固体物理基本概念题参考解答

合集下载

固体物理概念答案

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。

基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元;点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元;晶胞:同时计及周期性与对称性的尽可能小的重复单元;布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量;简单格子:每个基元中只有一个原子或离子的晶体;复式格子:每个基元中包含一个以上的原子或离子的晶体;2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。

宏观基本对称操作:1、2、3、4、6、i 、m 、4,点群:元素为宏观对称操作的群螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n=的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作空间群:保持晶体不变的所有对称操作3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。

晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示;晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示;密勒指数:晶胞基失的坐标系下的晶面指数;配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数;面间距:晶面族中相邻平面的间距;密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构;4. 倒易点阵,倒格子原胞,布里渊区。

倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。

倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区5. 布拉格方程,劳厄方程,几何结构因子。

《固体物理学》基础知识训练题及其参考答案

《固体物理学》基础知识训练题及其参考答案

《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。

第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。

2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。

非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。

3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。

有那些单质晶体分别属于以上三类。

答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。

常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。

面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。

常见的面心立方晶体有:Cu, Ag, Au, Al等。

六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。

常见的六角密排晶体有:Be,Mg,Zn,Cd等。

4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。

答:NaCl:先将错误!未找到引用源。

两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将错误!未找到引用源。

组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。

固体物理习题解答

固体物理习题解答

,在 时为
.(课本数据有误)
试计算
(1) 费米能和费米温度;
(2) 费米球的半径;
(3) 费米速度;
(4) 费米球的最大横截面积;
(5) 室温下和绝对零度附近电子的平均自由程.
解:电子数密度
.
费米波矢
(1) 费米能
费米温度
(2) 费米球的半径 (3) 费米速度
(4) 费米球的最大横截面
(5) 平均自由时间
证:比热
高温时,
,即
按 Maclaurin 公式展开 取前三项有
,其中
,
.
, 很小,于是
, ,于是
4.(3.12)设某离子晶体中相邻两离子的相互作用势能为
为待定常数,平衡间距 解:平衡时,有
,求线膨胀系数 .
线膨胀系数
,
其中
,
.

10 / 15
1.(4.3)如果已知空位形成能为 是多少?
解:
作业 5
应满足布洛赫定理,若晶格常数为 ,电子的波函数为
(2)
.
(3)
( 是某个确定的函数)
试求电子在这些状态的波矢.
解:一维布洛赫定理为
.
(1)
(2) (3) 2(6.2)设一维电子能带可以写成
其中 为晶格常数,试求 (1) 能带的宽度; (2) 电子的平均速度; (3) 能带底部和顶部的电子有效质量.
解:(1)
马德隆常数
,对于一维晶格,选取一个正离子作为参考离子,在求和中对负离子取正号,
对正离子取负号,参考离子两边的离子是对称分布的,则有
时,由
两边积分,有
取 ,得
故由两种离子组成、间距为 的一维晶格的马德隆常数

《固体物理学》答案[1]

《固体物理学》答案[1]

* v0 =
(2π )3 v0
1.5 证明:倒格子矢量 G = h1b1 + h2 b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证:
v v v uuu v uuu r a r a a a CA = 1 − 3 , CB = 2 − 3 h1 h3 h2 h3 uuu r v Gh1h2h3 ⋅ CA = 0 容易证明 v uuu r Gh1h2h3 ⋅ CB = 0 v v v v G = h1b1 + h2b2 + h3b3 与晶面系 (h1h2 h3 ) 正交。 v v v h k l ( ) 2 + ( )2 + ( )2 ;说明面 a b c
图 1.3 体心立方晶胞
(2)对体心立方晶体,任一个原子有 8 个最近邻,若原子刚性球堆积,如图 1.3 所示,体心位置 O 的原 子 8 个角顶位置的原子球相切, 因为晶胞空间对角线的长度为 3a = 4r , V = a 3 , 晶胞内包含 2 个原子, 所
2* 4 3π( 以ρ = a3
3a 3 4

3 ε 23 2 1 − ε 23 2 ε 33
由上式可得
ε 23 = 0, ε 32 = 0, ε 11 = ε 22 . ε 11 ε = 0 0 0 ε 11 0 0 0 . ε 33
于是得到六角晶系的介电常数
附:证明不存在 5 度旋转对称轴。 证:如下面所示,A,B 是同一晶列上 O 格点的两个最近邻格点,如果绕通过 O 点并垂直于纸面的转轴顺时 针旋转θ 角,则 A 格点转到 A 点,若此时晶格自身重合,点处原来必定有一格点,如果再绕通过 O 点的
3a = 8r , 晶胞体积 V = a 3

