牛顿运动定律测试题及答案
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量 M=0 . 4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的 距离L=0. 5m ,某时刻另一质量 m=0. 1kg 的小滑块(可视为质点)以v o =2m /s 的速度向右 滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑 块与长木板间的动摩擦因数 卩=0 2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。
求:m h»卜 ------ I ----------------- J十一…一 _…一…対 _______________ ________ J(1) 自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2) 长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1) 1.65m (2) 0.928m 【解析】【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得:卜—对长木板:|出巷二圧圧 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 號二I解得:1x=长木板位移: 解得:I - -:- I ■'•:「: I ;!两者达相同速度时长木板还没有碰竖直挡板L-x = v\li解得:t = ti + t2 = 1.655(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度:■― V 沉匕I1 1 1}imgs =菱册响_ 云血 十 财}诃小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。
已知雪橇与水平雪道间的动摩擦因数为 卩=0.1,妈妈的质量为 M = 60kg ,小红和雪橇的总质量为 m = 20kg 。
在游戏过程中妈妈用大小为 F = 50N ,与水平方向成 37°角的力斜向上拉雪橇。
物理牛顿运动定律专题练习(及答案)含解析
物理牛顿运动定律专题练习(及答案)含解析一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv h== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.3.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率不变.(取g =10m/s 2,sin37°=0.6)求:(1)物块从a 运动到b 的时间; (2)物块从b 运动到c 的时间. 【答案】(1)0.4s ;(2)1.25s . 【解析】 【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+=2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v vs a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=4.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.5.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线? (2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?【答案】(1)见解析(2)2.5m 【解析】 【分析】(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;(2)根据追及相遇条件,由位移关系分析安全距离的大小. 【详解】(1)甲车紧急刹车的加速度为210.44/a g m s ==甲车停下来所需时间0112.5v t s a ==甲滑行距离 20112.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;(2)乙车紧急刹车的加速度大小为:220.55/a g m s ==设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,0120022()v a t t v a t -+=-解得2 2.0t s =此过程中乙的位移: 220002121152x v t v t a t m =+-= 甲的位移:210021021()()12.52x v t t a t t m =+-+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.6.如图甲所示,在平台上推动物体压缩轻质弹簧至P 点并锁定.解除锁定,物体释放,物体离开平台后水平抛出,落在水平地面上.以P 点为位移起点,向右为正方向,物体在平台上运动的加速度a 与位移x 的关系如图乙所示.已知物体质量为2kg ,物体离开平台后下落0.8m 的过程中,水平方向也运动了0.8m ,g 取10m/s 2,空气阻力不计.求:(1)物体与平台间的动摩擦因数及弹簧的劲度系数; (2)物体离开平台时的速度大小及弹簧的最大弹性势能. 【答案】(1)0.2μ=,400/k N m =(2)2/v m s =, 6.48p E J = 【解析】 【详解】(1)由图象知,弹簧最大压缩量为0.18x m ∆=,物体开始运动时加速度2134/a m s =,离开弹簧后加速度大小为222/a m s =.由牛顿第二定律1k x mg ma μ⋅∆-=①,2mg ma μ=②联立①②式,代入数据解得0.2μ=③400/k N m =④(2)物体离开平台后,由平抛运动规律得:212h gt =⑤ d vt =⑥物体沿平台运动过程由能量守恒定律得:212p E mgx mv μ-=⑦ 联立①②⑤⑥⑦式,代入数据得2/v m s =⑧6.48p E J =⑨7.木块A 、B 质量分别为5A m kg =和7B m kg =,与原长为020l cm =、劲度系数为100/k N m =轻弹簧相连接,A 、B 系统置于水平地面上静止不动,此时弹簧被压缩了5c m .已知A 、B 与水平地面之间的动摩擦因数均为0.2μ=,可认为最大静摩擦力等于滑动摩擦力,现用水平推力F=2N 作用在木块A 上,如图所示(g 取10m/s 2),(1)求此时A ,B 受到的摩擦力的大小和方向;(2)当水平推力不断增大,求B 即将开始滑动时,A 、B 之间的距离 (3)若水平推力随时间变化满足以下关系12(),2F t N =+ 求A 、B 都仍能保持静止状态的时间,并作出在A 开始滑动前A 受到的摩擦力图像.(规定向左为正方向)【答案】(1)3,A f N =向右,3,B f N =向左;(2)11cm ,(3).【解析】试题分析:(1)分析A 、B 的最大静摩擦力大小关系,根据平衡条件进行求解;(2)当B 要开始滑动时弹簧弹力不变,则A 、B 的距离等于原长减去压缩量;(3)A 开始滑动时B 静止,则弹簧弹力不变,求出此时的时间,在A 没有滑动前,根据平衡条件求出A f t -的表达式,并作出图象.(1)由:max 10A A f f m g N μ===静动,max 14B B f f m g N μ===静动 此时假设A 、B 均仍保持静止状态由题得:5F kx N ==弹 对A 有:A F F f -=弹max 3A A f N f ∴=<方向向右;对B 有:B F f =弹max 5B B f N f ∴=<方向向左 则假设成立(2)当B 要开始滑动时,此时,max F f =弹静 由max B f f m g μ==静动 则:B kx m g μ'=0.1414B m gx m cm kμ∴='==A 、B 间距离: 011s l x cm '=-=(3)在A 没有开始滑动前,A 处于静止状态,弹簧弹力不变 则有:A F f F +=弹 得:13()2A f F F t N =-=-弹 设t 时刻A 开始滑动,此时B 静止,弹簧弹力不变 对A: max A F f F +=弹 代入数据解得:t=26s作出在A 开始滑动前A 受到的摩擦力A f t -图象如图所示8.草逐渐成为我们浙江一项新兴娱乐活动。
