2020年春北师大版本八年级数学下册八年级数学参考答案
北师大版2019-2020学年度第二学期八年级(下)期末数学试卷(含解析) (6)
北师大版2019-2020学年第二学期八年级(下)期末数学试卷姓名:得分:日期:一、选择题(本大题共 12 小题,共 36 分)1、(3分) 下列式子中,属于最简二次根式的是()A.√30B.√36C.√40D.√172、(3分) 若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是()A.5B.6C.√7D.5或√73、(3分) 某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是()A.27B.28C.29D.304、(3分) 下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.5、(3分) 正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直6、(3分) 直线y=-3x+2经过的象限为()A.第一、二、四象限B.第一、二、三象限C.第一、三、四象限D.第二、三、四象限7、(3分) 如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4√3米C.8米D.8√3米8、(3分) 若式子√k−1+(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是()A. B. C. D.9、(3分) 已知,在平面直角坐标系xOy中,点A(-4,0 ),点B在直线y=x+2上.当A,B两点间的距离最小时,点B的坐标是()A.(−2−√2,−√2)B.(−2−√2,√2)C.(-3,-1 )D.(-3,−√2)10、(3分) A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.411、(3分) 如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=√3,BD=4,则菱形ABCD的周长为()A.4B.4√6C.4√7D.2812、(3分) 如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D.3(m−2)2二、填空题(本大题共 4 小题,共 12 分)的结果是______.13、(3分) 计算:√24-9√2314、(3分) 一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是______.15、(3分) 如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为______dm.16、(3分) 如图放置的两个正方形的边长分别为4和8,点G为CF中点,则AG的长为______.三、解答题(本大题共 9 小题,共 72 分)17、(4分) 计算√18-√8+(√3+1)(√3-1)18、(4分) 先化简,再求值:已知a=8,b=2,试求a√1a +√4b-√a4+√b的值.19、(8分) 已知长方形的长a=12√32,宽b=13√18.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.20、(8分) 为了让同学们了解自己的体育水平,八年级1班的体育老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:根据以上信息,解答下列问题(1)这个班共有男生______人,共有女生______;(2)补全八年级1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由21、(8分) 如图:在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由.22、(8分) 武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y (元)与印刷份数x(份)之间的关系如图所示:(1)求甲、乙两种收费方式的函数关系式;(2)当印刷多少份学案时,两种印刷方式收费一样?23、(10分) 如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.24、(10分) 某酒厂生产A,B两种品牌的酒,平均每天两种酒共可售出600瓶,每种酒每瓶的成本和售价如表所示,设平均每天共获利y元,平均每天售出A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且售出的B种品牌的酒不少于全天销售总量的55%,那么共有几种销售方案?并求出每天至少获利多少元?25、(12分) 已知:如图1,在平面直角坐标系中,直线1:y=-x+4与坐标轴分别相交于点A、Bx相交于点C.与2:y=13(1)求点C的坐标;(2)若平行于y轴的直线x=a交于直线1于点E,交直线l2于点D,交x轴于点M,且ED=2DM,求a的值;(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.2018-2019学年湖北省恩施州恩施市八年级(下)期末数学试卷【 第 1 题 】【 答 案 】A【 解析 】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B 、√36=6,被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、√40=2√10,被开方数含能开得尽方的因数或因式,故C 不符合题意;D 、√17=√77,被开方数含分母,故D 不符合题意;故选:A .检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是. 本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.【 第 2 题 】【 答 案 】D【 解析 】解:当4是直角三角形的斜边时,32+x 2=42,解得x=√7;当4是直角三角形的直角边时,32+42=x 2,解得x=5.故使此三角形是直角三角形的x 的值是5或√7.故选:D .由于直角三角形的斜边不能确定,故应分4是斜边或直角边两种情况进行讨论.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.【 第 3 题 】【 答 案 】B【 解析 】解:27出现1次;28出现3次;29出现2次;30出现2次;所以,众数是28.故选:B.根据出现次数最多的数是众数解答.本题考查了众数的定义,熟记出现次数最多的是众数是解题的关键.【第 4 题】【答案】D【解析】解:A、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故A不符合题意;B、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故B不符合题意;C、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故C不符合题意;D、对于x的每一个取值,y有不唯一确定的值,y不是x的函数,故D符合题意;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.【第 5 题】【答案】B【解析】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.根据正方形的性质和菱形的性质,容易得出结论.本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.【第 6 题】【答案】A【解析】解:∵k=-3,b=2,∴直线y=-3x+2经过第一、二、四象限.故选:A.由k=-3、b=2利用一次函数图象与系数的关系,即可得出直线y=-3x+2经过第一、二、四象限,此题得解.本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.