固体物理学考试试题及答案

固体物理学考试试题及答案

固体物理学考试试题及答案题目一:1. 介绍固体物理学的定义和基本研究对象。

答案:固体物理学是研究固态物质行为和性质的学科领域。

它主要研究固态物质的结构、形态、力学性质、磁学性质、电学性质、热学性质等方面的现象和规律。

2. 简述晶体和非晶体的区别。

答案:晶体是具有有序结构的固体,其原子、离子或分子排列规则且呈现周期性重复的结构。

非晶体则是没有明显周期性重复结构的固体,其原子、离子或分子呈现无序排列。

3. 解释晶体中“倒易格”和“布里渊区”的概念。

答案:倒易格是晶体中倒格矢所围成的区域,在倒易格中同样存在周期性的结构。

布里渊区是倒易格中包含所有倒格矢的最小单元。

4. 介绍固体中的声子。

答案:声子是固体中传递声波和热传导的一种元激发。

它可以看作是晶体振动的一种量子,具有能量和动量。

5. 解释“价带”和“能带”之间的关系。

答案:价带是材料中的电子可能占据的最高能量带。

能带是电子能量允许的范围,它由连续的价带和导带组成。

6. 说明禁带的概念及其在材料中的作用。

答案:禁带是能带中不允许电子存在的能量范围。

禁带的存在影响着材料的导电性和光学性质,决定了材料是绝缘体、导体还是半导体。

题目二:1. 论述X射线衍射测定晶体结构的原理。

答案:X射线衍射利用了X射线与晶体的相互作用来测定晶体结构。

当X 射线遇到晶体时,晶体中的晶格会将X射线发生衍射,衍射图样可以提供关于晶体的结构信息。

2. 解释滑移运动及其对晶体的影响。

答案:滑移运动是晶体中原子沿晶格面滑动而发生的变形过程。

滑移运动会导致晶体的塑性变形和晶体内部产生位错,影响了晶体的力学性质和导电性能。

3. 简述离子的间隙、亚格子和空位的概念。

答案:间隙是晶体结构中两个相邻原子之间的空间,可以包含其他原子或分子。

亚格子是晶体结构中一个位置上可能有不同种类原子或离子存在的情况。

空位是晶体结构中存在的缺陷,即某个原子或离子缺失。

4. 解释拓扑绝缘体的特点和其应用前景。

答案:拓扑绝缘体是一种特殊的绝缘体,其表面或边界上存在不同于体内的非平庸的拓扑态。

固体物理参考答案(修正版)

固体物理参考答案(修正版)

固体物理试题及参考答案注意:本答案仅供参考作答,名词解释部分有个别题不是很精确,如有自己的想法请自己把握,作图题由于不专业只能表示大概意思,但应该不会有错,一、名词解释1布里渊区:布里渊区是空间中由倒格矢的中垂面所围成的区域,按序号由倒空间的原点逐步向外扩展,可分为第一布里渊区、第二布里渊区、第三布里渊区等等。

2倒格子:晶格经傅里叶变换所得到的几何格子,其倒格子基矢定义:3声子:格波的能量量子,声子的能量为ħω,准动量为4声学波和光学波:声学波是晶格振动中频率比较低的、而且频率随波矢变化较大的那一支格波,描述的是晶体中原胞的整体运动;描述的是晶体中原胞内原子之间的相对运动。

5能带:由于原子之间的相互作用,当若干个原子相互靠近时,由于彼此之间的力的作用,原子原有能级发生分裂,由一条变成多条,形成的众多能级间的间隔很小,故可近似看成连续的,即称之为能带。