牛顿运动定律试题(含答案)
高考物理牛顿运动定律试题一、单解选择题1.设洒水车的牵引力不变,所受阻力跟车重成正比,洒水车在平直路面上行驶,原来是匀速的,开始洒水后,它的运动情况将 ( ) A . 继续做匀速运动 B .变为做匀加速运动 C .变为做变加速运动 D .变为做匀减速运动2.如图,物体m 原来以加速度a 沿斜面匀加速下滑,现在物体上施加一竖直向下的恒力F ,则下列说法中正确的是( ) ①物体m 受到的摩擦力增大 ②物体m 受到的摩擦力不变 ③物体m 下滑的加速度不变 ④物体m 下滑的加速度增大 A .①③ B .①④ C .②③ D .②④3.一个物体受到的合力F 如图所示,该力的大小不变,方向随时间t周期性变化,正力表示力的方向向东,负力表示力的方向向西,力的总作用时间足够长,将物体在下面哪个时刻由静止释放,物体可以运动到出发点的西边且离出发点很远的地方 ( ) A .t=0时 B. t=t1时 C .t=t2时 D .t=t3时4.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量m 的小球,小球上下振动时框架始终没有跳起,当框架对地面压力为零的瞬间,小球的加速大小为( ) A .g B .m g m M /)(-C .m Mg /D .m g m M /)(+5.如图所示,物块A 、B 叠放在水平桌面上,装砂的小桶C 通过细线牵引A 、B 一起在水平桌面上向右加速运动,设A 、B 间的摩擦力为1f ,B 与桌面间的摩擦力为2f ,若增大C 桶 内砂的质量,而A 、B 仍一起向右运动,则摩擦力1f 和2f 的大小关系是( )A .1f 不变,2f 变大B .1f 变大,2f 不变C .1f 和2f 都变大D .1f 和2f 都不变6.如图所示,又一箱装的很满的土豆,以一定的安装速度在动摩擦因数为μ的水平地面上做匀减速运动,不计其他外力及空气阻力,则中间一质量为m 的土豆A 受到其他土豆对它的作用力大小应该是( )A .mgB .mg μC .12+μmg D .21μ-mg7.如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为L ,劲度系数为k 的轻弹簧连结起来,木块与地面间的滑动摩擦因数为μ,现用一水平力向右位木块2,当两木块一起匀速运动时两木块之间的距离是 ( )A .gm kl 1μ+B .gm m kl )(21++μC .gm kl 2μ+D .gm m m m k l )(2121++μ8.如图所示,传送带与地面间的夹角为37°, AB 间传动带长度为16m ,传送带以10m/s 的速度逆时针匀速转动,在传送带顶端A 无初速地释放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数为0.5,则物体由A 运动到B 所需时间为(g=10m/s 2 ,sin37°=0.6)A .1sB .2sC .4sD .s 5549.如图所示,倾角为30°的光滑杆上套有一个小球和两根轻质弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定与杆上,小球处于静止状态,设拔去销钉M (撤去弹簧a )瞬间,小球加速度大小为6m/s2,若不拔去销钉M ,而拔去销钉N (撤去弹簧b )瞬间,小球的加速度可能为(g 取10m/s 2) ( ) ①11 m/s2,沿杆向上 ②11 m/s2,沿杆向下③1 m/s2,沿杆向上 ④1 m/s2,沿杆向下 A .①③ B .①④ C .②③ D .②④10.如图所示,一质量为M 的木板静止在光滑水平地面上,现有一质量为m 的小滑块以一定的初速度0v 从木板的左端开始向木板的右端滑行,滑块和木板的水平速度大小随时间变化的情况如图乙所示,根据图象作出如下判断 ①滑块始终与木板存在相对运动②滑块未能滑出木板 ③滑块的质量m 大于木板的质量M④在1t 时刻滑块从木板上滑出正确的是( ) A .①③④ B .②③④ C .②③ D .②④ 二、填空题11.如图所示,3根轻绳一端分别系住质量为m1,m2,m3的物体,它们的另一端分别通过光滑定滑轮系于O 点,整个装置处于平衡状态时,Oa 与竖直方向成30°Ob 处于水平状态,则321::m m m =_______.12.匀速上升的气球总质量为24kg ,当它抛下一物体后,气球以2m/s 2的加速度上升,则抛下质量为_______kg.(设气球浮力不变,g=10m/s 2)13.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间的变化图象如图所示,图中时刻t 1、t 2、t 3、t 4、t 5、t 6为已知,oa 段和cd 段为直线,则根据此图象可知,小孩和蹦床相接触的时间为_______14.如图所示,质量分别为M 和m 的物体用细绳连接, 悬挂在定滑轮下,已知M >m ,不计滑轮质量及一切摩擦,则它们的加速度大小为a = _______,天棚对滑轮的拉力为F= _______ 15.一质量为1kg 的小球放在正方形盒内,正方形的内边长恰好等于小球的直径,现将盒子如图所示的状态竖直向上抛出,盒子在上升过程中因为受到空气阻力,其加速度大小为112/s m ,则在上升过程中,小球对盒底的压力为F1=_______N ,小球对盒顶的压力F2=_______N (g 取10m/s 2) 三、计算题16.(10分)竖立在地面上的一支玩具火箭,质量kg m 20.0=,火药点燃后在喷气的2秒内使火箭以g a 5.1=的加速度加速上升,不计空气阻力及喷出的气体质量,求:(1)火箭受到的推力是多大?(2)火箭从飞离地面到落回地面共经历多长时间?(保留两位有效数字、g 取10m/s 2) 17.(10分)某中学生身高1.80m ,质量70kg ,他站立举臂70kg 。
高中物理牛顿运动定律经典练习题(含答案)
牛顿运动定律练习一1.(2021年河南省十所名校高三第三次联考试题, 7) 如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为m的物块从斜面体上由静止释放,以加速度a=开始下滑,取出发点为参考点,那么图乙中能正确描述物块的速率v、动能E k、势能E P、机械能E、时间t、位移x关系的是2.(2021年河南省十所名校高三第三次联考试题, 2) 如下图,两个物体以相同大小的初速度从O点同时分别向x 轴正、负方向水平抛出,它们的轨迹恰好满足抛物线方程y=,那么以下说法正确的选项是〔曲率半径简单地理解为在曲线上一点附近与之重合的圆弧的最大半径〕A .物体被抛出时的初速度为B.物体被抛出时的初速度为C.O点的曲率半径为kD.O点的曲率半径为2k3.(湖北省七市2021届高三理综4月联考模拟试卷,6)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,该行星的质量是地球质量的5倍,直径是地球直径的1.5倍。