【第 7 题】【答案】D【解析】解:如图,连接AC、BD,AC与BD交于点O,∵菱形花坛ABCD的周长是32米,∠BAD=60°,∴AC⊥BD,AC=2OA,∠CAD=1∠BAD=30°,AD=8米,2=4√3(米),∴OA=AD•cos30°=8×√32∴AC=2OA=8√3米.故选:D.由菱形花坛ABCD的周长是40米,∠BAD=60°,可求得边长AD的长,AC⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.此题考查了菱形的性质以及三角函数的性质.注意根据菱形的对角线互相垂直且平分求解是解此题的关键.【第 8 题】【答案】B【解析】解:∵式子√k−1+(k-1)0有意义,∴k-1≥0,且k-1≠0,解得k>1,∴k-1>0,1-k<0,∴一次函数y=(k-1)x+1-k的图象如图所示:故选:B.首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k-1、1-k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k-1)x+1-k的图象可能是哪个即可.此题主要考查了一次函数的图象与系数的关系,零指数幂定义以及二次根式有意义的条件;解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b <0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.【第 9 题】【答案】C【解析】解:如图,过点A作AB⊥直线y=x+2于点B,则点B即为所求.∵C(-2,0),D(0,2),∴OC=OD,∴∠OCD=45°,∴△ABC是等腰直角三角形,∴B(-3,-1).故选:C.根据题意画出图形,过点A做AB⊥直线y=x+2于2点B,则点B即为所求点,根据锐角三角函数的定义得出∠OCD=45°,故可判断出△ABC是等腰直角三角形,进而可得出B点坐标.本题考查的是一次函数图象上点的坐标特点,根据题意画出图形,利用数形结合求解是解答此题的关键.【第 10 题】【答案】C【解析】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3-1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3-1)=6(千米/小时),则甲到达B 地用的时间为:20÷4=5(小时),乙到达B 地用的时间为:20÷6=313(小时),1+313=413<5,∴乙先到达B 地,故④正确;正确的有3个.故选:C .观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.【 第 11 题 】【 答 案 】C【 解析 】解:∵E ,F 分别是AB ,BC 边上的中点,EF=√3,∴AC=2EF=2√3,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12AC=√3,OB=12BD=2, ∴AB=√OA 2+OB 2=√7,∴菱形ABCD 的周长为4√7.故选:C .首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.【 第 12 题 】【 答 案 】B【 解析 】解:由题意可得:A 点坐标为(-1,2+m ),B 点坐标为(1,-2+m ),C 点坐标为(2,m-4),D 点坐标为(0,2+m ),E 点坐标为(0,m ),F 点坐标为(0,-2+m ),G 点坐标为(1,m-4).所以,DE=EF=BG=2+m-m=m-(-2+m )=-2+m-(m-4)=2,又因为AD=BF=GC=1,所以图中阴影部分的面积和等于12×2×1×3=3.故选:B .设AD ⊥y 轴于点D ;BF ⊥y 轴于点F ;BG ⊥CG 于点G ,然后求出A 、B 、C 、D 、E 、F 、G 各点的坐标,计算出长度,利用面积公式即可计算出.本题灵活考查了一次函数点的坐标的求法和三角形面积的求法.【 第 13 题 】【 答 案 】-√6【 解析 】解:原式=2√6-9×√63=-√6,故答案为:-√6根据二次根式的运算法则即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.【 第 14 题 】【 答 案 】x <-2【 解析 】解:把x=-2代入y 1=kx+b 得,y 1=-2k+b ,把x=-2代入y 2=x+a 得,y 2=-2+a ,由y1=y2,得:-2k+b=-2+a,解得b−ak−1=2,解kx+b>x+a得,(k-1)x>a-b,∵k<0,∴k-1<0,解集为:x<a−bk−1,∴x<-2.故答案为:x<-2.把x=-2代入y1=kx+b与y2=x+a,由y1=y2得出b−ak−1=2,再求不等式的解集.本题主要考查一次函数和一元一次不等式,本题的关键是求出b−ak−1=2,把b−ak−1看作整体求解集.【第 15 题】【答案】25【解析】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.本题考查了平面展开-最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.【第 16 题】【答案】2√10【解析】解:连接AC、AF,延长CB交FH于M,则∠FMC=90°,CM=4+8=12,FM=8-4=4,在Rt△CMF中,由勾股定理得:CF=√CM2+FM2=√122+42=4√10,∵四边形CDAB和四边形EFHA是正方形,∴∠CAB=45°,∠FAE=45°,∴∠CAF=45°+45°=90°,∵G为CF的中点,∴AG=12CF=2√10,故答案为:2√10.连接AC、AF,延长CB交FH于M,求出CM和FM,根据勾股定理求出CF,求出∠CAF=90°,根据直角三角形的性质求出AG即可.本题考查了勾股定理、直角三角形斜边上中线的性质、正方形的性质等知识点,能求出∠CAF=90°和求出CF的长度是解此题的关键.【第 17 题】【答案】解:原式=3√2-2√2+3-1=√2+2.【解析】直接化简二次根式以及结合平方差公式计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.【第 18 题】【答案】解:a√1a +√4b-√a4+√b=√a+2√b-√a2+√b =√a+3√b当a=8,b=2时,原式=√82+3√2=√2+3√2=4√2【解析】先把二次根式化成最简二次根式,然后合并同类二次根式,再代入求值.本题主要考查了二次根式的化简求值.注意若被开方数中含有分母,开出来后仍然充当分母.【第 19 题】【答案】解:a=12√32=2√2,b=13√18=√2.(1)长方形的周长=(2√2+√2)×2=6√2;(2)正方形的周长=4√2√2×√2=8,∵6√2=√72.8=√64,∵√72>√64∴6√2>8.【解析】首先化简a=12√32=2√2,b=13√18=√2.(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.此题考查二次根式的实际运用,掌握二次根式的化简方法以及长方形、正方形的周长与面积计算方法是解决问题的关键.【第 20 题】【答案】解:(1)男生有:1+2+6+3+5+3=20(人),女生有:45-20=25(人),故答案为:20,25;(2)解:男生的平均分为120×(5×1+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:故答案为:7.9,8;(3)女生队表现更突出,理由:从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.【解析】(1)根据条形统计图中的数据可以求得男生的人数,从而可以求得女生的人数;(2)根据统计图中的数据可以计算出男生的平均数和女生的众数,本题得以解决;(3)根据表格中的数据,进行说明理由即可,本题答案不唯一,说的只要合理即可.本题考查方差、众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.【第 21 题】【答案】证明:四边形AECF的形状是菱形,理由是:∵平行四边形ABCD,∴AD∥BC,∴∠DAO=∠ACF,∠AEO=∠CFO,∵EF过AC的中点O,∴OA=OC,在△AEO和△CFO中,{∠EAO=∠OCF ∠AEO=∠CFOOA=OC,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=CO,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.