铸造成型工艺剖析
铸造成型的工艺特点

铸造成型工艺的特点
铸造成型工艺的特点主要有以下几个方面:
1.适应性广泛:铸造可以生产各种形状、大小和结构的铸件,尤其适用于难以
加工的复杂形状铸件。
2.材料种类多:可用于铸造的材料种类繁多,包括铸铁、铸钢、铝合金、铜合
金等。
3.成本低:铸造工艺可以使用低成本的材料和简单的工具,且适合批量生产,
因此具有较低的生产成本。
4.适用性强:铸造工艺可用于生产单件、小批量或大批量生产的铸件,也可用
于生产大型或小型铸件。
5.铸造缺陷:铸造过程中可能会出现一些缺陷,如气孔、缩孔、疏松、裂纹等,
这些缺陷需要通过改进工艺或加入相应的添加剂来减少或避免。
6.环保:铸造过程中会产生一些噪音、粉尘和废气等污染物,对环境有一定的
影响,因此需要采取相应的环保措施来减少对环境的影响。
总之,铸造成型工艺具有广泛的适应性、多样的材料种类、低成本、适用性强等特点,但也存在一些铸造缺陷和环境问题需要注意和解决。
在生产过程中需要选择合适的材料、工艺和设备,并进行有效的质量控制和环境管理。
挤压铸造双金属复合材料成型工艺及性能分析

世界有色金属 2023年 5月上10冶金冶炼M etallurgical smelting挤压铸造双金属复合材料成型工艺及性能分析户 芳,高秀峰,叶 云(山西晋中理工学院,山西 晋中 030600)摘 要:双金属复合材料是一种具有高利用率、综合性能优于其它金属材料的新型浇铸材料,为此,本文对挤压铸造工艺和性能进行了分析。
首先,通过对双金属复合材料的模态结构的建模、固液复合度的控制、双金属材料的包覆温度和退温成型等方面的研究,而后对其成型过程进行了分析,最后再对其导电性、轻量化等方面作了较为深入的研究。
关键词:复合材料;性能分析;挤压铸造;成型工艺中图分类号:TG249.2 文献标识码:A 文章编号:1002-5065(2023)09-0010-3Forming Technology and Performance Analysis of Squeeze Casting Bimetal CompositesHU Fang, GAO Xiu-feng, YE Yun(Shanxi Jinzhong Institute of Technology,Jinzhong 030600,China)Abstract: Bimetal composite material is a new type of casting material with high utilization rate and better comprehensive performance than other metal materials. Therefore, the squeeze casting process and performance are analyzed in this paper. First of all, through the research on the modeling of the modal structure of the bimetallic composite, the control of the solid-liquid composite, the coating temperature of the bimetallic material and the annealing molding, the molding process is analyzed, and finally, the conductivity and lightweight of the bimetallic composite are further studied.Keywords: composite materials; Performance analysis; Squeeze casting; Forming process收稿日期:2023-03作者简介:户芳,女,生于1988年,汉族,山东曹县人,硕士研究生,助教,研究方向:材料成型。
铸造工艺具体分析与介绍汇总

铸造工艺具体分析与介绍1.铸造铸造还可按金属液的浇注工艺分为重力铸造和压力铸造。
重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇铸。
广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。
压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺。
广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。
这几种铸造工艺是目前有色金属铸造中最常用的、也是相对价格最低的。
2.砂型铸造砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。
砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。
砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。
砂型铸造用的模具,以前多用木材制作,通称木模。
旭东精密铸件厂为改变木模易变形、易损坏等弊病,除单件生产的砂型铸件外,全部改为尺寸精度较高,并且使用寿命较长的铝合金模具或树脂模具。
虽然价格有所提高,但仍比金属型铸造用的模具便宜得多,在小批量及大件生产中,价格优势尤为突出。
此外,砂型比金属型耐火度更高,因而如铜合金和黑色金属等熔点较高的材料也多采用这种工艺。
但是,砂型铸造也有一些不足之处:因为每个砂质铸型只能浇注一次,获得铸件后铸型即损坏,必须重新造型,所以砂型铸造的生产效率较低;又因为砂的整体性质软而多孔,所以砂型铸造的铸件尺寸精度较低,表面也较粗糙。
不过,旭东精密铸件厂集多年的技术积累,已大大改善了砂型铸件的表面状况,其抛丸后的效果可与金属型铸件媲美。
3.金属型铸造是用耐热合金钢制作铸造用中空铸型模具的现代工艺。
金属型既可采用重力铸造,也可采用压力铸造。
金属型的铸型模具能反复多次使用,每浇注一次金属液,就获得一次铸件,寿命很长,生产效率很高。
金属型的铸件不但尺寸精度好,表面光洁,而且在浇注相同金属液的情况下,其铸件强度要比砂型的更高,更不容易损坏。
精品课件:砂型铸造工艺详解

