第4.5节__电磁感应现象的两类情况
4.5 电磁感应现象的两类情况
V
电能
内能
结论:克服安培力做了多少功,就产生多少电能; 若电路是纯电阻电路,转化过来的电能将全部转化 为电阻的内能。
磁场变强
B
4、感生电动势中的非静电力: 是感生电场对自由电荷的作用力。
如图:绝缘管内壁光滑,一带正电的小球静止于a点; 当磁感应强度B增大时,问:带电小球将如何运动?
+
a
4、感生电动势中的非静电力: 是感生电场对自由电荷的作用力。
如图:绝缘管内壁光滑,一带正电的小球静止于a点; 当磁感应强度B增大时,问:带电小球将如何运动?
E感
+
a
F
5、感生电动势中的能量转化:
磁场变强
E磁场
E电
注意:若电路是纯电阻电路,转 化过来的电能也将全部转化为电 阻的内能
二、电磁感应现象中的洛仑兹力
1、动生电动势:指导体切割磁 感线产生的电动势。
思考:
导体棒向右运动切割磁感线 时,导体棒就相当于电源; 哪么此时C、D两端中哪端相 当于电源的正极?
++
v
F洛
- -
思考: 动生电动势中的能量转化
光滑导轨上架一个直导体棒MN,若MN以初速V 向右运动,MN长为L,不计其他电阻,试分析: M
(1)导体MN的运动情况? (2)MN向右运动过程中, 电路中的能量转化情况?
R
× × × × ×
× × × × ×
× × × × ×
×× ×× ×× ×× ×× N
4.5 电磁感应现象的两类情况
4.5 电磁感应现象的两类情况
感生电动势 动生电动势
思考:以下两种电磁感应现象中,哪部分导体相当于电源?哪一
种作用扮演了非静电力的角色 ?
高中物理 4.5电磁感应现象的两类情况详解
高中物理| 4.5电磁感应现象的两类情况详解电磁感应产生电磁感应现象有感生电动势和动生电动势两类问题。
感生电场19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出:变化的磁场在周围空间激发电场,我们把这种电场叫感生电场.感生电动势由感生电场使导体产生的电动势叫感生电动势。
(1)产生如图所示,当磁场变化时,产生感生电场,感生电场的电场线是与磁场垂直的曲线。
如果空间存在闭合导体,导体中的自由电荷就会在电场力作用下定向移动而产生感应电流,或者说导体中产生了感生电动。
(2)方向:闭合环形回路(可假定存在)的电流方向就是感生电动势的方向,根据楞次定律和右手定则确定。
(3)作用感生电动势在电路中的作用就是充当电源,其电路就是内电路,当它与外电路连接后就会对外电路供电。
变化的磁场在闭合导体所在空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说导体中产生了感应电动势。
由此可见,感生电场就相当于电源内部的所谓的非静电力,对电荷产生力的作用。
动生电动势1.动生电动势:导体在磁场中做切割磁感线运动时产生的电动势。
2.产生原因导体在磁场中做切割磁感线运动时,产生动生电动势,它是由于导体中自由电子受到洛伦兹力作用引起的.使自由电子做定向移动的非静电力就是洛伦兹力。
如图所示,一条直导线CD在匀强磁场B中以速度v向右运动,并且导线CD与B、v的方向互相垂直。
由于导体中的自由电子随导体一起以速度v运动,因此每个电子受到的洛伦兹力为F=evB,F的方向竖直向下,在F的作用下自由电子沿导体向下运动,使导体下端出现过剩的负电荷,导体上端出现过剩的正电荷,结果是C端的电势高于D端的电势,出现由C端指向D端的静电场,此电场对电子的作用力F′是向上的,与洛伦兹力的方向相反。
随着导体两端正、负电荷的积累,场强不断增强,当作用到自由电子上的静电力与洛伦兹力互相平衡时,C、D两端便产生了一个稳定的电势差。
总之:洛伦兹力是产生动生电动势的原因,即洛伦兹力是产生动生电动势的非静电力。
4.5电磁感应现象的两类情况
(B)感应电流大小与回路半径R成正比
(C)感应电流大小与回路半径R的平方成正比
(D)感应电流大小和R、r都无关
2
在图中,闭合矩形线框abcd,电阻为R,位于磁感应强度为B的匀强磁场中,ad边位于磁场边缘,线框平面与磁场垂直,ab、ad边长分别用L1、L2表示,若把线圈沿v方向匀速拉出磁场所用时间为△t,则通过线框导线截面的电量是:()
A.磁场变化时,会在在空间中激发一种电场
B.使电荷定向移动形成电流的力是磁场力
C.使电荷定向移动形成电流的力是电场力
D.以上说法都不对
例2、
如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是()
A.因导体运动而产生的感应电动势称为动生电动势
B.动生电动势的产生与洛仑兹力有关
二、洛伦兹力与动生电动势
导体切割磁感线运动时,磁场没有变化,不能产生感生电场,其感应电动势又是如何产生的?
思考与分析:右图所示,导体棒CD在匀强磁场中运动:
①为了方便,我们认为导体棒中的自由电荷为正电荷,那么导体棒中的正电荷所受洛伦兹力的方向如何?正电荷相对于纸面的运动大致沿什么方向?
②导体棒一直运动下去,自由电荷是否总会沿着导体棒运动?为什么?
③导体棒的那端电势比较高?
④如果用导线把C、D两端连到磁场外的一个用电器上,导体棒中的电流沿什么方向?此时导体棒会受到安培力作用吗?
⑤此时是什么力与非静电力有关?导体棒中的能量是怎样转化的?
【范例精析】
例1、
如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变化,而使电路中产生了感应电动势,下列说法中正确的是()
3
一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是:()
第4章-5电磁感应现象的两类情况
(2013· 太原五中高二检测 )某空间出现了图 4-5 - 2 所示的磁场,当磁感应强度变化时,在垂直于磁场的方 向上会产生感生电场,有关磁感应强度的变化与感生电场的
课 堂 互 动 探 究
教 学 方 案 设 计
方向关系描述正确的是 (
)
当 堂 双 基 达 标
课 前 自 主 导 学 菜 单
当 堂 双 基 达 标
课 前 自 主 导 学
感应现象的应用.
课 时 作 业
菜
单
新课标 ·物理 选修3-2
教 学 教 法 分 析 课 堂 互 动 探 究
●教学地位
教 学 方 案 设 计
本节属于电磁感应规律的应用,在高考中尽管很少直接 命题,但它对于理解电磁感应现象有重要的作用,是以后学 习的基础.