6布洛赫函数:当势场具有晶格周期性时,对于含有晶格周期势的薛定谔方程,其解必定具有形式,则晶体中的波函数具有调幅的平面波形式,称其波函数为布洛赫函数。

7电负性:电负性是原子对核外电子束缚能力大小的量度,通常用电离能与亲合能之和表示。

8布拉伐格子:晶体结构中全同原子构成的晶格称为布拉伐格子。

9等效晶面:简单立方晶格中晶面的密勒指数和晶面法线的晶向指数完全相同的面。

10赝势:在离子实内部,用假想的势能取代真实的势能,求解波动方程时,如不改变其能量本征值及离子实之间的区域的波函数,这个假想的势叫做赝势。

二、证明题11证明:体心立方晶格的倒格子是面心立方。

12、证明倒格子原胞的体积为,其中为正格子原胞的体积。

三、作图题13、在面心立方和体心立方的晶胞图上分别画出其原胞。

答:图如下:14、请在下图中标明[110]、[010]、(100)、(111)晶向和晶面。

答:【注意:由于此图没有相应的作图软件,不能画得和老师一样的立体效果,请同学们对照作图】四、简答题15、通过原子电负性的定义及周期分布,说明离子晶体形成的特征。

固体物理学习题解答

固体物理学习题解答

《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。

试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。

解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。

所以,其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。

所以,其晶面指数为()1120。

(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。

所以,其晶面指数为()1100。

(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。

所以,其晶面指数为()0001。

3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。

证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。

固体物理基础课后解答西安电子科技大学出版社(曹全喜雷天明黄云霞李桂芳著)第一二三四五章

固体物理基础课后解答西安电子科技大学出版社(曹全喜雷天明黄云霞李桂芳著)第一二三四五章

(b)晶面族(hkl)的面间距为:
d hkl
a1 h
Gh Gh
a1 hb1 kb2 lb3
h
Gh
2 Gh
(c)对于简单立方晶格:
Gh
2 h2 k 2 l 2
1 2
a
d2
a2
h2 k2 l2
9ǃ用 X 光衍射对 Al 作结构分析时,测得从(111)面反射的波长为 1.54Å,反射角为=19.20,求面间距 d111。
矢量 A 表示,则: A h a1 k a2 l a3 。
倒格子基矢的定义: b1
2 (a2 a3 )
; b2
2 (a3 a1 )
; b3
2 (a1 a2 )
在立方晶系中,可取 a1 、a2 、a3 相互垂直且 a1 a 2 a3 ,则可得知 a1 b1, a 2 b2, a3 b3 ,
闪锌矿
fcc
2
8
4
碳化硅 SiC
闪锌矿
fcc
2
8
4
1
钽酸锂 LiTaO3
钙钛矿

Be
hcp

Mo
bcc
sc
5
2、6、12 5
O、Ta、Li
简单 2
六角
6
12
bcc
1
2
8

Pt
fcc
fcc
1
4
12
1
2 、试证明:理想六角密堆积结构的
c a
8 3
2
1.633。如果实际的
c a
值比这个数值大得多,可以把晶体
上述各晶面的轴线是什么对称轴?
解:
晶面指数 (100) (110)

固体物理习题解答

固体物理习题解答

.
(2)吸引能: 吸引
;吸引能: 排斥
.
平衡状态下, 吸引
.
排斥
(3)原子间的相互作用力
7 / 15

,则 极小值
故如果两个原子被拉开,当
时他们将分离.
7.证明一维单式格子的色散关系.
证:一维单式格子中第 个原子的运动方程可写为
(1)
对于上述方程有下列形式的解
(2) 这是一振幅为 ,角频率为 的简谐振动,式中 是第 个原子振动的相位因子.当第 和第 个原子的相
2.为什么晶体没有 5 次对称轴,而准晶体有 5 次对 称轴?
答:设在图 1 中,是晶体中某一晶面(纸面)上的一个
晶列,AB 是这晶列上相邻两个格点的距离.
(1)旋转角
.通过 A 处的 轴顺时针方向
转过 后,使 点转到 ,若通过 处 轴逆时针方向转
过 角后, 点转到 .经过转动后,要使晶格能自身重合,则 、 点必须是格点.由于
是产生一对缺陷所需要能量, 是原有的正、负离子对的数目.
(1)试证明:

(2)试求有肖特基缺陷后体积的变化 ,其中为 原有的体积.
证:(1)在晶体中形成 n 对正、负离子空位的可能情况为
与无空位相比,,晶体熵的增量为
晶体自由能
利用平衡条件(
)
(2)

4.(4.6)已知扩散系数与温度之间的关系为:
下列数据时锌在铜晶体中扩散的实验结果:
解:由 个原子组成的晶体总的结合能函数为
(1)
由于表面层原子的数目比晶体内部的原子数目少很多,所以可以认为所有的原子都是相同的,式(1)可以进 一步简化为

(2)
设最近邻原子间的距离为 ,则有

(完整版)固体物理基本概念题参考解答

(完整版)固体物理基本概念题参考解答

(完整版)固体物理基本概念题参考解答固体物理概念题1. ⾃由电⼦⽓体模型的三个基本近似是什么?两个基本参数是什么?⾃由电⼦近似;独⽴电⼦近似;弛豫时间近似⾃由电⼦数密度;弛豫时间2. 名词解释:K空间;k空间态密度把波⽮k看做空间⽮量,相应的空间称为k空间;K空间中单位体积内许可态的代表点数称为k空间态密度。

3. ⾃由电⼦模型的基态费⽶能和激发态费⽶能的物理意义是什么?费⽶能与哪些因素有关?物理意义:费⽶⾯上单电⼦态的能量称为费⽶能,表⽰电⼦从低到⾼填满能级时其最⾼能级的能量。

基费⽶能时指T=0 K时的费⽶能。

激发态费⽶能指的是T≠0 K时的费⽶能。

因素:费⽶能量与电⼦密度和温度有关。

4. 何为费⽶⾯?⾦属电⼦⽓模型的费⽶⾯是何形状?费⽶⾯:在K空间将占据态与未占据态分开的界⾯。

⾦属电⼦⽓模型的费⽶⾯是球形。

5. 说明为什么只有费⽶⾯附近的电⼦才对⽐热、电导和热导有贡献?对⽐热、电导和热导有贡献的电⼦是其能态能够发⽣变化的电⼦,只有费⽶⾯附近的电⼦才能从外界获得能量发⽣能态跃迁。