砂型铸造工艺(1)手工造型 ——单件单件、、小批量生产 (2)机器造型 ——中、小件大批量生产 (3)机器造芯 ——中、小件大批量生产(4)柔性造型单元 ——各种形状与批量生产铸造由于具有适应性广铸造由于具有适应性广,,经济性好等许多优点许多优点,,通常用来提供切削加工的毛坯通常用来提供切削加工的毛坯,,有时也直接铸造成形有时也直接铸造成形。
在机器中在机器中,,铸件一般占很大比例铸件一般占很大比例,,比如比如,,在汽车中在汽车中,,铸件重量占40-60%;机床中占70-95%。
而铸件中而铸件中,,砂型铸造占90%。
基本术语铸 型型:用型砂用型砂、、金属或其他耐火材料制成金属或其他耐火材料制成;;包括形成铸件形状的空腔铸件形状的空腔、、型芯和浇冒系统的组合整体型芯和浇冒系统的组合整体。
型 腔腔:铸型中造型材料所包围的空腔部分铸型中造型材料所包围的空腔部分。
铸 件件:用铸造方法制成的金属件用铸造方法制成的金属件,,一般作毛坯用一般作毛坯用。
分型面分型面::铸型组元间的接合面组元间的接合面。
分模面分模面::模样组元间的接合面组元间的接合面。
模 样样:由木材由木材、、金属或其他材料制成金属或其他材料制成,,用来形用来形成铸型型腔的工艺装备成铸型型腔的工艺装备。
零 件件:铸件经切削加工制成的金属件铸件经切削加工制成的金属件。
砂 芯芯:为获得铸件的内孔或局部外形为获得铸件的内孔或局部外形,,用芯砂或其他材料制成的或其他材料制成的,,安放在型腔内部的铸型组元安放在型腔内部的铸型组元。
芯 盒盒:制造砂芯或其他耐火材料所用的装备制造砂芯或其他耐火材料所用的装备。
基本术语11砂型铸造的生产过程砂型铸造的生产工序主要包括:制模、配砂、 造型、造芯、合型、熔炼、浇注、落砂、清理 和检验。
型砂铸模型型熔化 浇注芯盒型芯砂芯冷却 凝固12铸件检验 落砂、清理合箱铸造工艺图 零件图套筒的砂型铸造过程:13砂型铸造的特点可以制造形状复杂的毛坯或零件; 加工余量小,金属利用率高; 适应性强,应用面广,用于制造常用金属及合金的铸铁件; 铸件的成本低; 铸件的晶粒比较粗大,组织疏松,常存在气孔、夹渣等铸造 缺陷,机械性能比锻件差; 铸造生产工序多,铸件质量不够稳定,废品率较高; 铸件表面较粗糙,多用于制造毛坯。
简述铸造成型的工艺特点

简述铸造成型的工艺特点铸造成型是一种重要的制造工艺,采用这种工艺可以制造出大量高质量的零部件和组件。
不同的铸造成型工艺有着各自独特的特点,本文将按照工艺类别对其各自的特点进行简述。
一、砂型铸造砂型铸造是应用最广泛的一种铸造成型工艺。
其工艺特点主要有以下几个方面:1. 砂型制作灵活,能够适应各种形状、大小、结构的铸件制作。
2. 砂型材料便宜,易得,能够降低成本,提高生产效率。
3. 砂型铸造适用于各种铸造材料,包括铸铁、铸钢、铝合金等材料。
4. 砂型铸造的表面质量较差,需要进行后续处理和加工,才能达到要求。
二、压铸工艺压铸是另一种常见的铸造成型工艺,其工艺特点主要有以下几个方面:1. 压铸制品表面质量高,尺寸精度高,能够生产出复杂、高精度的零部件和组件。
2. 压铸工艺节约原材料,减少成本,提高生产效率。
3. 压铸同时还能够进行镁合金、铝合金、铜合金等各种工程材料铸造,可满足不同领域的需要。
三、熔模铸造熔模铸造是一种相对高级的工艺,其工艺特点主要有以下几个方面:1. 熔模铸造制品的表面质量和尺寸精度都非常高,能够铸造出复杂形状和高精度的铸件,适用于生产高质量的小批量铸件。
2. 熔模铸造适用于铸造高熔点,难加工的合金,如钨合金等。
3. 熔模铸造的模具寿命长,可反复使用,具有较高的经济效益,但是模具的制造成本也较高。
四、连铸工艺连铸是大型铸造工艺中的一种,其工艺特点主要有以下几个方面:1. 连铸生产效率高,适用于大规模、长期稳定的铸造生产。
2. 连铸制品表面质量好,尺寸精度高,适用于生产大量定尺的铸件。
3. 连铸适用于各种合金的铸造生产,包括铝合金、铜合金、钢等。
总体而言,铸造成型是一种非常常用的制造工艺。
不同的工艺具有各自的优缺点,工程师和制造商需要根据铸件特点和生产需要综合选择具体的铸造成型工艺,以平衡成本、质量和生产效率等因素。
铸造常用的成型工艺

主要有砂型铸造和特种铸造2大类。
1 普通砂型铸造,利用砂作为铸模材料,又称砂铸,翻砂,包括湿砂型、干砂型和化学硬化砂型3类,但并非所有砂均可用以铸造。
好处是成本较低,因为铸模所使用的沙可重复使用;缺点是铸模制作耗时,铸模本身不能被重复使用,须破坏后才能取得成品。
1.1 砂型(芯)铸造方法:湿型砂型、树脂自硬砂型、水玻璃砂型、干型和表干型、实型铸造、负压造型。
1.2 砂芯制造方法:是根据砂芯尺寸、形状、生产批量及具体生产条件进行选择的。
在生产中,从总体上可分为手工制芯和机器制芯。
2特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。
2.1 金属模铸造法利用熔点较原料高的金属制作铸模。
其中细分为重力铸造法、低压铸造法和高压铸造法。
受制于铸模的熔点,可被铸造的金属也有所限制。
2.2 脱蜡铸造法这方法可以为外膜铸造法和固体铸造法。
先以蜡复制所需要铸造的物件,然后浸入含陶瓷(或硅溶胶)的池中并待乾,使以蜡制的复制品覆上一层陶瓷外膜,一直重复步骤直到外膜足以支持铸造过程(约1/4寸到1/8寸),然后熔解模中的蜡,并抽离铸模。
其后铸模需要多次加以高温,增强硬度后方可用以铸造。
此方法具有良好的准确性,更可用作高熔点金属(如钛)的铸造。
但由于陶瓷价格颇高,而且制作需要多次加热和复杂,故成本颇为昂贵。
成型工艺1.重力浇铸:砂铸,硬模铸造。
依靠金属自身重力将熔融金属液浇入型腔。
2.压力铸造:低压浇铸,高压铸造。
依靠额外增加的压力将熔融金属液瞬间压入铸造型腔。
产品设计铸造工艺性分析