设想在该行星外表附近绕行星沿圆轨道运行的人造卫星的动能为Ek1,在地球外表附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为Ek2,那么Ek1: Ek2为A. 7.5B. 3.33C. 0.34.(山东省淄博市2021届高三下学期4月复习阶段性检测,7)在倾角为的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。
现用一平行于斜面向上的恒力F拉物块A 使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v。
那么此时A .拉力做功的瞬时功率为B .物块B满足C.物块A的加速度为D.弹簧弹性势能的增加量为5.(山东省淄博市2021届高三下学期4月复习阶段性检测,1)用比值法定义物理量是物理学中一种很重要的思想方法,以下物理量由比值法定义正确的选项是〔〕A .加速度B.磁感应强度C.电容D .电流强度6.(四川成都市2021届高中毕业班第三次诊断性检测,7)右图为某节能运输系统的简化示意图。
牛顿运动定律试题及答案
高一物理牛顿运动定律测试一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。
1.下列说法正确的是A.力是物体运动的原因B.力是维持物体运动的原因C.力是物体产生加速度的原因D.力是使物体惯性改变的原因2.下列说法正确的是A.加速行驶的汽车比它减速行驶时的惯性小B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性3.在国际单位制中,力学的三个基本单位是A.kg 、m 、m / s2 B.kg 、 m / s 、 NC.kg 、m 、 s D.kg、 m / s2 、N4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是A.1 m / s2和7 m / s2 B.5m / s2和8m / s2C.6 m / s2和8 m / s2 D.0 m / s2和8m / s26.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 )A.是物体重力的0.3倍 B.是物体重力的0.7倍C.是物体重力的1.7倍 D.物体质量未知,无法判断8.一小车在牵引力作用下在水平面上做匀速直线运动,某时刻起,牵引力逐渐减小直到为零,在此过程中小车仍沿原来运动方向运动,则此过程中,小车的加速度A.保持不变 B.逐渐减小,方向与运动方向相同C.逐渐增大,方向与运动方向相同 D.逐渐增大,方向与运动方向相反9、如图所示,在平直轨道做匀变速运动的车厢中,用轻细线悬挂一个小球,悬线与竖直方向保持恒定的夹角θ,则A.小车一定具有方向向左的加速度B.小车一定具有方向向右的加速度C.小车的加速度大小为gtanθD.小车的加速度大小为gcotθ10.在光滑水平面上有一物块受水平恒力F的作用而运动,在其正前方固定一个足够长的轻质弹簧,如图所示,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法正确的是A.物块接触弹簧后即做减速运动B.物块接触弹簧后先加速后减速C.当弹簧处于压缩量最大时,物块的加速度不等于零D.当物块的速度为零时,它所受的合力不为零选择题答题框二、填空题:(每空3分,共14分)11.使质量是1 kg的物体产生1 m / s2 的加速度的合力大小叫做_____________。
牛顿定律习题附答案
1.春天,河边的湿地很松软,人在湿地上行走时容易下陷,在人下陷时( ) A .人对湿地地面的压力等于他受的重力.人对湿地地面的压力等于他受的重力B .人对湿地地面的压力大于他受的重力.人对湿地地面的压力大于他受的重力C .人对湿地地面的压力大于湿地地面对他的支持力.人对湿地地面的压力大于湿地地面对他的支持力D .人对湿地地面的压力等于湿地地面对他的支持力.人对湿地地面的压力等于湿地地面对他的支持力2.质量m =1 kg 的物体在光滑平面上运动,初速度大小为2 m/s.在物体运动的直线上施以一个水平恒力,经过t =1 s ,速度大小变为4 m/s ,则这个力的大小可能是( ) A .2 N B .4 N C .6 N D .8 N 2.AC 【解析】【解析】 物体的加速度可能是2 m/s2,也可能是6 m/s2,根据牛顿第二定律,这个力的大小可能是2 N ,也可能是6 N ,所以答案是AC. 3.3. 如图L 2-5所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀加速运动的电梯内,细线中的拉力为F ,此时突然剪断细线,在线断的瞬间,弹簧的弹力的大小和小球A 的加速度大小分别为( ) 图L 2-5 A .2F 3,2F 3m +g B .F 3,2F 3m+g C .2F 3,F 3m+g D .F 3,F 3m+g 3.A 【解析】【解析】 在线剪断前,对A 、B 及弹簧整体:F -3mg =3ma ,对B :F 弹-2mg =2ma ,由此得:F 弹=2F 3,线剪断后的瞬间,弹力不变,此时对A 球来说,受到向下的重力和弹力,有:F 弹+mg =maA ,得:aA =2F 3m+g ,故A 对.对. 4.某中学实验小组的同学在电梯的天花板上固定一根弹簧秤,使其测量挂钩(跟弹簧相连的挂钩)向下,并在钩上悬挂一个重为10 10 NN 的钩码.弹簧秤弹力随时间变化的规律(如图所示的F -t 图象)可通过一传感器直接得出.根据F -t 图象,下列分析正确的是图象,下列分析正确的是A .从时刻t1到t2,钩码处于超重状态,钩码处于超重状态B .从时刻t3到t4,钩码处于失重状态,钩码处于失重状态C .电梯可能开始停在15楼,先加速向下,接着匀速向下,再减速向下,最后停在1楼D .电梯可能开始停在1楼,先加速向上,接着匀速向上,再减速向上,最后停在15楼解析解析 0~t1阶段,物体处于平衡(静止或匀速)状态;t1~t2阶段,物体处于失重(加速下降或减速上升)状态;t2~t3阶段,阶段,物体处于平衡状态;物体处于平衡状态;t3~t4阶段,物体处于超重(加速上升或减速下降)状态,故本题只有选项C 正确.正确.答案答案 C 5将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体则物体A .刚抛出时的速度最大.刚抛出时的速度最大B .在最高点的加速度为零.在最高点的加速度为零C .上升时间大于下落时间.上升时间大于下落时间D .上升时的加速度等于下落时的加速度.上升时的加速度等于下落时的加速度解析解析 最高点速度为零,物体受重力和阻力,合力不可能为零,加速度不为零,最高点速度为零,物体受重力和阻力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a1t21,下落时做匀加速运动,h =12a2t22,又因为a1=mg +Ff m ,a2=mg -Ff m,所以t1<t2,故C 、D 错误.空气阻力始终做负功,故A 对.对. 答案答案 A 6. 如图3-2-15所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速运动.在传送带的上端轻轻放置一个质量为m 的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图3-2-16中能客观地反映小木块的速度随时间变化关系的是中能客观地反映小木块的速度随时间变化关系的是解析解析 小木块刚放上去后,小木块刚放上去后,在速度小于在速度小于v0前,木块受到的滑动摩擦力沿斜面向下;木块受到的滑动摩擦力沿斜面向下;在木块速在木块速度等于v0后,受到的滑动摩擦力沿斜面向上.答案C 正确.正确.答案答案 C 7.(2010·江苏苏、锡、常、镇四市一模)如图3-2-20所示,长方体物块C 置于水平地面上,物块A 、B 用不可伸长的轻质细绳通过滑轮连接(不计滑轮与绳之间的摩擦),A 物块与C 物块光滑接触,整个系统中的A 、B 、C 三物块在水平恒定推力F 作用下以相同的加速度一起向左运动.