【解析】根据平行四边形性质推出AD∥BC,得出∠DAO=∠ACF,∠AEO=∠CFO,根据AAS证△AEO≌△CFO,推出OE=OF即可.本题考查了平行线性质,平行四边形的性质,矩形、菱形的判定等知识点的应用,能熟练地运用性质进行推理是解此题的关键,题型较好,具有一定的代表性,但难度不大.【第 22 题】【答案】解:(1)设甲的函数解析式是y=kx+b ,根据题意得:{b =6100k +b =16, 解得:{k =0.1b =6, 则甲的函数解析式是:y=0.1x+6;设乙的函数解析式是y=mx ,根据题意得:100m=12,解得:m=0.12,则乙的函数解析式是:y=0.12x ;(2)根据题意得:0.1x+6=0.12x ,解得:x=300,故当印刷300份学案时,两种印刷方式收费一样.【 解析 】(1)设出两种收费的函数表达式,代入图象上的点,利用待定系数法即可求解;(2)把两个解析式中,令y 相等,则得到一个关于x 的方程,求得当y 相等时x 的值即可. 此题考查了一次函数的应用,待定系数法求函数的解析式,以及一次函数与一元一次方程的关系.理解题意,从图象中获取有用信息是解题的关键.【 第 23 题 】【 答 案 】解:(1)∵AD ∥BC ,∴∠DAF=∠AFB ,∵AF 平分∠DAB ,∴∠DAF=∠BAF ,∴∠BAF=∠AFB ,∴AB=BF=3,∵BC=5,∴CF=5-3=2,∵AD ∥BC ,AE ∥CD ,∴四边形AFCD 是平行四边形,∴AD=CF=2;(2)过B 作AF 的垂线BG ,垂足为G .∵AF ∥DC ,∴∠AFB=∠C=30°,在Rt △BGF 中,GF=BF•cos30°=3×√32=3√32, ∵AB=BF ,BG ⊥AF ,∴AF=2FG=3√3,由(1)知:四边形AFCD 是平行四边形,∴DC=AF=3√3.【 解析 】(1)根据角平分线和平行线的性质:∠BAF=∠AFB ,所以AB=BF=3,再证明四边形AFCD 是平行四边形,可得结论;(2)作高线BG ,根据特殊的三角函数或勾股定理可得FG 的长,所以得AF 的长,由(1)知:四边形AFCD 是平行四边形,得结论.本题考查了平行四边形的判定,三角函数的应用(或勾股定理)、等腰三角形的判定、平行线的性质,正确作出辅助线是关键.【 第 24 题 】【 答 案 】解:(1)由题意,每天生产A 种品牌的酒x 瓶,则每天生产B 种品牌的酒(600-x )瓶, ∴y=20x+15(600-x )=9000+5x .(2)根据题意得:{600−x ≥600×55%50x +35(600−x)≥25000, 解得:26623≤x≤270,∵x 为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A 种品牌的酒267瓶,B 种品牌的酒333瓶;②生产A 种品牌的酒268瓶,B 种品牌的酒332瓶;③生产A 种品牌的酒269瓶,B 种品牌的酒331瓶;④生产A 种品牌的酒270瓶,B 种品牌的酒330瓶;∵每天获利y=9000+5x ,y 是关于x 的一次函数,且随x 的增大而增大,∴当x=267时,y 有最小值,y 最小=9000+5×267=10335元.【 解析 】(1)根据获利y=A 种品牌的酒的获利+B 种品牌的酒的获利,即可解答.(2)根据生产B 种品牌的酒不少于全天产量的55%,A 种品牌的酒的成本+B 种品牌的酒的成本≥25000,列出方程组,求出x 的取值范围,根据x 为正整数,即可得到生产方案;再根据一次函数的性质,即可求出每天至少获利多少元.本题考查了一次函数的应用,关键从表格种获得成本价和利润,然后根据利润这个等量关系列解析式,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后根据一次函数的性质求出哪种方案获利最小.【 第 25 题 】【 答 案 】解:(1)联立两直线解析式得:{y =−x +4y =13x , 解得:{x =3y =1, 则C 坐标为(3,1);(2)由题意:M (a ,0)D (a ,13a ) E (a ,-a+4)∵DE=2DM ∴|13a-(-a+4)|=2|13a|解得a=2或6.(3)如图2中,过O 作OQ ⊥OP ,交BP 的延长线于点Q ,可得∠POQ=90°,∵∠BPO=135°,∴∠OPQ=45°,∴∠Q=∠OPQ=45°,∴△POQ 为等腰直角三角形,∴OP=OQ ,∵∠AOB=∠POQ=90°,∴∠AOB+∠BOP=∠POQ+∠POB ,即∠AOP=∠BOQ ,∵OA=OB=4,∴OA OP =OB OQ ,∴△AOP ∽△BOQ ,∴∠APO=∠BQO=45°,∴∠APB=∠BPO-∠APO=90°,则AP ⊥BP .【解析】(1)联立两直线解析式得到方程组,求出方程组的解即可确定出C的坐标;(2)将x=1代入两直线方程求出对应y的值,确定出D与E的纵坐标,即OD与OE的长,由OE-OD求出DE的长,根据ED=2DM,求出MN的长,将x=a代入两直线方程,求出M与N对应的横坐标,相减的绝对值等于MN的长列出关于a的方程,求出方程的解即可求出a的值;(3)AP⊥BP,理由为:过O作OQ⊥OP,交BP的延长线于点Q,由∠BPO为135°,得到∠OPQ为45°,又∠POQ为直角,可得出三角形OPQ为等腰直角三角形,再利用两对对应边成比例且夹角相等的两三角形相似得到三角形AOP与三角形BOQ相似,由相似三角形的对应角相等得到∠APO=∠BQO=45°,由∠BPO-∠APO得到∠APB为直角,即AP⊥BP.此题属于一次函数综合题,涉及的知识有:相似三角形的判定与性质,等腰直角三角形的判定与性质,两直线的交点,一次函数与坐标轴的交点,以及坐标与图形性质,属于中考压轴题.- 21 -。
北师大版八年级下册数学课本答案参考
北师大版八年级下册数学课本答案参考做八年级数学课本练习用汗水织就实力,用毅力成就梦想,用拼搏铸就辉煌。
店铺为大家整理了北师大版八年级下册数学课本的参考答案,欢迎大家阅读!北师大版八年级下册数学课本答案参考(一)习题2.51.解:(1)去分母,得x-5+2>2(x-3).去括号,得x-5+2>2x-6.移项、合并同类项,得-x>-3.两边都除以-1,得x<3.(2)去分母,得-3x+x≤-15.合并同类项,得-2x≤-15. 两边都除以-2,得x≥15/2 .(3)去分母,得5x-30<15-3x. 移项、合并同类项,得8x<45.两边都除以8,得x<45/8 .(4)去括号,得x-3x+1≤x+2 . 移项、合并同类项,得-3x≤1.两边都除以-3,得x≥-1/3 .2.解:设还能买x本辞典.根据题意,得65×20+40x≤2000,解得x≤35/2 . 所以最多还能买x本辞典.3.解:设她还能买n支笔,根据题意,得3n+2.2×2≤21. 解这个不等式,得n≤83/15 .因为在这个问题中n只能取正整数,所以小颖最多还能买5支笔.4.解:设需要x名八年级学生参加活动,则七年级参加活动的人数为(60-x).根据题意,得15(60-x)+20x≥1000.解得x≥20.所以至少20名八年级学生参加活动.北师大版八年级下册数学课本答案参考(二)第50页当y1>y2,即-x+3>3x-4时,x<7/4,所以当x<7/4时,y1>y2.本题还可以分别画出y1=-x+3与y2=3x-4的图像,再利用图像进行比较说明.北师大版八年级下册数学课本答案参考(三)习题2.61.当x>7/4时,y1<y2.通过画出y1=-x+3与y2=3x-4的图像,进行观察分析得到,也可以通过解不等式得到.2.由图像可以看出,当x>4t时,生产该产品才能盈利.3.解(1)观察图像,可得甲共用了0.6h,乙共用了0.5h,所以乙快.(2)设l1的函数关系式为s=kt(k≠0).由图像可知l1经过点(0.6,20),将(0.6,20)代入s=kt,得20=0.6k.解得k=100/3 .所以s=100/3t.当s=10时,得10=100/3t . 解得t=0.3.所以经过0.3h甲车行驶到A,B 两地的中点.4.问题:若到校时间不超过1/4h,那么步行的距离至多是多少?方案:设步行的距离为xkm,根据题意,得x/6+(2-x)/10≤1/4,解得x≤3/4 .所以步行的距离至多是3/4km.北师大版八年级下册数学课本答案参考(四)第52页解:设某公司40名员工中女士有x人,景点每张票价a元,打八折的购票方案费用为y1元,根据题意,得y1=40×0.8a,即y1=32a;y2=0.5ax+(40-x)a,即y2=(40-0.5x)a;由y1=y2,得32a=(40-0.5x)a,解得x=16;由y1>y2,得32a=(40-0.5x)a,解得x>16;由y1<y2,得32a=(40-0.5x)a,解得x<16.所以当x=16时,两种购票方案费用相同;当17≤x≤40时,选择女士票价打五折的购票方案;当x<16时,选择买团体票的购票方案.。