工艺特点: 工艺简单,清理效果好,但效率低,能耗高, 对长孔\细 孔\弯孔的残余粘砂效果好,要求铸件残留砂不能多,并且应 尽快使作,以防再次生锈.生产中应作为机加工的第一道工 序进行。
4.人工时效\自然时效及铸铁件料硬的处理: 铸件在凝固和冷却过程中,由于收缩受阻\各部位冷却速度 不同以及组织转变引起体积变化等原因,不可避免的会在 铸件内产生内应力,这会收起变形\裂纹.最常用的消除方法 是人工时效和自然时效.
电弧炉熔炼
f浇注:引流准、注流稳、收流慢、 g落砂及砂再生:目前自硬砂再生均有成套的专用设备。
砂 再 生 设 备
f铸件去应力退火、清理、喷漆
零 件 打 磨 清 理
2铸造工艺图常识:分甲类和乙类工艺图。甲类工艺图最常 用,介绍如下: a铸造工艺符号: 分型线 分模线 分型负数 不铸出孔 冒口及补贴 浇口
模型
b造型:
铸型一般由耐火度较高的硅砂及粘接材料构成,生产时 将砂箱放置于安装有模样的型板上,填入型砂并紧实后,起 型而得到所需要的铸型.它一般形成铸件的外型。
造型生产线(翻转起模机和造型机)
造型全景
c制芯:砂芯形成内腔及特殊的外表面。
下芯
d合箱: e熔炼:铸钢熔炼用电炉,包括电弧炉、工频炉和中频炉, 冶金行业用转炉。最常用的是中频炉,1000HZ.。 铸铁用冲天炉熔炼,也用冲天炉加电炉双联熔炼,目 前铸铁分厂用此方式。由于焦炭及生铁价格和环保方面 的要求,现在铸铁用中频电炉熔炼已成趋势。
a自然时效:是将铸件平稳地放置放在空地上,一般放 置6---18个月,最好经过夏季和冬季,因周期长占地大,只在 机床床身等大型铸件上采用. b人工时效:是进行消除内应力退火.即将铸件加热到 塑性变形温度范围保持一段时间,使铸件各部位温度均匀 化,从而释放内应力,铸件尺寸得到稳定,然后使铸件在炉内 缓慢冷却到弹性变形温度范围内出炉空冷. 铸铁件:580---660度保温3---6小时,冷却至350度以下可空 冷,铸钢件:640-660度体温4—6小时.由于铸钢件铸造时 易产生严重的枝晶偏析,所得组织极不均匀,典型的是魏氏 组织,所以一般采用全退火工艺,缓慢加热至840—880度保 温2—3小时,随炉冷却.
铸造成形成形原理、工艺特点

铸造成形成形原理、工艺特点
铸造成形是指将熔融金属或合金注入铸型中,通过冷却凝固形成所需的产品形状的制造过程。
铸造成形是一种非常重要的金属加工工艺,具有成本低、生产周期短、生产效率高等优点。
本文将介绍铸造成形的成形原理、工艺特点等相关内容。
1. 成形原理
铸造成形的成形原理是将熔融金属或合金注入铸型中,通过冷却凝固形成所需的产品形状。
铸造成形的成形过程主要分为注型、凝固、冷却、脱模等四个步骤。
在注型过程中,将熔融金属或合金注入铸型中,填满整个铸型腔,形成所需的产品形状。
凝固过程中,熔融金属或合金开始凝固,形成固态金属或合金。
冷却过程中,将固态金属或合金从铸型中取出后,通过自然冷却或强制冷却,让产品内部温度均匀降至室温。
最后,脱模过程中,将产品从铸型中取出,完成铸造成形的全过程。
2. 工艺特点
1) 生产周期短:铸造成形的生产周期短,可快速生产出大批量的产品。
2) 成本低:铸造成形的设备和原材料成本相对较低,可大幅降低产品生产成本。
3) 适用性广:铸造成形可用于生产各种形状的金属或合金制品,适用性非常广泛。
4) 生产效率高:铸造成形可进行自动化生产,提高生产效率和
生产能力,同时可大幅降低人力成本。
5) 重型、大型产品生产优势:铸造成形可生产大型、重型产品,如机床床身、发动机缸盖等。
总之,铸造成形是一种非常重要的金属加工工艺,具有成本低、生产周期短、生产效率高等优点,适用性广泛,可生产出各种形状的金属或合金制品。
铸造常用的成型工艺

铸造常用的成型工艺铸造是制造业中最常见的加工方式之一,铸造工艺是将熔融金属或其他材料注入模具中,通过冷却和固化形成所需的零件或产品。
在铸造过程中,成型工艺是至关重要的一环。
本文将介绍铸造常用的成型工艺,包括砂型铸造、精密铸造、压力铸造和熔模铸造。
一、砂型铸造砂型铸造是铸造中最常见的一种成型工艺。
该工艺使用砂型作为模具,将熔融金属注入模具中,通过冷却和固化形成所需的零件或产品。
砂型铸造工艺具有成本低、生产效率高、适用范围广等优点。
其缺点是精度和表面质量较低,适用于制造大型、中小型铸件。
二、精密铸造精密铸造是一种高精度的成型工艺,适用于制造高要求的零件或产品。
该工艺使用精密模具,将熔融金属注入模具中,通过冷却和固化形成所需的零件或产品。
精密铸造工艺具有精度高、表面质量好、适用范围广等优点。
其缺点是成本较高,生产效率低,适用于制造小型、复杂的铸件。
三、压力铸造压力铸造是一种高效、高精度的成型工艺。
该工艺使用金属模具,将熔融金属注入模具中,在高压力下形成所需的零件或产品。
压力铸造工艺具有成本低、生产效率高、精度高、表面质量好等优点。
其缺点是模具成本较高,适用于制造小型、中型的铸件。
四、熔模铸造熔模铸造是一种高精度、高表面质量的成型工艺。
该工艺使用陶瓷模具,将熔融金属注入模具中,在高温下形成所需的零件或产品。
熔模铸造工艺具有精度高、表面质量好、适用范围广等优点。
其缺点是成本较高,生产效率低,适用于制造小型、复杂的铸件。
总之,铸造常用的成型工艺包括砂型铸造、精密铸造、压力铸造和熔模铸造。
每种成型工艺都有其优点和缺点,根据所需的零件或产品的要求来选择合适的成型工艺是非常重要的。
铸造成形方法及特点概述