当 堂 双 基 达 标
当 堂 双 基 达 标
课 前 自 主 导 学
课 时 作 业
菜
单
新课标 ·物理 选修3-2
教 学 教 法 分 析 课 堂 互 动 探 究
2.思考判断 (1) 动生电动势产生的原因是导体内部的自由电荷受到
教 学 方 案 设 计
洛伦兹力的作用.(√) ΔΦ (2)感生电动势的大小由 E= n 求得,动生电动势的大 Δt 小可由 E=Blv 求得.(√)
1.对感生电场的理解
教 学 方 案 设 计
英国物理学家麦克斯韦在他的电磁理论中指出:变化的 磁场能在周围空间激发电场,这种电场叫感生电场. 感生电场是否存在,取决于有无变化的磁场,与是否存 在导体及是否存在闭合回路无关.
当 堂 双 基 达 标
课 前 自 主 导 学 菜 单
课 时 作 业
新课标 ·物理 选修3-2
4_5 电磁感应现象的两类情况
第五节电磁感应现象的两类情况素养目标定位※了解电磁感应两种情况下电动势的产生机理※※能够运用电磁感应规律熟练解决相关问题,素养思维脉络知识点1 电磁感应现象中的感生电场1.感生电场(1)产生英国物理学家麦克斯韦在他的电磁场理论中指出:__变化__的磁场能在周围空间激发__电场__,这种电场与静电场不同,它不是由电荷产生的,我们把它叫做__感生电场__。
(2)特点感生电场线与磁场方向__垂直__。
感生电场的强弱与磁感应强度的__变化率__有关。
2.感生电动势(1)感生电场的作用感生电场对自由电荷的作用就相当于电源内部的非静电力。
(2)感生电动势磁场变化时,感应电动势是由__感生电场__产生的,它也叫感生电动势。
3.感生电场的方向磁场变化时,垂直磁场的闭合环形回路(可假定存在)中__感应电流__的方向就表示感生电场的方向。
知识点2 电磁感应现象中的洛伦兹力1.成因导体棒做切割磁感线运动,导体棒中的自由电荷随棒一起定向运动,并因此受到__洛伦兹力__。
2.动生电动势(1)定义:如果感应电动势是由于__导体运动__产生的,它也叫做动生电动势。
(2)非静电力:动生电动势中,非静电力是__洛伦兹力__沿导体棒方向的分力。
3.导体切割磁感线时的能量转化当闭合电路的一部分导体切割磁感线时,回路中产生感应电流,导体受到安培力的作用。
__安培力__阻碍导体的切割运动,要维持匀速运动,外力必须__克服安培力做功__,因此产生感应电流的过程就是__其他形式__的能转变为电能的过程。
思考辨析『判一判』(1)如果空间不存在闭合电路,变化的磁场周围不会产生感生电场。
( ×)(2)处于变化磁场中的导体,其内部自由电荷定向移动,是由于受到感生电场的作用。
( √)(3)感生电场就是感应电动势。
( ×)(4)动生电动势(切割磁感线产生的电动势)产生的原因是导体内部的自由电荷受到洛伦兹力的作用。
( √)(5)产生动生电动势时,洛伦兹力对自由电荷做了功。
高中物理选修3-2教案 4.5《电磁感应现象的两类情况》
电磁感应现象的两种情况教学目标1. 知识与技能(1)了解感生电场,会解释感生电动势的产生原因. (2)了解动生电动势的产生条件和洛伦兹力的关系.(3)掌握两种感应电动势的区别与联系,会应用分析实际问题. (4)了解电磁感应规律的一般应用,会分析科技实例. 2. 过程与方法通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣. 3. 情感、态度与价值观通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德. 教学重点难点感生电动势与动生电动势的概念。
对感生电动势与动生电动势实质的理解。
教学方法与手段以类比为先导,引领学生在复习干电池电动势中非静电力作用的基础上,说明感应电场和洛伦兹力在产生感应电动势中的作用,并能应用感生电动势和动生电动势解答相关问题。
类比讨论学习为主,发动学生对电子感应加速器的讨论从而加深理解。
课前准备多媒体课件、实物投影仪、视频片断。
导入新课[事件1]教学任务:复习提问,导入新课。
师生活动:情景导入,放映PPT 课件展示提问的问题。
一、复习提问:1.法拉第电磁感应定律的内容是什么?数学表达式是什么? 答:感应电动势的大小与磁通量的变化率成正比,即E =n ΔΦΔt。
2.导体在磁场中切割磁感线产生的电动势与什么因素有关,表达式是什么,它成立的条件又是什么?答:导体在磁场中切割磁感线产生的电动势的大小与导体棒的有效长度、磁场强弱、导体棒的运动速度有关,表达式是E=BLvsinθ,该表达式只能适用于匀强磁场中。
3.干电池中电动势是怎样产生的?参照相关图片,回顾所学电池电动势中有关非静电力做功的知识,其他学生补充。
二、引入新课:在电磁感应现象中,由于引起磁通量的变化的原因不同,感应电动势产生的机理也不同,本节课我们就一起来学习感应电动势产生的机理。
讲授新课[事件2]教学任务:感生电场和感生电动势。
师生活动:学生阅读教材19页“电磁感应现象中的感生电场”部分,分析讨论闭合电路中产生感应电流的原因。
电磁感应现象的两类情况
通过改变原线圈和副线圈的匝数比,可以实现电压的升高或降低。当原线圈匝数多于副线圈时,输出电压低于输入电 压;反之,输出电压高于输入电压。
电流变换
变压器还可以实现电流的变换。当输出电压升高时,输出电流减小;反之,输出电压降低时,输出电流 增大。
电磁炉的工作原理
涡流效应
电磁炉的工作原理基于电磁感应 中的涡流效应。当电磁炉的线圈 通以高频交流电时,会在其下方 的金属锅底产生涡流,这个涡流 会使锅底迅速发热,从而加热食 物。
微观粒子中的电磁感应
粒子加速器中的电磁感应
01
粒子加速器利用电磁感应原理,通过交变磁场加速带电粒子,
实现高能物理研究。
粒子探测器中的电磁感应
02
粒子探测器利用电磁感应原理,检测带电粒子的运动轨迹和能
量,实现粒子物理实验的测量。
量子霍尔效应
03
在低温强磁场下,二维电子气表现出量子霍尔效应,其霍尔电
阻呈现量子化平台,与微观粒子中的电磁感应密切相关。
法拉第电磁感应定律
法拉第电磁感应定律指出,感应电动 势的大小与穿过回路的磁通量的变化 率成正比。这一定律揭示了磁场变化 与感应电动势之间的定量关系。
磁通量变化率的计算:磁通量变化率 可以通过测量穿过回路的磁通量随时 间的变化来得到。这一测量可以通过 使用霍尔效应传感器等设备进行。
感生电动势的实例分析
转子与定子的相互作用
在发电机中,转子(通常是线圈)在定子(通常是磁铁)产生的磁场中旋转,使得线圈中 的磁通量发生变化,从而产生感应电动势。
整流与输出
发电机产生的感应电动势是交变的,需要经过整流器将其转换为直流电,然后通过输出端 输出给负载使用。
变压器的工作原理
互感现象
浙江新高考专用高中物理第四章电磁感应现象5电磁感应现象的两类情况讲义新人教版选修3_