数学书八年级下册答案北师大版
数学书八年级下册答案北师大版数学是一门实用的学科,它不仅能够培养学生的逻辑思维能力,还可以提高他们的问题解决能力。
对于八年级学生而言,数学是一个相当重要的学科,因此掌握好数学知识对他们而言非常关键。
而对于八年级下册的数学答案,对学生来说更是至关重要。
因为不论是课堂练习还是作业,都需要有一个标准答案来进行对照和自我检查。
北师大版的数学教材是八年级下册所采用的教材,下面我们就来为大家提供数学书八年级下册答案北师大版。
第一章有理数1. 知识点复习:a. 有理数的概念b. 有理数的加减法c. 有理数的乘除法d. 有理数的大小比较e. 有理数的绝对值2. 习题答案:1)练习题2)课后作业第二章代数式与方程1. 知识点复习:a. 代数式的概念b. 展开与因式分解c. 一元一次方程d. 一元一次方程的解法2. 习题答案:1)练习题2)课后作业第三章几何基础知识1. 知识点复习:a. 几何图形的概念b. 直线、射线、线段的区别c. 角的概念d. 平行线与垂直线的判定e. 三角形的分类f. 角平分线与垂直平分线2. 习题答案:1)练习题2)课后作业第四章相似与全等1. 知识点复习:a. 相似图形的概念b. 相似三角形的判定c. 全等图形的概念d. 全等三角形的判定2. 习题答案:1)练习题2)课后作业第五章计算与应用1. 知识点复习:a. 分数的加减乘除b. 百分数、倍数和比例的概念c. 百分数与小数的转换d. 比例与比例的运算e. 利息和平均数的计算2. 习题答案:1)练习题2)课后作业第六章数据分析1. 知识点复习:a. 数据的收集与整理b. 统计指标的计算c. 直方图与折线图的绘制d. 数据的分析和解读2. 习题答案:1)练习题2)课后作业通过以上各章节的习题答案,学生们可以对自己的学习成果进行巩固和总结。
同时,这些答案也可以作为学生在学习过程中的参考,帮助他们更好地理解和掌握数学知识。
总结起来,数学书八年级下册答案北师大版是每个八年级学生所必备的学习资料。
2020年北师大版八年级下学期开学考试数学试卷附解答
2020年北师大版八年级下学期开学考试数学试卷一、选择题(本题共计6小题,每题3分,共计18分) 1.下列不等式的变形正确的是( )A .若am >bm ,则a >bB .若am 2>bm 2,则a >bC .若a >b ,则am 2>bm 2D .若a >b 且ab >0,则ba 11 【答案】B2.如图,△ABC 中,AC =AD =BD,∠DAC =80°,则∠B 的度数是( )A .20°B .25°C .35°D .40° 【答案】B3.如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长是( )A .8B .10C .12D .14 【答案】B4.如图,等腰△ABC 中,AB =AC,∠A =36°.用尺规作图作出线段BD ,则下列结论错误的是( )A .AD =BDB .∠DBC =36° C .S △ABD =S △BCD D .△ABC 的周长=AB +BC【答案】C5.如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .13 【答案】C 6. 若不等式组⎩⎨⎧<-<-m x x x 632无解,那么m 的取值范围是 ( )A .m >2B .m <2C .2≥mD .2≤m 【答案】D二、填空题(本题共计6小题,每题3分,共计18分)7.如图,BE,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“________”.【答案】HL8.一次函数y =kx +b 的图象如图所示,若当kx +b >0时,则x 的取值范围为________.【答案】x>19.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为________°.【答案】3010.在如图所示的方格纸(1格长为1个单位长度)中,△ABC 的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A 'B 'C ',使各顶点仍在格点上,则其旋转角的度数是________.【答案】90°11.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB 'C 'D ',如果CD =3DA =3,那么CC '=________.【答案】5212.对于x ,符号[x ]表示不大于x 的最大整数.如:[3.14]=3,[-7.59]=-8,则满足关系式4773=⎥⎦⎤⎢⎣⎡+x 的x 的整数值有 . 【答案】7,8,9.三、解答题(本题共计11小题,共计84分) 13.(6分)解下列不等式组⎩⎨⎧>--->+xx xx 5)1(36172;并把解集在数轴上表示.【答案】解:{2x +7>1−x …6−3(1−x)>5x …,由①得:x >−2 由②得:x <32∴不等式的解是−2<x <32. 数轴表示正确14.(6分)如图,在△ABC 中,AB =AC ,AE ⊥AB 于A ,∠BAC =120°,AE =3cm .求BC 的长.【答案】解:过点A 作AF ⊥BC 交BC 于F ,∵AB =AC ,∠BAC =120∘, ∴∠B =∠C =30∘,BC =2BF . 在Rt △BAE 中,BE =2AE =6cm ,AB =√BE 2−AE 2=√62−32=3√3. 在Rt △AFB 中, AF =12AB =3√32,BF =√AB 2−AF 2=√(3√3)2−(3√32)2=92. ∴BC =2BF =2×92=9.15.(6分)某批服装进价为每件200元,商店标价为每件300元.现商店准备将这批服装打折出售,但要保证毛利润不低于8%,商店最低可按标价的几折出售?(通过列不等式进行解答) 【答案】商店最低可按标价的7.2折出售16.(6分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(−4, 2),B(0, 4),C(0, 2).(1)画出△ABC 关于点C 成中心对称的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为(0, −4),画出平移后对应的△A 2B 2C 2;(2)△A 1B 1C 和△A 2B 2C 2关于某一点成中心对称,则对称中心的坐标为________.【答案】(1)根据网格结构找出点A ,B 关于点C 成中心对称的点A 1,B 1的位置,再与点A 顺次连接即可; 根据网格结构找出点A ,B ,C 平移后的对应点A 2,B 2,C 2的位置,然后顺次连接即可; 如图所示;(2)(2, −1)17.(6分)已知:如图,△ABC 中,BO ,CO 分别是∠ABC 和∠ACB 的平分线,过O 点的直线分别交AB 、AC 于点D 、E ,且DE // BC .若AB =6cm ,AC =8cm ,求△ADE 的周长.【答案】 解:∵DE // BC ∴∠DOB =∠OBC , 又∵BO 是∠ABC 的角平分线, ∴∠DBO =∠OBC , ∴∠DBO =∠DOB , ∴BD =OD , 同理:OE =EC ,∴△ADE 的周长=AD +OD +OE +AE =AD +BD +AE +EC =AB +AC =14cm .18.(8分)是否存在这样的整数m ,使得关于x ,y 的方程组{x +y =2m +12x −y =m −4 的解满足x <0且y >0?若存在,求出整数m ;若不存在,请说明理由. 【答案】解方程组{x +y =2m +12x −y =m −4得:{x =m −1y =m +2 ,根据题意,得:{m −1<0m +2>0 ,解得:−2<m <1, 则整数m 为−1,0.19.