因为,在常温下,费⽶球内部离费⽶⾯远的状态全被电⼦占据,这些电⼦从格波获取的能量不⾜以使其跃迁到费⽶⾯附近或以外的空状态上。

只有费⽶⾯附近的电⼦吸收声⼦后能跃迁到费⽶⾯附近或以外的空状态上。

对电导,考虑到泡利不相容原理的限制,只有费⽶⾯附近的电⼦才有可能在外电场作⽤下,进⼊较⾼能级,因⽽才会对⾦属电导率有贡献。

热导与电导相似。

6. 简述化学势的意义,它与费⽶能级满⾜什么样的关系。

化学势的意义是:在体积不变的条件下,系统没增加⼀个电⼦所需要的⾃由能。

在温度接近于0时,化学势和费⽶能近似相等。

7. 什么是等离⼦体振荡?给出⾦属电⼦⽓的振荡频率。

等离⼦体中的电⼦在⾃⾝惯性作⽤和正负电荷分离所产⽣的静电恢复⼒的作⽤下发⽣的简谐振荡称为等离⼦体振荡。

⾦属电⼦⽓的振荡频率8.名词解释:晶格,单胞,原胞,基元,布拉维格⼦基⽮基元:在空间⽆限重复排列构成晶体的全同原⼦团晶格:将基元抽象为格点,格点的集合称为晶格晶胞:能够完整反映晶体的化学结构与晶体周期性的重复单元原胞:体积最⼩的晶胞布拉维格⼦基⽮:原胞的基⽮9.在三维情况下有多少种不同类型的晶格满⾜点对称群的要求?它们可以划分为哪7个晶系?14种布拉维格⼦,它们可以划分为7个晶系:三斜,单斜,正交,四⽅,三⾓,六⾓,⽴⽅。

固体物理习题解答-完整版

固体物理习题解答-完整版
r a/2 a/2 n 1 1 2 4 2 V a3 a3 a3 a3
ρ
π / 6 ≈ 0.52
3π / 8 ≈ 0.68 2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
1/ 2
3a / 4
2a / 4
a/2
2a 3
c ⎛3⎞ 1.2 证明理想的六角密堆积结构(hcp)的轴比 = ⎜ ⎟ 2 ⎝8⎠
ε A ,对六角晶系,绕 x 轴
(即 a 轴)旋转 180 度和绕 z 轴(即 c 轴)旋转 120 度都是对称操作,坐标变换矩阵分别为
⎛1 0 0⎞ ⎜ ⎟ Ax = ⎜ 0 − 1 0 ⎟ ⎜0 0 1⎟ ⎝ ⎠
⎛ −1/ 2 ⎜ Az = ⎜ − 3 / 2 ⎜ ⎜ 0 ⎝
3 / 2 0⎞ ⎟ −1/ 2 0⎟ ⎟ 0 1⎟ ⎠
6 a
3a / 2
6 a
2a
1.7
画体心立方和面心立方晶格结构的金属在 (100) , (110) , (111) 面上 解:
原子排列.
感谢大家对木虫和物理版的支持!
3
《固体物理》习题解答
体心立方
面心立方
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的 AB-AB 平移, A 与 O 重合。B 点位矢 RB = −aj + ak (111) 与 (100) 面的交线的晶向 AB = − aj + ak —— 晶 向指数 ⎡011⎤
面指数越简单的晶面,其晶面的间距越大 晶面上格点的密度越大,这样的晶面越容易解理 1.7 写出体心立方和面心立方晶格结构中,最近邻和次近邻的原子数,若立方边长为a,写 出最近邻和次近邻原子间距 解 简立方 最近邻数 最近邻间距 次近邻数 次近邻间距 6 a 12 面心立方 12 体心立方 8

固体物理习题解答-完整版

固体物理习题解答-完整版
n
2.3
若一晶体的相互作用能可以表示为 u ( r ) = − 求 1 )平衡间距 r 0
α
r
m
+
β
rn
3 )体弹性模量 4 )若取
2 )结合能 W (单个原子的)
m = 2, n = 10, r0 = 0.3 nm, W = 4 eV ,计算 α , β 值。
解 1)晶体内能 U ( r ) =
N α β (− m + n ) 2 r r
⎛ ε 11 3ε 22 ⎜ + 4 4 0 ⎞ ⎜ ⎟ ⎜ 3ε 11 3ε 22 ε 23 ⎟ = ⎜ − + 4 4 ⎜ ε 33 ⎟ ⎠ ⎜ 3ε 23 − ⎜ 2 ⎝ − 3ε 11 3ε 22 + 4 4 3ε 11 ε 22 + 4 4 − − 3ε 23 ⎞ ⎟ 2 ⎟ ε ⎟ − 23 ⎟ 2 ⎟ ε 33 ⎟ ⎟ ⎠
h k l ( )2 + ( )2 + ( )2 a b c
说明面指数简单的晶面,其面密度较大,容易解理 证 简单正交系 a ⊥ b ⊥ c 倒格子基矢 b1 = 2π
a1 = ai , a2 = bj , a3 = ck b2 = 2π a3 × a1 a1 ⋅ a2 × a3 b3 = 2π a1 × a2 a1 ⋅ a2 × a3
⎛ ε 11 ε 12 ⎜ 假 设 六 角 晶 系 统 的 介 电 常 数 为 ε = ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
⎛ ε 11 ε 12 ⎜ ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
ε 13 ⎞ ⎟ ε 23 ⎟ 则 由 ε = AT ε Ax 得 ε 33 ⎟ ⎠
x
ε 13 ⎞ ⎛ ε 11 − ε 12 − ε 13 ⎞ 0 ⎞ ⎛ ε 11 0 ⎟ ⎟ ⎜ ⎟ ⎜ ε 23 ⎟ = ⎜ − ε 21 ε 22 ε 23 ⎟ 可见 ε = ⎜ 0 ε 22 ε 23 ⎟ 将上式代入 ε = AzT ε Az ⎜ ⎜0 ε ε 33 ⎟ ε 33 ⎟ ε 33 ⎟ 32 ⎠ ⎠ ⎝ ⎠ ⎝ − ε 31 ε 32