5 电磁感应现象的两类情况麦克斯韦在他的电磁理论中指出:变化的磁场能在周围空间激发电场,这种电场叫感生电场.二、感生电动势的产生感生电场产生的电动势叫感生电动势.2.感生电动势大小:E =n ΔΦΔt. 3.方向判断:由楞次定律和右手螺旋定则判定.三、动生电动势的产生导体运动产生的电动势叫动生电动势.2.动生电动势大小:E =Blv (B 的方向与v 的方向垂直).3.方向判断:右手定则.1.判断下列说法的正误.(1)只要磁场变化,即使没有电路,在空间也将产生感生电场.( √ )(2)处于变化磁场中的导体,其内部自由电荷定向移动,是由于受到感生电场的作用.( √ )(3)动生电动势(切割磁感线产生的电动势)产生的原因是导体内部的自由电荷受到洛伦兹力的作用.( √ )(4)产生动生电动势时,洛伦兹力对自由电荷做了功.( × )2.研究表明,地球磁场对鸽子识别方向起着重要作用.在北半球若某处地磁场磁感应强度的竖直分量约为5×10-5T.鸽子以20m/s 的速度水平滑翔,鸽子两翅展开可达30cm 左右,则可估算出两翅之间产生的动生电动势约为________V ,________(填“左”或“右”)侧电势高. 答案 3×10-4 左一、感生电场和感生电动势如图1所示,B 变化时,就会在空间激发一个感生电场E .如果E 处空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流.图12.变化的磁场周围产生的感生电场,与闭合电路是否存在无关.如果在变化的磁场中放一个闭合回路,回路中就有感应电流,如果无闭合回路,感生电场仍然存在.3.感生电场可用电场线形象描述.感生电场是一种涡旋电场,电场线是闭合的,而静电场的电场线不闭合.4.感生电场(感生电动势)的方向一般由楞次定律判断,感生电动势的大小由法拉第电磁感应定律E =n ΔΦΔt计算. 例1 (多选)(2017·温州中学高二上学期期中)下列说法中正确的是( )D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向答案 AC解析 变化的电场可以产生磁场,变化的磁场可以在周围产生电场,故A 正确;恒定的磁场在周围不产生电场.故B 错误;感生电场的方向也同样可以用楞次定律和右手螺旋定则来判定,故C 正确;感生电场的电场线是闭合曲线,其方向不一定是沿逆时针方向,故D 错误. 例2 (多选)某空间出现了如图2所示的一组闭合的电场线,这可能是( )图2AB 方向磁场在迅速减弱AB 方向磁场在迅速增强BA 方向磁场在迅速增强BA 方向磁场在迅速减弱答案 AC闭合回路(可假定其存在)的感应电流方向就表示感生电场的方向.判断思路如下:二、动生电场和动生电动势如图3所示,导体棒CD 在匀强磁场中运动.图3CD 向右匀速运动,由左手定则可判断自由电子受到沿棒向下的洛伦兹力作用,C 端电势高,D 端电势低.随着C 、D 两端聚集电荷越来越多,在CD 棒间产生的电场越来越强,当电场力等于洛伦兹力时,自由电荷不再定向运动,C 、D 两端形成稳定的电势差.感生电动势 动生电动势 产生原因 磁场的变化 导体做切割磁感线运动移动电荷的 非静电力 感生电场对自由电荷的电场力 导体中自由电荷所受洛伦兹力沿导体方向的分力回路中相当于电源的部分 处于变化磁场中的线圈部分 做切割磁感线运动的导体方向判断方法 由楞次定律判断 通常由右手定则判断,也可由楞次定律判断大小计算方法 由E =n ΔΦΔt 计算 通常由E =Blv sin θ计算,也可由E =n ΔΦΔt计算 例3 (多选)如图4所示,导体AB 在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是( )图4答案 AB解析 根据动生电动势的定义,选项A 正确.动生电动势中的非静电力与洛伦兹力有关,感生电动势中的非静电力与感生电场有关,选项B 正确,选项C 、D 错误.[学科素养] 通过例1、例2和例3,加深对感生电动势和动生电动势的理解,掌握它们方向的判断方法,并会对两者进行区分,体现了“科学思维”的学科素养.三、导体棒转动切割产生动生电动势的计算1.当导体棒在垂直于匀强磁场的平面内,其一端固定,以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图5所示. 图5ω绕圆心匀速转动时,如图6所示,相当于无数根“辐条”转动切割,它们之间相当于电源的并联结构,圆盘上的感应电动势为E =Br v =12Br 2ω. 图6例4 长为l 的金属棒ab 以a 点为轴在垂直于匀强磁场的平面内以角速度ω匀速转动,如图7所示,磁感应强度大小为B .求:图7(1)金属棒ab 两端的电势差;(2)经时间Δt (Δt <2πω)金属棒ab 所扫过的面积中通过的磁通量为多少?此过程中的平均感应电动势多大?答案 (1)12Bl 2ω (2)12Bl 2ωΔt 12Bl 2ω 解析 (1)ab 两端的电势差:U ab =E =Bl v =12Bl 2ω. (2)经时间Δt 金属棒ab 所扫过的扇形面积ΔS =12l 2θ=12l 2ωΔt ,ΔΦ=B ΔS =12Bl 2ωΔt . 由法拉第电磁感应定律得: E =ΔΦΔt =12Bl 2ωΔt Δt =12Bl 2ω. 1.(对感生电场的理解)如图8所示,内壁光滑的塑料管弯成的圆环平放在水平桌面上,环内有一带负电的小球,整个装置处于竖直向下的磁场中,当磁场突然增强时,小球将( )图8答案 A2.(对感生电场的理解)如图9所示,长为L 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板,磁场垂直于环面向里,磁感应强度以B =B 0+kt (k >0)的规律随时间变化,t =0时,P 、Q 两板电势相等,两板间的距离远小于环的半径,经时间t ,电容器P 板( )图9t 成正比C.带正电,电荷量是kL 2C 4π D.带负电,电荷量是kL 2C 4π 答案 D解析 磁感应强度以B =B 0+kt (k >0)的规律随时间变化,由法拉第电磁感应定律得:E =ΔΦΔt=S ΔB Δt =kS ,而S =πr 2=π(L 2π)2=L 24π,经时间t 电容器P 板所带电荷量Q =EC =kL 2C 4π;由楞次定律和安培定则知电容器P 板带负电,故D 选项正确.3.(转动切割产生的电动势)(2017·慈溪市高二上学期期中)如图10所示,导体棒ab 长为4L ,匀强磁场的磁感应强度为B ,导体绕过b 点垂直纸面的轴以角速度ω匀速转动,则a 端和b 端的电势差U 的大小等于( )图10 BL 2ω B.BL 2ωBL 2ωBL 2ω答案 D解析 ab 棒以b 端为轴在纸面内以角速度ω匀速转动,则a 、b 两端的电势差大小U =E =12B (4L )2ω=8BL 2ω.