迈达斯学习

合集下载

迈达斯学习02_Beam Plate Solid

迈达斯学习02_Beam Plate Solid

北京迈达斯技术有限公司目录简要 (1)设定操作环境 (1)输入材料和截面数据 (2)定义材料 (2)定义截面 (2)定义厚度 (2)建立悬臂梁模型 (3)输入梁单元 (3)输入板单元 (4)输入实体单元 (5)修改单元坐标系 (6)分割单元 (7)输入边界条件 (8)输入荷载 (9)运行结构分析 (12)查看分析结果 (13)查看反力 (13)查看变形和位移 (14)查看内力 (15)查看应力 (19)简要本例题介绍使用梁单元、板单元、实体单元来建立悬臂梁,并查看各种单元分析结果的方法。

模型如图1所示,截面为长方形(0.4m x 1m),长20m。

图1. 悬臂梁模型设定操作环境打开新项目(新项目),保存(保存)为‘Cantilever. mcb’。

文件/ 新项目文件/ 保存(悬臂梁)单位体系做如下设置。

工具/ 单位体系长度>m; 力>tonf材料: C30固定端实体单元梁单元板单元长: 20m1m0.4m输入材料和截面数据定义材料模型 / 材料和截面特性/ 材料类型>混凝土 ; 规范>GB-Civil(RC) ; 数据库>30 ↵定义截面使用User Type ,输入实腹长方形截面(0.4m × 1m)。

模型 /材料和截面特性/ 截面 数据库 / 用户名称>SR ; 截面类型>实腹长方形截面 用户 ; H ( 0.4 ) ; B ( 1 ) ↵定义厚度模型 / 材料和截面特性/ 厚度数值厚度号 (1) ; 面内和面外( 0.4 ) ↵图2. 定义材料 图3. 定义截面 图4. 定义厚度对于面内厚度和面外厚度的说明请参考在线帮助手册。

建立悬臂梁模型输入梁单元使用扩展功能建立梁单元。

标准视图, 自动对齐(开),单元号(开)模型/ 节点/ 建立坐标( 0, 0, 0 )↵模型/ 单元/ 扩展单元全选扩展类型>节点 线单元单元属性>单元类型>梁材料>1:30 ; 截面>1 : SR ; Beta Angle ( 0 )生成形式>复制和移动;复制和移动>等间距dx, dy, dz ( 20, 0, 0 ) ; 复制次数( 1 )↵图5. 输入梁单元输入板单元首先将梁单元复制到板单元的输入位置后,通过 扩展功能将梁单元扩展成板单元。

midas心得

midas心得

MIDAS学习心得土木二班张文博2013141473076Midas中文名迈达斯,是一种有关结构设计有限元分析软件,分为建筑领域、桥梁领域、岩土领域、仿真领域四个大类。

Midas FEA是“目前唯一全部中文化的土木专用非线性及细部分析软件”,它的几何建模和网格划分技术采用了在土木领域中已经被广泛应用的前后处理软件Midas FX+的核心技术,同时融入了MIDAS强大的线性、非线性分析内核,并与荷兰TNO DIANA公司进行了技术合作,是一款专门适用于土木领域的高端非线性分析和细部分析软件。

Midas FEA拥有简洁直观的用户界面,即使是初学者也可以在短期内迅速掌握。

特别是工程中比较难处理的各种非线性分析问题,程序不仅提供了简单的参数化输入方法,其全中文化的程序界面、全中文化的技术手册、全中文化的培训例题,可以让初学者迅速成长为高级分析人员。

在周六的Midas选修课上我们就跟着校外专家学习了Midas building和Midas gen的基本操作和设计方法。

在这之前我们仅仅学习了设计软件cad,看过简介后我确信这是一款比cad的功能更加强大的,专门针对工程领域的专业设计软件。

经过了几节课的学习,自己也有一些心得体会,现在写出来权当做复习和总结。

Midas的界面设计的相当不错,和office的界面很相似。

第一眼就给人非常专业和高端的感觉。

由于UI设计的很细致和人性化,不会给人距离感,让人觉得虽然这是一款专业设计软件,但是我操作起来不会觉得枯燥乏味。

Midas采用的是3d视角,与采用平面视角的cad相比,Midas无疑方便了很多。

对于设计师来说能看到建筑的模拟图形是很有帮助的。

在绘制一个建筑模型的时候,cad就只能按平面图、立面图、剖面图的顺序来绘制。

但是Midas是以3d的方式来建模的,非常的直观。

而且Midas对于建模时候的各个细节,都有相应的功能按钮。

对于墙、柱、梁、板,软件都是对应的不同的模块,批量操作时不容易产生误操作。

MIDAS迈达斯入门教程

MIDAS迈达斯入门教程

MIDAS迈达斯入门教程MIDAS(Mechanical Integrated Design and Analysis System,机械集成设计和分析系统)是一种基于计算机辅助工程技术的产品设计和工程分析的软件平台。

它是一种综合性的分析软件,可以用于进行结构、流体和多物理场的分析和仿真。

MIDAS软件的应用范围广泛,涉及到建筑、土木、机械、汽车、电子等领域。

首先,打开MIDAS软件后,您会看到一个简洁明了的用户界面。

主要界面包括了菜单栏、工具栏、工程树、工作区和结果展示等区域。

菜单栏和工具栏提供了各种功能和命令的选项,工程树用于组织和管理工程的各个部分,工作区是您进行建模和分析的主要区域,结果展示区用于显示分析结果。

在开始建模之前,首先需要创建一个新的工程文件。

您可以通过菜单栏中的“文件”选项来创建新的工程文件。

然后,选择合适的建模单元(Unit)和坐标系(Coordinate System)。

建模单元用于定义建模的单位制,坐标系用于定义建模的基准坐标。

建模完成后,接下来就可以进行分析了。

MIDAS提供了各种分析功能和工具,包括静力分析、动力分析、热力学分析、流体分析等。

您可以通过菜单栏中的“分析”选项来选择适合您的分析类型,并设置相应的分析参数和条件。

在进行分析之前,还需要定义材料和边界条件。

通过菜单栏中的“材料”选项,您可以定义材料的力学性能和热力学性质。

通过菜单栏中的“边界条件”选项,您可以定义约束和载荷等边界条件。

完成分析设置后,即可开始进行分析。

MIDAS将根据您的分析参数和条件,自动进行求解和计算。

在分析完成后,您可以通过结果展示区查看分析结果,包括变形、应力、应变、位移等。

您还可以通过菜单栏中的“报告”选项生成分析报告,以便后续的工程设计和决策。

除了上述基本功能外,MIDAS还提供了许多高级功能和扩展模块。

例如,您可以通过MIDAS Civil模块进行土木工程分析和设计,通过MIDAS FEA模块进行有限元分析,通过MIDAS GTS模块进行地质和地下工程分析等。

迈达斯学习04_PSC beam

迈达斯学习04_PSC beam

北京迈达斯技术有限公司CONTENTS概要1桥梁概况及一般截面2预应力混凝土梁的分析顺序3使用的材料及其容许应力4荷载5设置操作环境6定义材料和截面7定义截面8定义材料的时间依存性并连接9建立结构模型12定义结构组、边界条件组和荷载组13输入边界条件16输入荷载17输入恒荷载18输入钢束特性值19输入钢束形状20输入钢束预应力荷载23定义施工阶段25输入移动荷载数据30运行分析34查看分析结果35通过图形查看应力35定义荷载组合39利用荷载组合查看应力40查看钢束的分析结果44查看荷载组合条件下的内力471概要本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil 的施工阶段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。

