004CMC153M100EB8 31.1024.809.2010.30 1 3/4 X 3 1/427004CMC272M200EA8 60.0034.40 5.307.00 1 3/4 X 2 1/4 150004CMC153M100AC8 27.4021.800.90 1.10 1 3/8 X 4 1/435004CMC352M200AB8 37.8021.70 6.608.70 1 3/8 X 3 1/4 160004CMC163M100BH8 26.4021.0010.0011.20 2 X 2 3/435004CMC352M200BA8 44.2030.70 6.607.90 2 X 2 1/4 170004CMC173M100AD8 24.2019.3010.0011.20 1 3/8 X 4 3/437004CMC372M200EH8 38.1021.90 6.909.10 1 3/4 X 2 3/4 190004CMC193M100EJ8 25.6020.4010.4011.70 1 3/4 X 3 3/443004CMC432M200AJ8 29.9017.207.8010.20 1 3/8 X 3 3/4 200004CMC203M100AE8 21.9017.5011.2012.60 1 3/8 X 5 1/448004CMC482M200EB8 29.4016.908.5011.20 1 3/4 X 3 1/4 210004CMC213M100BB8 22.9018.3011.3012.60 2 X 3 1/450004CMC502M200BH8 33.1023.008.209.80 2 X 2 3/4ESR Max.25 ºC 120 Hz 20 kHz (mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)ESR Max.25 ºC120 Hz 20 kHz(mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)Cap. (µF)Catalog PartNumberCap.(µF)Catalog PartNumber51004CMC512M200AC8 25.7014.708.8011.70 1 3/8 X 4 1/416004CMC162M300AB8 82.7047.50 4.80 6.30 1 3/8 X 3 1/4 58004CMC582M200AD8 22.6013.009.8012.90 1 3/8 X 4 3/418004CMC182M300EH8 99.2056.90 4.80 6.30 1 3/4 X 2 3/4 59004CMC592M200EJ8 24.1013.809.7012.70 1 3/4 X 3 3/419004CMC192M300AJ8 68.0039.00 5.607.40 1 3/8 X 3 3/4 66004CMC662M200AE8 20.3011.6010.9014.40 1 3/8 X 5 1/422004CMC222M300BH8 67.1037.40 6.308.40 2 X 2 3/4 68004CMC682M200BB8 25.6017.809.8011.80 2 X 3 1/423004CMC232M300AC8 57.9033.20 6.408.40 1 3/8 X 4 1/4 71004CMC712M200EC8 20.5011.8010.8014.30 1 3/4 X 4 1/423004CMC232M300EB8 76.1043.70 5.807.70 1 3/4 X 3 1/4 74004CMC742M200AF8 23.1013.3010.7014.20 1 3/8 X 5 3/426004CMC262M300AD8 50.6029.007.109.40 1 3/8 X 4 3/4 81004CMC812M200BJ8 21.0014.6012.2014.60 2 X 3 3/429004CMC292M300AE8 45.0025.807.8010.30 1 3/8 X 5 1/4 82004CMC822M200ED8 17.9010.3012.2016.10 1 3/4 X 4 3/429004CMC292M300BB8 51.6028.707.6010.20 2 X 3 1/4 93004CMC932M200EE8 16.009.2013.7018.10 1 3/4 X 5 1/429004CMC292M300EJ8 61.9035.50 6.808.90 1 3/4 X 3 3/4 95004CMC952M200BC8 19.1013.3012.8015.40 2 X 4 1/433004CMC332M300AF8 50.7029.107.6010.10 1 3/8 X 5 3/4 100004CMC103M200EF8 14.508.3015.4020.30 1 3/4 X 5 3/435004CMC352M300EC8 52.2030.007.7010.20 1 3/4 X 4 1/4 110004CMC113M200BD8 15.7010.9014.6017.50 2 X 4 3/436004CMC362M300BJ8 51.2028.508.1010.80 2 X 3 3/4 120004CMC123M200BE8 14.109.8016.0019.20 2 X 5 1/440004CMC402M300ED8 45.3026.008.6011.40 1 3/4 X 4 3/4 140004CMC143M200BF8 12.808.9017.3020.80 2 X 5 3/443004CMC432M300BC8 43.3024.109.2012.30 2 X 4 1/4 250 Vdc (300 Vdc Surge)46004CMC462M300EE8 40.1023.009.5012.60 1 3/4 X 5 1/4 8904CMC891M250AK8 137.0078.60 2.60 3.40 1 3/8 X 1 3/449004CMC492M300BD8 38.0021.2010.2013.70 2 X 4 3/4 15004CMC152M250AA8 86.5049.70 3.70 4.90 1 3/8 X 2 1/451004CMC512M300EF8 36.0020.6010.4013.70 1 3/4 X 5 3/4 19004CMC192M250EA8 68.7039.40 4.80 6.30 1 3/4 X 2 1/457004CMC572M300BE8 33.3018.5011.3015.10 2 X 5 1/4 21004CMC212M250AH8 62.3035.70 4.50 6.00 1 3/8 X 2 3/464004CMC642M300BF8 29.9016.7012.3016.50 2 X 5 3/4 27004CMC272M250BA8 54.2037.60 5.807.00 2 X 2 1/4350 Vdc (400 Vdc Surge)27004CMC272M250AB8 48.8028.00 5.507.20 1 3/8 X 3 1/44304CMC431M350AK8 264.10151.60 2.10 2.80 1 3/8 X 1 3/4 28004CMC282M250EH8 47.8027.40 6.108.10 1 3/4 X 2 3/47104CMC711M350AA8 158.9091.20 3.10 4.00 1 3/8 X 2 1/4 32004CMC322M250AJ8 38.6022.10 6.508.50 1 3/8 X 3 3/410004CMC102M350EA8 119.2068.40 4.10 5.40 1 3/4 X 2 1/4 37004CMC372M250EB8 36.8021.107.6010.00 1 3/4 X 3 1/410004CMC102M350AH8 113.9065.40 3.70 4.90 1 3/8 X 2 3/4 38004CMC382M250BH8 40.5028.107.208.70 2 X 2 3/412004CMC122M350BA8 98.1054.60 4.80 6.40 2 X 2 1/4 39004CMC392M250AC8 33.0018.907.409.70 1 3/8 X 4 1/413004CMC132M350EH8 105.1060.30 4.60 6.10 1 3/4 X 2 3/4 44004CMC442M250AD8 29.0016.608.2010.80 1 3/8 X 4 3/413004CMC132M350AB8 89.0051.10 4.50 6.00 1 3/8 X 3 1/4 45004CMC452M250EJ8 30.1017.308.6011.40 1 3/4 X 3 3/416004CMC162M350BH8 71.8040.00 6.008.10 2 X 2 3/4 50004CMC502M250AE8 25.9014.909.1012.00 1 3/8 X 5 1/416004CMC162M350AJ8 73.2042.00 5.20 6.90 1 3/8 X 3 3/4 50004CMC502M250BB8 31.2021.708.7010.40 2 X 3 1/417004CMC172M350EB8 80.6046.30 5.707.50 1 3/4 X 3 1/4 54004CMC542M250EC8 25.5014.709.7012.80 1 3/4 X 4 1/418004CMC182M350AC8 62.3035.80 6.007.90 1 3/8 X 4 1/4 56004CMC562M250AF8 29.4016.909.0011.90 1 3/8 X 5 3/421004CMC212M350BB8 55.1030.707.309.70 2 X 3 1/4 62004CMC622M250BJ8 25.5017.7010.7012.90 2 X 3 3/421004CMC212M350AD8 54.4031.20 6.708.80 1 3/8 X 4 3/4 63004CMC632M250ED8 22.3012.8011.0014.50 1 3/4 X 4 3/421004CMC212M350EJ8 65.5037.60 6.508.60 1 3/4 X 3 3/4 72004CMC722M250EE8 19.8011.4012.3016.30 1 3/4 X 5 1/424004CMC242M350AE8 48.3027.707.409.80 1 3/8 X 5 1/4 73004CMC732M250BC8 21.7015.1011.7014.00 2 X 4 1/425004CMC252M350EC8 55.3031.707.409.70 1 3/4 X 4 1/4 81004CMC812M250EF8 18.0010.3013.8018.30 1 3/4 X 5 3/426004CMC262M350BJ8 47.9026.708.7011.70 2 X 3 3/4 85004CMC852M250BD8 19.0013.2012.9015.50 2 X 4 3/427004CMC272M350AF8 54.5031.307.409.70 1 3/8 X 5 3/4 97004CMC972M250BE8 17.0011.8014.2017.00 2 X 5 1/429004CMC292M350ED8 47.9027.508.3011.00 1 3/4 X 4 3/4 110004CMC113M250BF8 15.4010.7015.4018.40 2 X 5 3/431004CMC312M350BC8 45.7025.509.0012.10 2 X 4 1/4 300 Vdc (350 Vdc Surge) 33004CMC332M350EE8 42.4024.309.4012.40 1 3/4 X 5 1/4 5204CMC521M300AK8 245.00141.00 2.20 2.90 1 3/8 X 1 3/436004CMC362M350BD8 40.1022.409.9013.30 2 X 4 3/4 8704CMC871M300AA8 148.0084.70 3.10 4.10 1 3/8 X 2 1/437004CMC372M350EF8 38.0021.8010.6014.00 1 3/4 X 5 3/4 12004CMC122M300AH8 106.0060.70 4.00 5.30 1 3/8 X 2 3/442004CMC422M350BE8 35.1019.6011.0014.70 2 X 5 1/4 13004CMC132M300EA8 111.0063.80 4.20 5.50 1 3/4 X 2 1/447004CMC472M350BF8 31.6017.6012.0016.00 2 X 5 3/4 16004CMC162M300BA8 93.2051.90 5.00 6.70 2 X 2 1/4ESR Max.25 ºC 120 Hz 20 kHz (mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)ESR Max.25 ºC120 Hz 20 kHz(mΩ) (mΩ)Ripple Amps,85 ºC120 Hz 20 kHz(A) (A)NominalSizeD X L(in)Cap. (µF)Catalog PartNumberCap.(µF)Catalog PartNumber400 Vdc (450 Vdc Surge) 15004CMC152M450BB8 75.9042.20 5.807.80 2 X 3 1/43204CMC321M400AK2B 382.00195.00 1.70 2.40 1 3/8 X 1 3/415004CMC152M450AE8 61.8031.50 5.708.00 1 3/8 X 5 1/4 5904CMC591M400AA2B 212.00108.00 2.60 3.70 1 3/8 X 2 1/415004CMC152M450EJ8 75.1038.30 5.708.00 1 3/4 X 3 3/4 8004CMC801M400AH2B 156.0079.40 3.20 4.50 1 3/8 X 2 3/416004CMC162M450AF8 69.3035.40 5.708.00 1 3/8 X 5 3/4 8404CMC841M400EA8 154.0078.80 3.60 5.00 1 3/4 X 2 1/418004CMC182M450EC8 63.3032.30 6.509.10 1 3/4 X 4 1/4 10004CMC102M400BA8 130.0072.20 4.20 5.60 2 X 2 1/419004CMC192M450BJ8 61.7034.307.209.70 2 X 3 3/4 10004CMC102M400AB2B 119.0060.90 3.90 5.50 1 3/8 X 3 1/421004CMC212M450ED8 54.8028.007.3010.30 1 3/4 X 4 3/4 12004CMC122M400EH8 107.0054.60 4.60 6.40 1 3/4 X 2 3/422004CMC222M450BC8 52.1029.007.9010.60 2 X 4 1/4 13004CMC132M400AJ2B 96.9049.50 4.50 6.40 1 3/8 X 3 3/423004CMC232M450EE8 48.4024.708.3011.60 1 3/4 X 5 1/4 14004CMC142M400BH8 93.6052.10 5.307.10 2 X 2 3/426004CMC262M450EF8 43.5022.209.3013.00 1 3/4 X 5 3/4 15004CMC152M400EB8 87.4044.60 5.507.70 1 3/4 X 3 1/426004CMC262M450BD8 45.7025.408.7011.70 2 X 4 3/4 15004CMC152M400AC2B 81.8041.700.500.80 1 3/8 X 4 1/431004CMC312M450BE8 38.8021.609.8013.10 2 X 5 1/4 16004CMC162M400AD2B 78.6040.10 5.507.80 1 3/8 X 4 3/434004CMC342M450BF8 35.0019.5010.7014.30 2 X 5 3/4 18004CMC182M400EJ8 71.0036.20 6.308.80 1 3/4 X 3 3/4500 Vdc (550 Vdc Surge)18004CMC182M400AE2B 69.5035.40 6.208.70 1 3/8 X 5 1/42104CMC211M500AK8 487.00287.00 1.50 2.10 1 3/8 X 1 3/4 19004CMC192M400BB8 71.9040.00 6.408.50 2 X 3 1/43104CMC311M500AA8 325.00191.00 2.10 3.00 1 3/8 X 2 1/4 20004CMC202M400AF2B 77.9039.70 6.208.60 1 3/8 X 5 3/44404CMC441M500EA8 238.00140.00 2.90 4.00 1 3/4 X 2 1/4 21004CMC212M400EC8 59.9030.507.109.90 1 3/4 X 4 1/44504CMC451M500AH8 225.00133.00 2.60 3.70 1 3/8 X 2 3/4 23004CMC232M400BJ8 58.4032.507.9010.60 2 X 3 3/45604CMC561M500BA8 193.00114.00 3.40 4.60 2 X 2 1/4 25004CMC252M400ED8 51.9026.508.0011.20 1 3/4 X 4 3/45904CMC591M500AB8 173.00102.00 3.20 4.50 1 3/8 X 3 1/4 27004CMC272M400BC8 49.3027.508.7011.60 2 X 4 1/46304CMC631M500EH8 165.0097.20 3.70 5.20 1 3/4 X 2 3/4 29004CMC292M400EE8 45.8023.409.0012.70 1 3/4 X 5 1/47304CMC731M500AJ8 140.0082.60 3.80 5.30 1 3/8 X 3 3/4 32004CMC322M400EF8 41.1021.0010.2014.30 1 3/4 X 5 3/47804CMC781M500BH8 134.0078.70 4.40 5.90 2 X 2 3/4 32004CMC322M400BD8 42.8023.809.6012.90 2 X 4 3/48204CMC821M500EB8 126.0074.40 4.50 6.40 1 3/4 X 3 1/4 36004CMC362M400BE8 37.9021.1010.6014.20 2 X 5 1/48204CMC821M500AC8 125.0073.60 4.20 5.90 1 3/8 X 4 1/4 41004CMC412M400BF8 34.0018.9011.5015.40 2 X 5 3/49004CMC901M500AD8 113.0066.40 4.60 6.50 1 3/8 X 4 3/4 450 Vdc (500 Vdc Surge) 10004CMC102M500BB8 103.0060.30 5.307.10 2 X 3 1/4 3304CMC331M450AK8 281.00143.00 1.80 2.50 1 3/8 X 1 3/410004CMC102M500AE8 99.0058.50 5.207.30 1 3/8 X 5 1/4 4904CMC491M450AA8 188.0095.70 2.50 3.40 1 3/8 X 2 1/410004CMC102M500EJ8 103.0060.40 5.207.30 1 3/4 X 3 3/4 6004CMC601M450AH8 138.0070.40 3.00 4.10 1 3/8 X 2 3/411004CMC112M500AF8 114.0067.30 5.107.10 1 3/8 X 5 3/4 6904CMC691M450EA8 163.0083.30 3.30 4.60 1 3/4 X 2 1/412004CMC122M500EC8 86.4050.90 5.908.30 1 3/4 X 4 1/4 8604CMC861M450BA8 116.0064.80 4.10 5.60 2 X 2 1/413004CMC132M500BJ8 83.2049.00 6.608.90 2 X 3 3/4 8604CMC861M450AB8 106.0054.00 3.60 5.10 1 3/8 X 3 1/414004CMC142M500ED8 74.8044.00 6.709.40 1 3/4 X 4 3/4 9304CMC931M450EH8 121.0061.50 4.10 5.70 1 3/4 X 2 3/415004CMC152M500BC8 70.2041.307.309.70 2 X 4 1/4 10004CMC102M450AJ8 86.1043.90 4.20 5.90 1 3/8 X 3 3/416004CMC162M500EE8 66.0038.807.5010.60 1 3/4 X 5 1/4 11004CMC112M450BH8 98.9055.10 4.80 6.50 2 X 2 3/418004CMC182M500EF8 59.1034.808.5011.90 1 3/4 X 5 3/4 12004CMC122M450EB8 92.4047.10 5.007.00 1 3/4 X 3 1/418004CMC182M500BD8 60.7035.808.1010.80 2 X 4 3/4 12004CMC122M450AC8 72.7037.10 4.80 6.80 1 3/8 X 4 1/421004CMC212M500BE8 52.1030.709.0012.10 2 X 5 1/4 13004CMC132M450AD8 69.9035.70 5.107.20 1 3/8 X 4 3/423004CMC232M500BF8 46.9027.609.8013.20 2 X 5 3/4。
西门子S7-300系列SM331型号8路分析输入模块数据表说明书
No
to terminal)
Interrupts/diagnostics/status information Alarms ● Diagnostic alarm ● Limit value alarm Diagnostic messages ● Diagnostic functions ● Diagnostic information readable ● Diagnostics Diagnostics indication LED ● Group error SF (red)
integrating
16 bit; Unipolar: 15/15/15/15 bits; bign/15 bits + sign/15 bits + sign/15 bits + sign Yes; 10/ 16.67/ 20/ 100 ms 10 / 50 / 60 / 400 Hz
8 50 V; Permanent
32 mA
Yes Yes No No No
No Yes 2 MΩ No No Yes 2 MΩ
6ES7331-7NF00-0AB0 Page 1/4
13.05.2015
Changes preserved © Copyright Siemens AG
● -2.5 V to +2.5 V ● -250 mV to +250 mV ● -5 V to +5 V ● Input resistance (-5 V to +5 V) ● -50 mV to +50 mV ● -500 mV to +500 mV ● -80 mV to +80 mV Input ranges (rated values), currents ● 0 to 20 mA ● Input resistance (0 to 20 mA) ● -10 mA to +10 mA ● -20 mA to +20 mA ● Input resistance (-20 mA to +20 mA) ● -3.2 mA to +3.2 mA ● 4 mA to 20 mA ● Input resistance (4 mA to 20 mA) Input ranges (rated values), thermoelements ● Type B ● Type E ● Type J ● Type K ● Type L ● Type N ● Type R ● Type S ● Type T ● Type U ● Type TXK/TXK(L) to GOST Input ranges (rated values), resistance thermometer ● Cu 10 ● Ni 100 ● Ni 1000 ● LG-Ni 1000 ● Ni 120 ● Ni 200 ● Ni 500 ● Pt 100 ● Pt 1000 ● Pt 200 ● Pt 500 Input ranges (rated values), resistors
MAX038中文
MAX038芯片中文资料及在波形发生器中的应用(1)简介:波形发生器的应用范围很广。
在分析检测设备、超声设备、医疗设备及通讯设备中广泛应用。
函数发生器作为信号激励源,其参数精度是设计时应考虑的重要因素 ...波形发生器的应用范围很广。
在分析检测设备、超声设备、医疗设备及通讯设备中广泛应用。
函数发生器作为信号激励源,其参数精度是设计时应考虑的重要因素。
常用的波形产生电路有RC震荡电路、LC震荡电路、文氏震荡电路以及由555芯片构成的震荡电路等,但这些震荡电路由于核心芯片、选频及限幅元件特性的限制,在幅频精度方面或多或少的存在着不稳定或实现电路复杂等情况。
如果需要实现波形变换、幅频大小调整以及提高幅频的稳定度,设计的外围电路将会变得更为复杂。
由MAX038设计组成的波形产生电路能够输出幅频精度很高且易于调整的波形信号,在电路参数要求苛刻的工作场合能够得到较好的应用。
1 芯片功能介绍1.1 MAX038芯片的性能特点MAX038CPP芯片采用20引脚DIP封装,引脚图如图1所示。
各引脚功能简述如下:REF:芯片内部2.5 V参考电压输出;GND:模拟地;A1,A0:输出波形选择,TTL/CMOS兼容;COSC:内部震荡器外接电容;FADJ,DADJ:输出频率、占空比调节;IIN:震荡频率控制器电流输入;PDI,PDO:内部鉴相器输入、输出;SYNC:同步信号输出,允许内部震荡器与外电路同步;DGND,DV+:内部数字电路电源;V+,V-:MAX038电源(+5 V,-5 V);OUT:波形输出端。
MAX038芯片附加少许外围电路就能够产生三角波、锯齿波、正弦波、方波、矩形脉冲波形。
该芯片具有如下的功能特点:(1)输出频率范围:0.1~20 MHz,最高可达40 MHz:(2)输出波形占空比(15%~85%)独立可调,占空比可由DADJ端调整,如果DADJ 端接地,则输出占空比为50%;(3)具有低输出阻抗的输出缓冲器,输出阻抗的典型值为0.1 Ω;(4)备有TTL兼容的独立同步信号SYNC(方波输出,固定占空比为50%),方便组建频率合成器系统;(5)低温度漂移。
MAX3378EEUD中文资料
General DescriptionThe MAX3372E–MAX3379E and MAX3390E–MAX3393E ±15kV ESD-protected level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, V CC and V L , set the logic levels on either side of the device. A low-voltage logic signal present on the V L side of the device appears as a high-voltage logic signal on the V CC side of the device, and vice-versa. The MAX3374E/MAX3375E/MAX3376E/MAX3379E and MAX3390E–MAX3393E unidi-rectional level translators level shift data in one direction (V L →V CC or V CC →V L ) on any single data line. The MAX3372E/MAX3373E and MAX3377E/MAX3378E bidi-rectional level translators utilize a transmission-gate-based design (Figure 2) to allow data translation in either direction (V L ↔V CC ) on any single data line. The MAX3372E–MAX3379E and MAX3390E–MAX3393E accept V L from +1.2V to +5.5V and V CC from +1.65V to +5.5V, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems.All devices in the MAX3372E–MAX3379E, MAX3390E–MAX3393E family feature a three-state output mode that reduces supply current to less than 1µA, thermal short-circuit protection, and ±15kV ESD protection on the V CC side for greater protection in applications that route sig-nals externally. The MAX3372E/MAX3377E operate at a guaranteed data rate of 230kbps. Slew-rate limiting reduces EMI emissions in all 230kbps devices. The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E operate at a guaranteed data rate of 8Mbps over the entire specified operating voltage range. Within specific voltage domains, higher data rates are possible. (See Timing Characteristics .)The MAX3372E–MAX3376E are dual level shifters available in 3 x 3 UCSP™ and 8-pin SOT23-8 pack-ages. The MAX3377E/MAX3378E/MAX3379E and MAX3390E–MAX3393E are quad level shifters avail-able in 3 x 4 UCSP and 14-pin TSSOP packages.