故选D. 4.(平动切割产生的动生电动势)如图11所示,“∠”形金属框架MON 所在平面与磁感应强度为B 的匀强磁场垂直,金属棒ab 能紧贴金属框架运动,且始终与ONab 从O 点开始(t =0)匀速向右平动时,速度为v 0,∠MON =30°.图11(1)试求bOc 回路中感应电动势随时间变化的函数关系式;(2)闭合回路中的电流随时间变化的图象是________.答案 (1)E =33Bv 20t (2)B 解析 (1)t =0时ab 从O 点出发,经过时间t 后,ab 匀速运动的距离为s ,则有s =v 0t .由tan30°=bc s ,有bc =v 0t ·tan30°.则金属棒ab 接入回路的bc 部分切割磁感线产生的感应电动势为E =Bv 0bc =Bv 02t tan30°=33Bv 02t . (2)l Ob =v 0t ,l bc =v 0t tan30°,l Oc =v 0tcos30°,单位长度电阻设为R 0,则回路总电阻R =R 0(v 0t +v 0t tan30°+v 0t cos30°)=R 0v 0t (1+3),则回路电流I =E R =(3-3)Bv 06R 0,故I 为常量,与时间t 无关,选项B 正确.一、选择题考点一 感生电场和感生电动势1.(多选)在空间某处存在一变化的磁场,则 ( )A.在磁场中放一闭合线圈,线圈中一定会产生感应电流B.在磁场中放一闭合线圈,线圈中不一定会产生感应电流C.在磁场中不放闭合线圈,在变化的磁场周围一定不会产生电场D.在磁场中不放闭合线圈,在变化的磁场周围一定会产生电场答案 BD解析 由感应电流产生的条件可知,只有闭合回路中的磁通量发生改变,才能产生感应电流,如果闭合线圈平面与磁场方向平行,则线圈中无感应电流产生,故A 错,B 对;感生电场的产生与变化的磁场周围有无闭合回路无关,故C 错,D 对.2.在如下图所示的四种磁场情况中能产生恒定的感生电场的是( )答案 C解析均匀变化的磁场产生恒定的电场,故C正确.3.(多选)著名物理学家费曼曾设计过这样一个实验装置:一块绝缘圆板可绕其中心的光滑轴自由转动,在圆板的中部有一个线圈,圆板四周固定着一圈带电的金属小球,如图1所示.当线圈接通电源后,将产生图示逆时针方向的电流.则下列说法正确的是( )图1A.接通电源瞬间,圆板不会发生转动C.若金属小球带负电,接通电源瞬间圆板转动方向与线圈中电流方向相反D.若金属小球带正电,接通电源瞬间圆板转动方向与线圈中电流方向相反答案BD解析线圈接通电源瞬间,变化的磁场产生感生电场,从而导致带电小球受到电场力,使其转动,A错误;不论线圈中电流是增大还是减小,都会引起磁场的变化,从而产生不同方向的电场,使小球受到电场力的方向不同,所以会向不同方向转动,B正确;接通电源瞬间,产生顺时针方向的电场,如果小球带负电,圆板转动方向与线圈中电流方向相同,C错误;同理可知D正确.4.现代科学研究中常用到高速电子,电子感应加速器就是利用感生电场加速电子的设备.电子感应加速器主要由上、下电磁铁磁极和环形真空室组成.当电磁铁绕组通以变化的电流时,产生变化的磁场,穿过真空盒所包围的区域内的磁通量也随时间变化,这时真空盒空间内就产生感应涡旋电场,电子将在涡旋电场作用下加速.如图2所示(上图为侧视图、下图为真空室的俯视图),若电子被“约束”在半径为R的圆周上运动,当电磁铁绕组通有图中所示的电流时( )图2A.若电子沿逆时针运动,保持电流的方向不变,当电流增大时,电子将加速B.若电子沿顺时针运动,保持电流的方向不变,当电流增大时,电子将加速C.若电子沿逆时针运动,保持电流的方向不变,当电流减小时,电子将加速答案 A解析当电磁铁绕组通有题图中所示的电流时,由安培定则可知将产生向上的磁场,当电磁铁绕组中电流增大时,根据楞次定律和安培定则可知,这时真空盒空间内产生顺时针方向的感生电场,电子沿逆时针运动,电子将加速,选项A正确;同理可知选项B、C错误;由于电子被“约束”在半径为R的圆周上运动,被加速时电子做圆周运动的周期减小,选项D错误.5.如图3甲所示,线圈总电阻r=0.5Ω,匝数n=10,其端点a、b与Ra、b两点电势差的大小为( )图3解析 根据法拉第电磁感应定律得:E =n ·ΔΦΔt =10×,0.4)V =2V.I =E R 总=21.5+0.5A =1A.a 、b 两点的电势差相当于电路中的路端电压,其大小为U =IR =1.5V ,故A 正确. 考点二 动生电动势abcd 位于纸面内,cd 边与磁场边界平行,如图4甲所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图乙所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )图4tt答案 BC解析 由题图Et 图象可知,导线框经过0.2s 全部进入磁场,则速度v =l t =,0.2)m/s =0.5 m/s ,选项B 正确;由图象可知,E =0.01V ,根据E =Blv 得,B =E lv =,0.1×0.5)T =0.2T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在tt =0.6s 这段时间内,导线框中的感应电流I =E R =,0.005)A =2A, 所受的安培力大小为F =BIl =0.2×2×0.1N=0.04N ,选项D 错误.7.如图5所示,等腰直角三角形OPQ 区域内存在匀强磁场,另有一等腰直角三角形导线框abc 以恒定的速度v 沿垂直于磁场方向穿过磁场,穿越过程中速度方向始终与ab 边垂直,且保持ac 平行于OQ .关于线框中的感应电流,以下说法正确的是( )图5答案 D解析 线框中感应电流的大小正比于感应电动势的大小,又感应电动势E =BL 有v ,L 有指切割磁感线部分两端点连线在垂直于速度方向上的投影长度,故开始进入磁场时感应电流最大,开始穿出磁场时感应电流最小,选项A 、B 错误.感应电流的方向可以用楞次定律判断,可知选项D 正确,C 错误.8.(多选)如图6所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于abab 边以角速度ωbc 边的长度为l .下列判断正确的是( )图6abcaC.|U bc |=12Bl 2ω D.|U bc |=Bl 2ω解析 金属框abc 平面与磁场方向平行,转动过程中磁通量始终为零,所以无感应电流产生,选项A 正确,B 错误;由转动切割产生感应电动势得|U bc |=12Bl 2ω,选项C 正确,D 错误. 9.