主要包括分析预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的步骤和方法。

图1. 分析模型桥梁概况及一般截面分析模型为一个两跨连续梁,其钢束的布置如图2所示,分为两个阶段来施工。

桥梁形式:两跨连续的预应力混凝土梁桥梁长度:L = 2@30 = 60.0 m图2. 立面图和剖面图2预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。

1.定义材料和截面2.建立结构模型3.输入荷载恒荷载钢束特性和形状钢束预应力荷载4.定义施工阶段5.输入移动荷载数据6.运行结构分析7.查看结果34使用的材料及其容许应力❑ 混凝土设计强度:2ck cm /kgf 400=f 初期抗压强度:2ci cm /kgf 270=f弹性模量:Ec=3,000Wc1.5 √fck+ 70,000 = 3.07×105kgf/cm 2 容许应力:❑预应力钢束 (KSD 7002 SWPC 7B-Φ15.2mm (0.6˝strand)屈服强度: 2py mm /kgf 160=f →strand /tonf 6.22=P y 抗拉强度: 2pu mm /kgf 190=f →strand /tonf 6.26=P u 截面面积: 2387.1cm A p = 弹性模量: 26p cm /kgf 10×0.2=E 张 拉力: fpi=0.7fpu=133kgf/mm 2 锚固装置滑动: mm 6=s Δ 磨擦系数: rad /30.0=μ m /006.0=k5荷载❑ 恒荷载自重在程序中按自重输入❑预应力钢束(φ15.2 mm ×31 (φ0.6˝- 31))截面面积 : Au = 1.387 × 31 = 42.997 cm 2 孔道直径 : 133 mm 张拉力 : 抗拉强度的70%fpj = 0.7 fpu = 13,300 kgf/cm 2 Pi = Au × fpj = 405.8 tonf 张拉后的瞬间损失(程序自动计算)摩擦损失 :)(0)(kL X e P P +⋅=μα30.0=μ, 006.0=k锚固装置滑动引起的损失 : mm 6=I Δc 弹性收缩引起的损失 : 损失量 SP P E A f P ⋅∆=∆ 最终损失(程序自动计算)钢束的松弛(Relaxation ) 徐变和收缩引起的损失❑徐变和收缩条件水泥 : 普通硅酸盐水泥长期荷载作用时混凝土的材龄 : =o t 5天 混凝土与大气接触时的材龄 : =s t 3天 相对湿度 : %70=RH 大气或养护温度 : C °20=T 适用规范 : CEB-FIP 徐变系数 : 程序计算 混凝土收缩变形率 : 程序计算❑活荷载适用规范:城市桥梁设计荷载规范 荷载种类:C-ALC-AD(20)6设置操作环境打开新文件(新项目),以 ‘PSC beam ’ 为名保存(保存)。

迈达斯学习06

迈达斯学习06

北京迈达斯技术有限公司宁波江东阳光软件开发中心目录简要 (1)设计操作环境及定义材料/截面/厚度 (2)定义材料 (2)定义截面 (3)定义厚度 (3)用板单元建立细部部分 (5)输入细部模型 (8)输入边界条件 (11)输入刚性连接 (11)输入荷载 (12)设定荷载工况 (12)输入自重 (13)运行分析 (13)查看结果 (13)查看反力 (13)建立模型3 (16)输入刚性连接 (17)输入强制位移 (19)运行分析 (20)查看结果 (20)查看模型3的位移和变形图 (20)查看应力 (21)查看模型1的应力图 (21)查看模型2的应力 (23)查看模型3的应力 (25)简要本例题的主要目的是针对了解MIDAS/Civil 基本操作的技术人员,进一步介绍如何利用MIDAS/Civ il 进行细部分析的方法。

通常情况下,细部分析是在对建筑物进行完整体分析之后,针对有可能发生应力集中的部分,根据需要而进行的。

进行细部分析主要包括以下两种方法。

1.通过将细部模型插入整体模型而进行分析的方法。

2.将整体分析的变形结果以强制位移输入到细部模型的方法。

为了熟练掌握上述两种方法,在这里用以下三种方法分别建立30米长的简支梁,并通过查看结果进行比较。

模型1:使用梁单元建立整体模型模型2:将简支梁的中间部分(6米)用板单元建模后插入到梁单元的整体模型 模型3:用板单元建立细部模型后,在边界输入强制位移首先建立模型1和模型2之后比较其结果。

然后,将模型1中与细部模型的边界位置相对应的变形值以强制位移的形式输入到模型3中,并比较其分析结果。

简支梁的模型如下图所示。

图 1. 分析模型及剖面图Section : B 1040×1040×40×40 B=1040 H=1040 t=40 [单位 : mm]模型 1 模型 2 模型 3 Material : Grade3设定操作环境并定义材料/截面/厚度打开新文件(新项目), 以‘Detail. mcb’为名保存(保存)。