铸造成形方法及特点概述常见的铸造成形方法分类如图1所示。
铸造成形方法主要分为砂型铸造特种铸造两大类。
砂型铸造一般用硅砂制造铸型和砂芯,而特种铸造较少采用(或基本不用)硅砂型、芯。
消失模铸造,按其工艺特征介于砂型铸造与特种铸造之间,它既有砂型铸造的特点,又有特种铸造的特点。
图1 铸造成形方法分类1.砂型铸造砂型铸造是指以硅砂为原砂、以黏结剂作为黏结材料,将原砂黏结成铸型根据所用黏结剂的不同,砂型又可分为黏土砂型、树脂砂型、水玻璃砂型三大类。
在砂型铸造中,黏土砂型铸造历史悠久,成本低,普通黏土砂型铸造零件的尺寸精度和表面精度较低,它广泛用于铸铁件、各类非铁合金铸件、小型铸钢件。
为了提高铸件的尺寸精度和表面精度,20世纪中期以后,世界上先后出现了化学黏结剂砂型:水玻璃砂型和树脂砂型。
黏土砂采用黏土做黏结剂,它通常由原砂、黏土(即膨润土)、附加物(有煤粉、淀粉等)及水按一定配比组成(又称湿型砂),通过物理加压紧实而获得具有一定形状和紧实度的砂型和砂芯。
树脂砂型、水玻璃砂型,采用树脂及水玻璃等化学黏结剂,辅之固化剂(树脂砂常用磺酸,水玻璃砂常用CO2和有机酯等)调节砂型的硬化速度,形成强度和精度更高的砂型。
2.特种铸造在铸造行业,砂型铸造以外的铸造方法统称为特种铸造。
特种铸造的种类很多,它包括:精密熔模铸造、压力铸造、金属型铸造、离心铸造、反重力铸造(低压铸造、压差铸造)等。
特种铸造大多采用金属铸型,铸型的精度高表面粗糙度低,透气性差,冷却速度快。
因此,与砂型铸造比较,特种铸造的零件的尺寸精度和表面精度更高,但制造成本也更高;特种铸造,大多为精密铸造的范畴。
大量应用的常见特种铸造方法包括熔模精密铸造、压力铸造、金属型铸造、低压铸造四种。
3.消失模铸造笔者认为,消失模铸造是介于砂型铸造与特种铸造之间的铸造方法,它采用无黏结剂的砂粒作为填充,又采用金属模具发泡成形泡沫塑料模样,浇注及生产过程与砂型铸造过程相似,其铸件的精度和表面质量又与特种铸造相似。
铸造生产工艺主要流程分析

铸造生产的工艺流程铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序:1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图;2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备;3)造型与制芯;4)熔化与浇注;成形原理铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。
图1 铸造成形过程铸件一般作为毛坯经切削加工成为零件。
但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。
型砂的性能及组成1、型砂的性能型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。
2、型砂的组成型砂由原砂、粘接剂和附加物组成。
铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。
铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。
为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。
型砂结构,如图 2 所示。
图2 型砂结构示意图工艺特点铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。
与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。
铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5 毫米到 1 米左右;铸件长度可以从几毫米到十几米。
2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。
铸造工艺学报告

芯头的高度
L=370mm,D=210mm,查课 本表6-17芯头高度h取自35~55,
1
取h=h1=40mm
压紧环、防压环和集砂槽
4
取e=3,f=4,r=3
芯头的斜度
2
取α1=10° α=7°
3
芯头的间隙
查表(JB/T 5105-1991)取芯
头的间隙S=2mm
15
16
05 5.浇注系统设计
17
根据铸件质量和生产类型选择铸钢 件浇注系统占的质量百分比为50%, 金属液总质量G=m×(1+50%) =463Kg×1.5=694.5Kg
(3)流量系数μ的确定
根据铸型种类和阻力大小流量系数 μ取0.8~0.95
(2)浇注时间的确定
铸件壁厚为90mm,取型=8~10mm·s-1 C为铸件的高度 最后取66~83s,取75s
板长910mm,补缩距离不够,选 择在冒口之间添加冷铁
加冷铁之后的补缩距离 =4.5T+4.5T+50+4.5T+50+4.5T =1180>910
26
铸件成品率
mc
100%
mc mr mg
计算α=75.1%
冒口三维示意图
27
下部放冷铁 Mr=M0/2 =d/4=2.25
冷铁
为增加铸件局部冷却速度,在型腔 内部及工作表面安放的激冷物称为 冷铁。结合此铸件选用外冷铁
5
铸造工艺方案分析
2.铸造工艺方 案分析
浇注位置 铸造工艺的确定
分型面的选择
造型方法 造芯方法 铸造方法 铸型种类
手工造型 砂型铸造 自硬砂
6
分型面的选择
方案Ⅰ:沿主视图中 心线分型,两箱造型
铸造加工的原理与机制