(8分)某商店欲购进A 、B 两种商品,已知购进A 种商品3件和B 种商品4件共需220元;若购进A 种商品5件和B 种商品2件共需250元.(1)求A 、B 两种商品每件的进价分别是多少元?(2)若每件A 种商品售价48元,每件B 种商品售价31元,且商店将购进A 、B 两种商品共50件全部售出后,要获得的利润不少于360元,问A 种商品至少购进多少件? 【答案】(1)A 种商品每件的进价为40元,B 种商品每件的进价为25元 (2)A 种商品至少购进30件20.(8分)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,E 为AB 边的中点,以BE 为边作等边△BDE ,连结AD ,C D .(1)求证:△ADE ≌△CDB ;(2)若BC =3,在AC 边上找一点H ,使得BH +EH 最小,并求出这个最小值. 【答案】(1)证明:在Rt △ABC 中,∠BAC =30∘,E 为AB 边的中点, ∴BC =EA ,∠ABC =60∘. ∵△DEB 为等边三角形,∴DB =DE ,∠DEB =∠DBE =60∘, ∴∠DEA =120∘,∠DBC =120∘, ∴∠DEA =∠DBC , ∴△ADE ≅△CDB(SAS).(2)解:如解图,作点E 关于直线AC 对称点E ′,连结BE ′交AC 于点H . 则点H 即为符合条件的点,连结AE ′.由作图可知:EH+BH=BE′,AE′=AE,∠E′AC=∠BAC=30∘.∴∠EAE′=60∘,∴△EAE′为等边三角形,AB,∴∠AE′B=90∘,∴EE′=EA=12在Rt△ABC中,∠BAC=30∘,BC=√3,∴AB=2√3,AE′=AE=√3,∴在Rt△ABE′中,由勾股定理得BE′=√AB2−AE′2=3,∴BH+EH的最小值为3.21.(9分)如图在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1坐标为(4,0),画出△A1B1C1并写出顶点A1,B1的坐标;(2)将△ABC绕着点O按逆时针方向旋转90°得到△A2B2C2,画出△A2B2C2.(3)求出△A2B2C2的面积.【答案】(1)如图所示,△A1B1C1即为所求,其中A1的坐标为(2, 2),B1的坐标为(3, −2).(2)如图所示,△A2B2C2即为所求.(3)△A2B2C2的面积=2×4−12×2×2−12×1×2−12×1×4=3.22.(9分)某甜品店用A,B两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如表所示.该店制作甲款甜品x份,乙款甜品y份,共用去A原料2000克.(1)求y关于x的函数表达式.(2)已知每份甲甜品的利润为a元(a正整数),每份乙甜品的利润为2元.假设两款甜品均能全部卖出.①当a=3时,若获得总利润不少于220元,则至少要用去B原料多少克?②现有B原料3100克,要使获利为450元且尽量不浪费原材料,甲甜品的每份利润应定为多少元?【答案】(1)由题可得,30x+10y=2000,即y=200−3x故y关于x的函数表达式为y=200−3x(2)①由题意:3x+2y≥220,而由(1)可知3x=200−y代入可得:200−y+2y≥220∴y≥20设B原料的用量为w,则w=15x+20y,即w=15y+1000∵k=15,w随y的增大而增大∴当y取最小值20时,可得w的最小值为15×20+1000=1300故若获得总利润不少于220元,则至少要用去B原料1300克.②由题意:15x+20y≤3100即:15x+20(200−3x)≤3100,解得x≥20又∵ax+2y=450即:ax+2(200−3x)=450,a=6+50x,而a,x均为正整数且x≥20,于是可得x=50,a=7或x=25,a=8当x=50时,需要B原料1750;当x=25时,需要B原料2875,为了尽量不浪费原材料,a应取8.故在设定条件下,甲甜品的每份利润应定为8元.23.(12分)如图(1),在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连结BE,CD,点M,N,P分别是BE,CD,BC的中点,连结DE,PM,PN,MN.(1)观察猜想图(1)中△PMN是________(填特殊三角形的名称).(2)探究证明如图(2),△ADE绕点A按逆时针方向旋转,则△PMN的形状是否发生改变?并就图(2)说明理由.(3)拓展延伸若△ADE绕点A在平面内自由旋转,AD=1,AB=3,请直接写出△PMN的周长的最大值.【答案】(1)等边三角形解:(2)△PMN的形状不发生改变,仍为等边三角形.理由如下:连结BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60,又∵AD=AE,∴△ABD≅△ACE,∴BD=CE,∠ABD=∠ACE.∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,CE,且PM//CE.∴PM=12BD且PN//BD,同理可证PN=12∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC−∠ABD)=∠ACB+∠ABC=120,∴∠MPN=60,∴△PMN是等边三角形.(3)△PMN的周长的最大值为6.解法提示:易证在△ADE的旋转的过程中,△PMN恒为等边三角形.如图,当点E,A,C在同一线上,且点A在EC上时,△PMN的周长最大,易知此时点D,A,B在同一直线上.∵点M,P分布为BE,BC的中点,∴MP=12EC=12(1+3)=2,故△PMN周长的最大值为2×3=6.。
北师大版八年级下册数学课本答案参考
北师大版八年级下册数学课本答案参考第一章:有理数1. 基础知识有理数是整数和分数的统称,它包括正数、负数和零。
有理数的加、减、乘、除运算规则和整数的运算规则相同。
2. 课后练习答案1) 解方程2x - 1 = 7得 x = 4。
2) 有理数的加法运算:(-3) + (-5) = -8。
3) 约分分数$\frac{8}{12}$得到$\frac{2}{3}$。
4) 相反数的性质:若$a$是有理数,那么$-(-a) = a$。
5) 解方程$\frac{1}{3}x - \frac{1}{2} = \frac{1}{4}$,得到$x =\frac{2}{3}$。
6) 有理数的乘法运算:$(-\frac{3}{4}) \times (\frac{8}{9}) = -\frac{2}{3}$。
7) 加法交换律:若$a$和$b$是有理数,则$a + b = b + a$。
8) 解方程$\frac{2}{3}x + \frac{1}{4} = -\frac{3}{4}$,得到$x = -\frac{5}{2}$。
9) 解方程$-0.4x - 0.1 = -0.3$,得到$x = 1$。
10) 解方程$2x - 3 = -5x + 2$,得到$x = \frac{5}{7}$。
第二章:代数式与变量1. 基础知识代数式是由常数、变量和运算符号组成的表达式,例如$x + y$就是一个代数式。
变量是代表数的符号,可以代表不同的数值。
在代数式中,变量参与运算,可以得到具体的数值。
2. 课后练习答案1) 代数式$3x^2 - 2x + 5y$的系数是3、-2、5。
2) 代数式$7x - 3y$的和是$8x - y$。
3) 代数式$(3a + 4b)(2a - 5b)$展开后为$6a^2 - 7ab - 20b^2$。
4) 代数式$2x^2 + 3xy - 4y^2$的最高次项是$2x^2$。
5) 代数式$6a - (2b - 3a)$化简得$9a - 2b$。
2020年北师大版八年级下数学第4章《因式分解》练习题及答案 (19)
2020年北师大版八年级下数学第4章《因式分解》练习题19.若一个正整数x能表示成a2﹣b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32﹣22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2﹣y2=(x+y)2﹣y2(x,y 是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.