固体物理基础参考解答

固体物理基础参考解答

费米分布函数可表示为:
f
(εi )
=
1 e(εi −µ ) kBT
+1
上 式 直 接 给 出 了 体 系 在 热 平 衡 态 (温 度 为 T)时 ,能 量 为 εi 的 单 电 子 本 征 态 被 一
个电子占据的概率。根据泡利原理,一个量子态只能容纳一个电子,所以费米分
布函数实际上给出了一个量子态的平均电子占据数。
当 T > 0 K 时,费米分布函数有

⎪1
f

)
=
⎪ ⎨0
⎪ ⎪
1
⎩2
ε << µ ε >> µ
ε =µ
下图给出了在基态 T=0K 和较低温度下 T > 0 K 时的费米分布函数。
基态和较低温度下的费米分布函数

− ∂f ∂ε
=
1 kBT
1 e(ε −µ ) kBT
1 + 1 e-(ε −µ ) kBT
米波矢、费米能量、费米速度、费米温度等。
5. 如何理解金属自由电子气体的简并性?
答 :在 统 计 物 理 中 ,把 体 系 与 经 典 行 为 的 偏 离 ,称 为 简 并 性 (degeneracy)。在
绝对零度时电子仍有相当大的平均能量,这与经典的结果是截然不同的。按照经
典 的 自 由 电 子 气 体 (Drude)的 模 型 ,电 子 在 T=0 时 的 平 均 能 量 为 零 。因 此 ,在 T=0K
对于自由电子气体,能量为
εn (k ) =
2k 2 2m
∇kεn (k )
=
2
m
k

k
=
1
(2mε

固体物理习题解答

固体物理习题解答
函数,能量本征值和本征函数在 k 空间具有倒格矢反演和 周期性,电子波矢 k 是与平移对称性相联系的量子数 。 非晶态也具有相似的基本能带结构,即:导带、价带和禁带。 但非晶态的电子态与晶态比较有本质区别。非晶态不存在 周期性,因此 k 不再是具有类似特征的量子数。 非晶态能带中电子态分扩展态和局域态二类。扩展态的电子为 整个固体共有,可在整个固体内找到,在外场中运动类似 晶体中电子;局域态的电子基本局限在某一区域,状态波 函数只能在围绕某一不大的尺度内显著不为零,它们依靠 声子协助,进行跳跃式导电。
方 (110)晶面的格点面密度最大。根据
dhkl
h2
a k2
l2
,有面心立方
d111
a ,体心立方 3
d110
a 2
因此,最大格点面密度表达式,
dh1h2h3 2 / Gh1h2h3
面心立方111
4 a3
a 3
43 3a2

体心立方110
2 a3
a 2
2 a2
第一章 习题
1.7 证明体心立方格子和面心立方格子互为倒格子。
k * N
由于晶体原胞数 N 很大,倒格子原胞体积 很小, k 在波矢空间准连续取值,因 此,同一能带中相邻 k 值的能量差别 很小, 所以 En(k) 可近似看成是 k 的 准连续函数。
第四章 思考题
5、近自由电子模型和紧束缚模型有何特点?它们有共同之处吗? 答: 近自由电子近似模型是当晶格周期势场起伏很小,电子的行为
第一章 思考题
2、晶体结构可分成布拉菲格子和复式格子吗?
答: 可以。 以原子为结构参考点,可以把晶体分成布拉菲格子和复式格
子。 任何晶体,以基元为结构参考点,都是布拉菲格子描述。 任何化合物晶体,都可以复式格子描述? 不是所有的单质晶体,都是布拉菲格子描述? 单质晶体,以原子为结构参考点,也可以分成布拉菲格子和