铸造加工的原理与机制铸造加工是一种将液态或半固态金属通过浇注到模具中,冷却并成型的工艺。
它通常用于生产复杂的金属零部件,包括机械零部件、汽车配件、管道和铸造件等。
本文将介绍铸造加工的原理与机制,包括凝固过程、热力学和金相学原理。
一、凝固过程铸造加工的凝固过程非常重要,因为它决定了成品的品质和机械性能。
一般来说,凝固分为两个阶段:初凝和终凝。
初凝是液态合金在模具中形成实体结构的过程。
在这个阶段,液态合金内部的相变开始发生,化学成分和结晶组织发生变化。
终凝是铸件成品的形成期,包括金属液态状态的消失和完全凝固的过程。
凝固过程基于热力学和流体力学原理,它们主要包括传热、传质、流动和化学反应等方面。
其中,热量的吸收和释放是非常重要的。
当金属液体开始冷却并且凝固时,放热会使金属液体内部有一定的温度梯度。
这会导致固化结构从外到内逐渐形成。
二、热力学原理热力学原理是铸造加工的另一个重要方面。
热力学原理可以帮助铸造工程师理解和控制金属合金的化学成分和结晶组织。
这对于生产高品质和高性能金属零部件至关重要。
在铸造加工中,液态金属的化学成分是非常重要的。
因为金属的化学成分对于成品质量和机械性能都有很大的影响。
化学成分的变化可能会产生异常晶粒组织、内部断裂、缩孔和粘砂等问题,影响成品的使用寿命和可靠性。
除了化学成分,热力学原理还涉及成分分布和组织控制。
这包括提高晶化速度、改善晶核密度和提高成品的完整性。
其中一种常见的热处理方法是固溶和时效热处理,这可以减少金属的亚晶区和裂纹,并增强成品的机械性能。
三、金相学原理金相学原理是铸造加工中的另一个关键方面。
金相学原理可以帮助铸造工程师理解和控制铸造件的组织和性能。
这对于调整成品的性能、提高使用寿命和可靠性非常重要。
金属的组织结构直接影响它的物理和机械性能。
在铸造加工中,铸造件的晶粒结构和相态分布是关键问题。
金相学原理可以帮助人们理解这些问题,并提供优化方案。
例如,半固态铸造可以优化金属的晶化过程,使成品的晶粒组织更加均匀,从而提高其性能。
产品工学基础-铸造成型工艺

汽车、摩托车的发动机为金属铸造产品。
金属型铸造
ቤተ መጻሕፍቲ ባይዱ
金属型铸造
发动机金属模具,加工过程中
压力铸造
压力铸造是熔融金属在高压下高速充型,并在压力下凝 固的铸造方法。必须制作金属模具,其价格较昂贵。压力铸造
通常在压铸机上完成。 铸件的尺寸精度高,表面质量好,只须打磨铸件毛边,一般
砂型铸造
砂型铸造是在砂型中生产铸件的铸造方法。型(芯)砂通
常是由石英砂、粘土 ( 或其它粘结材料 ) 和水按一定比例混制 而成的。
砂型铸造是目前最常用、最基本的铸造方法。
砂型铸造
熔模铸造
熔模铸造是用易熔蜡料制成模样,在模样上包覆若干层 耐火涂料,制成型壳,熔出模样后经高温焙烧即可浇注的铸造
方法。这种方法能获得具有较高精度和表面质量的铸件,故有" 精密铸造"之称。
不需机械加工可直接使用。
压力铸造
压力铸造
发动机缸体
产品工学基础及应用
入门能力培养项目
产品成型工艺认知
铸造成型工艺
铸造成型工艺
铸造,通常是指将液态材料浇入与零件形状、尺寸相适应
的铸型型腔中,冷却凝固后,获得毛坯或零件的方法。用铸造方
法制造的毛坯或零件称为铸件。 目前最常用铸造方法是砂型铸造,此外还有熔模铸造、
金属型铸造、压力铸造等特种铸造方法。
目前铸造生产中,最常用的是金属材料。在一般的机械设备 中,铸件成本仅占机器总成本的 20%~25% 。但铸件容易产生气 孔、缩孔和裂纹等缺陷。且生产工序多,质量不稳定,废品率高。
熔模铸造的工艺过程主要包括蜡模制造、结壳、脱蜡、焙烧 和浇注等过程。
铸造成型方法解析

第二章各种典型铸造技术的原理和方法根据铸型特点分类,有一次型铸造(砂型铸造、熔模铸造、石膏型铸造、实型铸造等)、半永久型铸造(陶瓷型铸造、石墨型铸造等)、永久型铸造(金属型铸造、压力铸造、挤压铸造、离心铸造等);根据浇注时金属液的驱动力及压力状态分类,有重力作用下的铸造和外力作用下的铸造。
金属液在重力驱动下完成浇注称自由浇注或常压浇注。
金属液在外力作用下实现充填和补缩,如压力铸造、挤压铸造、离心铸造和反重力铸造等。
本章介绍的铸造技术有:属于重力充型的有砂型铸造、金属型铸造和熔模铸造;属于外力充型的有压力铸造、离心铸造和挤压铸造;属于反重力铸造的有低压铸造和差压铸造/真空吸铸等。
铸造业中砂型铸造约占80%。
型砂中粘土砂、水玻璃砂和树脂砂等又占了90%的份额。
三种型砂间的比例视各国具体情况而异,平均来看,大致为5:3:2。
以型砂铸造与其它铸造方法相比,其缺点是:劳动条件较差,铸件外观质量欠佳;铸型只能使用一次,生产率低。
优点是:不受零件形状、大小、复杂程度及合金种类的限制;造型材料来源广,生产准备周期短,成本低。
因此,砂型铸造是铸造生产中应用最广泛的一种方法,世界各国用砂型铸造生产的铸件占总产量的80%~90%。
本章的重点在砂型铸造。
而铸造用砂型的种类及制造是重中之重。
第1节砂型铸造一、铸造用砂型的种类及制造(一)概述1.砂型铸造的特征及工艺流程配制型砂—造型—合型—浇注—冷却—落砂—清理—检查—热处理—检验—获得铸件特征:使用型砂构成铸型并进行浇注的方法,通常指在重力作用下的砂型铸造过程。
名词:型砂——将原砂或再生砂+粘结剂+其它附加物等所混制成的混合物;铸型——形成铸件外观轮廓的用型砂制成的空腔称为铸型;砂芯——形成铸件内腔的用芯砂制成的实体(用于制做砂芯的型砂称为芯砂);造型——制造砂型的工艺过程;制芯——制造砂芯的工艺过程。
造型(芯)方法按机械化程度可分为手工造型(芯)和机器造型(芯)两大类。
铸件的工艺性分析