(2017·温州中学高二上学期期中)如图7所示,半径为r 的金属圆盘在垂直于盘面的磁感应强度大小为B 的匀强磁场中绕圆心O 点以角速度ω沿逆时针方向匀速转动,圆盘的圆心和边缘间接有一个阻值为R 的电阻,则通过电阻R 的电流的大小和方向分别为(金属圆盘的电阻不计)( )图7A.I =Br 2ωR,由c 到d B.I =Br 2ωR,由d 到c C.I =Br 2ω2R,由c 到d D.I =Br 2ω2R,由d 到c 答案 D解析 将金属圆盘看成无数条金属辐条组成的,这些辐条切割磁感线,产生感应电流,由右手定则判断可知:通过电阻R 的电流的方向为从d 到c ,金属圆盘产生的感应电动势为:E =12Br 2ω,通过电阻R 的电流的大小为:I =E R =Br 2ω2R.故选D. 10.如图8所示,导体棒AB 的长为2R ,绕O 点以角速度ω匀速转动,OB 长为R ,且O 、B 、A 三点在一条直线上,有一磁感应强度为B 的匀强磁场充满转动平面且与转动平面垂直,那么AB 两端的电势差大小为( )图8A.12BωR 2BωR 2 BωR 2BωR 2答案 C解析 A 点线速度v A =ω·3R ,B 点线速度v B =ωR ,AB 棒切割磁感线的平均速度v =v A +v B 2=2ωR ,由E =Blv 得,AB 两端的电势差大小为E =B ·2R ·v =4BωR 2,C 正确.11.如图9所示,匀强磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间变化的变化率ΔB Δt的大小应为( ) 图9A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π答案 C解析 设半圆的半径为L ,电阻为R ,当线框以角速度ω匀速转动时产生的感应电动势E 1=12B 0ωL 2.当线框不动,而磁感应强度随时间变化时E 2=12πL 2·ΔB Δt ,由E 1R =E 2R 得12B 0ωL 2=12πL 2·ΔB Δt ,即ΔB Δt =ωB 0π,故C 项正确. 12.(多选)如图10所示,三角形金属导轨EOF 上放有一金属杆AB ,在外力作用下,使AB 保持与OF 垂直,从O 点开始以速度v 匀速右移,该导轨与金属杆均由粗细相同的同种金属制成,则下列判断正确的是 ( )图10答案 AC解析 设金属杆从O 点开始运动到题图所示位置所经历的时间为t ,∠EOF =θ,金属杆切割磁感线的有效长度为L ,故E =BLv =Bv ·vt tan θ=Bv 2tan θ·t ,即电路中感应电动势的大小与时间成正比,C 选项正确;电路中感应电流I =E R =Bv 2tan θ·t ρl S,而l 为闭合三角形的周长,即l =vt +vt ·tan θ+vtcos θ=vt (1+tan θ+1cos θ),所以I =Bv tan θ·Sρ(1+tan θ+1cos θ)是恒量,所以A 正确.二、非选择题 13.如图11所示,线框由导线组成,cd 、ef 两边竖直放置且相互平行,导体棒ab 水平放置并可沿cd 、ef 无摩擦滑动,导体棒ab 所在处有垂直线框所在平面向里的匀强磁场且B 2=2T ,已知ab 长L =0.1m ,整个电路总电阻R =5Ω,螺线管匝数n =4,螺线管横截面积S 2.在螺线管内有如图所示方向磁场B 1,若磁场B 1以ΔB 1Δt=10T/s 均匀增加时,导体棒恰好处于静止状态,试求:(取g =10 m/s 2)图11(1)通过导体棒ab 的电流大小;(2)导体棒ab 的质量m 的大小;(3)若B 1=0,导体棒ab 恰沿cd 、ef 匀速下滑,求棒ab 的速度大小.答案 (1)0.8A (2)0.016kg (3)20m/s解析 (1)螺线管产生的感应电动势:E =n ΔΦΔt =n ΔB 1ΔtS 得E =4×10×0.1V=4V通过导体棒ab 的电流I =E R(2)导体棒ab 所受的安培力F =B 2IL导体棒静止时受力平衡有F =mg解得m =0.016kg.(3)ab 匀速下滑时 E 2=B 2LvI ′=E 2RB 2I ′L =mg联立解得v =20m/s14.如图12甲所示,固定在水平面上电阻不计的光滑金属导轨,间距dCDEF 矩形区域内有竖直向上的匀强磁场,磁感应强度B 按如图乙所示规律变化,CFt =0时,金属棒ab 从图示位置由静止在恒力F 作用下向右运动到EFab 电阻为1Ω,求:图12(1)通过小灯泡的电流;(2)恒力F 的大小;(3)金属棒的质量.解析 (1)金属棒未进入磁场时,电路的总电阻R 总=R L +R ab =5 Ω回路中感应电动势为:E 1=ΔΦΔt =ΔB Δt S =0.5 V 灯泡中的电流为I L =E 1R 总=0.1 A. (2)因灯泡亮度始终不变,故第4 s 末金属棒刚好进入磁场,且做匀速运动,此时金属棒中的电流I =I L =0.1 A金属棒受到的恒力大小:F =F 安=BId =0.1 N.(3)因灯泡亮度始终不变,金属棒在磁场中运动时,产生的感应电动势为E 2=E 1=0.5 V 金属棒在磁场中匀速运动的速度v =E 2Bd =0.5 m/s金属棒未进入磁场时的加速度为a =v t =0.125 m/s 2 故金属棒的质量为m =F a =0.8 kg.。
5--电磁感应现象的两类情况解析
练习2.下列说法正确的是 ( AB) A.磁场变化时会在空间激发电场 B.处于变化磁场中的导体中的自由电荷定向移动,是由 于受到感生电场的作用 C.感生电场就是感应电动势 D.以上说法都不对
动生电动势
导体切割磁感线
AB相当 于电源
二、理论探究动生电动势的产生. 1、动生电动势是怎样产生的? 2、什么力充当非静电力?
电场力
力沿导体方向的分力
回路中相当于电源的 处于变化磁场中的线圈
做切割磁感线运动的导体
部分
部分
方向判断方法
由楞次定律判断
通常由右手定则判断,也可 由楞次定律判断
大小计算方法
由 E=nΔΔΦt 计算
通常由 E=Blvsinθ计算,也 可由 E=nΔΔΦt 计算
例题3:美国“阿特兰蒂斯”号航天飞机进行了一项卫星悬 绳发电实验,实验取得了部分成功.航天飞机在地球赤道 上空离地面约3000km处由东向西飞行,相对地面速度大约 为6.5×103m/s,从航天飞机上向地心发射一颗卫星,携带 一根长20km,电阻为800Ω的金属悬绳,使这根悬绳与地磁 场垂直,做切割磁感线运动.假定这一范围内的地磁场是 均匀的.磁感应强度为4×10-5T,且认为悬绳上各点的切 割速度和航天飞机的速度相同.根据理论设计,通过与电 离层(由等离子体组成)的作用,悬绳可以产生约3A的感应 电流,试求:
5 电磁感应现象的两类情况
1.知道感生电场的产生原因. 2.知道感生电动势和动生电动势及其区别与联系. 3.通过对相应物理学史的了解,培养热爱科学、尊重知 识的良好品德.