固体物理学概念和习题答案

固体物理学概念和习题答案

《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。

答:最小平行单元。

2.给出维格纳-赛茨原胞的定义。

答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。

3.二维布喇菲点阵类型和三维布喇菲点阵类型。

4. 请描述七大晶系的基本对称性。

5. 请给出密勒指数的定义。

6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。

7. 给出三维、二维晶格倒易点阵的定义。

8. 请给出晶体衍射的布喇格定律。

9. 给出布里渊区的定义。

10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么11. 写出晶体衍射的结构因子。

12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。

13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。

14. 请写出晶格振动的波恩-卡曼边界条件。

15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。

(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)16. 给出声子的定义。

17. 请描述金属、绝缘体热容随温度的变化特点。

18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。

19. 简述晶体热膨胀的原因。

20. 请描述晶体中声子碰撞的正规过程和倒逆过程。

21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。

23. 写出金属的电导率公式。

24. 给出魏德曼-夫兰兹定律。

25. 简述能隙的起因。

26. 请简述晶体周期势场中描述电子运动的布洛赫定律。

27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。

28. 给出空穴概念。

29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。

固体物理学概念和习题答案精修订

固体物理学概念和习题答案精修订

固体物理学概念和习题答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。

答:最小平行单元。

2.给出维格纳-赛茨原胞的定义。

答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。

3.二维布喇菲点阵类型和三维布喇菲点阵类型。

4. 请描述七大晶系的基本对称性。

5. 请给出密勒指数的定义。

6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。

7. 给出三维、二维晶格倒易点阵的定义。

8. 请给出晶体衍射的布喇格定律。

9. 给出布里渊区的定义。

10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么11. 写出晶体衍射的结构因子。

12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。

13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。

14. 请写出晶格振动的波恩-卡曼边界条件。

15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。

(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)16. 给出声子的定义。

17. 请描述金属、绝缘体热容随温度的变化特点。

18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。

19. 简述晶体热膨胀的原因。

20. 请描述晶体中声子碰撞的正规过程和倒逆过程。

21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。

23. 写出金属的电导率公式。

24. 给出魏德曼-夫兰兹定律。

25. 简述能隙的起因。

26. 请简述晶体周期势场中描述电子运动的布洛赫定律。

27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。

《固体物理学》概念和习题 答案

《固体物理学》概念和习题 答案

《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。

答:最小平行单元。

2.给出维格纳-赛茨原胞的定义。

答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。

3.二维布喇菲点阵类型和三维布喇菲点阵类型。

4. 请描述七大晶系的基本对称性。

5. 请给出密勒指数的定义。

6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。

7. 给出三维、二维晶格倒易点阵的定义。

8. 请给出晶体衍射的布喇格定律。

9. 给出布里渊区的定义。

10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么?11. 写出晶体衍射的结构因子。

12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。

13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。

14. 请写出晶格振动的波恩-卡曼边界条件。

15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。

(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)16. 给出声子的定义。

17. 请描述金属、绝缘体热容随温度的变化特点。

18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。

19. 简述晶体热膨胀的原因。

20. 请描述晶体中声子碰撞的正规过程和倒逆过程。

21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)?22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。

23. 写出金属的电导率公式。

24. 给出魏德曼-夫兰兹定律。

25. 简述能隙的起因。

26. 请简述晶体周期势场中描述电子运动的布洛赫定律。

27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。

28. 给出空穴概念。

29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。

固体物理习题及解答

固体物理习题及解答

一、填空题1. 晶格常数为a 的立方晶系 (hkl)晶面族的晶面间距为222/l k h a ++ ;该(hkl)晶面族的倒格子矢量hkl G 为 k al j a k i a hπππ222++ 。

2. 晶体结构可看成是将 基元 按相同的方式放置在具有三维平移周期性的 晶格 的每个格点构成。

3. 晶体结构按晶胞形状对称性可划分为 7 大晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。

4. 体心立方(bcc )晶格的结构因子为[]{})(ex p 1l k h i f S hkl ++-+=π ,其衍射消光条件是奇数=++l k h 。

5. 与正格子晶列[hkl]垂直的倒格子晶面的晶面指数为 (hkl) , 与正格子晶面(hkl )垂直的倒格子晶列的晶列指数为 [hkl] 。

6. 由N 个晶胞常数为a 的晶胞所构成的一维晶格,其第一布里渊区边界宽度为a /2π ,电子波矢的允许值为 Na /2π 的整数倍。

7. 对于体积为V,并具有N 个电子的金属, 其波矢空间中每一个波矢所占的体积为()V/23π ,费米波矢为3/123⎪⎪⎭⎫⎝⎛=V N k F π 。

8. 按经典统计理论,N 个自由电子系统的比热应为B Nk 23,而根据量子统计得到的金属三维电子气的比热为 F B T T Nk /22π ,比经典值小了约两个数量级。

9.在晶体的周期性势场中,电子能带在 布里渊区边界 将出现带隙,这是因为电子行波在该处受到 布拉格反射 变成驻波而导致的结果。

10. 对晶格常数为a 的简单立方晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为 (122) , 其面间距为 .11. 铁磁相变属于典型的 二级 相变,在居里温度附近,自由能连续变化,但其 一阶导数(比热) 不连续。

12. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进一步划分为 230 个空间群。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体物理概念题1. 自由电子气体模型的三个基本近似是什么?两个基本参数是什么?自由电子近似;独立电子近似;弛豫时间近似自由电子数密度;弛豫时间2. 名词解释:K空间;k空间态密度把波矢k看做空间矢量,相应的空间称为k空间;K空间中单位体积内许可态的代表点数称为k空间态密度。