迈达斯教程及使用手册

迈达斯教程及使用手册

迈达斯教程及使用手册【前言】随着现代科技的不断迅速发展,计算机应用软件也越来越普及。

然而,有时候对于一些陌生的软件,我们却难以熟悉和掌握。

这时候,教程和使用手册就显得尤为重要。

【正文】一、迈达斯简介迈达斯作为一款有限元分析软件,具有计算精度高、功能齐全、应用范围广等优点。

迈达斯适用于结构力学分析、地震工程分析、流体力学分析、多体系统动力学分析、声学分析和热传导分析等领域。

二、迈达斯教程1、基础教程对于初学者,或者对迈达斯不太了解的用户,可以通过迈达斯官网提供的基础教程来入门。

这些教程包括:简单板件的建模与分析、简单空间框架的建模与分析、简单平面杆件的建模与分析等内容。

通过这些教程的学习,用户可以了解迈达斯的基础使用方法,实现简单的计算。

2、进阶教程对于需要进行深度分析的用户,可以通过进阶教程来提升实践能力。

这些教程包括:地震分析、二维和三维渗流分析、热应力分析、随机振动分析等内容。

通过这些教程的学习,用户可以掌握迈达斯在不同领域的应用,为实际问题的分析提供有力的支持。

3、高级教程对于想要成为迈达斯专家的用户,可以通过高级教程来深入了解软件内部原理和核心算法。

这些教程包括:接口应力及三维准直线材料的塑性模型、块体程序、业余自由节点法和含椭球形空腔的静液压问题等内容。

通过这些教程的学习,用户可以掌握更高级别的领域应用。

三、迈达斯使用手册1、建模入门在使用迈达斯进行结构分析时,首先需要进行建模和网格划分。

迈达斯使用手册提供了建模基础、几何体的定义、网格划分等相关知识,帮助用户快速上手建模。

2、材料和参数设置在迈达斯中,不同的材料和参数设置会对计算结果产生不同的影响。

使用手册详细介绍了迈达斯中各种材料和参数的设置方法,帮助用户实现精确计算。

3、分析方法和后处理在完成建模和参数设置后,需要进行相应的分析和后处理。

使用手册详细介绍了线性和非线性分析方法、动力学分析、后处理结果的展示与分析、图形用户界面等等。

迈达斯学习

迈达斯学习

板单元的特点 (1)
h/L
1/10 ≈
实体单元 厚板 薄板 平面应力
h L
Degeneration
平面应力 σzz = τxz = τyz = 0 薄板 (Kirchhoff Plate) 忽略剪切变形的影响 → 1-D: Euler-Bernoulli Beam 厚板 (Mindlin Plate) 考虑剪切变形的影响 → 1-D: Timoshenko Beam 大部分情况可选用厚板(误差不到 2%), 非常薄的板应使用薄板 → 防止Shear Locking
悬臂梁的第5个模态
特征值分析时不要只检查一个模态,应检查多个模态,从而判断结果 的正确性 做动力分析/屈曲分析后检查结果时,首先要查看特征值分析结果。. 板单元一定要查看是否存在局部模态

单元的连接
不同类型的单元连接时,要注意自由度的耦合 板单元 因为板单元没有绕单元坐标系z轴的旋转自由度(Drilling DOF), 所以当梁与板的连 接如果诱发板单元绕单元z轴的旋转的话,连接位置在某个方向将成为铰接。 实体单元 因为实体单元没有旋转自由度,所以与板单元相连时有可能在某个方向成为铰。 Torque Beam Beam Solid
w
w=
P L⋅t
P: 集中荷载 t: 厚度 L
在集中荷载位置删掉非常小的单元,用均布荷载代替。

单元应力和节点应力
Axial Displacement u1=0 u2 u3 u4 Axial Stress
σ1
σ2
σ3
( )
Exact
εx =
q=ax x L1 L2 L3

单元的形状评价 (3)
锥度-Taper (In-plane Offset) • 用几何偏离(Geometric Deviation)表示四边形单元的变形程度. (只使 用于四边形单元)

迈达斯教程及使用手册

迈达斯教程及使用手册
无论是梁单元还是板单元在进行移动荷载分析时,定义了车道或车道面后,需要选择 车辆类型,车辆类型包括标准车辆和用户自定义车辆两种定义方式(图 3)。 (三)、移动荷载工况定义
定义了车道和车辆荷载后,将车道与车辆荷载联系起来就是移动荷载定义。在移动荷 载子工况中选择车辆类型和相应的车道,对于多个移动荷载子工况在移动荷载工况定义中 选择作用方式(组合或单独),对于横向车道折减系数程序会自动考虑(图 4)。 (四)移动荷载分析控制
选择要 张拉的钢 束,输入张 拉控制应 力(或张拉 控制内 力),并输 入注浆时 间,即在哪 个阶段开 始考虑按 换算截面 来进行计 算。如图 5 所示。
图 2 施工阶段分析控制选项
图 3 钢束布置形状
4-8图Biblioteka 4 钢束布置定义对话框09-温度荷载定义
MIDAS/Civil 可以考虑 5 种温度荷载的施加方 式。这几种不同的温度荷载分别适用于不同的温度 荷载定义。
在定义自重时,首先要定义自重荷载的荷载工况名称,并定义自重所属的荷载组,然 后输入自重系数即可。对于荷载系数,通常在 Z 方向输入-1 即可,因为通常考虑的模型的 重力作用方向都是竖直向下,而程序默认的整体坐标系 Z 的正方向是竖直向上的。如果自
4-6
重作用时考虑结构的容重与材料定义时的容重不同,这里自重系数只要输入计算自重时要 考虑的容重与材料定义的容重之比就可以了。演示例题中以计算自重时混凝土自重按 26KN/m3 考虑。
对于在截面数据库中没有的截面类型,还可以通过程序提供的截面特性计算器来生成 截面数据,截面特性计算器的使用方法有相关文件说明,这里就不赘述。
输入截 面控制 参数定 义截面
调用数据库中标准截面
图 1 数据库/用户截面定义对话框

学习迈达斯软件心得体会

学习迈达斯软件心得体会

学习迈达斯软件心得体会迈达斯软件是一个用于结构动力分析和设计的强大工具,我在学习和使用过程中获得了很多经验和体会。

以下是我对迈达斯软件的学习心得体会:首先,迈达斯软件功能强大,涵盖了多种结构分析和设计的模块。

不仅可以进行线性静力分析,还可以进行非线性和动力分析。

这给了学习者更多的可能性和挑战,可以根据实际需求选择不同的分析方法。

例如,对于复杂结构的分析,可以使用非线性分析模块来考虑结构的非线性行为,从而更准确地模拟真实情况。

对于地震工程,可以使用动力分析模块来研究结构在地震作用下的响应。

通过学习和使用迈达斯软件,我对不同分析模块的应用有了更深入的了解,能够选取合适的分析方法来解决实际问题。

其次,迈达斯软件界面友好,操作方便。

软件界面简洁明了,功能布局合理,几乎没用遇到使用时的困惑。

软件提供了丰富的绘图工具和可视化选项,使得用户可以直观地查看和分析计算结果。

此外,软件还提供了丰富的参数设定选项和计算设置,可以根据需要进行灵活调整。

总的来说,迈达斯软件在操作方式上非常友好,即使是初学者也能很快上手。

通过使用迈达斯软件,我掌握了结构分析的基本操作技能,能够独立进行结构建模、荷载设定、边界条件设定和结果分析等工作。

再次,迈达斯软件提供了丰富的学习资源和案例。

官方网站上提供了大量的教学视频和用户手册,可以帮助学习者快速了解软件的基本使用方法和功能。

此外,软件还提供了一些标准的结构分析案例,学习者可以通过复现这些案例来深入理解软件的使用和分析方法。

这些学习资源和案例对于初学者来说非常有价值,可以帮助我们系统地学习和掌握迈达斯软件的使用技巧。

最后,通过学习和使用迈达斯软件,我对结构分析和设计的理论知识有了更深入的理解。

在结构分析过程中,我了解了不同材料的特性、结构的受力原理和应用力学的基本知识。

在结构设计过程中,我学习了设计规范和准则,了解了结构的安全性和经济性评价指标。

我也学到了很多关于结构优化和结构先进计算方法的知识,并将其应用到实际问题中。

迈达斯学习01_Cantilever Simple

迈达斯学习01_Cantilever Simple

北京迈达斯技术有限公司目录建立模型○1设定操作环境 (2)定义材料 (4)输入节点和单元 (5)输入边界条件 (8)输入荷载 (9)运行结构分析 (10)查看反力 (11)查看变形和位移 (11)查看内力 (12)查看应力 (15)梁单元细部分析(Beam Detail Analysis) (16)表格查看结果 (17)建立模型○2设定操作环境 (20)建立悬臂梁 (21)输入边界条件 (22)输入荷载 (22)建立模型○3建模 (24)输入边界条件 (25)输入荷载 (25)建立模型○4建立两端固定梁 (27)输入边界条件 (28)输入荷载 (29)建立模型○5○6○7○8简要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。