下列说法正确的是运动.下列说法正确的是A .B 与C 之间的接触面可能是光滑的之间的接触面可能是光滑的B .若推力F 增大,则绳子对B 的拉力必定增大的拉力必定增大C .若推力F 增大,则定滑轮所受压力必定增大增大,则定滑轮所受压力必定增大D .若推力F 增大,则C 物块对A 物块的弹力必定增大物块的弹力必定增大解析解析 对整体,F -μm 总g =ma 总①;对物体A ,FT =mAg ②,FN =mAa ③;对物体B ,FT±Ff =mBa ④,摩擦力可能为零,也可能向左或向右,主要取决于系统加速度的大小,选项A 正确;若推力F 增大,系统加速度增大,由③式得,选项D 正确;若推力F 增大而物体B 相对静止,则FT =mAg 不变,选项B 、C 均错.均错.答案答案 AD 9.如图所示,如图所示,竖直放置在水平面上的轻弹簧上放着质量为竖直放置在水平面上的轻弹簧上放着质量为2 kg 的物体A ,处于静止状态.处于静止状态.若若将一个质量为3 kg 的物体B 竖直向下轻放在A 上,则放在A 上的一瞬间B 对A 的压力大小为的重力,即F=20 N上的一瞬间,弹簧的弹力不变,对整体据牛顿第二定律得FN=12 N,选项绷紧的水平传送带始终以恒定速率甲所示,绷紧的水平传送带始终以恒定速率图1-3 A. t2时刻,小物块离A处的距离达到最大处的距离达到最大B. t2时刻,小物块相对传送带滑动的距离达到最大时刻,小物块相对传送带滑动的距离达到最大C. 0~t2时间内,小物块受到的摩擦力方向先向右后向左时间内,小物块受到的摩擦力方向先向右后向左D. 0~t3时间内,小物块始终受到大小不变的摩擦力作用时间内,小物块始终受到大小不变的摩擦力作用10.C5[2011·福建卷] B【解析】结合图乙,结合图乙,在t1时刻运动到最左边,A错;在t1~t2时间内,物体往右做匀加速直线运动,但由于速度小于传送带的速度,物体与传送带的相对位移仍在增大,内,物体相对传送带向左运动,一直受到向右的滑动摩擦力,错.体相对传送带静止,摩擦力为0,CD错.11.2011·三明模拟2011年初,我国南方多次遭受严重的冰灾,知汽车橡胶轮胎与普通路面的动摩擦因数为度沿水平普通路面行驶时,急刹车后(设车轮立即停止转动么,在冰冻天气,该汽车若以同样速度在结了冰的水平路面上行驶,急刹车后汽车继续滑行=2a1x=1at2. =12a 竿质量m2=10 kg ,g =图3-2-24 (1)求竹竿上的人下滑过程中的最大速度(2)请估测竹竿的长度h. 解析解析 (1)由图可知,0~速度为a1,则,则 =G1-F1-G2m2==F2-G2-G1m1=0~4 s ,下滑距离为h1,h1=v12t1=8 m 4 s ~6 s ,下滑距离为h2,h2=v12t2=4 m 竹竿的长度h =h1+h2=12 m. 答案答案 (1)4 m/s(2)12 m 。
(完整版)牛顿定律练习题及答案
牛顿运动定律—练习题一、不定项选择题1.下列关于力和运动关系的说法中,正确的是()A.没有外力作用时,物体不会运动,这是牛顿第一定律的体现B.物体受力越大,运动的越快,这是符合牛顿第二定律的C.物体所受合外力为零,则速度一定为零;物体所受合外力不为零,则其速度也一定不为零D.物体所受的合外力最大时,而速度却可以为零;物体所受的合外力最小时,而速度却可以最大2.在国际单位制中,功率的单位“瓦”是导出单位,用基本单位表示,下列正确的是()A、焦/秒B、牛·米/秒C、千克·米2/秒2D、千克·米2/秒33.关于牛顿第三定律,下列说法正确的是( )A.作用力先于反作用力产生,反作用力是由于作用力引起的B.作用力变化,反作用力也必然同时发生变化C.任何一个力的产生必涉及两个物体,它总有反作用力D.一对作用力和反作用力的合力一定为零4.两物体A、B静止于同一水平面上,与水平面间的动摩擦因数分别为μA、μB,它们的质量分别为m A、m B,用平行于水平面的力F拉动物体A、B,所得加速度a与拉力F的关系如图中的A、B直线所示,则()A、μA=μB,m A>m BB、μA>μB,m A<m BC、μA=μB,m A=m BD、μA<μB,m A>m B5.如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的阻力恒定,则()A.物体从A到O点先加速后减速A OB B.物体运动到O点时所受的合外力为零,速度最大C.物体从A到O加速运动,从O到B减速运动D.物体从A到O的过程加速度逐渐减小6.在以加速度a匀加速上升的电梯中,有一个质量为m的人,下述说法正确的是 ( )A.此人对地球的吸引力为m(g+a) B.此人对电梯的压力为m(g-a)C.此人受的重力为m(g+a) D.此人的视重为m(g+a)7.如图所示,n个质量为m的相同木块并列放在水平面上,木块跟水平面间的动摩擦因数为μ,当对1木块施加一个水平向右的推力F时,木块4对木块3的压力大小为( )A .FB .3F /nC .F /(n -3)D .(n -3)F /n8.如图所示,吊篮A 、物体B 、物体C 的质量相等,弹簧质量不计,B 和C 分别固定在弹簧两端,放在吊篮的水平底板上静止不动。
最新高中物理牛顿运动定律题20套(带答案)
最新高中物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率不变.(取g =10m/s 2,sin37°=0.6)求:(1)物块从a 运动到b 的时间; (2)物块从b 运动到c 的时间. 【答案】(1)0.4s ;(2)1.25s . 【解析】 【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+= 2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v v s a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=3.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。
(物理)物理牛顿运动定律题20套(带答案)含解析
(2)无人机在竖直上升过程中所受阻力Ff的大小;
(3)无人机从地面起飞竖直上升至离地面h=30m的高空所需的最短时间.
【答案】(1) (2) (3)
【解析】
(1)根据题意可得
(2)由牛顿第二定律 得
(3)竖直向上加速阶段 ,
匀速阶段
故
10.如图所示,航空母舰上的水平起飞跑道长度L=160m.一架质量为m=2.0×104kg的飞机从跑道的始端开始,在大小恒为F=1.2×105N的动力作用下,飞机做匀加速直线运动,在运动过程中飞机受到的平均阻力大小为Ff=2×104N.飞机可视为质点,取g=10m/s2.求:
解得:
(2)滑块从K至B的过程,由动能定理可知:
根据功能关系有:
解得:
3.如图甲所示,一长木板静止在水平地面上,在 时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动 图象如图所示 已知小物块与长木板的质量均为 ,小物块与长木板间及长木板与地面间均有摩擦,经1s后小物块与长木板相对静止 ,求:
求:(1)求电梯加速阶段的加速度及加速运动的时间;
(2)若减速阶段与加速阶段的加速度大小相等,求电梯到达观光平台上行的高度;
【答案】(1) 20s (2)540m
【解析】
【分析】
(1)在加速阶段,根据牛顿第二定律和运动学公式即可求解;
(2)电梯先做加速,后做匀速,在做减速,根据运动学公式或速度与时间关系图像即可求得;
(1)飞机在水平跑道运动的加速度大小;
(2)若航空母舰静止不动,飞机加速到跑道末端时速度大小;
(3)若航空母舰沿飞机起飞的方向以10m/s匀速运动,飞机从始端启动到跑道末端离开.这段时间内航空母舰对地位移大小.