3. 自由电子模型的基态费米能和激发态费米能的物理意义是什么?费米能与哪些因素有关?物理意义:费米面上单电子态的能量称为费米能,表示电子从低到高填满能级时其最高能级的能量。

基费米能时指T=0 K时的费米能。

激发态费米能指的是T≠0 K时的费米能。

因素:费米能量与电子密度和温度有关。

4. 何为费米面?金属电子气模型的费米面是何形状?费米面:在K空间将占据态与未占据态分开的界面。

金属电子气模型的费米面是球形。

5. 说明为什么只有费米面附近的电子才对比热、电导和热导有贡献?对比热、电导和热导有贡献的电子是其能态能够发生变化的电子,只有费米面附近的电子才能从外界获得能量发生能态跃迁。

因为,在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上。

只有费米面附近的电子吸收声子后能跃迁到费米面附近或以外的空状态上。

对电导,考虑到泡利不相容原理的限制,只有费米面附近的电子才有可能在外电场作用下,进入较高能级,因而才会对金属电导率有贡献。

热导与电导相似。

6. 简述化学势的意义,它与费米能级满足什么样的关系。

化学势的意义是:在体积不变的条件下,系统没增加一个电子所需要的自由能。

在温度接近于0时,化学势和费米能近似相等。

7. 什么是等离子体振荡?给出金属电子气的振荡频率。

等离子体中的电子在自身惯性作用和正负电荷分离所产生的静电恢复力的作用下发生的简谐振荡称为等离子体振荡。

金属电子气的振荡频率8.名词解释:晶格,单胞,原胞,基元,布拉维格子基矢基元:在空间无限重复排列构成晶体的全同原子团晶格:将基元抽象为格点,格点的集合称为晶格晶胞:能够完整反映晶体的化学结构与晶体周期性的重复单元原胞:体积最小的晶胞布拉维格子基矢:原胞的基矢9.在三维情况下有多少种不同类型的晶格满足点对称群的要求?它们可以划分为哪7个晶系?14种布拉维格子,它们可以划分为7个晶系:三斜,单斜,正交,四方,三角,六角,立方。

10.什么是晶面指数?什么是方向指数?它们有何联系?晶面指数:晶面在在坐标轴上的截距的倒数的最简整数比。

方向指数:垂直于晶面的矢量,晶面指数为(hkl),则方向指数为[hkl]联系:方向[hkl]垂直于具有相同指数的晶面(hkl)。

11.名词解释:倒格子,倒格矢12.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件衍射条件为:λθ*)sin(*2nd=,波矢表达式为22GGk=⋅→→13.什么是布里渊区?请画出二维简单正方晶格的第一布里渊区。

如果在k空间内把原点和所有倒格子格矢G之间的联线的垂直平分面都画出来,k空间被分成许多区域,在每个区域内能态E对k是连续变化的,而在这些区域的边界处E(k)函数发生突变,这些区域常称为布里渊区。

14. 能带理论作了那些近似和假定?得到哪些结果?一是绝热近似,即把电子系统与原子核(离子实)分开考虑的处理方法。

二是平均场近似(单电子近似),即把每个电子的运动看成是独立的在一个等效势场中的运动。

三是周期场近似,即晶体中单电子势具有平移对称性。

在绝热近似、平均场近似和晶格周期场假定条件下,多电子体系问题可以简化为晶格周期场下的单电子问题。

能从理论上得到材料的能带结构,以及相关的费米面、能态密度和电子云的的分布,或笼统的简称为材料的能带结构或电子结构。

15.什么是布洛赫电子?什么是布洛赫波?布洛赫波有哪些性质?能用()()k r k r u r e -⋅ψ=r r r r 表示,而且满足()()k k n u r u r R =+r r u u r 的这种被周期函数所调幅的平面波函数称为布洛赫波。

把能用布洛赫波函数描述其运动状态的电子称为布洛赫电子。

布洛赫波性质:电子的共有化运动性质,即在晶格周期场中的电子在各原胞对应点出现的几率均相同,电子可以看做在整个晶体中自由运动。

平面波的因子描述了晶体电子共有化运动,而周期函数因子则描述可电子在原胞中的运动,它取决于原胞中电子的势场。

16.为什么k r h 称为布洛赫电子的“准动量”或“晶体动量”?由于布洛赫波函数波矢动量的本征值,而是晶格周期势场中电子能量的本征值。

因此,k r h 不是晶格电子的真实动量,它只是一个具有动量量纲的量。

在研究电子在外场作用下的运动,以及研究电子与声子、光子的相互作用时,k r h 起着动量的作用,所以k r h 称为布洛赫电子的“准动量”或“晶体动量”。

17.什么是禁带?禁带出现在什么位置?相邻两个能带之间可能出现电子不允许有的能量间隙,称为禁带,也成为能隙。

在一维晶格中,禁带发生在波矢/k a π=和/k a π'=-处,或者一般的表述为禁带出现在k r 空间倒格矢的中点上。

在三维空间,可以表述为禁带出现在布里渊区界面上。

18.什么是弱周期场近似?按照弱周期场近似,禁带产生的原因是什么?弱周期场近似也称为近自由电子近似,是假定周期场的起伏比较小,作为零级近似,可以用势场的平均值代替晶格势场,周期势的起伏作为微扰处理。