包含的主要内容如下。

1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。

图1. 分析模型○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m截面 : HM 440×300×11/18材料 : Grade3 悬臂梁、两端固定梁 简支梁建立模型○1设定操作环境首先建立新项目( 新项目),以‘Cantilever_Simple.mcb ’ 为名保存( 保存)。

文件/ 新项目文件/ 保存( Cantilever_Simple )单位体系是使用tonf(力), m(长度)。

1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(Mass) 选择‘tonf(ton)’3.点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。

迈达斯教程

迈达斯教程

桥梁电算课程讲义编者:张宇辉目录第一章绪论1.1 课程与职业的关系(重要性)1.2 课程的特点(难点)1.3 学习目的1.4 学习内容1.5 学习要求第二章常用桥梁结构分析软件概述2.1 结构力学计算器SM-SOLVER2.2 桥梁博士Dr.bridge2.3 迈达斯Midas Civil2.4 Ansys2.5 其它2.6 工程实例演示第三章桥梁数值计算分析3.1 建模3.2 桥梁荷载介绍3.3 桥梁计算分析3.4 桥梁作用效应组合3.5 桥梁正常使用极限状态验算(自学)3.6桥梁承载能力极限状态验算(自学)第四章上机实践4.1 简支梁桥建模4.2 拱桥建模加载4.3 预应力混凝土梁桥施工阶段分析第一章 绪论1.1 课程与职业的关系(重要性)1.2 课程的特点(难点)1.3 学习目的1.4 学习内容1.5 学习要求1.1 课程与职业的关系(重要性)1 直接相关:本课程将直接应用于以后的生产实践。

(读研、就业)2 针对性:不同的专业,使用的软件不同,对结构设计的要求不同。

3 广泛性:无论以后从事何种职业,都或多或少都会用到本门课程的相关知识。

(科研、设计、施工)1.2课程的特点(难点)1 深厚的理论知识⎪⎪⎭⎪⎪⎬⎫计算机桥梁力学数学 2 实践性强只有通过实践解决实际问题,才能学会。

1.3学习目的掌握桥梁结构分析的基本理论了解桥梁结构分析的一般流程初步了解计算分析软件Midas1.4 学习内容常用桥梁计算软件概述Midas 初级功能桥梁平面杆系模型的建立掌握桥梁荷载效应影响线、恒载内力、活载内力计算荷载效应组合结构强度验算和正常使用性能验算参考教材:《公路钢筋混凝土及预应力混凝土桥涵设计规范》 MIDAS2006使用说明书1.5 学习要求独立完成常规桥梁的计算分析考核要求:理论课成绩=70%随堂测验+30%平时考勤上机课成绩=70%上机考核+30%平时考勤第二章常用桥梁结构分析软件概述2.1 桥梁结构分析的杆系有限单元法2.2 结构力学计算器SM-SOLVER2.3 桥梁博士Dr.bridge2.4 迈达斯Midas Civil2.5 Ansys2.6 其它2.7 工程实例演示2.1 桥梁结构分析的杆系有限单元法桥梁结构分析,可分为总体分析和局部分析两大部分。

midas学习总结2(2011-11-5)

midas学习总结2(2011-11-5)

midas学习总结2(2011-11-5)第一篇:midas学习总结2(2011-11-5)midas学习总结2(2011-11-5)今天学习了“细部分析”。

——进行细部分析主要包括以下两种方法。

1)通过将细部模型插入整体模型而进行分析的方法。

2)将整体分析的变形结果以强制位移输入到细部模型的方法。

——建立板单元的方法是使用“单元>扩展单元”中的“扩展类型>线单元 平面单元”功能,由临时的梁单元得到板单元。

注意在此之前要先定义板的厚度。

——将细部模型插入整体模型而进行分析时,要在梁与板相同坐标的节点处,建立“刚性连接”,使它们具有相同的变形。

——使用第二种方法时,在细部模型上要施加与简化结构相同的荷载,同时还要施加强制位移。

——由于在细部模型中输入强制位移,等同于将一个很大的荷载施加在模型上,因此若要查看由自重所引起的微小变形是比较困难的。

在MIDAS/CIVIL中,可通过选择显示相对位移的方式来查看微小变形。

方法:点击“变形”后的,在弹出的对话框里,选中“相对变形”即可。

——板单元是通过在高斯点进行分析后用外插法计算来输出节点处的结果的,因此即使是相同的节点也会根据与其连接的单元的不同而输出不同的计算结果。

选项中若选择单元,则输出各单元的节点的计算值;若选择节点平均值,则输出各单元在该节点的计算结果的平均值。

通常使用节点平均值,然而需要注意的是,对于水平单元与竖向单元相连接处的节点而言,如果选择节点平均值,则有可能输出毫无意义的结果。

(详细资料请参照在线帮助手册)Sig-XX:正应力Sig-EFF:有效应力(主应力,von Mises stress)第二篇:MIDAS CC总结MIDAS实战技巧50条1、如何利用板单元建立变截面连续梁(连续刚构)的模型?建立模型后如何输入预应力钢束?使用板单元建立连续刚构(变截面的方法)可简单说明如下:1)首先建立抛物线(变截面下翼缘);2)使用单元扩展功能由直线扩展成板单元,扩展时选择投影,投影到上翼缘处。

midas的心得体会

midas的心得体会

midas的心得体会篇一:midas心得MIDAS学习心得土木二班张文博 XX141473076Midas中文名迈达斯,是一种有关结构设计有限元分析软件,分为建筑领域、桥梁领域、岩土领域、仿真领域四个大类。

Midas FEA是“目前唯一全部中文化的土木专用非线性及细部分析软件”,它的几何建模和格划分技术采用了在土木领域中已经被广泛应用的前后处理软件Midas FX+的核心技术,同时融入了MIDAS强大的线性、非线性分析内核,并与荷兰TNO DIANA公司进行了技术合作,是一款专门适用于土木领域的高端非线性分析和细部分析软件。

Midas FEA拥有简洁直观的用户界面,即使是初学者也可以在短期内迅速掌握。

特别是工程中比较难处理的各种非线性分析问题,程序不仅提供了简单的参数化输入方法,其全中文化的程序界面、全中文化的技术手册、全中文化的培训例题,可以让初学者迅速成长为高级分析人员。

在周六的Midas选修课上我们就跟着校外专家学习了Midas building和Midas gen的基本操作和设计方法。

在这之前我们仅仅学习了设计软件cad,看过简介后我确信这是一款比cad的功能更加强大的,专门针对工程领域的专业设计软件。

经过了几节课的学习,自己也有一些心得体会,现在写出来权当做复习和总结。

Midas的界面设计的相当不错,和office的界面很相似。

第一眼就给人非常专业和高端的感觉。

由于UI设计的很细致和人性化,不会给人距离感,让人觉得虽然这是一款专业设计软件,但是我操作起来不会觉得枯燥乏味。

Midas采用的是3d视角,与采用平面视角的cad相比,Midas无疑方便了很多。

对于设计师来说能看到建筑的模拟图形是很有帮助的。

在绘制一个建筑模型的时候,cad就只能按平面图、立面图、剖面图的顺序来绘制。

但是Midas是以3d的方式来建模的,非常的直观。

而且Midas对于建模时候的各个细节,都有相应的功能按钮。

对于墙、柱、梁、板,软件都是对应的不同的模块,批量操作时不容易产生误操作。

迈达斯建模心得体会

迈达斯建模心得体会

迈达斯建模心得体会学习MIDAS的心得土木二班张文博XX141473076Midas的中文名称为迈达斯(Midas),是一款关于结构设计的有限元分析软件,软件主要分为建筑领域,桥梁领域,岩土领域和仿真领域4大类。