铸件的工艺性分析今天想说一下铸件的工艺性分析,实际上这是每个铸件在投入生产前需要做的审核工作。
我们知道,熔模精密铸造在资料介绍时是这么说的:接近于零件终态,无余量,适用于各种类型,各种合金。
这只是一个很笼统的概念。
真正要达到铸件的质量要求,还有很多工作要做。
首先,第一个事情,就是铸件的工艺性分析,这个铸件通过铸造能不能实现他的功能要求,比如:机械性能,冶金质量,尺寸精度等,另外,除了这些以外,还有铸造工艺性。
每个厂家有每个厂家的特色,铸造的工艺方法也有林林总总,一个厂家不可能涵盖所有的铸造方法,所以,在接到铸件的订单后,首先就是要分析该产品适不适合自己的工艺方法生产。
单就硅溶胶熔模精密铸造来讲,别的不说,就说硅溶胶模壳,它也有很多不能忽视的问题:比如,尖角,深孔槽(铸造手册有建议的深度孔径比),内腔大出口小,内腔弯曲,内腔模壳清理等。
这些问题不是不能解决,而是需要其他办法解决,要增加铸件成本。
可能有人说既然能解决,何必说这些废话,这就涉及到我们前面所说的铸件的工艺性分析。
首先,设计产品的人并不一定对铸造很了解,或者说可能根本不了解。
他设计产品的依据是功能、要求以及制造方法。
之所以选铸造,可能有多种原因:材料,成型方法,产品结构,成本等,但作为铸造工艺人员,你必须考虑的是他的产品设计你能不能达到客户的要求。
铸件本身有很多要求,比如避免尖角,锐角,圆弧过渡,铸件壁厚均匀,热节少等,这些在铸造手册中都有介绍,我就不多述及。
所以,每个工艺员在接到图纸后首先就是要与对方沟通铸件工艺性的问题。
直接让客户改图纸效果并不好,最好提建议给客户,让客户按照自己的意图或者折中方案对现有图纸进行重新设计。
我昨天遇见一件事,一个铸造工程师抱怨客户设计过于简单,给铸件增加就是简单的在图上一加,由于使用的是三维软件,铸件上出现了许多窄槽,尖角,如果用熔模精密铸造方法来做,无疑增加了铸造的难度,也给铸造质量控制带来很大隐患。
所以,针对这种情况,你必须跟客户沟通,铸造不是万能的,也有它难解决或者解决不了的问题,你必须把这些跟客户讲清楚,因为这对后期产品质量控制,按时交付有非常大的影响,这是铸造工程师先期必须考虑的事情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释1.材料成形技术:利用生产工具对各种原材料进行增值加工或处理,材料制备成具一定结构形式和形状工件的方法2.液态成型:将液态金属浇注到与零件形状相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法3.逐层凝固:纯金属和共晶成分的合金在凝固中不存在固液两相并存的凝固区,所以固液分界面清晰可见,一直向铸件中心移动(铸铁)4.糊状凝固:铸件在结晶过程中,当结晶温度范围很宽且铸件界面上的温度梯度较小,则不存在固相层,固液两相共存的凝固区贯穿整个区域(铸钢)5.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性6.顺序凝固原则:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。
7.均衡凝固原则:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式8.砂型铸造:以型砂(SiO2)为铸型、在重力下充型的液态成形工艺方法9.金属型铸造:以金属为铸型、在重力下的液态成形方法。
10.熔模铸:以蜡为模型,以若干层耐火材料为铸型材料,成形铸型后,熔去蜡模形成型腔,最终在重力下成形的液态成形方法11.压力铸:把液态或半液态的金属在高压作用下,快速充填铸型,并在高压下凝固而获得铸型的方法12.低压铸造:是液态金属在较小的压力(20—80Kpa)作用下,使金属液由下而上对铸型进项充型,并在此压力下凝固成型的铸造工艺13.反重力铸造:液态金属在与重力相反方向力的作用下完成充型,凝固和补缩的铸造成型14.离心铸造:将液态金属浇注到高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法15.消失模铸造:用泡沫塑料制成带有浇冒系统的模型,覆上涂料,用干砂造型,无需取模,直接浇注的铸件方法16.浇注系统:液态金属流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成17.阻流界面:在浇注系统各组元中,截面积最小的部分称为阻流截面18.集渣包:横浇道上被局部加大加高的部分19.浇口比:直浇道,横浇道,内浇道截面积之比20.热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷分型面:两半铸型相互接触的表面。
分为平直和曲面。
作用:便于造型、下芯和起模具。