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.某物理兴趣小组设计了一个货物传送装置模型,如图所示。
水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。
传送带BC 间距0.8L m =,以01/v m s =顺时针运转。
两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。
用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。
已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。
求:(1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2v mgcos θm r=解得: v 0.8m /s =对滑块在传送带上的分析可知:mgsin θμmgcos θ=故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v= 解得:t 1s =(2)滑块从K 至B 的过程,由动能定理可知:2f 1W W mv 2-=弹 根据功能关系有: p W E =弹 解得:f W 0.68J =2.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (255/s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/5v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .3.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为θ=37°的坡顶A 由静止开始自由下滑,滑至坡底B (B 处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C 处,如图所示.不计空气阻力,坡长为l =26 m ,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)滑雪者从静止开始到动摩擦因数发生变化经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪地上运动的最大距离. 【答案】1s 99.2m【解析】 【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度、位移和时间. 【详解】(1)由牛顿第二定律得滑雪者在斜坡的加速度:a 1==4m/s 2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t==1s (2)由静止到动摩擦因素发生变化的位移:x 1=a 1t 2=2m 动摩擦因数变化后,由牛顿第二定律得加速度:a 2==5m/s 2 由v B 2-v 2=2a 2(L-x 1)解得滑雪者到达B 处时的速度:v B =16m/s(3)设滑雪者速度由v B =16m/s 减速到v 1=4m/s 期间运动的位移为x 3,则由动能定理有:;解得x 3=96m速度由v 1=4m/s 减速到零期间运动的位移为x 4,则由动能定理有:;解得 x 4=3.2m所以滑雪者在水平雪地上运动的最大距离为x=x 3+x 4=96+ 3.2=99.2m4.如图甲所示,质量为m 的A 放在足够高的平台上,平台表面光滑.质量也为m 的物块B 放在水平地面上,物块B 与劲度系数为k 的轻质弹簧相连,弹簧 与物块A 用绕过定滑轮的轻绳相连,轻绳刚好绷紧.现给物块A 施加水平向右的拉力F (未知),使物块A 做初速度为零的匀加速直线运动,加速度为a ,重力加速度为,g A B 、均可视为质点.(1)当物块B 刚好要离开地面时,拉力F 的大小及物块A 的速度大小分别为多少; (2)若将物块A 换成物块C ,拉力F 的方向与水平方向成037θ=角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块C 的质量应满足什么条件?(0sin 370.6,cos370.8==)【答案】(1)2;amg F ma mg v k=+=(2)343C mg m g a ≥- 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时,设弹簧的伸长量为x ,物块A 的速度大小为v ,对物块B 受力分析有mg kx = ,得:mgx k =. 根据22v ax =解得:22amgv ax k==对物体A:F T ma -=; 对物体B:T=mg , 解得F=ma+mg ;(2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:1cos C F T m a θ-=,其中1T kx mg =≤;竖直方向:sin C F m g θ≤; 联立解得 343C mgm g a≥-5.某研究性学习小组利用图a所示的实验装置探究物块在恒力F作用下加速度与斜面倾角的关系。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
牛顿运动定律习题集(含答案)
物理训练题 之 牛顿运动定律一、选择题1. 关于惯性,以下说法正确的是: ( )A 、在宇宙飞船内,由于物体失重,所以物体的惯性消失B 、在月球上物体的惯性只是它在地球上的1/6C 、质量相同的物体,速度较大的惯性一定大D 、质量是物体惯性的量度,惯性与速度及物体的受力情况无关2. 理想实验是科学研究中的一种重要方法,它把可靠事实和理论思维结合起来,可以深刻地揭示自然规律。
以下实验中属于理想实验的是: ( ) A 、验证平行四边形定则 B 、伽利略的斜面实验C 、用打点计时器测物体的加速度D 、利用自由落体运动测定反应时间3. 关于作用力和反作用力,以下说法正确的是: ( ) A 、作用力与它的反作用力总是一对平衡力 B 、地球对物体的作用力比物体对地球的作用力大 C 、作用力与反作用力一定是性质相同的力D 、凡是大小相等,方向相反,作用在同一条直线上的,并且分别作用在不同物体上的两个力一定是一对作用力和反作用力4. 在光滑水平面上,一个质量为m 的物体,受到的水平拉力为F 。
物体由静止开始做匀加速直线运动,经过时间t ,物体的位移为s ,速度为v ,则: ( ) A 、由公式α=可知,加速度a 由速度的变化量和时间决定B 、由公式a 由物体受到的合力和物体的质量决定C 、由公式αa 由物体的速度和位移s 决定D 、由公式αa 由物体的位移s 和时间决定5.力F 1a 1=3m/s 2,力F 2作用在该物体上产生的加速度a 2=4m/s 2,则F 1和F 2( ) A 、 7m/s 2B 、 5m/s 2C 、 1m/s 2D 、 8m/s26.电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10N ,在某时刻电梯中的人观察到弹簧秤的示数变为8N ,关于电梯的运动,以下说法正确的是: ( ) A 、电梯可能向上加速运动,加速度大小为2m/s 2B 、电梯可能向下加速运动,加速度大小为2m/s 2C 、电梯可能向上减速运动,加速度大小为2m/s 2D 、电梯可能向下减速运动,加速度大小为2m/s 2 7.下国际单位制中的单位,属于基本单位的是:( ) A 、力的单位:N B 、 质量的单位:kg C 、 长度的单位:m D 、时间的单位:s8. 关于物体的运动状态和所受合力的关系,以下说法正确的是: ( ) A 、物体所受外力为零,物体一定处于静止状态 B 、只有合力发生变化时,物体的运动状态才会发生变化 aD、物体所受的合力不变且不为零,物体的运动状态一定变化9.