Midas FEA是“目前,所有土木专用非线性和细部分析软件只有中文化才有”,其几何建模和网格划分技术采用了在土木领域已经得到广泛应用的前后处理软件Midas FX+的核心技术,同时将MIDAS功能强大的线性,非线性分析内核集成其中,与荷兰TNO DIANA公司技术合作,专为土木领域提供高端的非线性分析及细部分析软件。

MidasFEA具有简洁、直观的用户界面,连初学者都能在短时间内快速领会。

尤其对于工程上较难解决的各类非线性分析,该程序不只是提供一种参数化输入的简便方法,它所设计的全文化程序界面,全文化技术手册和全文化培训例题都能使初学者快速发展成为一名高级分析人员。

星期六Midas选修课程中,我们跟随校外专家一起了解Midas building与Midas gen之基本运算与设计方法。

在此之前,我们只研究过设计软件cad。

看完介绍,相信它是比cad功能更强大、专为工程领域设计的专业软件。

几节课下来,我自己有些心得,现写成权当回顾与小结。

Midas界面设计得挺好,类似office。

初见它,给人以一种很专业、很高档的印象。

由于UI设计的很细致和人性化,不会给人距离感,让人觉得虽然这是一款专业设计软件,但是我操作起来不会觉得枯燥乏味。

Midas使用3d视角,比起使用平面视角cad,Midas绝对便捷得多。

对设计师而言,能够看清建筑物模拟图形大有裨益。

画建筑模型时,cad只能依次画平面图,立面图和剖面图。

但Midas用3d建模,很直观。

而Midas在建模时对每一个细节都设置了相关功能按钮。

针对墙体,柱体,梁体,板体等,该软件均为相应不同模块,在批量操作中不易出现误操作。

给笔者留下较多深刻印象的就是Midas有限元分析功能。

迈达斯学习第08章 设计

迈达斯学习第08章 设计
相关知识
PSC数值型截面在指定剪切验算位置时,不仅对斜截面抗剪承载能力计算有影响,而且还对剪切应力计算、抗弯承载能力影响很大。因为这些计算都涉及到腹板厚度的取值。
8.13
具体问题
编辑与删除截面钢筋,对PSC设计得到的结构承载能力没有影响,为什么?
相关命令
分析〉主控数据...
问题解答
如果要考虑普通钢筋的作用,需要在分析主控数据中勾选考虑普通钢筋作用。否则无论是分析过程中还是在设计验算过程中,程序默认不考虑普通钢筋作用。
8.10
具体问题
在PSC设计结果表格中得到的设计承载能力Vn数值大于设计剪力 ,可验算结果一栏仍然显示“NG”。是什么原因呢?
相关命令
设计〉PSC设计...
模型〉材料和截面特性〉截面...
问题解答
MIDAS在进行截面承载能力验算的同时还按照规范5.2.9条的规定要验算截面是否满足最小尺寸要求。只有当截面尺寸验算、承载力验算两者都符合要求时,验算结果才为“OK”,有一项验算没有通过,其结果都会是“NG”。
无私分享无私分享无私分享无私分享无私分享无私分享
第八章
8.1
具体问题
如题!
相关命令
设计〉SRC设计
问题解答
可以使用“设计〉SRC设计”对钢管混凝土结构进行结构验算。
相关知识
进行SRC设计时,首先要建立组合结构并分析,注意组合结构的材料和截面必须选择组合材料和组合截面。分析完成后,定义SRC设计用荷载组合(结果)荷载组合〉SRC设计),定义了荷载组合后,还需要定义“SRC组合构件设计参数”指定设计参考的规范和设计材料的力学性能,执行设计即可。
施工阶段联合截面执行PSC设计原则如下:
(1)不能进行截面正应力验算;

迈达斯培训课实习报告

迈达斯培训课实习报告

一、前言为了提高我国高速公路施工临时结构的设计与施工水平,加强技术人员对迈达斯软件的应用能力,我于近期参加了由公司技术中心举办的迈达斯施工专题培训。

本次培训由北京迈达斯技术有限公司昆明分公司技术中心桥梁专业讲师张渤雨主讲,旨在提升我公司设计方案、超危大工程及大临结构设计、现场搭设、管理智能化水平。

以下是我在此次培训中的学习心得与体会。

二、培训内容1. 迈达斯软件在高速公路施工临时结构中的应用在培训开始,张渤雨讲师首先向大家介绍了迈达斯软件在高速公路施工临时结构中的应用。

通过生动的案例,让我们对迈达斯软件有了更深入的了解。

迈达斯软件是一款功能强大的结构分析与设计软件,广泛应用于桥梁、隧道、高层建筑等领域的施工临时结构设计中。

2. 施工大临结构-满堂支架的建模与计算分析接下来,讲师通过四个方面的内容为大家讲解了施工大临结构-满堂支架的建模与计算分析。

主要包括:(1)满堂支架的基本概念与结构特点;(2)满堂支架的建模方法;(3)满堂支架的受力分析;(4)满堂支架的稳定性验算。

3. 上机实操在理论学习的基础上,讲师结合结构力学相关知识,针对满堂支架的钢管支架及剪刀撑的搭设操作进行了上机实操。

大家根据讲解步骤反复进行练习,并针对实操过程中遇到的问题进行提问。

讲师针对大家提出的问题逐一进行解答,使大家对满堂支架的建模要点及结果分析有了更深入的理解。

4. 迈达斯软件运用过程中的问题与解答在培训的最后,讲师针对迈达斯软件运用过程中存在的问题进行了详细的讲解,并指导大家进行具体操作。

通过此次培训,使我对迈达斯软件的应用有了更加全面的了解,为今后的工作打下了坚实的基础。

三、培训收获1. 提高了迈达斯软件的应用能力通过此次培训,我对迈达斯软件有了更加深入的了解,掌握了施工大临结构-满堂支架的建模与计算分析方法,提高了自己的软件应用能力。