(1)判断:9是“明礼崇德数”(填“是”或“不是”);
(2)已知N=x2﹣y2+4x﹣6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由;
(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m既是“七喜数”,又是“明礼崇德数”,请求出m的所有平方差分解.
解:(1)∵9=52﹣42,
∴9是“明礼崇德数”,
故答案为是;
(2)∵N是“明礼崇德数”,
∵x>y+1,
∴x+2>y+3,
∴N=x2﹣y2+4x﹣6y+4﹣9=(x+2)2﹣(y+3)2,
∵N=x2﹣y2+4x﹣6y+k=(x+2)2﹣(y+3)2,
∴k=﹣5;
(3)设百位数字是x,则个位数字是x+7,
∴x=1或x=2,
当x=1时,这个三位数是178,
∴m=178=2×89,
此时m不是“明礼崇德数”;
当x=2时,这个三位数是279,
∴m=279=3×93=9×31,
∴m=482﹣452=202﹣112,
∴48与45是m的平方差分解;21与11是m的平方差分解.。
北师大版2019-2020学年度第二学期八年级(下)期末数学试卷(含解析) (11)
北师大版2019-2020学年第二学期八年级(下)期末数学试卷一、选择题(每题3分,共30分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.(3分)不等式5+2x<1的解集在数轴上表示正确的是()A.B.C.D.4.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形5.(3分)要使分式有意义,则x的取值应满足()A.x≠2B.x≠1C.x=2D.x=﹣1 6.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm7.(3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣8.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18B.14C.12D.610.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2B.x<﹣2或1<x<2C.﹣2<x<1或x>1D.x<﹣2或x>2二、填空题(每3分,共15分)11.(3分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.12.(3分)若a2﹣5ab﹣b2=0,则的值为.13.(3分)如图所示,在四边形ABCD中,AD∥CB,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,则秒后四边形ABQP为平行四边形.14.(3分)在代数式,,,,x+中,是分式的有个.15.(3分)如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是.三、解答题(共计75分)16.(10分)分解因式(1)a2x2y﹣axy2(2)a2(x﹣y)+b2(y﹣x)17.(10分)(1)化简求值:(﹣)÷,其中m=﹣1(2)解不等式组.并把它的解集在数轴上表示出来.18.(7分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF,求证:DE =BF.19.(11分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;直接写出点B2的坐标;(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.20.(8分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.21.(8分)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,求证:DE =FE.22.(12分)我市某学校2016年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2017年为大力推动校园足球运动,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过3000元,那么这所学校最多可购买多少个乙种足球?23.(9分)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB 于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.参考答案一、选择题(每题3分,共30分)1.解:A、只是中心对称图形,故本选项错误;B、只是中心对称,故本选项错误;C、只是轴对称图形不是中心对称图形,故本选项错误;D、即是轴对称图形也是中心对称图形,故本选项正确;故选:D.2.解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选:C.3.解:5+2x<1,移项得2x<﹣4,系数化为1得x<﹣2.故选:C.4.解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:A.5.解:由题意得,x﹣2≠0,解得,x≠2,故选:A.6.解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,7.解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,解得:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.8.解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.9.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=18.故选:A.10.解:当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>﹣2,∴﹣2<x<1;当3<x+2,即x>1时,3(x+2)﹣(x+2)>0,解得:x>﹣2,综上,﹣2<x<1或x>1,故选:C.二、填空题(每3分,共15分)11.解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).12.解:对a2﹣5ab﹣b2=0两边同除ab,得﹣5﹣=0,整理得,=5,故答案为:5.13.解:∵运动时间为x秒,∴AP=x,QC=2x,∵四边形ABQP是平行四边形,∴AP=BQ,∴x=6﹣2x,∴x=2.答:2秒后四边形ABQP是平行四边形.故答案为:2.14.解:在代数式,,,,x+中,是分式的有,,故答案为:215.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,(含①的只有B和D,它们的区别在于有没有④.它们都是含30°的直角三角形,并且斜边是相等的),∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),故④正确.∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,故②正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=AG,故③,故答案为①②③④.三、解答题(共计75分)16.解:(1)原式=axy(ax﹣y);(2)原式=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a+b)(a﹣b).17.解:(1)原式==m﹣3将m=1代入,原式=﹣4;(2)由①得,x>1,由②得,x<4,所以不等式组的解集为1<x<4,18.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△EAD和△FCB中∴△EAD≌△FCB(SAS),∴DE=BF.19.解:(1)△A1B1C1如图所示.(2)△AB2C2如图所示,点B2(4,﹣2).(3)△A3B3C3如图所示,B3的坐标(﹣4,﹣4).20.解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.21.证明:∵DE是△ABC的中位线∴AE=EC,∵CF∥BD∴∠A=∠ECF,且AE=CE,∠AED=∠CEF∴△AED≌△CEF(ASA)∴DE=EF22.解:(1)设购买一个甲种足球需要x元,,解得,x=50,经检验,x=50是原分式方程的解,∴x+20=70,即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球,70(1﹣10%)y+50(1+10%)(50﹣y)≤3000,解得,y≤31.25,∴最多可购买31个足球,即这所学校最多可购买31个乙种足球.23.解:图2结论:PD+PE+PF=AB.证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠B,∠EPM=∠ANM=∠C,∵AB=AC,∴∠B=∠C,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB.图3结论:PE+PF﹣PD=AB.。
2020年北师大版八年级下册数学《期末考试试卷》及答案
【答案】B
【解析】
如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.
解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.
【答案】D
【解析】
【分析】
根据平行四边形的对边平行和平行线的性质可对A进行判断;根据平行四边形的对角相等可对B进行判断;根据平行四边形的对边相等可对A进行判断;根据平行四边形的对角线互相平分可对D进行判断.
【详解】A、在▱ABCD中,∵AB∥CD,∴∠1=∠2,所以A选项结论正确;
B、在▱ABCD中,∠BAD=∠BCD,所以B选项结论正确;
【分析】
根据旋转 性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.
【详解】由旋转可得,△ABC≌△EDC,
∴DE=AB=1.5,
故选A.
【点睛】本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.
10.直线 与直线 在同一平面直角坐标系中的图象如图所示,则关于x的不等式 的解为()
C、在▱ABCD中,AO=CO,所以C选项的结论正确;
D、在▱ABCD中,OA=OC,OB=OD,所以D选项结论错误.
故选D.
【点睛】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.