以下说法中正确的是: ( )A、牛顿第一定律反映了物体不受外力作用时的运动规律B、静止的物体一定不受外力的作用C、在水平地面上滑动的木块最终要停下来,是由于没有外力维持木块的运动D、物体运动状态发生变化时,物体必须受到外力作用10.做自由落体运动的物体,如果下落过程中某时刻重力突然消失,物体的运动情况将是:A、悬浮在空中不动B、速度逐渐减小C、保持一定速度向下匀速直线运动D、无法判断11.人从行驶的汽车上跳下来容易: ( )A 、向汽车行驶的方向跌倒 B、向汽车行驶的反方向跌倒C、从向车右侧方向跌倒D、向车左侧方向跌倒12.下面说法中正确的是: ( )A、只有运动的物体才能表现出它的惯性;B、只有静止的物体才能表现出它的惯性C、物体的运动状态发生变化时,它不具有惯性D、不论物体处于什么状态,它都具有惯性13.下列事例中,利用了物体的惯性的是:( )A、跳远运动员在起跳前的助跑运动B、跳伞运动员在落地前打开降落伞C、自行车轮胎有凹凸不平的花纹D、铁饼运动员在掷出铁饼前快速旋转14.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为: ( )A、人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动;B、人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动;C、人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已;D、人跳起后直到落地,在水平方向上人和车始终具有相同的速度。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.3.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
高中物理牛顿运动定律题20套(带答案)含解析
高中物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=2.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F 1、F 2和F 3大小分别为20.8N 、20.4N 和18.4N ,货物受到的阻力恒为其重力的0.02倍.g 取10m/s 2.计算: (1)货物的质量m ;(2)货物上升过程中的最大动能E km 及东东家阳台距地面的高度h . 【答案】(1) m =2kg (2)2112km E mv J == h =56m 【解析】 【分析】 【详解】(1)在货物匀速上升的过程中 由平衡条件得2F mg f =+ 其中0.02f mg = 解得2kg m =(2)设整个过程中的最大速度为v ,在货物匀减速运动阶段 由牛顿运动定律得33–mg f F ma += 由运动学公式得330v a t =- 解得1m v s = 最大动能211J 2m k E mv == 减速阶段的位移3310.5m 2x vt == 匀速阶段的位移2253m x vt ==加速阶段,由牛顿运动定律得11––F mg f ma =,由运动学公式得2112a x v =,解得1 2.5m x =阳台距地面的高度12356m h x x x =++=3.如图所示,一段平直的马路上,一辆校车从一个红绿灯口由静止开始做匀加速直线运动,经36 m 速度达到43.2 km/h ;随后保持这一速度做匀速直线运动,经过20 s ,行驶到下一个路口时,司机发现前方信号灯为红灯便立即刹车,校车匀减速直线行驶36 m 后恰好停止.(1)求校车匀加速运动的加速度大小a 1;(2)若校车总质量为4 500 kg ,求校车刹车时所受的阻力大小; (3)若校车内坐有一质量为30 kg 的学生,求该学生在校车加速过程中座椅对学生的作用力F 的大小.(取g =10 m/s 2,结果可用根式表示)【答案】(1)22/m s (2)9000N (3)26N 【解析】 【分析】(1)根据匀加速运动的速度位移关系可求加速度;(2)根据匀减速运动的速度位移关系可求加速度;根据牛顿第二定律可求阻力; (3)座椅对学生的作用力的水平分力等于mg ,F 的竖直分力的竖直分力等于重力,水平分力提供加速度.根据力的合成可求.【详解】(1)由匀加速直线运动公式可知v 2=2a 1x 1, 得加速度a 1=2 m/s 2(2)由匀减速直线运动公式得:0-v 2=-2a 2x 3 解得a 2=2 m/s 2F 阻=Ma 2=9000 N.(3)匀加速运动过程中,座椅对学生的作用力为F ,F 的竖直分力等于mg ,F 的水平分力由牛顿第二定律可得F 水平=ma 1 F =()()221mg ma +得F =6026 N.4.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲 Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得22221==1x h OP x h OQ ++甲乙5.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.6.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg -N =mg 解得:N =0根据牛顿第三定律有:N′=N =0,即球对手的压力为零 在座舱匀减速下落阶段,根据牛顿第二定律有mg -N =ma根据匀变速直线运动规律有:a =2202v h -=-15m/s 2解得:N =75N (2分)根据牛顿第三定律有:N′=N =75N ,即球对手的压力为75N 考点:牛顿第二及第三定律的应用7.木块A 、B 质量分别为5A m kg =和7B m kg =,与原长为020l cm =、劲度系数为100/k N m =轻弹簧相连接,A 、B 系统置于水平地面上静止不动,此时弹簧被压缩了5c m .已知A 、B 与水平地面之间的动摩擦因数均为0.2μ=,可认为最大静摩擦力等于滑动摩擦力,现用水平推力F=2N 作用在木块A 上,如图所示(g 取10m/s 2),(1)求此时A ,B 受到的摩擦力的大小和方向;(2)当水平推力不断增大,求B 即将开始滑动时,A 、B 之间的距离 (3)若水平推力随时间变化满足以下关系12(),2F t N =+ 求A 、B 都仍能保持静止状态的时间,并作出在A 开始滑动前A 受到的摩擦力图像.(规定向左为正方向)【答案】(1)3,A f N =向右,3,B f N =向左;(2)11cm ,(3).【解析】试题分析:(1)分析A 、B 的最大静摩擦力大小关系,根据平衡条件进行求解;(2)当B 要开始滑动时弹簧弹力不变,则A 、B 的距离等于原长减去压缩量;(3)A 开始滑动时B 静止,则弹簧弹力不变,求出此时的时间,在A 没有滑动前,根据平衡条件求出A f t -的表达式,并作出图象.(1)由:max 10A A f f m g N μ===静动,max 14B B f f m g N μ===静动 此时假设A 、B 均仍保持静止状态 由题得:5F kx N ==弹 对A 有:A F F f -=弹max 3A A f N f ∴=<方向向右;对B 有:B F f =弹max 5B B f N f ∴=<方向向左 则假设成立(2)当B 要开始滑动时,此时,max F f =弹静 由max B f f m g μ==静动 则:B kx m g μ'=0.1414B m gx m cm kμ∴='==A 、B 间距离: 011s l x cm '=-=(3)在A 没有开始滑动前,A 处于静止状态,弹簧弹力不变 则有:A F f F +=弹 得:13()2A f F F t N =-=-弹 设t 时刻A 开始滑动,此时B 静止,弹簧弹力不变 对A: max A F f F +=弹 代入数据解得:t=26s作出在A 开始滑动前A 受到的摩擦力A f t -图象如图所示8.