________________________ApplicationsSPI™, MICROWIRE™, and I 2C™ Level TranslationLow-Voltage ASIC Level Translation Smart Card Readers Cell-Phone Cradles Portable POS SystemsPortable Communication Devices Low-Cost Serial Interfaces Cell Phones GPSTelecommunications EquipmentFeatureso Guaranteed Data Rate Options230kbps8Mbps (+1.2V ≤V L ≤V CC ≤+5.5V)10Mbps (+1.2V ≤V L ≤V CC ≤+3.3V)16Mbps (+1.8V ≤V L ≤V CC ≤+2.5V and +2.5V ≤V L ≤V CC ≤+3.3V)o Bidirectional Level Translation (MAX3372E/MAX3373E and MAX3377E/MAX3378E)o Operation Down to +1.2V on V Lo ±15kV ESD Protection on I/O V CC Lineso Ultra-Low 1µA Supply Current in Three-State Output Modeo Low-Quiescent Current (130µA typ)o UCSP, SOT, and TSSOP Packages o Thermal Short-Circuit ProtectionMAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSP________________________________________________________________Maxim Integrated Products1Pin Configurations19-2328; Rev 3; 9/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering InformationUCSP is a trademark of Maxim Integrated Products, Inc.SPI is a trademark of Motorola, Inc.I 2C is a trademark of Phillips Corp.MICROWIRE is a trademark of National Semiconductor Corp.Ordering Information continued at end of data sheet.Selector Guide appears at end of data sheet.M A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All Voltages Referenced to GNDV CC ...........................................................................-0.3V to +6V I/O V CC_......................................................-0.3V to (V CC + 0.3V)I/O V L_...........................................................-0.3V to (V L + 0.3V)THREE-STATE ...............................................-0.3V to (V L + 0.3V)Short-Circuit Duration I/O V L , I/O V CC to GND...........Continuous Short-Circuit Duration I/O V L or I/O V CC to GND Driven from 40mA Source(except MAX3372E and MAX3377E).....................ContinuousContinuous Power Dissipation (T A = +70°C)8-Pin SOT23 (derate 8.9mW/°C above +70°C)...........714mW 3 x 3 UCSP (derate 4.7mW/°C above +70°C)............379mW 3 x 4 UCSP (derate 6.5mW/°C above +70°C)............579mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C)........727mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSP_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = +1.65V to +5.5V, V L = +1.2V to (V CC + 0.3V), GND = 0, I/O V L_and I/O V CC_unconnected, T A = T MIN to T MAX , unless other-M A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP 4_______________________________________________________________________________________TIMING CHARACTERISTICS(V CC = +1.65V to +5.5V, V L = +1.2V to (V CC + 0.3V), GND = 0, R LOAD = 1M Ω, I/O test signal of Figure 1, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +3.3V, V L = +1.8V, T A = +25°C, unless otherwise noted.) (Notes 1, 2)MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSP_______________________________________________________________________________________5and not production tested.Note 2:For normal operation, ensure V L < (V CC + 0.3V). During power-up, V L > (V CC + 0.3V) will not damage the device. Note 3:To ensure maximum ESD protection, place a 1µF capacitor between V CC and GND. See Applications Circuits .Note 4:10% to 90% Note 5:90% to 10%TIMING CHARACTERISTICS (continued)(V = +1.65V to +5.5V, V = +1.2V to (V + 0.3V), GND = 0, R = 1M Ω, I/O test signal of Figure 1, T = T to T , unlessM A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP 6_______________________________________________________________________________________Typical Operating Characteristics(R L = 1M Ω, T A = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E –MAX3376E/MAX3378E/MAX3379E and MAX3390E –MAX3393E only.)V L SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)V CC (V)S U P P L Y C U R R E N T (µA )4.954.403.853.302.752.2010020030040050060001.655.50V CC SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)V CC (V)S U P P L Y C U R R E N T (m A )4.954.403.853.302.752.200.51.01.52.02.53.03.501.65 5.50V L SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/O V CC , V CC = +3.3V, V L = +1.8V)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )6035-151050100150200250300350400-4085V CC SUPPLY CURRENT vs. TEMPERATURE(DRIVING I/O V CC , V CC = +3.3V, V L = +1.8V)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )6035-151020040060080010001200140016000-4085V L SUPPLY CURRENT vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L= +1.8V)CAPACITIVE LOAD (pF)S U P P L Y C U R R E N T (µA )857055402550100150200250300350010100V CC SUPPLY CURRENT vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)S U P P L Y C U R R E N T (µA )8570554025500100015002000250010100RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )908070605040305001000150020002500020100RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )454030352025152468101214161801050RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )454035302520155010015020025001050MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSP_______________________________________________________________________________________7PROPAGATION DELAY vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )90807060504030100200300400500600700020100PROPAGATION DELAY vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )4540353025201536912151050PROPAGATION DELAY vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )454035302520155010015020025030001050RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V L , V CC = +2.5V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )908070605040305001000150020002500020100RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V L, V CC = +2.5V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )4540353025201524681012141050RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +2.5V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )45403530252015501001502002503001050RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC= +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )908070605040305001000150020002500020100RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V CC , VCC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )454035302520152468101201050RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )454035302520155010015020025030001050Typical Operating Characteristics (continued)(R L = 1M Ω, T A = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E –MAX3376E/MAX3378E/MAX3379E and MAX3390E –MAX3393E only.)M A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP 8_______________________________________________________________________________________Typical Operating Characteristics (continued)(R L = 1M Ω, T A = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E –MAX3376E/MAX3378E/MAX3379E and MAX3390E –MAX3393E only.)PROPAGATION DELAY vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )90807060504030100200300400500600700020100PROPAGATION DELAY vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )4540353025201512345601050PROPAGATION DELAY vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +3.3V, V L = +1.8V)CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )454035302520155010015020025030001050RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +2.5V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )908070605040305001000150020002500020100RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +2.5V, V L = +1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )403020246810121050RISE/FALL TIME vs. CAPACITIVE LOAD (DRIVING I/O V CC , V CC = +2.5V, V L = +1.8V)CAPACITIVE LOAD (pF)RI S E /F A L l T I M E (n s )403020501001502002503003501050RAIL-TO-RAIL DRIVING(DRIVING I/O V L , V CC = +3.3V, V L = +1.8V,C L = 50pF, DATA RATE = 230kbps)M A X 3372E t o c 25I/O V L_I/O V CC_1V/div 2V/div 1µs/div RAIL-TO-RAIL DRIVING(DRIVING I/O V L , V CC = +3.3V, V L = +1.8V,C L = 15pF, DATA RATE = 8Mbps)M A X 3372E t o c 26I/O V L_I/O V CC_1V/div2V/div200ns/divMAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSP_______________________________________________________________________________________9Typical Operating Characteristics (continued)(R L = 1M Ω, T A = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E –MAX3376E/MAX3378E/MAX3379E and MAX3390E –MAX3393E only.)EXITING THREE-STATE OUTPUT MODE (V CC = +3.3V, V L = +1.8V, C L = 50pF)MAX3372E toc28I/O V L_I/O V CC_2µs/divTHREE-STATE2V/div1V/div1V/divConfigurations for input/output configurations.OPEN-DRAIN DRIVING(DRIVING I/O V L , V CC = +3.3V, V L = +1.8V,C L = 15pF, DATA RATE = 500kbps)M A X 3372E t o c 27I/O V L_I/O V CC_1V/div2V/div200ns/divM A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP 10______________________________________________________________________________________Detailed DescriptionThe MAX3372E –MAX3379E and MAX3390E –MAX3393E ESD-protected level translators provide the level shifting necessary to allow data transfer in a multivoltage system.Externally applied voltages, V CC and V L , set the logic lev-els on either side of the device. A low-voltage logic signal present on the V L side of the device appears as a high-voltage logic signal on the V CC side of the device, and vice-versa. The MAX3374E/MAX3375E/MAX3376E/MAX3379E and MAX3390E –MAX3393E unidirectional level translators level shift data in one direction (V L →V CC or V CC →V L ) on any single data line. The MAX3372E/MAX3373E and MAX3377E/MAX3378E bidi-rectional level translators utilize a transmission-gate-based design (see F igure 2) to allow data translation in either direction (V L ↔V CC ) on any single data line. The MAX3372E –MAX3379E and MAX3390E –MAX3393E accept V L from +1.2V to +5.5V and V CC from +1.65V to +5.5V, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems.All devices in the MAX3372E –MAX3379E, MAX3390E –MAX3393E family feature a three-state output mode that reduces supply current to less than 1µA, thermal short-circuit protection, and ±15kV ESD protection on the V CC side for greater protection in applications that route sig-nals externally. The MAX3372E/MAX3377E operate at a guaranteed data rate of 230kbps. Slew-rate limiting reduces EMI emissions in all 230kbps devices. The MAX3373E –MAX3376E/MAX3378E/MAX3379E and MAX3390E –MAX3393E operate at a guaranteed data rate of 8Mbps over the entire specified operating voltage range. Within specific voltage domains, higher data rates are possible. (See Timing Characteristics .)Level TranslationFor proper operation ensure that +1.65V ≤V CC ≤+5.5V,+1.2V ≤V L ≤+5.5V, and V L ≤(V CC + 0.3V). During power-up sequencing, V L ≥(V CC + 0.3V) will not damage the device. During power-supply sequencing, when V CC is floating and V L is powering up, a current may be sourced, yet the device will not latch up. The speed-upFigure 1a. Rail-to-Rail Driving I/O V LFigure 1b. Rail-to-Rail Driving I/O V CCRail-to-Rail is a registered trademark of Nippon Motorola, Ltd.MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSPcircuitry limits the maximum data rate for devices in the MAX3372E –MAX3379E, MAX3390E –MAX3393E family to 16Mbps. The maximum data rate also depends heavily on the load capacitance (see Typical Operating Characteristics ), output impedance of the driver, and the operational voltage range (see Timing Characteristics).Speed-Up CircuitryThe MAX3373E –MAX3376E/MAX3378E/MAX3379E and MAX3390E –MAX3393E feature a one-shot generator that decreases the rise time of the output. When triggered,MOSFETs PU1 and PU2 turn on for a short time to pull up I/O V L_and I/O V CC_to their respective supplies (see Figure 2b). This greatly reduces the rise time and propa-gation delay for the low-to-high transition. The scope photo of Rail-to-Rail Driving for 8Mbps Operation in the Typical Operating Characteristics shows the speed-up circuitry in operation.Three-State Output ModePull THREE-STATE low to place the MAX3372E –MAX3379E and MAX3390E –MAX3393E in three-state out-put mode. Connect THREE-STATE to V L (logic high) for normal operation. Activating the three-state output mode disconnects the internal 10k Ωpullup resistors on the I/O V CC and I/O V L lines. This forces the I/O lines to a high-impedance state, and decreases the supply current to less than 1µA. The high-impedance I/O lines in three-state output mode allow for use in a multidrop network.When in three-state output mode, do not allow the voltage at I/O V L_to exceed (V L + 0.3V), or the voltage at I/O V CC_to exceed (V CC + 0.3V).Thermal Short-Circuit ProtectionThermal overload detection protects the MAX3372E –MAX3379E and MAX3390E –MAX3393E from short-circuit fault conditions. In the event of a short-circuit fault, when the junction temperature (T J ) reaches +152°C, a thermal sensor signals the three-state output mode logic to force the device into three-state output mode. When T J has cooled to +142°C, normal operation resumes.Figure 1c. Open-Drain Driving I/O V CC Figure 1d. Open-Drain Driving I/O V LM A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSPFigure 2a. Functional Diagram, MAX3372E/MAX3377E (1I/O line)Figure 2b. Functional Diagram, MAX3373E/MAX3378E (1I/O line)MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSP±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly.The I/O V CC lines have extra protection against static electricity. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, three-state out-put mode, and powered down. After an ESD event,Maxim ’s E versions keep working without latchup,whereas competing products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways. The I/O V CC lines of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the Contact Discharge method specified in IEC 1000-4-23)±10kV using IEC 1000-4-2’s Air-Gap Discharge method ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 3a shows the Human Body Model and Figure 3b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5k Ωresistor.IEC 1000-4-2The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifi-cally refer to integrated circuits. The MAX3372E –MAX3379E and MAX3390E–MAX3393E help to design equipment that meets Level 3 of IEC 1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak cur-rent in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD withstand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 4a shows the IEC 1000-4-2 model, and Figure 4b shows the current waveform for the ±8kV, IEC 1000-4-2, Level 4,ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protec-tion during manufacturing, not just inputs and outputs.Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Figure 3a. Human Body ESD Test Model Figure 3b. Human Body Current WaveformM A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSPApplications InformationPower-Supply DecouplingTo reduce ripple and the chance of transmitting incor-rect data, bypass V L and V CC to ground with a 0.1µF capacitor. See Typical Operating Circuit. To ensure full ±15kV ESD protection, bypass V CC to ground with a 1µF capacitor. Place all capacitors as close to the power-supply inputs as possible.I 2C Level TranslationThe MAX3373E –MAX3376E, MAX3378E/MAX3379E and MAX3390E –MAX3393E level-shift the data present on the I/O lines between +1.2V and +5.5V, making them ideal for level translation between a low-voltageASIC and an I 2C device. A typical application involves interfacing a low-voltage microprocessor to a 3V or 5V D/A converter, such as the MAX517.Push-Pull vs. Open-Drain DrivingAll devices in the MAX3372E –MAX3379E and MAX3390E –MAX3393E family may be driven in a push-pull configuration. The MAX3373E –MAX3376E/MAX3378E/MAX3379E and MAX3390E –MAX3393E include internal 10k Ωresistors that pull up I/O V L_and I/O V CC_to their respective power supplies, allowing operation of the I/O lines with open-drain devices. See Timing Characteristics for maximum data rates when using open-drain drivers.Figure 4b. IEC 1000-4-2 ESD Generator Current WaveformFigure 4a. IEC 1000-4-2 ESD Test Model Typical Operating CircuitMAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSPApplications CircuitsM A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP Applications Circuits (continued)±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSPApplications Circuits (continued)MAX3372E–MAX3379E/MAX3390E–MAX3393EM A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSPApplications Circuits (continued)MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSPApplications Circuits (continued)M A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP Selector Guide*Higher data rates are possible (see Timing Characteristics).Ordering Information (continued)*Future product —contact factory for availability.MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSPPin Configurations (continued)M A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSPPin Configurations (continued)MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSPPin Configurations (continued)M A X 3372E –M A X 3379E /M A X 3390E –M A X 3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP 24______________________________________________________________________________________Chip InformationTRANSISTOR COUNT:MAX3372E –MAX3376E: 189MAX3377E –MAX3379E, MAX3390E –MAX3393E:295PROCESS: BiCMOSPackage Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX3372E–MAX3379E/MAX3390E–MAX3393E±15kV ESD-Protected, 1µA, 16Mbps, Dual/QuadLow-Voltage Level Translators in UCSPMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________25©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。
MAX489EESD中文资料
General DescriptionThe MAX481E, MAX483E, MAX485E, MAX487E–MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environ-ments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks,without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly termi-nated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E,MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.These transceivers draw as little as 120µA supply cur-rent when unloaded or when fully loaded with disabled drivers (see Selector Guide ). Additionally, the MAX481E,MAX483E, and MAX487E have a low-current shutdown mode in which they consume only 0.5µA. All parts oper-ate from a single +5V supply.Drivers are short-circuit current limited, and are protected against excessive power dissipation by thermal shutdown circuitry that places their outputs into a high-impedance state. The receiver input has a fail-safe feature that guar-antees a logic-high output if the input is open circuit.The MAX487E and MAX1487E feature quarter-unit-load receiver input impedance, allowing up to 128 trans-ceivers on the bus. The MAX488E–MAX491E are designed for full-duplex communications, while the MAX481E, MAX483E, MAX485E, MAX487E, and MAX1487E are designed for half-duplex applications.For applications that are not ESD sensitive see the pin-and function-compatible MAX481, MAX483, MAX485,MAX487–MAX491, and MAX1487.ApplicationsLow-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level TranslatorsTransceivers for EMI-Sensitive Applications Industrial-Control Local Area NetworksNext-Generation Device Features♦For Fault-Tolerant Applications:MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V, RS-485 TransceiverMAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited, RS-485/RS-422Transceivers ♦For Space-Constrained Applications:MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus, RS-485/RS-422 TransceiversMAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 PackageMAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422True Fail-Safe ReceiversMAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters ♦For Multiple Transceiver Applications:MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters ♦For Fail-Safe Applications:MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers ♦For Low-Voltage Applications:MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 TransceiversMAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-0410; Rev 4; 10/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information continued at end of data sheet.Selector Guide appears at end of data sheet .M A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers2_______________________________________________________________________________________Supply Voltage (V CC ) (12V)Control Input Voltage (–R —E –, DE)...................-0.5V to (V CC + 0.5V)Driver Input Voltage (DI).............................-0.5V to (V CC + 0.5V)Driver Output Voltage (Y, Z; A, B)..........................-8V to +12.5V Receiver Input Voltage (A, B).................................-8V to +12.5V Receiver Output Voltage (RO)....................-0.5V to (V CC + 0.5V)Continuous Power Dissipation (T A = +70°C)8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)....727mW14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)..800mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW Operating Temperature RangesMAX4_ _C_ _/MAX1487EC_ A.............................0°C to +70°C MAX4__E_ _/MAX1487EE_ A...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CDC ELECTRICAL CHARACTERISTICS(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ABSOLUTE MAXIMUM RATINGSPARAMETERSYMBOL MINTYPMAX UNITS Driver Common-Mode Output VoltageV OC 3V Change in Magnitude of Driver Differential Output Voltage for Complementary Output States ∆V OD 0.2V Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States ∆V OD 0.2V Input High Voltage V IH 2.0V Input Low Voltage V IL 0.8V Input CurrentI IN1±2µADifferential Driver Output (no load)V OD15V 2V Differential Driver Output (with load)V OD2 1.551.0-0.8mA0.25mA -0.2Receiver Differential Threshold Voltage-0.20.2V Receiver Input Hysteresis ∆V TH 70mV Receiver Output High Voltage V OH 3.5Receiver Output Low Voltage V OL 0.4V Three-State (high impedance)Output Current at ReceiverI OZR±1µA 12k ΩCONDITIONSDE = 0V;V CC = 0V or 5.25V,all devices except MAX487E/MAX1487E R = 27Ωor 50Ω, Figure 8R = 27Ωor 50Ω, Figure 8R = 27Ωor 50Ω, Figure 8DE, DI, –R —E–MAX487E/MAX1487E,DE = 0V, V CC = 0V or 5.25VDE, DI, –R —E–DE, DI, –R —E–-7V ≤V CM ≤12V V CM = 0VI O = -4mA, V ID = 200mV I O = 4mA, V ID = -200mV R = 50Ω(RS-422)0.4V ≤V O ≤2.4VR = 27Ω(RS-485), Figure 8-7V ≤V CM ≤12V, all devices except MAX487E/MAX1487EReceiver Input Resistance R IN-7V ≤V CM ≤12V, MAX487E/MAX1487E48k ΩV TH I IN2Input Current (A, B)V IN = 12V V IN = -7V V IN = 12V V IN = -7VVMAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 TransceiversSWITCHING CHARACTERISTICS—MAX481E/MAX485E, MAX490E/MAX491E, MAX1487EDC ELECTRICAL CHARACTERISTICS (continued)(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)M A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers4_______________________________________________________________________________________SWITCHING CHARACTERISTICS—MAX483E, MAX487E/MAX488E/MAX489E(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)SWITCHING CHARACTERISTICS—MAX481E/MAX485E, MAX490E/MAX491E, MAX1487E(continued)(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)2251000Figures 11 and 13, C L = 100pF, S2 closed Figures 11 and 13, C L = 100pF, S1 closed Figures 9 and 15, C L = 15pF, S2 closed,A - B = 2VCONDITIONSns 45100t ZH(SHDN)Driver Enable from Shutdown toOutput High (MAX481E)nsFigures 9 and 15, C L = 15pF, S1 closed,B - A = 2Vt ZL(SHDN)Receiver Enable from Shutdownto Output Low (MAX481E)ns 45100t ZL(SHDN)Driver Enable from Shutdown toOutput Low (MAX481E)ns 2251000t ZH(SHDN)Receiver Enable from Shutdownto Output High (MAX481E)UNITS MINTYP MAX SYMBOLPARAMETERt PLH t SKEW Figures 10 and 12, R DIFF = 54Ω,C L1= C L2= 100pFt PHL Figures 10 and 12, R DIFF = 54Ω,C L1= C L2= 100pFDriver Input to Output Driver Output Skew to Output ns 20800ns ns 2000MAX483E/MAX487E, Figures 11 and 13,C L = 100pF, S2 closedt ZH(SHDN)Driver Enable from Shutdown to Output High2502000ns2500MAX483E/MAX487E, Figures 9 and 15,C L = 15pF, S1 closedt ZL(SHDN)Receiver Enable from Shutdown to Output Lowns 2500MAX483E/MAX487E, Figures 9 and 15,C L = 15pF, S2 closedt ZH(SHDN)Receiver Enable from Shutdown to Output Highns 2000MAX483E/MAX487E, Figures 11 and 13,C L = 100pF, S1 closedt ZL(SHDN)Driver Enable from Shutdown to Output Lowns 50200600MAX483E/MAX487E (Note 5)t SHDN Time to Shutdownt PHL t PLH , t PHL < 50% of data period Figures 9 and 15, C RL = 15pF, S2 closed Figures 9 and 15, C RL = 15pF, S1 closed Figures 9 and 15, C RL = 15pF, S2 closed Figures 9 and 15, C RL = 15pF, S1 closed Figures 11 and 13, C L = 15pF, S2 closed Figures 10 and 14, R DIFF = 54Ω,C L1= C L2= 100pFFigures 11 and 13, C L = 15pF, S1 closed Figures 11 and 13, C L = 100pF, S1 closed Figures 11 and 13, C L = 100pF, S2 closed CONDITIONSkbps 250f MAX 2508002000Maximum Data Rate ns 2550t HZ Receiver Disable Time from High ns 25080020002550t LZ Receiver Disable Time from Low ns 2550t ZH Receiver Enable to Output High ns 2550t ZL Receiver Enable to Output Low ns ns 1003003000t HZ t SKD Driver Disable Time from High I t PLH - t PHL I DifferentialReceiver SkewFigures 10 and 14, R DIFF = 54Ω,C L1= C L2= 100pFns 3003000t LZ Driver Disable Time from Low ns 2502000t ZL Driver Enable to Output Low ns Figures 10 and 12, R DIFF = 54Ω,C L1= C L2= 100pFns 2502000t R , t F 2502000Driver Rise or Fall Time ns t PLH Receiver Input to Output2502000t ZH Driver Enable to Output High UNITS MIN TYP MAX SYMBOL PARAMETERMAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers_______________________________________________________________________________________505101520253035404550OUTPUT CURRENT vs.RECEIVER OUTPUT LOW VOLTAGEM A X 481E -01OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )1.52.02.51.00.50.10.20.30.40.50.60.70.80.9-60-2060RECEIVER OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )20100-4040800-5-10-15-20-251.53.0OUTPUT CURRENT vs.RECEIVER OUTPUT HIGH VOLTAGEM A X 481E -02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )5.04.54.02.02.53.53.03.23.43.63.84.04.24.44.64.8-60-2060RECEIVER OUTPUT HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )20100-4040800102030405060708090DRIVER OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEM A X 481E -05DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )1.52.0 2.53.0 3.54.0 4.51.00.50__________________________________________Typical Operating Characteristics(V CC = 5V, T A = +25°C, unless otherwise noted.)NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICSNote 1:All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to deviceground unless otherwise specified.Note 2:All typical specifications are given for V CC = 5V and T A = +25°C.Note 3:Supply current specification is valid for loaded transmitters when DE = 0V.Note 4:Applies to peak current. See Typical Operating Characteristics.Note 5:The MAX481E/MAX483E/MAX487E are put into shutdown by bringing –R —E –high and DE low. If the inputs are in this state forless than 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.M A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers6___________________________________________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = 5V, T A = +25°C, unless otherwise noted.)1.52.32.22.12.01.91.81.71.6-60-2060DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )20100-404080020406080100120140OUTPUT CURRENT vs. DRIVER OUTPUT LOW VOLTAGEM A X 481E -07OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )246810120-10-20-30-40-50-60-70-80-90-100-8-2OUTPUT CURRENT vs. DRIVER OUTPUT HIGH VOLTAGEM A X 481E -08OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )642-6-400100200300400500600-60-2060MAX481E/MAX485E/MAX490E/MAX491E SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )20100-4040800100200300400500600-60-2060MAX483E/MAX487E–MAX489E SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )20100-404080100200300400500600-60-2060MAX1487ESUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )20100-404080±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers_______________________________________________________________________________________7MAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E______________________________________________________________Pin DescriptionM A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers8_________________________________________________________________________________________________Function Tables (MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E) Table 1. Transmitting__________Applications Information The MAX481E/MAX483E/MAX485E/MAX487E–MAX491E and MAX1487E are low-power transceivers for RS-485 and RS-422 communications. These “E” versions of the MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 provide extra protection against ESD. The rugged MAX481E, MAX483E, MAX485E, MAX497E–MAX491E, and MAX1487E are intended for harsh envi-ronments where high-speed communication is important. These devices eliminate the need for transient suppres-sor diodes and the associated high capacitance loading. The standard (non-“E”) MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 are recommended for applications where cost is critical.The MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E can transmit and receive at data rates up to 2.5Mbps, while the MAX483E, MAX487E, MAX488E, and MAX489E are specified for data rates up to 250kbps. The MAX488E–MAX491E are full-duplex transceivers, while the MAX481E, MAX483E, MAX487E, and MAX1487E are half-duplex. In addition, driver-enable (DE) and receiver-enable (RE) pins are included on the MAX481E, MAX483E, MAX485E, MAX487E, MAX489E, MAX491E, and MAX1487E. When disabled, the driver and receiver outputs are high impedance.