4.若x>y,则下列式子中错误的是( )
A.x-3>y-3B. C.x+3>y+3D.-3x>-3y
数学八下北师版习题答案
数学八下北师版习题答案数学八下北师版习题答案数学是一门既具有理论性又具有实践性的学科,它在我们的日常生活中扮演着重要的角色。
然而,学习数学常常会遇到一些难题,这就需要我们寻找一些可靠的资源来帮助我们解决困惑。
北师版数学八下的习题是我们学习的重要内容之一,下面将给出一些习题的答案,希望能够对同学们的学习有所帮助。
一、选择题1. 已知函数y=3x+2,求当x=4时的函数值。
答案:将x=4代入函数中,得到y=3*4+2=14,所以当x=4时,函数值为14。
2. 若a:b=2:3,b:c=4:5,求a:b:c的值。
答案:根据已知条件,我们可以得到a:b=2:3,b:c=4:5。
将这两个比例关系相连,得到a:b:c=2:3:5,所以a:b:c的值为2:3:5。
3. 若正方形的边长为x,求其对角线的长度。
答案:根据勾股定理,正方形的对角线的长度等于边长的平方根的两倍。
所以对角线的长度为2x。
二、填空题1. 6的平方根是____。
答案:6的平方根是√6。
2. 一个圆的周长是12π,求其半径。
答案:设圆的半径为r,则周长为2πr=12π,解得r=6。
3. 三角形的内角和为____度。
答案:三角形的内角和为180度。
三、计算题1. 计算(1+2+3+...+100)的值。
答案:根据等差数列的求和公式,(1+2+3+...+100) = (1+100) * 100 / 2 = 5050。
2. 计算(3/5 + 1/2)的值。
答案:将3/5和1/2转化为相同的分母,得到(6/10 + 5/10) = 11/10。
3. 计算(2^3 + 3^2)的值。
答案:2^3 + 3^2 = 8 + 9 = 17。
四、解答题1. 求解方程2x+5=17。
答案:将方程化简,得到2x=12,再除以2,得到x=6。
所以方程的解为x=6。
2. 某数的一半加上5等于这个数的三分之一减去2,求这个数。
答案:设这个数为x,则根据题意可以得到x/2+5=3x/3-2。
八年级下册数学北京师范书答案
八年级下册数学北京师范书答案勤奋做八年级数学书习题的含义是今天的热血,而不是明天的决心,后天的保证。
店铺为大家整理了八年级下册数学北京师范书答案,欢迎大家阅读!八年级下册数学北京师范书答案(一)习题1.31.证明:∵ AD∥BC(已知),∴∠1=∠B(两直线平行,同忙角相等),∠2 =∠C(两直线平行,内错角相等)∵∠1=∠2(已知).∴∠B=∠C.∴AB=AC(等角对等边)2.证明:∵AB=AC,∴∠B=∠C(等边对等角)∵ EP⊥BC,∴∠B+∠BFP=90°,∠C十∠E=90°,∴∠E=∠BFP.∵∠BFP=∠EFA(对项角相等),∴∠E=∠EFA.∴AE=AF(等角对等边),∴△AEF是等腰三角形.3.解:(1)有两种情况:一种情况是锐角α为顶角,如图1-1-45所示(作法略),△A1B1C1为所求作的三角形;另一种情况是锐角α为底角,如图1-1-46所示(作法略),△A2 B2 C2为所求作的三角形.(2)因为底角只能为锐角,所以只有一种情况,即钝角α只能是顶角,如图1-1-47所示(作法略),△A3 B3 C3为所求作的三角形.4.解:∵∠NBC=∠C+∠NAC,∠NBC=84°,∠NAC= 42°,∴∠C=∠NBC - ∠NAC=42°=∠NAC .∴ AB= BC.∴BC=18×10=180(n mile).因此从B处到灯塔C的距离为180 n mile . 八年级下册数学北京师范书答案(二)习题1.41.证明:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.∴∠A=∠ADE=∠AED=60°.∴△ADE是等边三角形.2. 解:∵BC⊥AC.∴∠ACB=90°.在Rt△ACB中,∠A=30°,∴BC=1/2AB=1/2×7.4=3. 7(m).∵D为AB的中点,∴AD=1/2 AB=1/2×7.4=3. 7(m).∵DE⊥AC,∴∠AED=90°.在Rt△AED中,∵∠A=30°,∴DE=1/2AD=1/2×3.7=1.85(m).∴BC的长为3.7m,DE的长为1.85m.3.解:(1)①△DEF是等边三角形.证明:∵△ABC是等边三角形,∴∠ABC=60°,∵BC∥EF,∴∠EAB=∠ABC=60°.又∵AB∥DF,∴∠EAB=∠F=60°.同理可证∠E=∠D=60°.∴△DEF是等边三角形.②△ABE,△ACF,△BCD也都是等边三角形.点A,B,C分别是EF,ED,FD的中点.证明:∵EF∥BC.∴∠EAB=∠ABC,∠FAC=∠ACB.∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠EAB=∠FAC=60°.同理可证∠EBA=∠DBC=60°.∠FCA=∠DCB=60°∴∠E=∠F=∠D=60°.∴△ABE,△ACF,△BCD都是等边三角形.又∵AB= BC=AC,∴AE=AF=BE=BD=CF=CD,即点A,B,C分别是EF.ED、FD的中点.(2)△ABC是等边j角形.证明:∵点A,B,C分别是EF,ED,FD的中点,∴AE=AF=1/2EF,BE=BD= 1/2ED,CF=CD=1/2FD.又∵△DEF是等边三角形,∴∠E=∠F=∠D=60°(等边三角形的三个角都相等,并且每个角都等于60°),EF= ED= FD(等边三角形的三条边都相等).∴AE=AF=BE=BD=CF=CD.∴△ABE,△BCD,△ACF都是等边三角形(有一个角等于60°的等腰三角形是等边三角形),∴ AB=AE,BC=BD,AC=AF,∴AB=BC=AC,∴△ABC是等边三角形.4.已知:如图1-1-48所示,在Rt△ABC-中,∠BAC=90°,BC=1/2AB.求证:∠BAC=30°.证明:延长BC至点D,使CD=BC,连接AD .∵∠BCA=90°,∴∠DCA=90°.又∵BC=CD,AC=AC,∴△ABC≌△ADC( SAS),∴AB=AD,∠BAC=∠DAC(全等三角形的对应边相等、对应角相等).又∵BC=1/2AB,∴ BD=AB=AD,∴△ABD为等边三角形.∴∠B4D= 60°.又∵∠BAC=∠DAC,∴∠BAC=30°.5.解:∠ADG=15°.证明:∵四边形ABCD是正方形,∴AD∥BC,AB=AD=DC.又∵E,F分别是AB,DC的中点,∴EF∥AD,FD=1/2DC=1/2AD=1/2A'D.而AD⊥CD,∴EF⊥CD,∴∠EFD=90°.在Rt△A'FD中,FD=1/2A'D,利用第4题的结论可得∠DA'F=30°.由平行线及翻折的性质可知∠DA'F=2∠ADG=30°,所以∠ADG=15°.八年级下册数学北京师范书答案(三)第38页练习1.如小芳的体重思维2倍不超过她爸爸的体重等.2.(1)a≥0;(2)c>a,c>b;(3)x+17<5x;(4)a²+b²≥2ab(a表示一个数,b表示另一个数).。
八下数学北师大版参考答案
八下数学北师大版参考答案数学是一门让很多人头疼的学科,尤其是对于初中生来说。
而北师大版的数学教材一直以来都备受学生和家长的关注。
在学习过程中,很多学生会遇到一些难题,对于这些难题的解答,参考答案是一个很好的学习工具。