如图,t=0时,水平桌面上质量为m=1kg 的滑块获得02/v m s =的水平向右初速度,同时对滑块施加一个水平向左的恒定拉力,前2s 内滑块的速度-时间关系图线如图.(1)求前2s 内滑块的位移大小和方向; (2)分别求滑块所受拉力和摩擦力大小;(3)若在t=2s 时将拉力撤去,则撤力后滑块还能滑行多远距离?【答案】(1)0.6m ,方向与初速度方向相同;(2)1.4N 和0.6N ;(3)0.53m . 【解析】 【分析】(1)根据v-t 图象中图线与坐标轴所围“面积”表示位移,根据几何知识求出位移. (2)速度-时间图象中直线的斜率等于物体的加速度.根据数学知识求出斜率,得到加速度.再由牛顿第二定律求拉力和摩擦力.(3)撤去拉力后,由牛顿第二定律和运动学公式结合求滑块能滑行的距离.【详解】(1)前2s 内滑块的位移大小为:x=12×1×2-12×1×0.8=0.6m 方向与初速度方向相同. (2)0-1s 内加速度大小为:211122/1v a m s t ===V V 根据牛顿第二定律得:F+f=ma 1…① 1-2s 内加速度大小为:22220.80.8/1v a m s t ===V V 根据牛顿第二定律得:F-f=ma 2…② 联立①②解得:F=1.4N ,f=0.6N (3)撤去拉力后,加速度大小为:230.60.6/1f a m s m === 还能滑行的距离为:22230880.53220.615v s m m a ===≈⨯. 【点睛】对于速度图象问题,抓住“斜率”等于加速度,“面积”等于位移是关键.知道加速度时,根据牛顿第二定律求力.9.质量为0.1kg 的弹性球从空中某高度由静止开始下落,该下落过程对应的v -t 图线如图所示;球与水平地面相碰后反弹,离开地面时的速度大小为碰撞前的23.该球受到的空气阻力大小恒为f ,取g =10m /s 2,求:(1)弹性球受到的空气阻力f 的大小; (2)弹性球第一次碰撞后反弹的最大高度h . 【答案】(1)0.4N (2)17m 【解析】试题分析:(1)根据图象得2408/0.5a m s -==, 由牛顿第二定律:mg-f=ma , 得f=m (g-a )=0.2×(10-8)=0.4N . (2)由题意反弹速度v′=34v =3m/s .又由牛顿第二定律:mg+f=ma′,得20.2100.412/0.2a m s ⨯+'==.故反弹高度为:223322128v h m a ''⨯===考点:v-t 图像;牛顿第二定律的应用【名师点睛】本题关键是对图象的应用,由图象的斜率等于物体的加速度得到加速度,然后根据牛顿第二定律列得方程才能得到阻力,进而解答全题.10.如图,足够长的斜面倾角θ=37°.一个物体以v 0=12m/s 的初速度从斜面A 点处沿斜面向上运动.物体与斜面间的动摩擦因数为μ=0.25.已知重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)物体沿斜面上滑时的加速度大小a 1; (2)物体沿斜面上滑的最大距离x ;(3)物体沿斜面到达最高点后返回下滑时的加速度大小a 2; (4)物体从A 点出发到再次回到A 点运动的总时间t . 【答案】(1)物体沿斜面上滑时的加速度大小a 1为8m/s 2; (2)物体沿斜面上滑的最大距离x 为9m ;(3)物体沿斜面到达最高点后返回下滑时的加速度大小a 2为4m/s 2; (4)物体从A 点出发到再次回到A 点运动的总时间3.62s . 【解析】试题分析:(1)沿斜面向上运动,由牛顿第二定律得1sin cos mg mg ma θμθ+=a 1=8m/s 2(2)物体沿斜面上滑由2012=v a x ,得x=9m(3)物体沿斜面返回下滑时2sin cos mg mg ma θμθ-=,则a 2=4m/s 2(4)物体从A 点出发到再次回到A 点运动的总时间t . 沿斜面向上运动011v a t =,沿斜面向下运动22212x a t = 则t=t 1+t 2=3(21)2s≈3.62s考点:考查了牛顿第二定律与运动学公式的应用。
高中物理牛顿运动定律题20套(带答案)及解析
高中物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图1所示,在水平面上有一质量为m1=1kg的足够长的木板,其上叠放一质量为m2=2kg的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等・现给木块施加随时间t增大的水平拉力F=3t(N),重力加速度大小g=10m/s2(1)求木块和木板保持相对静止的时间t1;(2)t=10s时,两物体的加速度各为多大;(3)在如图2画出木块的加速度随时间変化的图象(取水平拉カF的方向为正方向,只要求画图,不要求写出理由及演算过程)【答案】(1)木块和木板保持相对静止的时间是4s;(2)t=10s时,两物体的加速度各为3m/s2,12m/s2;(3)【解析】【详解】(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有拉动,处于静止状态,当木块和木板一起运动时,对m1:f max﹣μ2(m1+m2)g=m1a max,f max=μ1m2g解得:a max=3m/s2对整体有:F max﹣μ2(m1+m2)g=(m1+m2)a max解得:F max=12N由F max=3t 得:t=4s(2)t=10s时,两物体已相对运动,则有:对m1:μ1m2g﹣μ2(m1+m2)g=m1a1解得:a1=3m/s2对m 2:F ﹣μ1m 2g =m 2a 2 F =3t =30N 解得:a 2=12m/s 2(3)图象过(1、0),(4.3),(10、12) 图象如图所示.2.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'-解得:x=46.5m3.质量m =2kg 的物块自斜面底端A 以初速度v 0=16m/s 沿足够长的固定斜面向上滑行,经时间t =2s 速度减为零.已知斜面的倾角θ=37°,重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.试求:(1)物块上滑过程中加速度大小; (2)物块滑动过程摩擦力大小; (3)物块下滑所用时间.【答案】(1)8m/s 2;(2)4N ;(3)s【解析】 【详解】(1)上滑时,加速度大小(2)上滑时,由牛顿第二定律,得:解得(3)位移下滑时,由牛顿第二定律,得解得 由,解得=s4.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。
高中物理牛顿运动定律练习题(含解析)
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
高中物理牛顿运动定律题20套(带答案)及解析.docx