在电磁感应现象中,引起磁通量变化的原因不同, 一般分为两种:一种是磁场不变,导体运动引起磁通量 变化而产生感应电动势,如下图甲所示;另一种是导体 不动,由于磁场变化引起磁通量变化而产生感应电动势, 如下图乙所示,请探究一下它们产生感应电动势的机 理.
电磁感应现象两类情况
电磁感应现象的两类情况
感生电场
1.变化的电场周围产生磁场,变化的磁场周围产
生电场(19世纪60年代由麦克斯韦提出)。这个
电场就叫做感生电场。 2.磁场变化时,产生的感生电场的电场线是与磁
场方向垂直的曲线(方法遵循楞次定律)。
磁场变强
感生电场
3.感生电场是一种涡旋电场,电场线是闭合的。 感生电场的产生跟空间中是否存在闭合电路无关。
感生电场
练案 P7 第1小题
练案 P7
练案 P7
第3小题
第4小题
练案 P8
第1小题
动生电动势
1.导体在做切割磁感线运动时,导体内自由电荷 随导体在磁场中运动,受洛伦兹力而定向移动, 这样自由电荷在导体两端聚集,从而使导体两端 产生电势差(动生电动势) 2.若电路闭合,则电路中产生感应电流。 3.当电路不闭合时,切割磁感线的导体两端积聚 电荷,又在导体内产生附加电场,其他电荷在受 洛伦兹力的同时也受电场力作用,最终电荷受力 平衡时定向移动停止(离子速度选择器)
A.小球对玻璃圆环的压力一定不断增大
B.小球所受的磁场力一定不断增大 C.小球先逆时针减速,之后顺时针加速 D.磁场力对小球一直不做功
静电场与感生电场
静电场 起源 电场 线形 状 电场 的性 质 电荷
非闭合曲 线无旋场
感生电场 变化磁场
闭合曲线 有旋场
dB 0 dt
+
保守力场 有源场
非保守力场 无源场
4.如果空间存在闭合导体,导体中的自由电荷就
会在电场力的作用下定向移动,而形成感应电流;
如果导体不闭合,则导体中只产生电势差(感应
电动势),没有感应电流。
5.自由电荷受到的是感生电场对它的非静电力。
电磁感应现象的两类情况
用单位长度电阻为 r0=0.05 Ω/m 的导线绕制一个 n=100 匝、边长 a =0.20 m 的正方形线圈,线圈两端与阻值 R=16 Ω 的电阻连接构成闭合 回路,如图甲所示.线圈处在匀强磁场中,磁场方向垂直于线圈平面, 磁感应强度 B 的大小随时间变化的关系如图乙所示.求: (1)在 0~1.0×10-2 s 时间 内, 通过电阻 R 的电荷量; (2)1 min 内电流通过电阻 R 所产生的热量;
名师提醒
有些情况下,动生电动势和感生电动势具有相对性.例如,将条 形磁铁插入线圈中, 如果在相对磁铁静止的参考系内观察, 线圈运动, 产生的是动生电动势;如果在相对线圈静止的参考系中观察,线圈中 磁场变化,产生感生电动势.
例 1 如图所示,固定于水平桌面上的金属框架 cdef,处在竖直向 下的匀强磁场中,金属棒 ab 搁在框架上,可无摩擦滑动.此时 adeb 构成一个边长为 l 的正方形.棒的电阻为 r,其余部分电阻不计.开始 时磁感应强度为 B0. (1)若从 t=0 时刻起, 磁感应强度均匀增加, 每秒增加 k,同时保持棒静止,求棒中的感应电 流大小和方向. (2)在上述(1)情况中,始终保持棒静止,当 t =t1 秒末时需加的垂直于棒的水平拉力为多大?
问题探究 2:一段导线在做切割磁感线运动时相当于一个电 源,什么力充当了“非静电力”的角色.
提示:洛伦兹力.
要点一
感生电动势与动生电动势的理解
1.对感生电场的理解 19 世纪 60 年代, 英国物理学家麦克斯韦在他的电磁理论中指出: 变 化的磁场能在周围空间激发电场,这种电场叫感生电场. (1)感生电场是一种涡旋电场,电场线是闭合的. (2)感生电场的产生跟空间中是否存在闭合电路无关. (3)感生电场的方向根据闭合电路(或假想的闭合电路)中感应电流的 方向确定.
电磁感应现象的两类情况
1.感生电场是一种涡旋电场,电场线是闭合的. 2.感生电场的方向可由楞次定律判断.如图所示, 当磁场增强时,产生的感生电场是与磁场方向垂直且阻碍磁 场增强的电场. 3.感生电场提供了使电荷运动的非静电力. 磁场 激发感 感生电场驱动自 产生感 变化 → 生电场 → 由电荷定向移动 → 应电流 4.感生电动势大小:E=nΔΔΦt .
C.当磁感应强度均匀减小时,感生电场的电场线从上
向下看应为顺时针方向
D.当磁感应强度均匀减小时,感生电场的电场线从上
向下看应为逆时针方向 解析:感生电场的电场线方向由楞次定律来判定.假
设垂直于磁场方向有一闭合环形回路.
B向上, 均匀增 大时
―楞―次→ 定律
回路中感 应电流的 磁场方向 向下
―安―培→ 定则
感生电动势和 重点 动生电动势的
计算
感生电动势和
难点
动生电动势产 生的原因分析
和理解
知识点一 电磁感应现象中的感生电场 提炼知识 1.感生电场 磁场变化时在空间激发的一种电场. 2.感生电动势 由感生电场产生的感应电动势. 3.感生电动势中的非静电力 感生电场对自由电荷的作用.
4.感应电场的方向 与所产生的感应电流的方向相同,可根据楞次定律 和右手定则判断.
A
B
C
D
解析:根据楞次定律,在前半个周期内,圆环内产
生的感应电流方向为顺时针,即通过 ab 边的电流方向为
由 b 指向 a,再根据左手定则判断,ab 边受到的安培力为
水平向左,即负方向.根据法拉第电磁感应定律,前半个
周期内 ab 中的电流为定值,则所受安培力也为定值.结合
选项可知 B 正确.
答案:B
判断正误 (1)变化的磁场周围一定存在感生电场,与是否存 在闭合电路无关.( ) (2)恒定的磁场一定能在周围空间产生感生电场. () (3)感生电动势在电路中的作用相当于电源电动 势,其电路相当于内电路.( ) 答案:(1)√ (2)× (3)√
第四章 第5节 电磁感应现象的两类情况
解析:变化的磁场产生电场,处在其中的导体,其内部的 自由电荷在电场力作用下定向移动形成电流.