±15kV ESD Protection As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim’s engi-neers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s MAX481E, MAX483E, MAX485E, MAX487E–MAX491E, and MAX1487E keep working without latchup.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to ±15kV using the Human Body Model.Other ESD test methodologies include IEC10004-2 con-tact discharge and IEC1000-4-2 air-gap discharge (for-merly IEC801-2).ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.Human Body Model Figure 4 shows the Human Body Model, and Figure 5 shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5kΩresistor.IEC1000-4-2 The IEC1000-4-2 standard covers ESD testing and per-formance of finished equipment; it does not specifically refer to integrated circuits (Figure 6).MAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers_______________________________________________________________________________________9M A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers10______________________________________________________________________________________Figure 8. Driver DC Test LoadFigure 9. Receiver Timing Test LoadMAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers______________________________________________________________________________________11Figure 10. Driver/Receiver Timing Test Circuit Figure 11. Driver Timing Test LoadFigure 12. Driver Propagation DelaysFigure 13. Driver Enable and Disable Times (except MAX488E and MAX490E)Figure 14. Receiver Propagation DelaysFigure 15. Receiver Enable and Disable Times (except MAX488E and MAX490E)M A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers12______________________________________________________________________________________The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD with-stand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7 shows the current waveform for the 8kV IEC1000-4-2 ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protec-tion during manufacturing—not just inputs and outputs.Therefore,after PC board assembly,the Machine Model is less relevant to I/O ports.MAX487E/MAX1487E:128 Transceivers on the BusThe 48k Ω, 1/4-unit-load receiver input impedance of the MAX487E and MAX1487E allows up to 128 transceivers on a bus, compared to the 1-unit load (12k Ωinput impedance) of standard RS-485 drivers (32 transceivers maximum). Any combination of MAX487E/MAX1487E and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481E,MAX483E, MAX485E, and MAX488E–MAX491E have standard 12k Ωreceiver input impedance.MAX483E/MAX487E/MAX488E/MAX489E:Reduced EMI and Reflections The MAX483E and MAX487E–MAX489E are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 16shows the driver output waveform and its Fourier analy-sis of a 150kHz signal transmitted by a MAX481E,MAX485E, MAX490E, MAX491E, or MAX1487E. High-frequency harmonics with large amplitudes are evident.Figure 17 shows the same information displayed for a MAX483E, MAX487E, MAX488E, or MAX489E transmit-ting under the same conditions. Figure 17’s high-fre-quency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.Low-Power Shutdown Mode (MAX481E/MAX483E/MAX487E)A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled.In shutdown, the devices typically draw only 0.5µA of supply current.RE and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.For the MAX481E, MAX483E, and MAX487E, the t ZH and t ZL enable times assume the part was not in the low-power shutdown state (the MAX485E, MAX488E–MAX491E, and MAX1487E can not be shut down). The t ZH(SHDN)and t ZL(SHDN)enable times assume the parts were shut down (see Electrical Characteristics ).500kHz/div0Hz5MHz 10dB/div Figure 16. Driver Output Waveform and FFT Plot ofMAX485E/MAX490E/MAX491E/MAX1487E Transmitting a 150kHz Signal500kHz/div0Hz5MHz10dB/divFigure 17. Driver Output Waveform and FFT Plot ofMAX483E/MAX487E–MAX489E Transmitting a 150kHz SignalIt takes the drivers and receivers longer to become enabled from the low-power shutdown state (t ZH(SHDN), t ZL(SHDN)) than from the operating mode (t ZH, t ZL). (The parts are in operating mode if the RE, DE inputs equal a logical 0,1 or 1,1 or 0, 0.)Driver Output Protection Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). In addition, a thermal shut-down circuit forces the driver outputs into a high-imped-ance state if the die temperature rises excessively.Propagation Delay Many digital encoding schemes depend on the differ-ence between the driver and receiver propagation delay times. Typical propagation delays are shown in Figures 19–22 using Figure 18’s test circuit.The difference in receiver delay times, t PLH- t PHL, is typically under 13ns for the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E, and is typically less than 100ns for the MAX483E and MAX487E–MAX489E.The driver skew times are typically 5ns (10ns max) for the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E, and are typically 100ns (800ns max) for the MAX483E and MAX487E–MAX489E.Typical Applications The MAX481E, MAX483E, MAX485E, MAX487E–MAX491E, and MAX1487E transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 25 and 26 show typical net-work application circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet. To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possi-ble. The slew-rate-limited MAX483E and MAX487E–MAX489E are more tolerant of imperfect termination. Bypass the V CC pin with 0.1µF.Isolated RS-485 For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets.Line Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. Figures 23 and 24 show the system differen-tial voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110kHz into 100Ωloads.Figure 18. Receiver Propagation Delay Test CircuitMAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers ______________________________________________________________________________________13M A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers14______________________________________________________________________________________25ns/div 5V/divRO B A500mV/div Figure 19. MAX481E/MAX485E/MAX490E/MAX1487E Receiver t PHL25ns/div5V/div ROBA500mV/divFigure 20. MAX481E/MAX485E/MAX490E/MAX491E/MAX1487E Receiver t PLH200ns/div 5V/divRO B A500mV/div Figure 21. MAX483E/MAX487E–MAX489E Receiver t PHL200ns/div5V/div ROBA500mV/divFigure 22. MAX483E/MAX487E–MAX489E Receiver t PLH2µs/div DO 0V0V5V5V -1V 0DIV A - V BFigure 23. MAX481E/MAX485E/MAX490E/MAX491E/MAX1487E System Differential Voltage at 110kHz Driving 4000ft of Cable 2µs/divDO0V0V 5V 5V -1V1V0DIV B - V AFigure 24. MAX483E/MAX1487E–MAX489E System Differential Voltage at 110kHz Driving 4000ft of CableMAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers______________________________________________________________________________________15Figure 26. MAX488E–MAX491E Full-Duplex RS-485 NetworkFigure 25. MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E Typical Half-Duplex RS-485 NetworkM A X 481E /M A X 483E /M A X 485E /M A X 487E –M A X 491E /M A X 1487E±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package InformationFor the latest package outline information, go to /packages .Ordering Information (continued)Selector GuideChip InformationTRANSISTOR COUNT: 295。
MAX13088EESA中文资料
General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MAX202EESE+中文资料
________________________________________________________________Maxim Integrated Products 1General DescriptionThe MAX202E–MAX213E, MAX232E/MAX241E line drivers/receivers are designed for RS-232 and V.28communications in harsh environments. Each transmitter output and receiver input is protected against ±15kV electrostatic discharge (ESD) shocks, without latchup.The various combinations of features are outlined in the Selector Guide.The drivers and receivers for all ten devices meet all EIA/TIA-232E and CCITT V.28specifications at data rates up to 120kbps, when loaded in accordance with the EIA/TIA-232E specification.The MAX211E/MAX213E/MAX241E are available in 28-pin SO packages, as well as a 28-pin SSOP that uses 60% less board space. The MAX202E/MAX232E come in 16-pin TSSOP, narrow SO, wide SO, and DIP packages. The MAX203E comes in a 20-pin DIP/SO package, and needs no external charge-pump capacitors. The MAX205E comes in a 24-pin wide DIP package, and also eliminates external charge-pump capacitors. The MAX206E/MAX207E/MAX208E come in 24-pin SO, SSOP, and narrow DIP packages. The MAX232E/MAX241E operate with four 1µF capacitors,while the MAX202E/MAX206E/MAX207E/MAX208E/MAX211E/MAX213E operate with four 0.1µF capacitors,further reducing cost and board space.________________________ApplicationsNotebook, Subnotebook, and Palmtop Computers Battery-Powered Equipment Hand-Held EquipmentNext-Generation Device Featureso For Low-Voltage ApplicationsMAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected Down to10nA, +3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in a UCSP™Package)o For Low-Power ApplicationsMAX3221/MAX3223/MAX3243: 1µA SupplyCurrent, True +3V to +5.5V RS-232 Transceivers with Auto-Shutdown™o For Space-Constrained ApplicationsMAX3233E/MAX3235E: ±15kV ESD-Protected,1µA, 250kbps, +3.0V/+5.5V, Dual RS-232Transceivers with Internal Capacitorso For Low-Voltage or Data Cable ApplicationsMAX3380E/MAX3381E: +2.35V to +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic PinsMAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversSelector Guide19-0175; Rev 6; 3/05Pin Configurations and Typical Operating Circuits appear at end of data sheet.YesPARTNO. OF RS-232DRIVERSNO. OF RS-232RECEIVERSRECEIVERS ACTIVE IN SHUTDOWNNO. OF EXTERNAL CAPACITORS(µF)LOW-POWER SHUTDOWNTTL TRI-STATE MAX202E 220 4 (0.1)No No MAX203E 220None No No MAX205E 550None Yes Yes MAX206E 430 4 (0.1)Yes Yes MAX207E 530 4 (0.1)No No MAX208E 440 4 (0.1)No No MAX211E 450 4 (0.1)Yes Yes MAX213E 452 4 (0.1)Yes Yes MAX232E 220 4 (1)No No MAX241E454 (1)YesFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .AutoShutdown and UCSP are trademarks of Maxim Integrated Products, Inc.Ordering InformationOrdering Information continued at end of data sheet.2_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EABSOLUTE MAXIMUM RATINGSV CC ..........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................-14V to +0.3V Input VoltagesT_IN............................................................-0.3V to (V+ + 0.3V)R_IN...................................................................................±30V Output VoltagesT_OUT.................................................(V- - 0.3V) to (V+ + 0.3V)R_OUT......................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT....................................Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C).....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C)...........755mW20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...889mW 20-Pin SO (derate 10.00mW/°C above +70°C).............800mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C) ...............................1.07W 24-Pin Wide Plastic DIP(derate 14.29mW/°C above +70°C)................................1.14W 24-Pin SO (derate 11.76mW/°C above +70°C).............941mW 24-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 28-Pin SO (derate 12.50mW/°C above +70°C)....................1W 28-Pin SSOP (derate 9.52mW/°C above +70°C)..........762mW Operating Temperature RangesMAX2_ _EC_ _.....................................................0°C to +70°C MAX2_ _EE_ _...................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +165°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V CC = +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC = +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF for MAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICS (continued)MAX202E–MAX213E, MAX232E/MAX241E (V CC= +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC= +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF forMAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A= T MIN to T MAX; unless otherwise noted. Typical valuesare at T A= +25°C.)Note 1:MAX211EE_ _ tested with V CC= +5V ±5%._______________________________________________________________________________________34______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E__________________________________________Typical Operating Characteristics(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)5.00MAX211E/MAX213ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)V O H , -V O L (V )5.56.06.57.07.58.0100020003000400050000MAX211E/MAX213E/MAX241E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )5101520253010002000300040005000_______________________________________________________________________________________5MAX202E–MAX213E, MAX232E/MAX241E____________________________Typical Operating Characteristics (continued)(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)2MAX202E/MAX203E/MAX232E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )468101214100020003000400050005.07.5-7.53000MAX205E–MAX208ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCE-5.02.5LOAD CAPACITANCE (pF)O U T P U T V O L T A G E (V )10002000400050000-2.54550203000MAX205E–MAX208E SUPPLY CURRENT vs. LOAD CAPACITANCE2540LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )100020004000500035302.55.0-10.0180MAX205E –MAX208EOUTPUT VOLTAGE vs. DATA RATE-7.50DATA RATE (kbps)O U T P U T V O L T A G E (V )601202401503090210-2.5-5.010.07.56_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX203EMAX205E_____________________________________________________________Pin DescriptionsMAX202E/MAX232E_______________________________________________________________________________________7MAX202E–MAX213E, MAX232E/MAX241EMAX208E________________________________________________Pin Descriptions (continued)MAX206EMAX207E8_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX211E/MAX213E/MAX241E)(MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)________________________________________________Pin Descriptions (continued)MAX211E/MAX213E/MAX241EFigure 3. Transition Slew-Rate Circuit_______________Detailed Description The MAX202E–MAX213E, MAX232E/MAX241E consist of three sections: charge-pump voltage converters, drivers (transmitters), and receivers. These E versions provide extra protection against ESD. They survive ±15kV discharges to the RS-232 inputs and outputs, tested using the Human Body Model. When tested according to IEC1000-4-2, they survive ±8kV contact-discharges and ±15kV air-gap discharges. The rugged E versions are intended for use in harsh environments or applications where the RS-232 connection is frequently changed (such as notebook computers). The standard (non-“E”) MAX202, MAX203, MAX205–MAX208, MAX211, MAX213, MAX232, and MAX241 are recommended for applications where cost is critical.