2. 丰富了理论知识培训过程中,讲师结合实际案例,讲解了结构力学、力学分析等方面的知识,使我在理论知识方面得到了充实。

迈达斯学习总结

迈达斯学习总结

一.定义材料属性及构件截面二.建立轴网及布置构件(1)梁(弧形梁,选中线-建立曲线并分割单元)(2)柱(选中节点-扩展)(3)墙(选中线-扩展,墙开洞-分割单元)三.复制或定义层数据四.定义荷载:(1)静力工况荷载(2)定义楼面荷载类型将荷载转换为质量(3)楼面荷载分配(4)梁单元荷载(5)风荷载(两个方向,迈达斯中迎风面取楼层上下各半层)(6)添加反应谱数据(7)自重 将自重转换为质量五.结构边界条件柱低:约束所有方向嵌固层:约束X 、Y 方向平动和Z 方向转动恒载 DEAD 活载 LIVE 风载 WX 风载 WY一.定义材料属性及构件截面二.建立轴网及布置构件(1)弧形梁,选中线-建立曲线并分割单元次梁采用复制单元和移动, 或者拖放功能(2)柱:选中柱节点—单元扩展(3)墙(选中线-扩展,墙开洞-分割单元)墙开洞口用分割:三.复制或定义层数据四.定义荷载(1)静力工况荷载(2)定义楼面荷载类型(5)风荷载(6)添加反应谱数据(7)自重五.结构边界条件柱低:约束所有方向嵌固层:约束嵌固层周边X、Y方向平动和Z方向转动关于计算结果的对比问题:1.表格结果中层间位移角双向地震找不到按照公式通过单向地震计算2.表格结果中层间偶然偏心的位移角与PKPM相差较大3.设计计算书中位移比是哪个工况的,与表格结果对不起来4.表格结果中位移比偶然偏心与PKPM相差较大5.表格结果中位移比Y方向位移比与PKPM相差较大6.为什么表格结果中位移比、位移角有位移X和位移Y,并且每项下面又分了EX和EY工况7.荷载工况中定义了偶然偏心,设计计算书中仍然无偶然偏心的结果8.EX=EQ1=ECCX(RS)9.计算书中侧向刚度比是EX和EY工况的?10.表格结果中还是分了X和Y,并且每项下面又分了EX和EY工况11.定义虚面单元选A。

迈达斯学习要点

迈达斯学习要点

在学习的过程中有不懂的地方可以按F1帮助查找需要的内容,应该经常使用这种工具,使得自己更快的提高。

一建立T型桥墩的体会1学会利用单元扩展功能,利用节点扩展为线单元,平面单元扩展成实体单元,注意扩展的方式,移动还是删除,后者会删除平面单元,而前者则是移动平面单元的位置,如果既不选‘删除’又不选‘移动’那么该组平面就不会移到别的位置上或者被删除,而是留在原位置上。

2学会定义结构组,先选择单元和节点,然后利用拖放即可。

在结构组定义后,容易整体选择他们,例如平面结构组被选择后可以进行单元扩展,要注意在扩展之后结构组的单元组成可能会有变化,例如一个大的结构组中有一个小的结构组,在小的结构组扩展单元后被删除了,哪么大的结构组中包含的小结构组中的单元会被删除;如果大的结构组利用移动方式进行单元扩展,那么该组中包含的小的结构组也会发生变化,随着大的结构组一起移动。

3节点复制和单元复制4利用节点和单元的属性来选择节点和单元。

利用平面选择。

学会利用激活等命令。

5建立好结构模型之后,应该合并或删除多余的单元和节点,例如建立实体单元的时候用到的平面单元来扩展成实体单元,那么最后应该删除平面单元6学会利用选择最新建立的单元7学会利用分割节点间距,和分割单元来建立新的节点和单元。

8学会利用投影的功能来建立新的单元。

9迈达斯的画面与竖直方向即Z方向平行。

10利用建模助手中的板来建立单元,应该注意输入编辑及插入一起连续进行,否则会出错。

同时应该注意板面是平行于Z轴的,所以要是板面垂直于Z轴那么就要旋转相应的角度。

11在输入荷载前需先定义荷载工况,自重系数一般Z方向为-1.先定义自重荷载工况,然后在“菜单”下的“静力荷载”下点击自重来输入相应的自重系数以及其他内容后点击添加。

以及利用‘菜单’的‘节点荷载’或其他项目来具体的设定施加的荷载的类型及大小和方向和位置,位置由自己来选择。

注意,删除荷载的方法,先选择,再删除。

对梁单元施加荷载的时候,例如时间活荷载梁单元荷载,在选择荷载两端点后荷载就自动添加了,在模型上可以看到,此时不用再点击适用以免又加载了一次。

迈达斯学习第07章 结果

迈达斯学习第07章 结果

无私分享无私分享无私分享无私分享无私分享无私分享无私分享第七章“结果”中的常见问题 (3)7.1 施工阶段分析时,自动生成的“CS:恒荷载”等的含义? (3)7.2 为什么“自动生成荷载组合”时,恒荷载组合了两次? (3)7.3 为什么“用户自定义荷载”不能参与自动生成的荷载组合? (4)7.4 为什么在自动生成的正常使用极限状态荷载组合中,汽车荷载的组合系数不是0.4或0.7? (5)7.5 为什么在没有定义边界条件的节点上出现了反力? (5)7.6 为什么相同的两个模型,在自重作用下的反力不同? (6)7.7 为什么小半径曲线梁自重作用下内侧支反力偏大? (6)7.8 为什么移动荷载分析得到的变形结果与手算结果不符? (7)7.9 为什么考虑收缩徐变后得到的拱顶变形增大数十倍? (8)7.10 为什么混凝土强度变化,对成桥阶段中荷载产生的位移没有影响? (8)7.11 为什么进行钢混叠合梁分析时,桥面板与主梁变形不协调? (9)7.12 为什么悬臂施工时,自重作用下悬臂端发生向上变形? (10)7.13 为什么使用“刚性连接”连接的两点,竖向位移相差很大? (11)7.14 为什么连续梁桥合龙后变形达上百米? (12)7.15 为什么主缆在竖直向下荷载作用下会发生上拱变形? (13)7.16 为什么索单元在自重荷载作用下转角变形不协调? (14)7.17 为什么简支梁在竖向荷载下出现了轴力? (14)7.18 为什么“移动荷载分析”时,车道所在纵梁单元的内力远大于其它纵梁单元的内力?157.19 如何在“移动荷载分析”时,查看结构同时发生的内力? (15)7.20 空心板梁用单梁和梁格分析结果相差15%? (17)7.21 为什么徐变产生的结构内力比经验值大上百倍? (17)7.22 如何查看板单元任意剖断面的内力图? (18)7.23 为什么相同荷载作用下,不同厚度板单元的内力结果不一样? (19)7.24 为什么无法查看“板单元节点平均内力”? (21)7.25 如何一次抓取多个施工阶段的内力图形? (21)7.26 如何调整内力图形中数值的显示精度和角度? (22)7.27 为什么在城-A车道荷载作用下,“梁单元组合应力”与“梁单元应力PSC”不等?257.28 为什么“梁单元组合应力”不等于各分项正应力之和? (25)7.29 为什么连续梁在整体升温作用下,跨中梁顶出现压应力? (25)7.30 为什么PSC截面应力与PSC设计结果的截面应力不一致? (26)7.31 为什么“梁单元应力PSC”结果不为零,而“梁单元应力”结果为零? (26)7.32 如何仅显示超过某个应力水平的杆件的应力图形? (27)7.33 为什么“水化热分析”得到的地基温度小于初始温度? (29)7.34 “梁单元细部分析”能否查看局部应力集中? (30)7.35 为什么修改自重系数对“特征值分析”结果没有影响? (30)7.36 为什么截面偏心会影响特征值计算结果? (31)7.37 为什么“特征值分析”没有扭转模态结果? (32)7.38 “屈曲分析”时,临界荷载系数出现负值的含义? (32)7.39 “移动荷载分析”后自动生成的MVmax、MVmin、MVall工况的含义? (33)7.40 为什么“移动荷载分析”结果没有考虑冲击作用? (33)7.41 如何得到跨中发生最大变形时,移动荷载的布置情况? (34)7.42 为什么选择影响线加载时,影响线的正区和负区还会同时作用有移动荷载?357.43 为什么移动荷载分析得到的结果与等效静力荷载分析得到结果不同? (35)7.44 如何求解斜拉桥的最佳初始索力? (36)7.45 为什么求斜拉桥成桥索力时,“未知荷载系数”会出现负值? (38)7.46 为什么定义“悬臂法预拱度控制”时,提示“主梁结构组出错”? (38)7.47 如何在预拱度计算中考虑活载效应? (38)7.48 桥梁内力图中的应力、“梁单元应力”、“梁单元应力PSC”的含义? (39)7.49 由“桥梁内力图”得到的截面应力的文本结果,各项应力结果的含义? (40)7.50 为什么定义查看“结果>桥梁内力图”时,提示“设置桥梁主梁单元组时发生错误!”? (41)7.51 为什么无法查看“桥梁内力图”? (41)7.52 施工阶段分析完成后,自动生成的“POST:CS”的含义? (42)7.53 为什么没有预应力的分析结果? (42)7.54 如何查看“弹性连接”的内力? (44)7.55 为什么混凝土弹性变形引起的预应力损失为正值? (44)7.56 如何查看预应力损失分项结果? (45)7.57 为什么定义了“施工阶段联合截面”后,无法查看“梁单元应力”图形? . 46 7.58 为什么拱桥计算中出现奇异警告信息? (47)7.59 如何在程序关闭后,查询“分析信息”的内容? (48)第七章“结果”中的常见问题7.1施工阶段分析时,自动生成的“CS:恒荷载”等的含义?具体问题进行施工阶段分析,程序会自动生成CS:恒荷载、CS:施工荷载、CS:收缩一次、CS:收缩二次、CS:徐变一次、CS:徐变二次、CS:钢束一次、CS:钢束二次、CS:合计,这些荷载工况各代表什么含义?在结果查看时有哪些注意事项?相关命令——问题解答MIDAS在进行施工阶段分析时,自动将所有施工阶段作用的荷载组合成一个荷载工况“CS:恒荷载”;如果想查看某个或某几个施工阶段恒荷载的效应,可以将这些荷载工况从“CS:恒荷载”分离出来,生成荷载工况“CS:施工荷载”;钢束预应力、收缩徐变所产生的直接效应程序自动生成荷载工况“CS:钢束一次”、“CS:收缩一次”、“CS:徐变一次”,由于结构超静定引起的钢束预应力二次效应、收缩徐变二次效应,程序自动生成荷载工况“CS:钢束二次”、“CS:收缩二次”、“CS:徐变二次”;“CS:合计”表示所有施工荷载的效应。