21.砂芯:为了起模方便并形成铸件的内腔、孔和铸件外形不能出砂的部位,所采用的砂块22.芯头:伸出铸件以外不与金属液接触的砂芯部分芯头种类:垂直芯头、水平芯头、特殊结构的芯头23.冒口:铸型内用于储存金属液的空腔,在铸件凝固过程中补给金属,起到防止缩孔,缩松,排气和集渣的作用冒口=冒口区+轴线缩松区+末端区24.冒口的补缩距离:冒口补缩后形成的致密冒口区和致密末端区之和25.补贴:为实现顺序凝固和增强补缩效果,在靠近冒口的壁厚上补加倾斜的金属块26.均衡凝固:利用铸铁件石墨的共晶膨胀消除缩松的工艺方法27.缩孔与缩松:液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件最后凝固的部位形成一些孔洞。
大而集中的称为锁孔,细小而分散的称为缩松28.收缩时间分数:铸铁件表观收缩时间与铸件凝固时间的比值29.补缩量:铸件从浇注系统,冒口抽吸的补缩液量收缩模数:均衡凝固时均衡点的模数30.复合材料:由有机高分子,无机非金属和金属等几类不同材料人工复合而成的新型材料。
它既保留原组分的主要特征,又获得了原组分不具备的优越性能31.机械加工余量:在铸件加工表面上流出的、准备切削去的金属厚度。
32.冒口补缩通道:末端多了一个散热面,散热快—构成一个朝向冒口而递增的温度梯度;存在平行于轴线的散热表面,形成一个朝向冒口的楔形的补缩通道33.工艺出品率:铸件质量占铸件及浇注系统(含冒口)质量的比例34.反重力铸造:指液态金属在与重力方向相反方向力的作用下完成充型,补缩和凝固过程的铸造成型方法35.离心铸造:指将液态金属浇入高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法填空1.芯盒设计的原则:满足砂芯的基本要求;根据制芯方式的工艺方法;方便使用。
2.砂型浇注系统的充满条件:P>Pa3.封闭式浇注系统的特点:消耗金属少、喷射、冲砂、金属易氧化形成二次渣。
适用于不易氧化的金属,如铸铁4.开放式浇注系统的特点:充型平稳、金属氧化小、冲刷作用小、阻渣差、金属消耗大—内浇道大。
适用于易氧化的金属。
5.通用冒口分为:普通冒口、特种冒口;实用冒口分为:直接实用冒口、控制压力冒口、无冒口补缩6.实用冒口的核心:部分或全部利用石墨化膨胀消除二次收缩缺陷,设计依据:铸件的壁厚(模数)及铸型的强度7.设计冒口的关键是:冒口先于铸件凝固8.塑料分为:热塑性塑料、热固性塑料9.塑料的组成:合成树脂、填料、增塑剂、稳定剂、色料10.工程塑料的工艺性能:流动性、结晶性、吸湿性、收缩性、热敏性11.整体复合材料的成型有:粉末冶金法、外加增强体颗粒法、原位反应复合法12.铸造的主要影响因素:金属的流动性、浇注温度、充型压力、凝固方式、冷却速度。
13.改善金属的流动性有利于:形成薄壁复杂的铸件、排除内部夹杂物和气体、加快凝固中液体的补缩14.影响铸件凝固方式的主要因素:合金的结晶温度范围、铸件的温度梯度15.砂型铸造的特点:方便、成本低、适用于生产各类铸件、环境污染严重16.涂料作用:调节铸件冷却速度、保护金属型、利用涂料层蓄气通气。
17.合金收缩的三个阶段:液态收缩、凝固收缩、固态收缩18.防止缩孔和缩松常用的工艺措施就是控制铸件的凝固次序,使铸件实现“顺序凝固”。
19.体收缩:是铸件产生缩孔或缩松的根本原因 线收缩:是铸件产生应力,变形,裂纹的根本原因20.收缩分为:液态收缩,凝固收缩,固态收缩21.凝固顺序:顺序凝固,同时凝固,均衡凝固22.零件结构的铸造工艺性:零件结构是否符合生产要求,是否易于保证铸件的质量,是否能达到简化工艺,降低生产成本的要求壁 铸件结构 壁与壁的连接(避免锐角连接) 均匀过度,避免或减少热节的形成内壁散热比外壁差,设计时内壁比外壁薄,避免水平方向上出现较大平面,否则会产生夹砂,粘砂,浇不足 热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷壁厚⎪⎩⎪⎨⎧⎩⎨⎧→补缩能力填充能力凝固特性晶粒大小冷却速度 ⎪⎩⎪⎨⎧薄:浇不足,冷隔相关过度,与铸造方法密切临界壁厚:壁的连接和厚:晶粒粗大 与砂型铸造相比,金属型铸造有如下特点:优点: 1、金属型可以多次使用,浇注次数可达数万次而不损坏,因此可节约工时和大量的造型材料; 2、金属型加工精度高,型腔变形小,型腔壁光洁,因此铸件形状准确,尺寸精度高,表面粗糙度值小; 3、金属型传热迅速,铸件冷却速度快,因而晶粒细小,力学性能好; 4、生产率高,无粉尘,劳动条件得到改善。
缺点: 1、金属型的设计、制造、使用及维护要求高,生产准备时间较长; 2、金属型无退让性、透气性,铸件容易产生裂纹。
铸件的浇注位置 浇注时铸件在铸型内所处的状态和位置质量原则:外在,内在→确定浇注位置→控制凝固顺序,性能基本要求:1.重要部位(主要加工面,耐磨面,在下面) 2.大平面应朝下(采用倾斜浇注工艺!!!)3.保证铸件的充型能力(薄壁在下)4.合金收缩率大,结构薄厚不均采用顺序凝固5.尽量保证合箱位置,浇注位置和铸件冷却位置一致球铁曲轴:横浇竖冷浇注系统设计 浇注系统:铸型流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成。
(必有浇口杯,内浇道) 浇注系统的基本要求:1符合铸件的凝固原则或补缩方法。