+5V to ±10V Dual Charge-PumpVoltage Converter The +5V to ±10V conversion is performed by dual charge-pump voltage converters (Figure 4). The first charge-pump converter uses capacitor C1 to double the +5V into +10V, storing the +10V on the output filter capacitor, C3. The second uses C2 to invert the +10V into -10V, storing the -10V on the V- output filter capacitor, C4.In shutdown mode, V+ is internally connected to V CC by a 1kΩpull-down resistor, and V- is internally connected to ground by a 1kΩpull up resistor.RS-232 Drivers With V CC= 5V, the typical driver output voltage swing is ±8V when loaded with a nominal 5kΩRS-232 receiver. The output swing is guaranteed to meet EIA/TIA-232E and V.28 specifications that call for ±5V minimum output levels under worst-case conditions. These include a 3kΩload, minimum V CC, and maximum operating temperature. The open-circuit output voltage swings from (V+ - 0.6V) to V-.Input thresholds are CMOS/TTL compatible. The unused drivers’ inputs on the MAX205E–MAX208E, MAX211E, MAX213E, and MAX241E can be left unconnected because 400kΩpull up resistors to V CC are included on-chip. Since all drivers invert, the pull up resistors force the unused drivers’ outputs low. The MAX202E, MAX203E, and MAX232E do not have pull up resistors on the transmitter inputs._______________________________________________________________________________________9MAX202E–MAX213E, MAX232E/MAX241E10______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E±15kV ESD-Protected, +5V RS-232 Transceivers When in low-power shutdown mode, the MAX205E/MAX206E/MAX211E/MAX213E/MAX241E driver outputs are turned off and draw only leakage currents—even if they are back-driven with voltages between 0V and 12V. Below -0.5V in shutdown, the transmitter output is diode-clamped to ground with a 1k Ωseries impedance.RS-232 ReceiversThe receivers convert the RS-232 signals to CMOS-logic output levels. The guaranteed 0.8V and 2.4V receiver input thresholds are significantly tighter than the ±3V thresholds required by the EIA/TIA-232E specification.This allows the receiver inputs to respond to TTL/CMOS-logic levels, as well as RS-232 levels.The guaranteed 0.8V input low threshold ensures that receivers shorted to ground have a logic 1 output. The 5k Ωinput resistance to ground ensures that a receiver with its input left open will also have a logic 1 output. Receiver inputs have approximately 0.5V hysteresis.This provides clean output transitions, even with slow rise/fall-time signals with moderate amounts of noise and ringing.In shutdown, the MAX213E’s R4 and R5 receivers have no hysteresis.Shutdown and Enable Control (MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)In shutdown mode, the charge pumps are turned off,V+ is pulled down to V CC , V- is pulled to ground, and the transmitter outputs are disabled. This reduces supply current typically to 1µA (15µA for the MAX213E).The time required to exit shutdown is under 1ms, as shown in Figure 5.ReceiversAll MAX213E receivers, except R4 and R5, are put into a high-impedance state in shutdown mode (see Tables 1a and 1b). The MAX213E’s R4 and R5 receivers still function in shutdown mode. These two awake-in-shutdown receivers can monitor external activity while maintaining minimal power consumption.The enable control is used to put the receiver outputs into a high-impedance state, to allow wire-OR connection of two EIA/TIA-232E ports (or ports of different types) at the UART. It has no effect on the RS-232 drivers or the charge pumps.N ote: The enabl e control pin is active l ow for the MAX211E/MAX241E (EN ), but is active high for the MAX213E (EN). The shutdown control pin is active high for the MAX205E/MAX206E/MAX211E/MAX241E (SHDN), but is active low for the MAX213E (SHDN ).Figure 4. Charge-Pump DiagramMAX202E–MAX213E, MAX232E/MAX241EV+V-200µs/div3V 0V 10V 5V 0V -5V -10VSHDNMAX211EFigure 5. MAX211E V+ and V- when Exiting Shutdown (0.1µF capacitors)X = Don't care.*Active = active with reduced performanceSHDN E N OPERATION STATUS Tx Rx 00Normal Operation All Active All Active 01Normal Operation All Active All High-Z 1XShutdownAll High-ZAll High-ZTable 1a. MAX205E/MAX206E/MAX211E/MAX241E Control Pin ConfigurationsTable 1b. MAX213E Control Pin ConfigurationsThe MAX213E’s receiver propagation delay is typically 0.5µs in normal operation. In shutdown mode,propagation delay increases to 4µs for both rising and falling transitions. The MAX213E’s receiver inputs have approximately 0.5V hysteresis, except in shutdown,when receivers R4 and R5 have no hysteresis.When entering shutdown with receivers active, R4 and R5 are not valid until 80µs after SHDN is driven low.When coming out of shutdown, all receiver outputs are invalid until the charge pumps reach nominal voltage levels (less than 2ms when using 0.1µF capacitors).±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim’s engineers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing RS-232products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the contact-discharge method specifiedin IEC1000-4-23)±15kV using IEC1000-4-2’s air-gap method.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5k Ωresistor.S H D N ENOPERATION STATUS Tx 1–400Shutdown All High-Z 01Shutdown All High-Z 10Normal Operation 11Normal OperationAll ActiveAll Active Active1–34, 5High-Z ActiveHigh-Z High-Z High-Z Active*High-Z RxM A X 202E –M A X 213E , M A X 232E /M A X 241EIEC1000-4-2The IEC1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX202E/MAX203E–MAX213E, MAX232E/MAX241E help you design equipment that meets level 4 (the highest level) of IEC1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD withstand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7b shows the current waveform for the 8kV IEC1000-4-2 level-four ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just RS-232 inputs and outputs. Therefore,after PC board assembly,theMachine Model is less relevant to I/O ports.Figure 7a. IEC1000-4-2 ESD Test ModelFigure 7b. IEC1000-4-2 ESD Generator Current WaveformFigure 6a. Human Body ESD Test ModelFigure 6b. Human Body Model Current Waveform__________Applications InformationCapacitor Selection The capacitor type used for C1–C4 is not critical for proper operation. The MAX202E, MAX206–MAX208E, MAX211E, and MAX213E require 0.1µF capacitors, and the MAX232E and MAX241E require 1µF capacitors, although in all cases capacitors up to 10µF can be used without harm. Ceramic, aluminum-electrolytic, or tantalum capacitors are suggested for the 1µF capacitors, and ceramic dielectrics are suggested for the 0.1µF capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2x) nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.Use larger capacitors (up to 10µF) to reduce the output impedance at V+ and V-. This can be useful when “stealing” power from V+ or from V-. The MAX203E and MAX205E have internal charge-pump capacitors. Bypass V CC to ground with at least 0.1µF. In applications sensitive to power-supply noise generated by the charge pumps, decouple V CC to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4).V+ and V- as Power Supplies A small amount of power can be drawn from V+ and V-, although this will reduce both driver output swing and noise margins. Increasing the value of the charge-pump capacitors (up to 10µF) helps maintain performance when power is drawn from V+ or V-.Driving Multiple Receivers Each transmitter is designed to drive a single receiver. Transmitters can be paralleled to drive multiple receivers.Driver Outputs when Exiting Shutdown The driver outputs display no ringing or undesirable transients as they come out of shutdown.High Data Rates These transceivers maintain the RS-232 ±5.0V minimum driver output voltages at data rates of over 120kbps. For data rates above 120kbps, refer to the Transmitter Output Voltage vs. Load Capacitance graphs in the Typical Operating Characteristics. Communication at these high rates is easier if the capacitive loads on the transmitters are small; i.e., short cables are best.Table 2. Summary of EIA/TIA-232E, V.28 SpecificationsMAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)Table 3. DB9 Cable ConnectionsCommonly Used for EIA/TIAE-232E and V.24 Asynchronous Interfaces____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)______________________________________________________________________________________21MAX202E–MAX213E, MAX232E/MAX241E Ordering Information (continued)*Dice are specified at T A= +25°C.M A X 202E –M A X 213E , M A X 232E /M A X 241E22________________________________________________________________________________________________________________________________________________Chip Topographies___________________Chip InformationC1-V+C1+V CC R2INT2OUT R2OUT0.117"(2.972mm)0.080"(2.032mm)V-C2+ C2-T2IN T1OUT R1INR1OUT T1INGNDR5INV-C2-C2+C1-V+C1+V CC T4OUTR3IN T3OUTT1OUT 0.174"(4.420mm)0.188"(4.775mm)T4IN R5OUT R4OUT T3IN R4IN EN (EN) SHDN (SHDN)R3OUT T2OUT GNDR1IN R1OUT T2IN R2OUTR2IN T1IN ( ) ARE FOR MAX213E ONLYTRANSISTOR COUNT: 123SUBSTRATE CONNECTED TO GNDTRANSISTOR COUNT: 542SUBSTRATE CONNECTED TO GNDMAX202E/MAX232EMAX211E/MAX213E/MAX241EMAX205E/MAX206E/MAX207E/MAX208E TRANSISTOR COUNT: 328SUBSTRATE CONNECTED TO GNDMAX202E–MAX213E, MAX232E/MAX241E Package InformationM A X 202E –M A X 213E , M A X 232E /M A X 241EPackage Information (continued)MAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________25©2005 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。
magma中文手册
MAGMASOFT®4.0Manual Part one1.介紹(Introduction) ………………………………1.1MAGMASOFT® 可以提供你什麼?………………1.2如何成功的使用MAGMASOFT®………………1.3MAGMASOFT®的文件結構………………………1.4拼字跟用法………………………………………1.5疑問………………………………………………2.安裝(Installation)……………………………2.1 系統需求2.2 MAGMA安裝………………………………2.3 啟動MAGMASOFT® 執照………………2.3.1 擷取系統資訊………………………………2.3.2 從Email讀取系統和執照檔………………2.3.3 手動輸入系統鑰匙………………………………2.3.4 手動輸入執照鑰匙………………………………2.3.5 從檔案讀取系統鑰匙……………………………2.3.6 從檔案讀取執照鑰匙……………………………2.4 管理浮動執照………………………………2.4.1 顯示連結………………………………2.5 MAGMASOFT® 的專案………………………………2.6 MAGMASOFT® 的畫面………………………………2.7滑鼠鍵盤的用法………………………………3.專案管理(Project Administration)3.1開啟專案(Open project)………………………………3.2 產生新的專案(Create project)………………………3.3 產生新的版本(Create Version)…………………………3.4 刪除結果(Delete Result)…………………………3.5 刪除版本(Delete Version)……………………………3.6 刪除專案(Delete project)……………………………3.7專案資訊(Project info)………………………………4.前處理器(Preprocessor)4.1 開始幾何建構………………………………………4.2 管理幾何資料(Sheets)………………………………4.3 幾何資料庫(Geometry database)………………………4.4 輸入CAD資料(Importing CAD Data)…………………4.5 定義角度及精度(Definition of Angles & Accuracy)………4.6 選擇畫面(View options)………………………………4.7建構指令(Construction commands)……………………4.8操作指令(Manipulation commands)……………………4.9控制點(Control Point)………………………………4.10支援幾何功能(Support functions)………………………5.網格化(Mesh Generation)5.1 概論(Overview)………………………………5.1.1格子大小 / ‘wallthickness’………………………5.1.2格子再細化/ ‘accuracy’, ‘element size’……………5.1.3格子的修飾/ ‘smoothing’………………………5.1.4個子的外觀/ ‘aspect ratio’………………………5.2材料群的選用與網格化的改善………………………5.3產生網格(Generate mesh)……………………………5.4檢查網格(Check enmeshment)………………………5.4.1觀看網格(view mesh)…………………………5.4.2觀看網格品質(view mesh quality)………………6.模擬計算(Simulation)6.1 概論(Overview)………………………………6.1.1 充填(Moldfilling)………………………………6.1.2 凝固(Solidification)…………………………6.1.3 充填和凝固………………………………6.1.4 批次生產(Batch production)……………………6.2 模擬參數定義(Defining simulation parameters)…………6.2.1 材料 / ‘Material definition’………………………6.2.2 熱傳導係數/ ‘Heat transfer definition’…………MAGMAshakeout選項…………………………6.2.36.2.4 充填 / ‘filling’………………………………6.2.5 注湯速率/ ‘pouring rate’………………………6.2.6 凝固 /‘solidification’……………………………6.2.7 批次生產/ ‘batch production’……………………6.3 模擬的開始與控制(Simulation control)…………………6.4 錯誤訊息(Error and Warning messages)…………………7. 選項與模組7.1模組………………………………7.2 選項………………………………1介紹(Introduction)鑄造就是將金屬液倒入模穴中成形的一種生產技術,也是一種從設計到成品最快速的方法之一。
MAX3490EESA中文资料