答案:AC
题型1
感生电动势的应用
【例 2】内壁光滑,水平放置的玻璃圆环内,有一直径略
小于环口直径的带正电小球,以速度 v0 沿逆时针方向匀速转动,
如图 4-5-4 所示,若在此空间突然加上方向竖直向上、磁感 应强度 B 随时间成正比增加的变化磁场,设运动过程中小球带 电量不变,则正确的是( )
下看沿顺时针方向,感生电场对电荷的作用力与电荷的运动方
向相反,所以小球先沿逆时针方向减速运动一段时间后沿顺时
针方向加速运动. 答案:C
【触类旁通】 2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝 金属圆线圈,规定线圈中感应电流的正方向如图 4-5-5 中甲
所示,当磁场的磁感应强度 B 随时间 t 如图乙变化时,下列选
t 的关系为 B=kt,比例系数 k=0.020 T/s. 一电阻不计的金属杆
可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在
t=0 时刻,金属杆紧靠在 P、Q 端,在外力作用下,杆以恒定
的加速度从静止开始向导轨的另一端滑动,求在 t=6.0 s 时金
属杆所受的安培力.
图 4-5-2
解:以 a 表示金属杆运动的加速度,在 t 时刻,金属杆与 1 2 初始位置的距离 L=2at ,此时杆的速度 v=at,面积 S=Ll,感 ΔB ΔB kt+Δt-kt 应电动势 E=S +Blv,而 B=kt, = =k,回路 Δt Δt Δt E 的总电阻 R=2Lr0,感应电流 I= ,作用于杆的安培力 F=BlI, R 3k2l2 - 解得 F=2 t,代入数据得 F=1.44×10 3 N. r0
(最新整理)4.5 电磁感应现象的两类情况
2021/7/26
18
类型一 感应电场方向的判断
例1 如图所示,内壁光滑、水平放置的玻璃圆环内,有
一直径略小于圆环直径的带正电的小球,以速率v0沿逆时 针方向匀速转动,若在此空间突然加上方向竖直向上、磁 感应强度B随时间成正比例增加的变化磁场.设运动过程中 小球带电荷量不变,那么( ) A.小球对玻璃圆环的压力一定不断增大 B.小球所受的磁场力一定不断增大 C.小球先沿逆时针方向减速运动,之后沿顺时针方向加 速运动 D.磁场力对小球一直不做功
2021/7/26
23
解:设 ab 中电流为 I 时 M 刚好离开地面,此时有 FB=BIL 1=Mg I =ER
E=ΔΦ/Δt=L1L2·ΔB/Δt B=B0+(ΔB/Δt)t=0.2t+1 解得:FB=0.4 N,I=0.4 A,B=2 T,t=5 s.
2021/7/26
24
变式2:如图所示的匀强磁场中,有两根相距20 cm 固定的平行金属光滑导轨MN和PQ.磁场方向垂直于 MN、PQ所在平面.导轨上放置着ab、cd两根平行 的可动金属细棒.在两棒中点OO′之间拴一根40 cm长的细绳,绳长保持不变.设磁感应强度B以1.0 T/s的变化率均匀减小,abdc回路的电阻为0.50 Ω.求: 当B减小到10 T时,两可动边所受磁场力和abdc回 路消耗的功率.
(最新整理)4.5 电磁感应现象的两类情况
2021/7/26
1
第四章 电磁感应
第5节 法拉第电磁感应的两类情况
2021/7/26
2
课标定位 学习目标:
1.了解感生电场,知道感生电动势产生的原因.会判断感 生电动势的方向,并会计算它的大小. 2.了解动生电动势的产生以及与洛伦兹力的关系.会判断 动生电动势的方向,并会计算它的大小. 3.了解电磁感应规律的一般应用,会联系科技实例进行 分析.
4.5电磁感应现象的两类情况(上课)
4.如图所示,一个带正电的粒子在垂直于匀 强磁场的平面内做圆周运动,当磁感应强度均 匀增大时,此粒子的动能将( B ) A.不变 B.增加 C.减少 D.以上情况都可能
5、如图所示,两根相距为L的竖直平行金属导 轨位于磁感应强度为B、方向垂直纸面向里的 匀强磁场中,导轨电阻不计,另外两根与上述 光滑导轨保持良好接触的金属杆ab、cd质量均 为m,电阻均为R,若要使cd静止不动,则ab杆 应向____运动,速度大小为_______,作用于 ab杆上的外力大小为______。
产生原因 移动电荷的 非静电力 回路中相当 电源的部分 方向判断方法 磁场的变化 感生电场对自由 电荷的电场力 处于变化磁场 中的线圈部分 由楞次定律判断
动生电动势
导体做切割磁感线运动 导体中自由电荷所受 的洛伦兹力 做切割磁感线 运动的导体 通常由右手定则判断, 也可由楞次定律判断
E BLv sin 也可以用E n t
第四章
电磁感应
电磁感应现象的两类问题
5
一、学习目标 (1)知道感生电场 (2)理解感生电动势与动生电动势的概念 (3)知道感生电动势和动生电动势及其区 别与联系
二、带着问题先学
1、什么是感生电场?方向如何判断? 2、什么是感生电动势? 3、什么是动生电动势?
知凝探究
感生电动势与动生电动势的比较 感应电动势
向上
2mgR 2mg 2 2 B L
大小计算方法
B En n S t tFra bibliotek当堂检测
1、如图所示,一个闭合电路静止于磁场中, 由于磁场强弱的变化,而使电路中产生了感 应电动势,下列说法中正确的是( AC ) A.磁场变化时,会在空间中激发一种电场 B.使电荷定向移动形成电流的力是磁场力 C.使电荷定向移动形成电流的力是电场力 磁场变强 D.以上说法都不对
电磁感应现象的两类情况
电磁感应现象的两类情况一、电磁感应现象中的感生电场1.感生电场麦克斯韦认为,磁场变化时会在空间激发一种电场,它与静电场不同,不是由电荷产生的,我们把它叫做感生电场。
2.感生电动势由感生电场产生的感应电动势。
3.感生电动势中的非静电力就是感生电场对自由电荷的作用。
4.感生电场的方向判断1.感生电场是一种涡旋电场,电场线是闭合的。
2.感生电场的方向可由楞次定律判断。
如图4-5-1所示,当磁场增强时,产生的感生电场是与磁场方向垂直且阻碍磁场增强的电场。
3.感生电场的存在与是否存在闭合电路无关。
1、某空间出现了如图4-5-2所示的一组闭合电场线,方向从上向下看是顺时针的,这可能是()A.沿AB方向磁场在迅速减弱B.沿AB方向磁场在迅速增强C.沿BA方向磁场恒定不变D.沿BA方向磁场在迅速减弱2、(多选)下列说法中正确的是()A.感生电场由变化的磁场产生B.恒定的磁场也能在周围空间产生感生电场C.感生电场的方向也同样可以用楞次定律和安培定则来判定D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向3、如图4-5-3所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将()A.不变B.增加C.减少D.以上情况都可能4、如图2所示,内壁光滑、水平放置的玻璃圆环内,有一直径略小于圆环直径的带正电的小球,以速率v0沿逆时针方向匀速转动(俯视),若在此空间突然加上方向竖直向上、磁感应强度B随时间成正比例增加的变化磁场.若运动过程中小球带电荷量不变,那么()A.小球对玻璃圆环的压力一定不断增大B.小球所受的磁场力一定不断增大C.小球先沿逆时针方向减速运动,过一段时间后沿顺时针方向加速运动D.磁场力对小球一直不做功二、电磁感应现象中的洛伦兹力1.动生电动势由于导体切割磁感线运动而产生的感应电动势。
2.动生电动势中的“非静电力”自由电荷因随导体棒运动而受到洛伦兹力,非静电力与洛伦兹力有关。
电磁感应现象的两类情况
(1) a 1.5V
(2)0.1N 0.1J
v
R
B
r
(3)0.1J
P
b
Q
小结
感 生 电 动 势 和 动 生 电 动 势
感应电场:由变化的磁场激发的电场.