对于在倒格矢G u r 中垂面及其附近的波矢k u r ,即布里渊区界面附近的波矢k u r ,由于采用简并微扰计算,致使能级间产生排斥作用,从而使()E k u r 函数在布里渊区界面处“断开”,即发生突变,从而产生了禁带。

19. 什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?当晶体是由相互作用较弱的原子组成时,周期场随空间的起伏比较显着。

此时,电子在某一个原子附近时,将主要受到该原子场的作用,其他原子场的作用可以看做一个微扰作用。

基于这种设想建立的近似方法,称为紧束缚近似。

禁带是分离能级在较弱交叠微扰作用下分裂而产生。

20. 什么是赝势?赝势法的基本思想是什么?价电子波函数在离子实附近振荡,即等价于受到一个排斥势作用,这种排斥势对离子实强吸引势的抵消,使价电子受到的势场等价于一个弱的平滑势,称为赝势(Pseudopotential ,简称为PP )。

赝势法的基本思想是:适当选取一个平滑势,波函数用少数波函数展开,使计算出的能带结果与真实的接近。

21.声子碰撞时的准动量守恒为什么不同于普通粒子碰撞时的动量守恒?U 过程物理图像是什么?它违背了普遍的动量守恒定律吗?声子碰撞时,其前后的总动量不一定守恒,而是满足以下的关系式n G q q q ηηηη+=+321其中上式中的n G 表示一倒格子矢量。

U 过程没有违背普遍的动量守恒定律,因为声子不是实物量子,所以其满足的是准动量守恒关系。

22.什么叫声子?长光学支格波与长声学支格波的本质上有何区别?声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计。

长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式。

长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数。

任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波。

长光学波的本质是电磁波,而长声学波是弹性波。

23、晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果?在爱因斯坦模型中,假设晶体中所有的原子都以相同的频率振动,而在德拜模型中,则以连续介质的弹性波来代表格波以求出)(ωρ的表达式。

爱因斯坦模型取得的最大成就在于给出了当温度趋近于零时,比热容V c 亦趋近于零的结果,这是经典理论所不能得到的结果。

其局限性在于模型给出的是比热容V c 以指数形式趋近于零,快于实验给出的以3T 趋近于零的结果。

德拜模型取得的最大成就在于它给出了在极低温度下,比热和温度3T 成比例,与实验结果相吻合。

其局限性在于模型给出的德拜温度D Θ应视为恒定值,适用于全部温度区间,但实际上在不同温度下,德拜温度D Θ是不同的。

在极低温度下,并不是所有的格波都能被激发,而只有长声学波被激发,对比热容产生影响。

而对于长声学波,晶格可以视为连续介质,长声学波具有弹性波的性质,因而德拜的模型的假设基本符合事实,所以能得出精确结果。

24.温度降到很低时。

爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。

试解释其原因。

按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为, 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.在极低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在极低温下, 德拜模型与事实相符, 自然与实验相符。

25.什么是有效质量?有效质量为何有正有负?有效质量并不代表真正的质量,而是代表能带中电子受时,外力与的一个,有效质量一般是K 的。

它可以大于,也可以小于惯性质量,甚至可以是负的。

例如在底(极小值),m*>0;而在能带顶(极大值),m*<0。

负的有效质量说明晶格对电子作负功,即电子要供给晶格能量,而且电子供给晶格的能量大于外场对电子作功。

26.什么是本征载流子?什么是杂质导电?本征载流子:指本征半导体中由热激发产生的电子,这些电子可以参与导电杂质导电:半导体中杂质可使原是满带的能带缺少一些电子,形成不满带,从而导电。

27.什么是空穴?空穴有哪些性质?共价键中的一些价电子由于热运动摆脱约束成为自由电子,同时在共价键上留下空位,即为空穴。

电量与电子相等但符号相反;有效质量数值等于价带顶空态所对应的电子有效质量,但符号相反;速度为价带顶空带所对应的电子速度;浓度等于空态密度。

28. 简述金属的霍尔效应和磁(电)阻效应。

横向磁(电)阻变化与外磁场满足怎样的关系? 当电流I 垂直于外磁场B 通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差U H ,这一现象便是霍尔效应。

在通有电流的金属或半导体上施加磁场时,电阻值将会发生改变的现象称为磁(电)阻效应。

金属在B 2可以忽略的情况下,横向磁阻为零;金属在B 2 不能忽略的情况下,横向磁阻的磁电阻率的相对变化与磁感应强度的平方成正比。

相关文档
最新文档