下面将为大家提供一些八年级数学北师大版的参考答案。
首先,我们来看一下八年级上册的数学题目。
在这个学期里,学生将学习到很多重要的数学知识,包括代数方程、平面图形的性质、数与式的运算等等。
其中,代数方程是一个比较难的部分,很多同学容易出错。
下面是一道典型的代数方程题目:已知2x + 3 = 7,求x的值。
根据方程的定义,我们可以得到2x = 7 - 3,即2x = 4。
然后,将方程两边都除以2,得到x = 2。
所以,这道题的答案是x = 2。
接下来,我们来看一下八年级下册的数学题目。
在这个学期里,学生将学习到更加复杂的数学知识,包括三角函数、立体几何、概率等等。
其中,立体几何是一个比较抽象的概念,很多同学可能会感到困惑。
下面是一道典型的立体几何题目:已知一个正方体的棱长为a,求正方体的表面积。
根据正方体的性质,我们知道正方体有六个面,每个面都是一个正方形。
所以,正方体的表面积等于六个正方形的面积之和。
而每个正方形的面积等于边长的平方。
所以,正方体的表面积等于6 * a * a,即6a²。
所以,这道题的答案是6a²。
除了代数方程和立体几何,还有很多其他的数学知识需要我们去掌握。
比如,数与式的运算是一个非常基础的概念。
下面是一道典型的数与式的运算题目:计算:(2x + 3)² - (x - 1)²。
根据数与式的运算法则,我们可以得到(2x + 3)² - (x - 1)² = (2x)² + 2 * 2x * 3 + 3² - (x)² + 2 * x * 1 + 1²。
化简之后,得到4x² + 12x + 9 - x² + 2x + 1。
数学八下北师版习题答案
数学八下北师版习题答案数学八下北师版习题答案数学是一门既有趣又具有挑战性的学科,它是我们日常生活中不可或缺的一部分。
学习数学可以帮助我们提高逻辑思维能力、解决问题的能力以及培养我们的创造力。
而数学习题则是巩固和应用我们所学知识的重要方式之一。
在学习数学的过程中,我们经常会遇到各种各样的习题,而本文将为大家提供数学八下北师版习题的详细解答。
一、整数整数是数学中最基本的概念之一,它包括正整数、负整数和零。
在八年级下册的数学教材中,我们将学习整数的四则运算、整数的乘方以及整数的应用等内容。
首先,我们来看一道关于整数四则运算的习题:题目:计算下列各题。
(1)(-5) + 3 + (-7) + 9解答:根据整数的加法法则,符号相同的两个整数相加,保留符号并将绝对值相加。
符号不同的两个整数相加,可以转化为减法运算,即将减数取相反数,然后进行加法运算。
(-5) + 3 + (-7) + 9 = -5 + 3 - 7 + 9 = (-5 - 7) + (3 + 9) = -12 + 12 = 0所以,(-5) + 3 + (-7) + 9的结果为0。
接下来,我们来看一道关于整数乘方的习题:题目:计算下列各题。
(2)(-3)²解答:整数的乘方是指一个整数自乘若干次的运算,其中正整数指数表示自乘的次数,负整数指数表示取倒数后自乘的次数。
(-3)² = (-3) × (-3) = 9所以,(-3)²的结果为9。
二、代数式与方程代数是数学中的一个重要分支,它研究的是数与数之间的关系。
在数学八下北师版的教材中,我们将学习代数式的化简、代数式的加减乘除以及一元一次方程等内容。
首先,我们来看一道关于代数式化简的习题:题目:化简下列各式。
(1)2x + 3x - 4x解答:根据代数式的加法法则,同类项相加时,保留相同的字母部分,并将系数相加。
2x + 3x - 4x = (2 + 3 - 4)x = x所以,2x + 3x - 4x的化简结果为x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
萧县2018—2019学年度第二学期期末教学质量检测
八年级数学参考答案
一、选择题 (每小题3分,共30分) 1-5 C A C DA 6-10 A C B A D
二、填空题(每小题4分,共20分)
11. 2 12. 3. 13. _1800°. 14. 1
三、解答题(共70分)
16.(6分)解:去分母,得x 2+x -2=x 2-1.解得x =1.
经检验,x =1不是原方程的解,所以分式方程无解.
17(6分)解:原式=a +2-3a +2÷(a -1)2(a +2)(a -2)=a -1a +2·(a +2)(a -2)(a -1)2=a -2a -1
. ∵当a =-2,2时,原代数式无意义,∴a =0.
当a =0时,原式=0-20-1
=2. 18(8分)证明:∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,
∴DE =DF ,∠BED =∠CFD =90°.
在△BED 和△CFD 中,⎩⎨⎧DE =DF ,
∠BED =∠CFD ,BE =CF ,
∴△BED ≌△CFD(SAS).∴∠B =∠C.∴AB =AC.
又∵AD 是△ABC 的角平分线,∴AD 是BC 的垂直平分线.
19(8分)证明:∵CD ∥AB ,AE =CD ,∴四边形AECD 是平行四边形.
∴CE =AD.∵AD =BC ,∴BC =EC.
又∵∠B =60°,∴△EBC 是等边三角形.
20.(10分)
解:(1)如图所示,△A 1B 1C 1即为所求.(4分)
(2)如图所示,△A 2B 2C 2即为所求.(4分)
(3)三角形的形状为等腰直角三角形.(2分)
21.(10分)
解:(1)1n ·1n +1=1n -1n +1
.(3分) (2)∵1n -1n +1=n +1n (n +1)-n n (n +1)=1n (n +1)=1n ·1n +1
,
∴等式成立.(3分)
(3)原式=1x -1x +1+1x +1-1x +2+1x +2-1x +3+1x +3-1x +4=1x -1x +4=4x 2+4x
.(4分) 22.(10分)
解:(1)设降价后每枝玫瑰的售价是x 元,依题意,得
30x =30x +1
×1.5. 解得x =2.
经检验,x =2是原方程的解,且符合题意.
答:降价后每枝玫瑰的售价是2元.(5分)
(2)设购进玫瑰y 枝,依题意,得
2(500-y)+1.5y ≤900.
解得y ≥200.
答:至少购进玫瑰200枝.(5分)
23.(12分)
解:由题意可知,AP =t ,CQ =2t ,CE =12
BC =8.∵AD ∥BC ,∴当PD =EQ 时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.
①当2t <8,即t <4时,点Q 在C ,E 之间,如图甲.
此时,PD =AD -AP =6-t ,EQ =CE -CQ =8-2t ,
由6-t =8-2t ,得t =2.(6分)
图甲 图乙
②当8<2t<16且t<6,即4<t<6时,点Q 在B ,E 之间,如图乙.
此时,PD =AD -AP =6-t ,EQ =CQ -CE =2t -8,
由6-t =2t -8,得t =143
. ∴当运动时间t 为2或143
秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.(6分)。