感生电动势:由感生电场产生的感应 电动势称为感生电动势.
动生电动势:由于导体运动而产生的 感应电动势.
理论分析
导体CD在匀强磁场B中以速度V向右运动,并且导线CD 与B、V的方向相垂直,由于导体中的自由电子随导体一 起运动.因此每个电子受到的洛伦兹力为F洛=eVB,F洛方 向向下.在力F的作用下,自由电子沿导体向下运动, 使导体下端出现过剩的负电荷, 导体上端出现过剩的正 电荷.结果使导体上端C的电势高于下端D的电势,出现 由C指向D的静电场,此时电场对自由电子的作用力是向 上,与洛伦兹力方向相反,当二力互相平衡时,CD两端 C 便产生一个稳定的电势差。
F洛 F vB e
于是动生电动势就是
E FL BLv
与法拉第电磁感应定律得到的结果一致.
问题:洛伦兹力总与电荷的运动方向垂直.因此,洛伦兹力对电荷不做功.但 是动生电动势又等于洛伦兹力搬运单位正电荷所做的功,两者是否矛盾?
其实并不矛盾.运动导体中的自由电子,不仅随导体以速度v运动,而且还沿导体 v‘做定向运动,正是这个定向运动产生感应电流.因此导体中电子的合速度是V = v+ v‘,电子所受的总的洛伦兹力为F=eVB.F与合速度v垂直,它对电子 不做功.F的一个分量是F1=evB,这个分力对电子做功,产生电动势.F的另 一个分量是F2=ev’B,F2的方向与v方向相反,是阻碍导体运动的,做负 功.可以证明两个分力F1和F2所做的功代数和为零.结果仍然是洛伦兹力并不 提供能量,而只是起到传递能量的作用,即外力克服洛伦兹力的一个分量F2所做 的功,通过另一个分量F1转化为感应电流的能量. X X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另一种推导过程:
1、导体棒做匀速运动时所受安培力F安的 大小是多少?方向如何?
2、作用在导体棒的外力F的大小是多少? 3、外力F做功的功率P外的大小? 4、闭合电路中的总电功率P电的大小? 5、闭合电路中的总电功率P电与外力功率P 外之间有什么关系?
探讨:
1、洛伦兹力做功吗?
2、能量是怎样转化的呢?
问题2:
当闭合回路中的导体切割磁感线运动 时,电路中产生感应电动势,从而电路中 有感应电流,在这种情况下,哪一种作用 扮演非静电力?
思考与讨论
讨论结果:
1、导体中自由电荷(正电荷)具有水平方向 的速度,由左手定则可判断受到沿棒向上的洛 伦兹力作用,其合运动是斜向上的。
2、自由电荷不会一直运动下去。因为C、D两 端聚集电荷越来越多,在CD棒间产生的电场越 来越强,当电场力等于洛伦兹力时,自由电荷 不再定向运动。 3、C端电势高 4、导体棒中电流是由D指向C的。
4、有一面积为S=100cm2
的金属环,电阻为 E=0.1Ω如图所示,环中磁场变化规律如图所示, 且方向垂直环向里,在t1和t2时间内,环中感应 电流的方向如何?通过金属环的电荷量为多少?
ห้องสมุดไป่ตู้
例3:如图面积为0.2
m2的100匝线圈处在匀 强磁场中,磁场方问垂直于线圈平面,已知 磁感应强度随时间变化的规律为B=(2+0.2t) T,定值电阻R1=6Ω,线圈电阻R2=4Ω,求: (1)磁通量变化率,回路的感应电动势; (2)a、b两点间电压Uab
2、如图,两个相连的金属圆环,粗金属圆环的电 阻为细金属圆环电阻的一半。磁场垂直穿过粗金 属环所在的区域,当磁感应随时间均匀变化时, 在粗环里产生的感应电动势为E,则ab两点间的 电势差为( ) A.E/2 B.E/3 C.2E/3 D.E
3、如图,内壁光滑的塑料管弯成的圆环平放在水 平桌面上,环内有一带负电小球,整个装置处于 竖直向下的磁场中,当磁场突然增大时,小球将 ( ) A、沿顺时针方向运动 B、沿逆时针方向运动 C、在原位置附近往复运动 D、仍然保持静止状态
F2 F洛
-
洛伦兹力不做功,不提 供能量,只是起传递能 量的作用。即外力克服 洛伦兹力的一个分量F2 所做的功,通过另一个 分量F1转化为感应电流 的能量
F1
U
ω
1:如图所示,竖直向上的匀强磁场,磁感应强度B=0.5T, 并且以△B/△t=0.1T/S在变化.水平轨道电阻不计,且不 计摩擦阻力,宽0.5m的导轨上放一电阻R0=0.1Ω的导体 棒,并用水平线通过定滑轮吊着质量为M=0.2kg的重物, 轨道左端连接的电阻R=0.4Ω,图中的L=0.8m,求至少经 过多长时间才能吊起重物。
§4.5 电磁感应现象 的两类情况
1、如图所示,一个闭合电路静止于磁场中, 由于磁场强弱的变化,而使电路中产生了感 应电动势,下列说法中正确的是(AC ) A、磁场变化时,会在在空间中激发一种电场 B、使电荷定向移动形成电流的力是磁场力 C、使电荷定向移动形成电流的力是电场力 D、以上说法都不对 磁场变强
2、如图所示,导体AB在做切割磁感线运动时, 将产生一个电动势,因而在电路中有电流通过, 下列说法中正确的是( ) AB A、因导体运动而产生的感应电动势称为动生电 动势 B、动生电动势的产生与洛仑兹力有关 C、动生电动势的产生与电场力有关 D、动生电动势和感生电动势产生的原因是一样 的