midas的心得体会

midas的心得体会

midas的心得体会篇一:midas心得MIDAS学习心得土木二班张文博 XX141473076Midas中文名迈达斯,是一种有关结构设计有限元分析软件,分为建筑领域、桥梁领域、岩土领域、仿真领域四个大类。

Midas FEA是“目前唯一全部中文化的土木专用非线性及细部分析软件”,它的几何建模和格划分技术采用了在土木领域中已经被广泛应用的前后处理软件Midas FX+的核心技术,同时融入了MIDAS强大的线性、非线性分析内核,并与荷兰TNO DIANA公司进行了技术合作,是一款专门适用于土木领域的高端非线性分析和细部分析软件。

Midas FEA拥有简洁直观的用户界面,即使是初学者也可以在短期内迅速掌握。

特别是工程中比较难处理的各种非线性分析问题,程序不仅提供了简单的参数化输入方法,其全中文化的程序界面、全中文化的技术手册、全中文化的培训例题,可以让初学者迅速成长为高级分析人员。

在周六的Midas选修课上我们就跟着校外专家学习了Midas building和Midas gen的基本操作和设计方法。

在这之前我们仅仅学习了设计软件cad,看过简介后我确信这是一款比cad的功能更加强大的,专门针对工程领域的专业设计软件。

经过了几节课的学习,自己也有一些心得体会,现在写出来权当做复习和总结。

Midas的界面设计的相当不错,和office的界面很相似。

第一眼就给人非常专业和高端的感觉。

由于UI设计的很细致和人性化,不会给人距离感,让人觉得虽然这是一款专业设计软件,但是我操作起来不会觉得枯燥乏味。

Midas采用的是3d视角,与采用平面视角的cad相比,Midas无疑方便了很多。

对于设计师来说能看到建筑的模拟图形是很有帮助的。

在绘制一个建筑模型的时候,cad就只能按平面图、立面图、剖面图的顺序来绘制。

但是Midas是以3d的方式来建模的,非常的直观。

而且Midas对于建模时候的各个细节,都有相应的功能按钮。

对于墙、柱、梁、板,软件都是对应的不同的模块,批量操作时不容易产生误操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


单元网格的密度 (2)
将当前网格重新细分后,在不同尺寸的单元之间做过渡单元时,将四边 形单元细分为三个单元要比细分为两个单元要好一些。
2-Refinement (使用三角形单元做 连接)
2-Refinement (使用四边形单元做 连接)
3-Refinement (使用四边形单元做 连接)
有限元分析方法
北京迈达斯技术有限公司
()
桂满树

顺序
板单元/实体单元的特点及正确使用方法 通过例题说明各种建模方法
建立板单元网格的方法 使用扩展功能建立实体单元的方法 实际模型例题
实际工程中细部精密分析的方法

Plate
Plate Plane Stress
Plate Rigid Plate
Rigid Beam

刚性连接
刚性连接(Rigid Link; Kinematic Coupling)的功能是在不太重要的位置上 将结构连接起来(相对运动),并传递荷载。 使用刚性连接时, 在连接位置在某一方向上位移不是连续的(相同),应 力分布也不是很圆滑 从属节点本应该依靠外部荷载而产生位移, 但因为被设置为从属于 主节点,所以不能产生与相邻节点的正常位移 → 位移不连续 应力的不连续发生在距连接位置单位特性长度(一般为厚度或高度尺 寸)的局部范围内, 该范围内的应力不可信 刚性连接应尽量使用于距重要位置2~3倍长度范围以外 在受扭(Torsion)位置最好不要使用刚性连接。因为刚性连接约束了截面 的翘曲(Warping),所以会夸大结构的抗扭刚度 → <如> 管型