General DescriptionDevices in the MAX3483E family (MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E) are ±15kV ESD-protected, +3.3V, low-power transceivers for RS-485 and RS-422 communications. Each device con-tains one driver and one receiver. The MAX3483E and MAX3488E feature slew-rate-limited drivers that minimize EMI and reduce reflections caused by improperly termi-nated cables, allowing error-free data transmission at data rates up to 250kbps. The partially slew-rate-limited MAX3486E transmits up to 2.5Mbps. The MAX3485E,MAX3490E, and MAX3491E transmit at up to 12Mbps.All devices feature enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model.Drivers are short-circuit current limited and are protect-ed against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if both inputs are open circuit.The MAX3488E, MAX3490E, and MAX3491E feature full-duplex communication, while the MAX3483E,MAX3485E, and MAX3486E are designed for half-duplex communication.ApplicationsTelecommunicationsIndustrial-Control Local Area Networks Transceivers for EMI-Sensitive Applications Integrated Services Digital Networks Packet SwitchingFeatureso ESD Protection for RS-485 I/O Pins±15kV—Human Body Model±8kV—IEC 1000-4-2, Contact Discharge ±15kV—IEC 1000-4-2, Air-Gap Discharge o Operate from a Single +3.3V Supply—No Charge Pump Required o Interoperable with +5V Logic o Guaranteed 12Mbps Data Rate (MAX3485E/MAX3490E/MAX3491E)o Slew-Rate Limited for Errorless Data Transmission (MAX3483E/MAX3488E) o 2nA Low-Current Shutdown Mode(MAX3483E/MAX3485E/MAX3486E/MAX3491E)o -7V to +12V Common-Mode Input Voltage Range o Full-Duplex and Half-Duplex Versions Available o Industry-Standard 75176 Pinout (MAX3483E/MAX3485E/MAX3486E)o Current-Limiting and Thermal Shutdown for Driver Overload ProtectionMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers________________________________________________________________Maxim Integrated Products119-1474; Rev 0; 4/99Selector GuideOrdering InformationOrdering Information continued at end of data sheet.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceiversABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V = +3.3V ±0.3V, T = T to T , unless otherwise noted. Typical values are at T = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC ).............................................................+7V Control Input Voltage (RE , DE).................................-0.3V to +7V Driver Input Voltage (DI)...........................................-0.3V to +7V Driver Output Voltage (A, B, Y, Z).......................-7.5V to +12.5V Receiver Input Voltage (A, B)..............................-7.5V to +12.5V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Continuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C)..................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW14-Pin SO (derate 8.33mW/°C above +70°C)................667mW 14-Pin Plastic DIP (derate 10mW/°C above +70°C)......800mW Operating Temperature RangesMAX34_ _ EC_ _...................................................0°C to +70°C MAX34_ _ EE_ _.................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceiversDC ELECTRICAL CHARACTERISTICS (continued)(V CC = +3.3V ±0.3V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)DRIVER SWITCHING CHARACTERISTICS—MAX3485E/MAX3490E/MAX3491E(V = +3.3V, T = +25°C.)DRIVER SWITCHING CHARACTERISTICS—MAX3486E(V = +3.3V, T = +25°C.)*MAX3488E and MAX3491E will be compliant to ±8kV per IEC 1000-4-2 Contact Discharge by September 1999.M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICS—MAX3483E/MAX3488E(V CC = +3.3V, T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICS(V CC = +3.3V, T A = +25°C.)Note 1:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 2:Measured on |t PLH (Y) - t PHL (Y)|and |t PLH (Z) - t PHL (Z)|.Note 3:The transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 80ns, thedevices are guaranteed not to enter shutdown. If the inputs are in this state for at least 300ns, the devices are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers_______________________________________________________________________________________5Typical Operating Characteristics(V CC = +3.3V, T A = +25°C, unless otherwise noted.)252015105000.51.01.52.02.53.53.0OUTPUT CURRENT vs.RECEIVER OUTPUT LOW VOLTAGEM A X 3483E -01OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )-20-18-16-14-12-10-8-6-4-2000.51.01.52.02.53.53.0OUTPUT CURRENT vs.RECEIVER OUTPUT HIGH VOLTAGEM A X 3483E -02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )3.003.053.103.153.203.253.30-40-20020406010080RECEIVER OUTPUT HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )00.10.20.30.40.50.60.70.8-40-2020406010080RECEIVER OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )2505075100125150175024681012OUTPUT CURRENT vs.DRIVER OUTPUT LOW VOLTAGEM A X 3483E -07OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )100908070605040302010000.5 1.0 1.5 2.0 2.5 3.53.0DRIVER OUTPUT CURRENT vs.DIFFERENTIAL OUTPUT VOLTAGEM A X 3483E -05DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )1.61.71.81.92.02.12.22.32.42.62.5-40-20020406010080DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )-100-80-60-40-20543210-7-6-3-4-5-2-1OUTPUT CURRENT vs.DRIVER OUTPUT HIGH VOLTAGEM A X 3483E -08OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers0.80.70.91.01.11.2-40-2020406010080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )Typical Operating Characteristics (continued)(V CC = +3.3V, T A = +25°C, unless otherwise noted.)0102030405060708010090-40-2020406010080SHUTDOWN CURRENT vs. TEMPERATUREM A X 3483E -10TEMPERATURE (°C)S H U T D O W N C U R R E N T (n A )Pin DescriptionMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers_______________________________________________________________________________________7Figure 2. MAX3488E/MAX3490E Pin Configuration and Typical Operating CircuitFigure 3. MAX3491E Pin Configuration and Typical Operating CircuitFigure 1. MAX3483E/MAX3485E/MAX3486E Pin Configuration and Typical Operating CircuitM A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers8_______________________________________________________________________________________Figure 4. Driver V OD and V OC Figure 7. Driver Differential Output Delay and Transition TimesFigure 6. Receiver V OH and V OLFigure 5. Driver V OD with Varying Common-Mode VoltageMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers_______________________________________________________________________________________9Figure 8. Driver Propagation TimesFigure 9. Driver Enable and Disable Times (t PZH , t PSH , t PHZ )Figure 10. Driver Enable and Disable Times (t PZL , t PSL , t PLZ )M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers10______________________________________________________________________________________Figure 11. Receiver Propagation DelayFigure 12. Receiver Enable and Disable TimesNote 4: The input pulse is supplied by a generator with the following characteristics: f = 250kHz, 50% duty cycle, t r ≤6.0ns, Z O = 50Ω.Note 5: C L includes probe and stray capacitance._____________________Function TablesDevices with Receiver/Driver Enable(MAX3483E/MAX3485E/MAX3486E/MAX3491E)Table 1. Transmitting* B and A outputs are Z and Y, respectively, for full-duplex part (MAX3491E).X = Don’t care; High-Z = High impedanceTable 2. Receiving* DE is a “don’t care” (x) for the full-duplex part (MAX3491E).X = Don’t care; High-Z = High impedanceDevices without Receiver/Driver Enable(MAX3488E/MAX3490E)Table 3. TransmittingTable 4. Receiving___________Applications InformationThe MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E are low-power transceivers for RS-485 and RS-422 communications. The MAX3483E and MAX3488E can transmit and receive at data rates up to 250kbps, the MAX3486E at up to 2.5Mbps, and the MAX3485E/MAX3490E/MAX3491E at up to 12Mbps. The MAX3488E/MAX3490E/MAX3491E are full-duplex trans-ceivers, while the MAX3483E/MAX3485E/MAX3486E are half-duplex. Driver Enable (DE) and Receiver Enable (RE ) pins are included on the MAX3483E/MAX3485E/MAX3486E/MAX3491E. When disabled, the driver and receiver outputs are high impedance.Reduced EMI and Reflections (MAX3483E/MAX3486E/MAX3488E)The MAX3483E/MAX3488E are slew-rate limited, mini-mizing EMI and reducing reflections caused by improp-erly terminated cables. Figure 13 shows the driver output waveform of a MAX3485E/MAX3490E/MAX3491E transmitting a 125kHz signal, as well as the Fourier analysis of that waveform. High-frequency harmonics with large amplitudes are evident. Figure 14 shows the same information, but for the slew-rate-limited MAX3483E/MAX3488E transmitting the same signal. The high-frequency harmonics have much lower amplitudes,and the potential for EMI is significantly reduced.Low-Power Shutdown Mode(MAX3483E/MAX3485E/MAX3486E/MAX3491E)A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled (high impedance). In shutdown, the devices typically draw only 2nA of supply current.For these devices, the t PSH and t PSL enable times assume the part was in the low-power shutdown mode;the t PZH and t PZL enable times assume the receiver or driver was disabled, but the part was not shut down.MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers______________________________________________________________________________________11INPUTS OUTPUT A, B RO ≥+0.2V 1≤-0.2V 0Inputs Open1INPUT OUTPUTS DI Z Y 101015MHz 500kHz/div 05MHz500kHz/div Figure 13. Driver Output Waveform and FFT Plot of MAX3485E/MAX3490E/MAX3491E Transmitting a 125kHz Signal Figure 14. Driver Output Waveform and FFT Plot of MAX3483E/ MAX3488E Transmitting a 125kHz SignalM A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers12______________________________________________________________________________________Figure 17. MAX3483E/MAX3488E Driver Propagation Delay Figure 19. MAX3483E/MAX3488E System Differential Voltage at 125kHz Driving 4000 Feet of Cable Figure 20. MAX3485E/MAX3490E/MAX3491E System Differential Voltage at 125kHz Driving 4000 Feet of CableDriver-Output Protection Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). In addition, a thermal shut-down circuit forces the driver outputs into a high-imped-ance state if the die temperature rises excessively.Propagation Delay Figures 15–18 show the typical propagation delays. Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle).The receiver skew time, |t PRLH- t PRHL|, is under 10ns (20ns for the MAX3483E/MAX3488E). The driver skew times are 8ns for the MAX3485E/MAX3490E/MAX3491E, 12ns for the MAX3486E, and typically under 50ns for the MAX3483E/MAX3488E.Line Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 21 for an example of a line repeater.Figures 19 and 20 show the system differential voltage for parts driving 4000 feet of 26AWG twisted-pair wire at 125kHz into 120Ωloads.For faster data rate transmission, please consult the fac-tory.±15kV ESD Protection As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX3483E family of devices have extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup or damage.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the Contact-Discharge method specifiedin IEC 1000-4-23)±15kV using IEC 1000-4-2’s Air-Gap method.ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body Model Figure 22a shows the Human Body Model and Figure 22b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5kΩresistor.IEC 1000-4-2 The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifi-cally refer to integrated circuits. The MAX3483E family of devices helps you design equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 23a shows the IEC 1000-4-2 model, and Figure 23b shows the current waveform for the ±8kV IEC 1000-4-2, Level 4 ESD contact-discharge test.Figure 21. Line Repeater for MAX3488E/MAX3490E/MAX3491EMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers ______________________________________________________________________________________13M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491EThe air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Typical ApplicationsThe MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 24 and 25 show typical net-work applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 21.To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX3483E/MAX3488E and the partially slew-rate-limited MAX3486E are more tolerant of imperfect termination.3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers14______________________________________________________________________________________Figure 22a. Human Body ESD Test ModelFigure 22b. Human Body Current WaveformFigure 23a. IEC 1000-4-2 ESD Test ModelFigure 23b. IEC 1000-4-2 ESD Generator Current WaveformMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers______________________________________________________________________________________15Figure 25. MAX3488E/MAX3490E/MAX3491E Full-Duplex RS-485 NetworkFigure 24. MAX3483E/MAX3485E/MAX3486E Typical RS-485 NetworkM A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceiversTRANSISTOR COUNT: 761Chip InformationOrdering Information (continued)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
MAX3313EEUB-T中文资料
General DescriptionThe MAX3311E/MAX3313E are low-power, 5V EIA/TIA-232-compatible transceivers. All transmitter outputs and receiver inputs are protected to ±15kV using the Human Body Model, making these devices ideal for applications where more robust transceivers are required.Both devices have one transmitter and one receiver.The transmitters have a proprietary low-dropout trans-mitter output stage enabling RS-232-compatible opera-tion from a +5V supply with a single inverting charge pump. These transceivers require only three 0.1µF capacitors and will run at data rates up to 460kbps while maintaining RS-232-compatible output levels.The MAX3311E features a 1µA shutdown mode. In shutdown the device turns off the charge pump, pulls V- to ground, and the transmitter output is disabled.The MAX3313E features an INVALID output that asserts high when an active RS-232 cable signal is connected,signaling to the host that a peripheral is connected to the communication port.________________________ApplicationsDigital Cameras PDAs GPS POSTelecommunications Handy Terminals Set-Top BoxesFeatureso ESD Protection for RS-232-Compatible I/O Pins±15kV—Human Body Modelo 1µA Low-Power Shutdown (MAX3311E)o INVALID Output (MAX3313E)o Receiver Active in Shutdown (MAX3311E)o Single Transceiver (1Tx/1Rx) in 10-Pin µMAX PackageMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX________________________________________________________________Maxim Integrated Products1Pin Configurations19-1910; Rev 0; 1/01Ordering InformationFor price, delivery, and to place orders,please contact Maxim Distribution at 1-888-629-4642,or visit Maxim’s website at .Typical Operating CircuitM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND.............................................................-0.3V to +6V V- to GND................................................................+0.3V to -7V V CC + |V-|............................................................................+13V Input VoltagesTIN, SHDN to GND...............................................-0.3V to +6V RIN to GND......................................................................±25V Output VoltagesTOUT to GND................................................................±13.2V ROUT, INVALID to GND.....................