高中物理牛顿运动定律题20 套( 带答案 ) 及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体 B 和质量为m=0.2kg 的物体 C,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体 C 竖直向下缓慢压下一段距离后释放,物体 C 就上下做简谐运动,且当物体 C 运动到最高点时,物体 B 刚好对地面的压力为 0.已知重力加速度大小为g=10m/s2.试求:①物体 C 做简谐运动的振幅;②当物体 C 运动到最低点时,物体 C 的加速度大小和此时物体 B 对地面的压力大小.【答案】① 0.07m ②35m/s 214N【解析】【详解】①物体 C 放上之后静止时:设弹簧的压缩量为x0.对物体 C,有: mg kx0解得: x0=0.02m设当物体 C 从静止向下压缩x 后释放,物体 C 就以原来的静止位置为平衡位置上下做简谐运动,振幅 A=x当物体 C 运动到最高点时,对物体B,有:Mg k( A x0)解得: A=0.07m②当物体 C 运动到最低点时,设地面对物体 B 的支持力大小为F,物体 C 的加速度大小为a.x0 )mg ma对物体,有: k ( AC解得: a=35m/s 2对物体 B,有:F Mg k( A x0 )解得: F=14N所以物体 B 对地面的压力大小为14N2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s ,传送带两端AB 间距离为 s0=10m,传送带与行李箱间的动摩擦因数μ=0.2,当质量为 m=5kg 的行李箱无初速度地放上传送带 A 端后,传送到 B 端,重力加速度 g 取 10m/ 2;求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从 A 端传送到 B 端所用时间t ;(3)整个过程行李对传送带的摩擦力做功W。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海拉尔补习学校物理学科章节检测
牛 顿 运 动 定 律
第Ⅰ卷
一、选择题(共10题,每题满分4分)
1、下列单位属于国际单位制基本单位的是( ) A .牛顿
B .焦耳
C .安培
D .秒
2、如图所示,木块A 与B 用一弹簧相连,竖直放在木块C 上,三者静止于地面,它们的质量之比为1:2:3,设所有接触面是光滑的,当沿水平方向迅速抽出C 的瞬间, A 和B 的加速度分别为( ) A .0,0 B .0,g C .0,3g /2 D .g ,3g /2
3、如图,一质量为M 的直角劈B 放在水平面上,在劈的斜面上放一质量为m 的物体A ,用一沿斜面向上的力F 作用于A 上,使其沿斜面匀速上滑,在A 上滑的过程中直角劈B 相对地面始终静止,则关于地面对劈的摩擦力f 及支持力N 正确的是( )
A .f = 0 ,N = Mg +mg
B .f 向左,N <Mg +mg
C .f 向右,N <Mg +mg
D .f 向左,N =Mg +mg
4、质量为0.3kg 的物体在水平面上运动,图中的两条直线分别表示物体受水平拉力和不受水平拉力的v —t 图像,则下列说法中正确的是( ) A .水平拉力可能等于 B .水平拉力一定等于 C .物体的摩擦力可能等于 D .物体的摩擦力可能等于
5、如图所示, 地面上有两个完全相同的木块A 、B, 在水平推力F 作用下运动, 当弹簧长度稳定后, 若用μ表木块与地面间的动摩擦因数, F 弹表示弹簧弹力, 则 ( )
A. μ=0时, F 弹=1
2F B. μ=0时, F 弹=F
C. μ≠0时, F 弹=1
2
F D. μ≠0时, F 弹=F
6、如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N ,物体 A 处于静止状态,若小车以1m/s 2的加速度向右运动后,则(g=10m/s 2) ( )
2 4
6
t /s
A .物体A 相对小车仍然静止
B .物体A 受到的摩擦力减小
C .物体A 受到的摩擦力大小不变
D .物体A 受到的弹簧拉力增大
7、如图所示,在托盘测力计的托盘内固定一个倾角为30°的光滑斜面,现将一个重4N 的物体放在斜面上,让它自由滑下,那么测力计因4N 物体的存在,而增加的读数是( ) A 、4N B 、23N
C 、0N
D 、3N
8、如图所示,质量为m 的木块在质量为M 的长木板上受到向右的拉力F 的作用向右滑行,长木板处于静止状态,已知木块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2。
下列说法正确的是 A .木板受到地面的摩擦力的大小一定是μ1mg B .木板受到地面的摩擦力的大小一定是μ2(m +M )g C .当F >μ2(m +M )g 时,木板便会开始运动 D .无论怎样改变F 的大小,木板都不可能运动
9、利用传感器和计算机可以研究力的大小变化的情况,实验时让某消防队员从平台上跳下,自由下落H 后双脚触地,他顺势弯曲双腿,他的重心又下降了h ,最后停止。
计算机显示消防队员受到地面支持力F 随时间变化的图象如图6所示。
根据图象提供的信息,以下判断正确的是
A. 在t 1至t 2时间内消防队员的重心在加速下降
B. 在t 3至t 4时间内消防队员的重心在减速下降
C. t 3时刻消防队员的加速度为零
D. 在t 1至t 4时间内消防队员的机械能守恒
10、如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m 1和
m 2,拉力F 1和F 2方向相反,与轻线在同一水平直线,且F 1>F 2.在两个物块运动过程中轻线的拉力为( ) A 、
221F F + B 、22
1F F - C 、
211221m m F m F m ++ D 、2
11
22
1m m F m F m +-F
M
m F
t 1 2 3 4
mg
F 1 F/N
t/s
m 2
m 1 F 1
F 2
二、填空题
11、质量为200 kg的物体,置于升降机内的台秤上,从
静止开始上升。
运动过程中台秤的示数F与时间t的关系
如图所示,则升降机前2秒的加速度为,升降机
前7秒的位移为。
(取g=10 m/s2)
12、一个质量为 kg的小球用细线吊在倾角θ=53°的斜面顶端,如
图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当
斜面以5m/s2的加速度向右做加速运动时,斜面对小球的弹力
为,绳的拉力为。
当斜面以10m/s2的加速度向右做
加速运动时,绳的拉力为。
三、计算题
13、如图所示,m A=1kg,m B=2kg,A、B间静摩擦力的最大值是5N,水平面光滑。
用水平力F拉B,当拉力大小分别是F=10N和F=20N时,A、B的加速度各多大
A
14、足够长的倾角=53°的斜面固定在水平地面上,一物体以v o=6.4m/s的初速度,从斜面底端向上滑行,该物体与斜面间的动摩擦
因数μ=,如图所木。
(sin53°=,cos53°=,g取10m/s2)
(1)求物体从开始到再次返回斜面底端所需的时间;
(2)求返回斜面底端时的速度;
15、固定光滑细杆与水平地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向向上的推力 F 作用下向上运动. 0 — 2s内推力的大小为 5 .0N , 2 —4s 内推力的大小变为,小环运动的速度,随时间变化规律如图所示,取重力加速度 g = 10 m/s 2.求:
( l )小环在加速运动时的加速度
a 的大小; ( 2 )小环的质量 m ;
( 3 )细杆与水平地面之间的夹角
α .
16、如图所示,传送带与地面倾角θ=370,从A→B长度为16m,传送带以10m/s 的速率逆时针转动,在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为.求物体从A运动到B需时间是多少(sin370=,cos370=)
A
B
370
11、2/5s m 、m 50 12、
13、N F 10=时,2/3
10
s m a a B A ==;N F 20=时,2/5s m a A =、2/5.7s m a B = 14、(1) (2)s
15、(1)2/5.0s m (2)1kg (3)︒30 16、2s。