动力分析模型
特征值分析(自振周期)时,因为复杂的板单元、实体块单元容易诱发局 部振动模态,所以使用等效的梁单元会效果更好一些。 特征值分析时,越高的模态的误差越大 特征值分析时,适当的网格划分应为相应模态每个周期长度内使用 10~20个节点
该模态形状为两个周期长度, 所以划分为20~40个节点较为合适
ui +1 − ui L σ x = Eε x
x N1 N2
σ1 + σ 2
2
N3
σ 2 +σ3
2
N4
轴力(q)作用下的桁架单元的节点位移
以位移连续为基础的有限元分析中,节点应力值是不精确的(最大误差 30%). 中心点的应力是较为准确的 单元应力是不连续的, 节点应力(绕节点平均值)是单元应力的平均值 使用节点应力应该比使用单元应力更合理一些 最大应力值: 节点应力 < 单元应力
悬臂梁的第5个模态
特征值分析时不要只检查一个模态,应检查多个模态,从而判断结果 的正确性 做动力分析/屈曲分析后检查结果时,首先要查看特征值分析结果。. 板单元一定要查看是否存在局部模态

单元的连接
不同类型的单元连接时,要注意自由度的耦合 板单元 因为板单元没有绕单元坐标系z轴的旋转自由度(Drilling DOF), 所以当梁与板的连 接如果诱发板单元绕单元z轴的旋转的话,连接位置在某个方向将成为铰接。 实体单元 因为实体单元没有旋转自由度,所以与板单元相连时有可能在某个方向成为铰。 Torque Beam Beam Solid

单元的形状评价 (1)
形状比-Aspect Ratio (In-plane Offset)
• •
长边与短边距离的比值 评价应力为主时不要超过1/3,评价位移为主目的时不要超过1/5 → 非线性分析时,形状比的作用比非线性分析时更敏感
min(h1 , h 2 ) Λ= max(h1 , h 2 )

单元的形状评价 (3)
锥度-Taper (In-plane Offset) • 用几何偏离(Geometric Deviation)表示四边形单元的变形程度. (只使 用于四边形单元)
A3 A4 A1 A2
ห้องสมุดไป่ตู้∆=
4 × min(A i ) ∑ Ai


MIDAS的板单元
平面内特性 - 三角形: LST (Linear Strain Triangle) - 四角形: Plane Stress Formulation with Incompatible Modes 平面外特性 薄板 - DKT/DKQ (Discrete Kirchhoff Tria./Quad.) - DKQ: Taylor & Simo 公式修正 - 不考虑剪切变形 厚板 - DKMT/DKMQ (Discrete Kirchhoff-Mindlin Tria./Quad.) - 考虑剪切变形 四角形单元可考虑翘曲(Warping),即使不在同一平面上也可得到较 为理想的结果。
单元的形状评价 (4)
翘曲-Warpage (Out-of-plane Offset) • 四边形单元的四个节点偏离同一平面的程度(只使用于四边形单元)
• •
尤其要注意在两个曲面相连的位置的四边形单元 翘曲比较明显的四边形单元应使用两个三角形单元来替换

单元网格的密度 (1)

对称条件
对称结构最好利用结构的对称性进行分析 → 建模简便,结果对称 在MIDAS/Civil中可以将简化后的模型按对称条件输出整体模型 对称条件 几何形状、材料、荷载、边界条件均应对称 边界条件应设置为不能让结构的变形越过对称面 特征值分析/屈曲分析中不能使用对称条件 → 因为模态不是对称的 荷载的大小也应满足对称条件

板单元的特点 (2)
In-plane Behavior (Membrane/Stretching)
Plane Stress
Out-of-plane Behavior (Bending)
+
Plate Bending
Tz Rx Ry
(+)
=
Top
Plate
Tz Rx Tx T y Ry
拴端部的集中荷载 (使用刚性连接)

荷载的处理 (2)
当不可避免地需要加集中荷载时, 较理想的处理方法如下(实际使用起来 同样有难度) 不使用相应位置的分析结果 → 只使用St. Venant原理适用的范围的结果 → 在周边建立较细的三角形单元网格, 忽略相应位置的分析结果 在非常小的范围内用均布荷载替代集中荷载

单元的形状 (1)
Valence (λ) 评价单元形状最重要的因子 共享同一节点的单元个数 → 各单元平均分割角度为
360
λ
λ=3 (120°)
λ=4 (90°)
λ=5 (72°)

单元的形状 (2)
以Valence (λ)为标准改善单元网格的方法(Topological Improvement) 将节点的Valence尽量设为4 Valence大于4时,减少连接的单元, 小于4时可增加单元
板单元的特点 (1)
h/L
1/10 ≈
实体单元 厚板 薄板 平面应力
h L
Degeneration
平面应力 σzz = τxz = τyz = 0 薄板 (Kirchhoff Plate) 忽略剪切变形的影响 → 1-D: Euler-Bernoulli Beam 厚板 (Mindlin Plate) 考虑剪切变形的影响 → 1-D: Timoshenko Beam 大部分情况可选用厚板(误差不到 2%), 非常薄的板应使用薄板 → 防止Shear Locking

单元网格的密度 (3)
<参考> 用单元数量粗略计算单元尺寸
决定使用单元的数量 使用下列公式粗略计算单元尺寸 · 二维网格的尺寸 = (粗略的总面积 / 单元数量)1/2 · 三维网格的尺寸 = (粗略的总体积 / 单元数量)1/3 当分区域采用不同密度时,可分区域使用上面的公式 虽然是粗算,最好也要遵守前面所说的事项 · 正确模拟结构的几何形状 · 边界之间最好至少有两个单元
X X
X
z x y
对称面: zx 平面 应约束的自由度: Ty, Rx, Rz

荷载的处理 (1)
在节点处作用集中荷载时,在节点处容易发生应力奇异(Stress Singularity)现象 → 平面弹性问题、节点支承 集中荷载作用下的应力奇异性随网格密度的增加而增加直至∞。 板单元/实体单元网格中的集中荷载的处理 垂直于面的荷载: 压力荷载 板单元端部的竖向荷载 • 压力荷载中的边压力荷载 • 虚拟梁和梁单元荷载 其他(如: 平面内荷载) 可将相应节点刚性连接后, 在主节点处加集中荷载
w
w=
P L⋅t
P: 集中荷载 t: 厚度 L
在集中荷载位置删掉非常小的单元,用均布荷载代替。

单元应力和节点应力
Axial Displacement u1=0 u2 u3 u4 Axial Stress
σ1
σ2
σ3
( )
Exact
εx =
q=ax x L1 L2 L3
0
+100 -100 Bottom Top
λ=3 λ=3 Element Elimination λ=4
λ=5 λ=3 λ=3 Diagonal Swapping
λ=4 λ=4
λ=4
λ=5 λ=3
λ=3 Diagonal Swapping
λ=4 λ=4 λ=4

单元的形状 (3)
尽量使用尺寸小而规则的(正四边形/正三角形)单元 紧凑且规则 四边形(六面体)单元要比三角形(锥体-四面体)单元要好 三角形单元: 应变为常量, 四角形单元: 应变为线性变化 一般地说,用三角形/四面体/低阶单元计算的位移/应力值要比四角形/ 六面体/高阶单元的结果要小一些(Stiffer Elements). 四边形单元必须为凸(Convex)四边形 单元越凹,刚度越低 使用形状不好的四角形单元不如使用三角形单元 在动力分析/屈曲分析中可能诱发局部模态 除了线性静力分析之外,如果有形状不好的四边形单元,即使全部使 用了四边形单元,也不如使用形状较好的三角形单元和四边形单元的 混合单元。
相关文档
最新文档