…-0.3V to (V CC + 0.3V)Short-Circuit DurationTOUT to GND.........................................................ContinuousContinuous Power Dissipation10-Pin µMAX (derate 5.6mW/°C above +70°C)..........444mW Operating Temperature RangesMAX331_ECUB.................................................0°C to +70°C MAX331_EEUB..............................................-40°C to +85°C Junction Temperature.....................................................+150°C Storage Temperature Range............................-65°C to +150°C Lead Temperature (soldering, 10s)................................+300°CMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)TIMING CHARACTERISTICSM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 4_______________________________________________________________________________________Typical Operating Characteristics(V CC = +5V, 0.1µF capacitors, transmitter loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)0428612101410001500500200025003000SLEW RATEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /µs )-5-4-3-2-10123456050010001500200025003000TRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )010001500500200025003000SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)Detailed DescriptionSingle Charge-Pump Voltage ConverterThe MAX3311E/MAX3313E internal power supply has a single inverting charge pump that provides a negative voltage from a single +5V supply. The charge pump operates in a discontinuous mode and requires a flying capacitor (C1) and a reservoir capacitor (C2) to gener-ate the V- supply.RS-232-Compatible DriverThe transmitter is an inverting level translator that con-verts CMOS-logic levels to EIA/TIA-232 compatible lev-els. It guarantees data rates up to 460kbps with worst-case loads of 3k Ωin parallel with 1000pF. When SHDN is driven low, the transmitter is disabled and put into tri-state. The transmitter input does not have an internal pullup resistor.RS-232 ReceiverThe MAX3311E/MAX3313E receiver converts RS-232signals to CMOS-logic output levels. The MAX3311E receiver will remain active during shutdown mode. The MAX3313E INVALID indicates when an RS-232 signal is present at the receiver input, and therefore when the port is in use.The MAX3313E INVALID output is pulled low when no valid RS-232 signal level is detected on the receiver input.MAX3311E Shutdown ModeIn shutdown mode, the charge pump is turned off, V- is pulled to ground, and the transmitter output is disabled (Table 1). This reduces supply current typically to 1µA.The time required to exit shutdown is less than 25ms.Applications InformationCapacitor SelectionThe capacitor type used for C1 and C2 is not critical for proper operation; either polarized or nonpolarized capacitors are acceptable. If polarized capacitors are used, connect polarity as shown in the Typical Operating Circuit . The charge pump requires 0.1µF capacitors. Increasing the capacitor values (e.g., by a factor of 2) reduces power consumption. C2 can beincreased without changing C1’s value. However, do not increase C1’s value without also increasing the value of C2 and C BYPASS to maintain the proper ratios (C1 to the other capacitors).When using the minimum 0.1µF capacitors, make sure the capacitance does not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor ’s equivalent series resis-tance (ESR) usually rises at low temperatures and influ-ences the amount of ripple on V-.To reduce the output impedance at V-, use larger capacitors (up to 10µF).Bypass V CC to ground with at least 0.1µF. In applica-tions sensitive to power-supply noise generated by the charge pump, decouple V CC to ground with a capaci-tor the same size as (or larger than) charge-pump capacitors C1 and C2.Transmitter Output when ExitingShutdownFigure 1 shows the transmitter output when exiting shutdown mode. The transmitter is loaded with 3k Ωin parallel with 1000pF. The transmitter output displays no ringing or undesirable transients as the MAX3311E comes out of shutdown. Note that the transmitter is enabled only when the magnitude of V- exceeds approximately -3V.High Data RatesThe MAX3311E/MAX3313E maintain RS-232-compati-ble ±3.7V minimum transmitter output voltage even atMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX5Figure 1. Transmitter Output when Exiting Shutdown or Powering Up10µs/divSHDNTOUT5V/div1.5V/divTIN = GNDTIN = V CCM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 6_______________________________________________________________________________________high data rates. Figure 2 shows a transmitter loopback test circuit. Figure 3 shows the loopback test result at 120kbps, and Figure 4 shows the same test at 250kbps.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The MAX3311E/MAX3313E driver outputsand receiver inputs have extra protection against static discharge. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim ’s E versions keep working without latchup; whereas, competing products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the product family are characterized for protection to ±15kV using the Human Body Model.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 5 shows the Human Body Model, and Figure 6shows the current waveform it generates when dis-charged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protec-tion during manufacturing, not just RS-232 inputs and outputs. Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Figure 4. Loopback Test Results at 250kbps2µs/divTOUTTINROUTFigure 3. Loopback Test Results at 120kbps 5µs/divTOUTTINROUTMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX_______________________________________________________________________________________7Figure 5. Human Body ESD Test ModelFigure 6. Human Body Current WaveformPin Configurations (continued)Chip InformationTRANSISTOR COUNT: 278M A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.______________________________________________________________Pin Description。
MAX3081E中文资料
Ordering Information
PART MAX3080ECSD MAX3080ECPD MAX3080EESD MAX3080EEPD
TEMP. RANGE 0°C to +70°C 0°C to +70°C
-40°C to +85°C -40°C to +85°C
PIN-PACKAGE 14 SO 14 Plastic DIP 14 SO 14 Plastic DIP
o Allow Up to 256 Transceivers on the Bus
Applications
RS-422/RS-485 Communications Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks
Ordering Information continued at end of data sheet.
Selector Guide
Part
Half/Full Duplex
Data Rate (Mbps)
SlewRate Limited
Low- Receiver/ Quiescent Transceivers
MAX3088ESA+中文资料
MAX232中文资料(官方版)
新一代 器件特性 ____________________________
♦ 对于低电压、集成 ESD 保护的应用 MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E:+3.0V 至 +5.5V、低功耗、速率高达 1Mbps、利用四个 0.1µF 电容实现真正的 RS-232 收发器 (MAX3246E 提供 UCSPTM 封装 )。 ♦ 对于低成本应用 MAX221E:±15kV ESD 保护、+5V、1µA、 具有 AutoShutdownTM 功能的单芯片 RS-232。
________________________________ 应用
便携式计算机 低功耗调制解调器 接口转换 电池供电 RS-232 系统 多点 RS-232 网络
_____________________________ 定购信息
PART MAX220CPE MAX220CSE MAX220CWE MAX220C/D MAX220EPE MAX220ESE MAX220EWE MAX220EJE MAX220MJE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 Wide SO Dice* 16 Plastic DIP 16 Narrow SO 16 Wide SO 16 CERDIP 16 CERDIP
巴马格电气系统中文版
安 全 ......................................................................................................................3
服务手册的使用目的和使用方法 ...............................................................................................4 安全信息——电气系统 .............................................................................................................. 5 安全指导概要 ...................................................................................................................…….5 维护和修理时的安全预防 .........................................................................................................7
MAX483E资料
BP3318规格书(最新版)
应用信息
BP3318 是一款带调光功能的原边反馈单级有源功 率因数校正 LED 恒流控制芯片,工作在电感电流 临界连续模式,芯片可以实现很高的功率因数、 很低的总谐波失真和高效率。 1 启动 在系统上电后,母线电压通过启动电阻给 VCC 引脚 的电容充电,当 VCC 电压上升到启动阈值电压后, 芯片内部控制电路开始工作,COMP 电压被快速上 拉到 1.5V。然后 BP3318 开始输出脉冲信号,系统 刚开始工作在 10kHz 开关频率,COMP 电压从 1.5V 开始逐渐上升,原边峰值电流随之上升,从而实 现输出 LED 电流的软启动,有效防止输出电流过 冲。当输出电压建立之后,VCC 电压由辅助绕组供 电,从而降低系统功耗。 2 恒流控制,输出电流设置
150 130 温度调节点(℃) 110 90 70 50 50 110 170 230 290 350
N RFBL 1.6V S RFBL RFBH VOVP _ FB N A
其中, RFBL 是反馈网络的下分压电阻 RFBH 是反馈网络的上分压电阻 VOVP_FB 是输出电压过压保护设定点 NS 是变压器次级绕组的匝数 NA 是变压器辅助绕组的匝数 为了提高系统效率, FB 上分压电阻可以设置在 300KΩ 左右。同时,改变此电阻值可以对 LED 输 出电流的线电压补偿进行微调。 4 调光功能 BP3318 带调光接口,通过简单的外围电路,可以 兼容 DC 调光,PWM 调光和 TRIAC 调光。 DIM 电压的线性调光范围为 1V—3V, 在此范围内, DIM 电压越高则 LED 输出电流越大。当 DIM 小于 0.7V 时,GATE 驱动信号被关闭,COMP 电压被下拉 到 1.5V,输出电流为零。当 DIM 大于 3V 时,芯片 处于正常工作状态,输出电流为设定值的 100%。 如果不需要调光功能,建议从此引脚接 100pF 滤 波电容到地。
MAXIM MAX3314 说明书
General DescriptionThe MAX3314 is a ±5V powered EIA/TIA-232-compati-ble interface. It has one transmitter and one receiver in a flow-through architecture. The transmitter has a low-dropout output stage providing minimum RS-232-com-patible ±3.7V output levels while driving 3k Ωand 1000pf at 460kbps. Both +5V and -5V are supplied externally.The MAX3314 has a SHDN function that reduces sup-ply current to 1µA. The transmitter is disabled and put into 3-state mode while the receiver remains active.The MAX3314 is available in 8-pin SOT23, µMAX and SO packages.________________________ApplicationsDigital Cameras PDA GPS POSTelecommunications Handy Terminals Set-Top BoxesFeatureso 1µA Low-Power Shutdown with Receiver Activeo 30µA Operating Supply Current o 460kbps (min) Data Rate o 8-Pin SOT23 Package o RS-232-Compatible LevelsMAX3314460kbps, 1µA, RS-232-Compatible Transceiver________________________________________________________________Maxim Integrated Products 1Pin ConfigurationTypical Operating Circuit19-1725; Rev 1a; 3/01Ordering InformationFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 3314460kbps, 1µA, RS-232-Compatible TransceiverABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +6V V- to GND.................................................................+0.3V to -6V Input VoltagesTIN, SHDN to GND..............................................-0.3V to +6V RIN to GND.....................................................................±25V Output VoltagesTOUT to GND...............................................................±13.2V ROUT.................................................…-0.3V to (V CC + 0.3V)Short-Circuit DurationTOUT to GND........................................................ContinuousContinuous Power Dissipation8-Pin SOT23 (derate 9.7mW/°C above +70°C)...........777mW 8-Pin µMAX (derate 4.1mW/°C above +70°C)............300mW 8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW Operating Temperature RangesMAX3314C_A.....................................................0°C to +70°C MAX3314E_A..................................................-40°C to +85°C Junction Temperature.....................................................+150°C Storage Temperature Range............................-65°C to +150°C Lead Temperature (soldering, 10s)................................+300°CMAX3314460kbps, 1µA, RS-232-Compatible TransceiverTIMING CHARACTERISTICSTypical Operating Characteristics(V CC = +5V, V- = -5V, 250kbps data rate, transmitter loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)021********10005001500200025003000SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /u s )-6-3-4-51-10-253426010005001500200025003000TRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )01.51.00.53.02.52.05.04.04.53.55.510005001500200025003000SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )Detailed DescriptionRS-232-Compatible DriversThe transmitter is an inverting level translator that con-verts CMOS-logic levels to EIA/TIA-232-compatible lev-els. I t guarantees data rates up to 460kbps with worst-case loads of 3k Ωin parallel with 1000pF. When SHDN is driven low, the transmitter is disabled and put into 3-state mode. The transmitter input does not have a pull-up resistor. Connect to ground if unused.RS-232-Compatible ReceiversThe MAX3314’s receiver converts RS-232 signals to CMOS-logic output levels. The receiver is rated to sig-nals up to ±25V. The MAX3314’s receiver will remain active during shutdown mode.MAX3314 Shutdown ModeI n shutdown mode, the transmitter output is put into high impedance. This reduces the supply current to 1µA. The time required to exit shutdown is less than 2.5µs. Table 1 is the shutdown logic truth table.Applications InformationCapacitor SelectionThe capacitor type used is not critical for proper opera-tion; either polarized or nonpolarized capacitors are acceptable. I f polarized capacitors are used, connect polarity as shown in the Typical Operating Circuit.Bypass V CC and V- to ground with at least 0.1µF.Transmitter Output WhenExiting ShutdownFigure 1 shows the transmitter output when exiting shut-down mode. The transmitter is loaded with 3k Ωin par-allel with 1000pF. The transmitter output displays no ringing or undesirable transients as the MAX3314comes out of shutdown. Note that the transmitter is enabled only when the magnitude of V- exceeds approximately -3V.High Data RatesThe MAX3314 maintains minimum RS-232-compatible ±3.7V transmitter output voltage even at high data rates.Figure 2 shows a transmitter loopback test circuit.Figure 3 shows the loopback test result at 120kbps, and Figure 4 shows the same test at 250kbps.Chip InformationTRANSISTOR COUNT: 128M A X 3314460kbps, 1µA, RS-232-Compatible Transceiver 4_______________________________________________________________________________________Figure 1. Transmitter Output When Exiting Shutdown or Powering Up1µs/divTIN = GNDTIN = V CCFigure 2. Loopback Test CircuitSHDN TOUTTINV CCMAX3314V-MAX3314460kbps, 1µA, RS-232-Compatible TransceiverFigure 4. Loopback Test Results at 250kbps2µs/divFigure 3. Loopback Test Results at 120kbps 5µs/div Package InformationM A X 3314460kbps, 1µA, RS-232-Compatible Transceiverimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FEATURESAPPLICATIONSDB OR PW PACKAGE(TOP VIEW)DESCRIPTION/ORDERING INFORMATIONWITH±15-kV ESD PROTECTIONSLLS687–OCTOBER2005•Cellular Phones•Notebooks•ESD Protection for RS-232I/O Pins•Hand-Held Equipment–±15kV(Human-Body Model)•Pagers–±8kV(IEC61000,Contact Discharge)–±8kV(IEC61000,Air-Gap Discharge)•300-µA Operating Supply Current•1-µA Low-Power Standby(With ReceiversActive)Mode•Designed to Transmit at a Data Rate of460kbps•Auto-Power-Down Plus Option FeaturesFlexible Power-Saving Mode•Operates From a Single2.25-V to3-V V CCSupply•Battery-Powered Systems•PDAsThe MAX3318is a dual-driver,dual-receiver,RS-232compatible transceiver.The device features auto-power-down plus and enhanced electrostatic discharge(ESD)protection integrated into the chip.Driver output and receiver input are protected to±8kV using the IEC61000Air-Gap Discharge method,±8kV using the IEC61000Contact Discharge method,and±15kV using the Human-Body Model(HBM).The device operates at a data rate of460kbps.The transceiver has a proprietary low-dropout driver output stage enabling RS-232-compatible operation from a2.25-V to3-V supply with a dual charge pump.The charge pump requires only four0.1-µF capacitors and features a logic-level output(READY)that asserts when the charge pump is regulating and the device is ready to begin transmitting.The MAX3318achieves a1-µA supply current using the auto-power-down feature.This device automatically enters a low-power power-down mode when the RS-232cable is disconnected or the drivers of the connected peripherals are inactive for more than30s.The device turns on again when it senses a valid transition at any driver or receiver input.Auto power down saves power without changes to the existing BIOS or operating system.This device is available in two space-saving packages:20-pin SSOP and20-pin TSSOP.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2005,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.DETAILED DESCRIPTIONWITH ±15-kV ESD PROTECTIONSLLS687–OCTOBER 2005ORDERING INFORMATIONT APACKAGE (1)ORDERABLE PART NUMBER TOP-SIDE MARKING Tube of 70MAX3318CDB SSOP –DBMA3318C Reel of 2000MAX3318CDBR –0°C to 70°CTube of 70MAX3318CPW TSSOP –PW MA3318C Reel of 2000MAX3318CPWR Tube of 70MAX3318IDB SSOP –DBMA3318I Reel of 2000MAX3318IDBR –40°C to 85°CTube of 70MAX3318IPW TSSOP –PWMA3318IReel of 2000MAX3318IPWR(1)Package drawings,standard packing quantities,thermal data,symbolization,and PCB design guidelines are available at /sc/package.Flexible control options for power management are featured when the serial port and driver inputs are inactive.The auto-power-down plus feature functions when FORCEON is low and FORCEOFF is high.During this mode of operation,if the device does not sense valid signal transitions on all receiver and driver inputs for approximately 30s,the built-in charge pump and drivers are powered down,reducing the supply current to 1µA.By disconnecting the serial port or placing the peripheral drivers off,auto-power-down plus can be disabled when FORCEON and FORCEOFF are high.With auto-power-down plus enabled,the device activates automatically when a valid signal is applied to any receiver or driver input.INVALID is high (valid data)if any receiver input voltage is greater than 2.7V or less than –2.7V,or has been between –0.3V and 0.3V for less than 30µs (typical number).INVALID is low (invalid data)if all receiver input voltage are between –0.3V and 0.3V for more than 30µs (typical number).2WITH±15-kV ESD PROTECTIONSLLS687–OCTOBER2005FUNCTION TABLE(1)INPUT CONDITIONS OUTPUT STATESVALIDRECEIVER OPERATINGRS-232OR DRIVER MODEFORCEON FORCEOFF LEVEL DRIVER RECEIVER INVALID READYEDGEPRESENT ATWITHIN30sRECEIVERAuto-Power-Down Plus ConditionsNormal operation,H H No No Active Active L H auto-power-downplus disabledNormal operation,H H No Yes Active Active H H auto-power-downplus disabledNormal operation, L H Yes No Active Active L H auto-power-downplus enabledNormal operation, L H Yes Yes Active Active H H auto-power-downplus enabledPower down, L H No No Z Active L L auto-power-downplus enabledPower down, L H No Yes Z Active H L auto-power-downplus enabledManual power X L X No Z Active L LdownManual power X L X Yes Z Active H LdownAuto-Power-Down ConditionsPower down,auto INVALID INVALID X No Z Active L L power downenabledNormal operation, INVALID INVALID X Yes Active Active H H auto power downenabled(1)H=high level,L=low level,X=irrelevant,Z=high impedance3DIN2DIN1DOUT2DOUT1INVALID RIN1RIN2FORCEOFF FORCEONROUT1ROUT2READYWITH ±15-kV ESD PROTECTIONSLLS687–OCTOBER 2005LOGIC DIAGRAM (POSITIVE LOGIC)4WITH±15-kV ESD PROTECTIONSLLS687–OCTOBER2005 TERMINAL FUNCTIONSTERMINALDESCRIPTIONNAME NO.C1+2Positive voltage-doubler charge-pump capacitorC1–4Negative voltage-doubler charge-pump capacitorC2+5Positive inverting charge-pump capacitorC2–6Negative inverting charge-pump capacitorDIN12,13CMOS driver inputsDOUT8,17RS-232driver outputsForce-off input,active low.Drive low to power down transmitters,receivers,and charge pump.This overrides FORCEOFF20auto power down and FORCEON(see Function Table).Force-on input,active high.Drive high to override auto power down,keeping transmitters and receivers on FORCEON14(FORCEOFF must be high)(see Function Table).GND18GroundValid signal detector output,active low.A logic high indicates that a valid RS-232level is present on a receiver INVALID11input.Ready to transmit output,active high.READY is enabled high when V–goes below–3.5V and the device is READY1ready to transmit.RIN9,16RS-232receiver inputsROUT10,15CMOS receiver outputsV+32×V CC generated by the charge pumpV–7–2×V CC generated by the charge pumpV CC19 2.25-V to3-V single-supply voltage5Absolute Maximum Ratings (1)Recommended Operating ConditionsWITH ±15-kV ESD PROTECTIONSLLS687–OCTOBER 2005over operating free-air temperature range (unless otherwise noted)MINMAXUNIT V CC to GND –0.36V V+to GND (2)–0.37V V–to GND (2)–70.3V V++IV-I (2)13V DIN,FORCEON,FORCEOFF to GND –0.36Input voltage V RIN to GND ±25DOUT to GND±13.2Output voltage VROUT,INVALID,READY to GND –0.3V CC +0.3Short-circuit durationDOUT to GNDContinuous16-pin SSOP (derate 7.14mW/°C above 70°C)571Continuous power dissipation (T A =70°C)20-pin SSOP (derate 8mW/°C above 70°C 640mW 20-pin TSSOP (derate 7mW/°C above 70°C)559Storage temperature range –65150°C Lead temperature (soldering,10s)300°C (1)Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)V+and V–can have maximum magnitudes of 7V,but their absolute difference cannot exceed 13V.See Figure 4MIN NOMMAX UNITSupply voltage 2.25 2.53V DIN,FORCEOFF,V IH Driver and control high-level input voltage V CC =2.5V to 3V 0.7×V CC5.5V FORCEON DIN,FORCEOFF,V IL Driver and control low-level input voltage V CC =2.5V to 3V00.3×V CCV FORCEONV I Receiver input voltage –2525V MAX3318C 070T AOperating free-air temperature°CMAX3318I –40856Supply Current Section Electrical Characteristics ESD Protection WITH±15-kV ESD PROTECTIONSLLS687–OCTOBER2005V CC =2.25V to3V,C1–C4=0.1µF,TA=TMINto TMAX(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNITDC Characteristics(V CC=2.5V,T A=25°C)Auto-power-down plus supply current FORCEON=GND,FORCEOFF=V CC,All RIN and DIN idle110µA Auto-power-down supply current FORCEOFF=GND110µA Supply current FORCEON=FORCEOFF=V CC,No load0.32mA (1)Typical values are at V CC=2.5V,T A=25°C.PARAMETER TEST CONDITIONS TYP UNIT Human-Body Model(HBM)±15RIN,DOUT IEC G1000-4-2Air-Gap Discharge method±8kV IEC G1000-4-2Contact Discharge method±87Driver Section Electrical CharacteristicsDriver Section Switching CharacteristicsWITH ±15-kV ESD PROTECTIONSLLS687–OCTOBER 2005over recommended ranges of supply voltage and operating free-air temperature,V CC =2.25V to 3V,C1–C4=0.1µF,T A =T MIN to T MAX (unless otherwise noted)(see Figure 4)PARAMETERTEST CONDITIONSMIN TYP (1)MAXUNIT Driver input hysteresis 0.3V Input leakage current FORCEON,DIN,FORCEOFF±0.01±1µA Output voltage swing All driver outputs loaded with 3k Ωto ground ±3.7±4V Output resistanceV CC =0,Driver output =±2V30010M ΩOutput short-circuit current (2)±25±60mA Output leakage current V CC =0or 2.25V to 3V,V OUT =±12V,Drivers disabled ±25µA(1)Typical values are at V CC =2.5V,T A =25°C.(2)Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings,and not more than one output should be shorted at a time.over recommended ranges of supply voltage and operating free-air temperature,V CC =2.25V to 3V,C1–C4=0.1µF,T A =T MIN to T MAX (unless otherwise noted)(see Figure 1)PARAMETER TEST CONDITIONSMIN TYP (1)MAXUNIT Maximum data rateR L =3k Ω,C L =1000pF,One transmitter switching460kbps |t PHL –t PLH |Driver skew (2)100ns V CC =2.5V,T A =25°C,R L =3k Ωto 7k Ω,Transition-region slew rateMeasured from 3V to –3V or –3V to 3V,430V/µsC L =150pF to 2500pF(1)Typical values are at V CC =2.5V,T A =25°C.(2)Pulse skew is defined as |t PLH –t PHL |of each channel of the same device.8Receiver Section Electrical Characteristics Receiver Section Switching Characteristics WITH±15-kV ESD PROTECTIONSLLS687–OCTOBER2005over recommended ranges of supply voltage and operating free-air temperature,V CC =2.25V to3V,C1–C4=0.1µF,TA=TMINto TMAX(unless otherwise noted)(see Figure4)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNITInput voltage range–2525V Input threshold low T A=25°C0.3×V CC V Input threshold high T A=25°C0.7×V CC V Input hysteresis0.3V Input resistance T A=25°C357kΩOutput leakage current±0.05±10µA Output voltage low I OUT=0.5mA0.1×V CC V Output voltage high I OUT=–0.5mA0.9×V CC V (1)Typical values are at V CC=2.5V,T A=25°C.over recommended ranges of supply voltage and operating free-air temperature,V CC =2.25V to3V,C1–C4=0.1µF,TA=TMINto TMAX(unless otherwise noted)(see Figure4)PARAMETER TEST CONDITIONS TYP(1)UNITt PHL0.175 Receiver propagation delay RIN to ROUT,C L=150pFµst PLH0.175|t PHL–t PLH|Receiver skew(2)50ns(1)Typical values are at V CC=2.5V,T A=25°C.(2)Pulse skew is defined as|t PLH–t PHL|of each channel of the same device.9Auto-Power-Down Plus Section Electrical CharacteristicsAuto-Power-Down Plus Section Switching CharacteristicsWITH ±15-kV ESD PROTECTIONSLLS687–OCTOBER 2005over recommended ranges of supply voltage and operating free-air temperature,V CC =2.25V to 3V,C1–C4=0.1µF,T A =T MIN to T MAX (unless otherwise noted)(see Figure 4)PARAMETERTEST CONDITIONSMINMAX UNIT Positive threshold 2.7Receiver input threshold to INVALID high V Negative threshold–2.7Receiver input threshold INVALID low –0.30.3V INVALID,READY voltage low I OUT =0.5mA 0.1×V CCV INVALID,READY voltage highI OUT =–0.5mA0.8×V CCVover recommended ranges of supply voltage and operating free-air temperature,V CC =2.25V to 3V,C1–C4=0.1µF,T A =T MIN to T MAX (unless otherwise noted)(see Figure 4)PARAMETERTEST CONDITIONS MINTYP (1)MAXUNIT t INVH Receiver positive or negative threshold to INVALID high V CC =2.5V 1µs t INVL Receiver positive or negative threshold to INVALID low V CC =2.5V 30µs t WU Receiver or driver edge to driver enabled V CC =2.5V 100µs t AUTOPRDN Receiver or driver edge to driver shutdownV CC =2.5V153060s(1)Typical values are at V CC =2.5V,T A =25°C.10PARAMETER MEASUREMENT INFORMATIONTEST CIRCUITVOLTAGE WAVEFORMS−3 V−3 V3 V 3 V 0 V3 VOutputInputV OLV OH t TLH RS-232Outputt THLSR(tr)+6V t THL or t TLHNOTES: A.C L includes probe and jig capacitance.B.The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, t r ≤ 10 ns, t f ≤ 10 ns.TEST CIRCUITVOLTAGE WAVEFORMS0 V2.25 VOutput InputV OLV OHt PLHRS-232OutputtPHLNOTES: A.C L includes probe and jig capacitance.B.The pulse generator has the following characteristics: PRR = 250 kbit/s, Z O = 50 Ω, 50% duty cycle, t r ≤ 10 ns, t f ≤ 10 ns.50%50%1.125 V1.125 VTEST CIRCUITVOLTAGE WAVEFORMS−3 V3 VOutputInputV OLV OHt PHLt PLHOutputNOTES: A.C L includes probe and jig capacitance.B.The pulse generator has the following characteristics: Z O = 50 Ω, 50% duty cycle, t r ≤ 10 ns, t f ≤ 10 ns.0 V0 V50%50%MAX33182.5-V 460-kbps RS-232TRANSCEIVERWITH ±15-kV ESD PROTECTIONSLLS687–OCTOBER 2005Figure 1.Driver Slew RateFigure 2.Driver Pulse SkewFigure 3.Receiver Propagation Delay Times PARAMETER MEASUREMENT INFORMATIONVVDriverInputsReceiverInputsDriverOutputsVInvalidRegionReadyOutputVOLTAGE WAVEFORMSTEST CIRCUITINVALID†Auto power down disables drivers and reduces supplycurrent to 1 µA.MAX33182.5-V460-kbps RS-232TRANSCEIVERWITH±15-kV ESD PROTECTIONSLLS687–OCTOBER2005Figure4.INVALID Propagation Delay Times and Supply Enabling TimePARAMETER MEASUREMENT INFORMATIONRS-232-Compatible OutputsRS-232-Compatible Inputsm Fm FC10.1 m F C20.1 m FC BYPASSMAX33182.5-V 460-kbps RS-232TRANSCEIVERWITH ±15-kV ESD PROTECTIONSLLS687–OCTOBER 2005Figure 5.Typical Application CircuitPACKAGING INFORMATIONOrderable Device Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)MAX3318CDB ACTIVE SSOP DB 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318CDBE4ACTIVE SSOP DB 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318CDBR ACTIVE SSOP DB 202000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318CDBRE4ACTIVE SSOP DB 202000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318CPW ACTIVE TSSOP PW 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318CPWE4ACTIVE TSSOP PW 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318CPWR ACTIVE TSSOP PW 202000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318CPWRE4ACTIVE TSSOP PW 202000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IDB ACTIVE SSOP DB 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IDBE4ACTIVE SSOP DB 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IDBR ACTIVESSOP DB 202000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IDBRE4ACTIVE SSOP DB 202000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IPW ACTIVE TSSOP PW 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IPWE4ACTIVE TSSOP PW 2070Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IPWR ACTIVE TSSOP PW 202000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM MAX3318IPWRE4ACTIVETSSOPPW202000Green (RoHS &no Sb/Br)CU NIPDAULevel-1-260C-UNLIM(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS),Pb-Free (RoHS Exempt),or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt):This component has a RoHS exemption for either 1)lead-based flip-chip solder bumps used between the die and package,or 2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free (RoHS compatible)as defined above.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)18-Jul-2006(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annualbasis.18-Jul-2006IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityLow Power Wireless /lpw Telephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2006, Texas Instruments Incorporated。