2在规定的浇注时间内充满型腔。
3提供必要的充型压力头,保证铸件轮廓、棱角清晰。
4使金属液流动平稳,避免严重亲流。
防止卷入、吸收气体和使金属过度氧化。
5具有良好的阻渣能力。
6金属液平稳充型。
7烧注系统的金属消耗小,并容易清理。
8.能控制液态金属在型腔内流动的速度及方向(原因:1.避免液态金属对铸型和型芯的过度冲刷。
2.防止产生氧化夹渣等缺陷,二次渣。
3.保证合理的上升速度)。
浇注系统的分类及特点 1.以各组元的截面积分类2.以铸件浇注位置分类:1.顶注式 浇注系统 2.底注式3.中间注入式4.阶梯式5.缝隙式顶注式:1.自上而下,形成有利于补缩的温度场,发挥冒口作用 2.始终有一不变的压头,充型能力强3.浇注系统简单,浇冒口金属消耗少4.冲击大,易导致砂孔,铁豆底注式(内浇道设置在铸件底部):1.流动平稳,冲击最小 2.有利于气体排出 3.无论浇道比,横浇道充满,有利于挡渣 4.不易利于形成自下而上的凝固顺序,削弱了冒口的补缩作用 5.内浇道过热,晶粒粗大,易疏松疏孔液态金属在浇注系统中的流动 1.平稳充型是根本 2.横浇道阻渣,分配液流 3.内浇道调节温度场⎪⎩⎪⎨⎧内直>直浇道充满:内横>横浇道充满(型壁的气体压力)(金属液压力)>件:砂型浇注系统的充满条F F F F :a P P 浇注系统的类型与选择铸铁:逐层凝固 铸钢:糊状凝固工艺出品率:铸件质量占铸件及浇注系统(含冒口)质量的比例在砂型中流动的水力学特点 1,边界条件:多孔性、透气性、不润湿性2,三个作用:热作用(水分蒸发粘砂)、机械作用(冲削)、化学作用(界面反应) 铸型中水力学特性: 1,粘性流体流动 2,紊流流动 3,非稳定流动 4多相流动 5.多孔管中流动 浇口杯作用 1,承接金属液 2,实现液体的缓流,减轻对铸型的冲击3,分离熔渣及气泡 4,增加充型压力 种类:(,结构复杂,消耗金属少,一定阻渣能力池式:结构简单消耗金属少,阻渣能力差漏斗式:c b a ,c ,b a Mvr=R 中心质点的硬度大 吸气卷渣 浇注方向:(挡渣,避免吸气)纵向逆浇>侧向>纵向顺流浇注高度工艺性:凹坑或凸缘结构(强化垂直股流,削弱水平股流) 带挡板和凸缘(挡渣)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⇒金属消耗大冲刷小氧化性较弱体不能挡渣会带入大量气充型平稳性好:内横<直<开放式用于不易氧化的铸铁件内横>直>力压力均高于型壁气体压,全部截面上的金属液基本特征:正常条件下封闭式.5.4.3.2.1)(F F F F F F ⎪⎩⎪⎨⎧易氧化铸型中流态平稳性差,可减少金属液的消耗止吸气可充满,较好阻渣,防铸铁.3.2.1⇓⎪⎩⎪⎨⎧⎩⎨⎧耗金属小,热作用大气体排出,浇注系统消慢浇:冲刷小,有利于系统消耗金属大作用小,冲刷大,浇注易充满型腔,对铸型热除缩孔缩松可充分利用共晶膨胀消对快浇浇注时间HT QT ,液态金属在浇道中的流动内浇道内浇道的作用:1.控制充型速度及方向 2.控制和调节铸件的温度和凝固顺序 3.分配金属内浇道的不均匀性:远离直浇道的流量大,且金属液先通过其进入型腔;靠近直浇道的流量小,且金属液后充满 为什么不均匀? 浇注初期,进入横浇道的金属液流向末端,速度受到阻碍而下降,失去动能压力上升,金属液在末端充满并形成末端压力大而近直低的现象克服不均匀性的措施(F 横/F 内越小流量越不均匀):1.内浇道对称布置 2.设置浇口窝 3.设置变截面横浇道4.设置不同断面面积的内浇道 内浇口面积和引入方式决定金属液进入铸型的方向和大小内浇道位置的选择:内浇道的位置和数目应服从选定的凝固顺序和补缩方法1.控制凝固的顺序,调节温度场——位置和数量2.控制金属液进入铸型的大小和方向3.有利于阻渣4.便于清理 直浇道中的流动 作用:引导金属液进入横浇道、内浇道并最后充填铸型以及提供充型过程中所必须的压力 流动特点:1,势能---动能2,两种流态 ⎝⎛ ⎝⎛ ⎝⎛≥当入口为尖角下大的倒锥形等截面的圆柱形和上小不充满入口处圆角半径上大下小的锥形充满14/r 21d 直浇道窝中的流动 流动特点)夹杂等缺陷形成冲砂、渣孔、氧化,形成高度紊流区形成涡流⇒ ⎝⎛2,1 作用:1,缓冲作用:动能→压力能→水平速度2,缩短直--横浇道拐角处的高度紊流区3,改善内浇道的流量分布4,减少直--横浇道拐弯处的局部压力系数和水头损失5,浮出金属液中气体 横浇道中金属的流动 作用:1、向内浇道分配洁净的金属液2、存储最初浇入的 含气和夹渣的低温金属液并阻留夹渣3、使金属液流平稳和减少产生氧化物 阻渣原理:1、当夹杂物密度小于合金液,重力分离2、当夹杂物密度大于合金液,重力分离 四个区:直—横浇道拐弯处的高度紊流区 过渡区 正常区 横浇道末端高度紊流区 横浇道发挥阻渣作用的条件1,浇道内应呈充满状态2,横浇道内液态金属的流速尽可能低3,须保证足够的末端延长段 4,与内浇道的位置关系 ⎝⎛道下方封闭闭式:内浇道在横道上方开放式:内浇道在横浇 强化阻渣方式1.滤网2.特殊结构的横浇道 横充满3.利用惯性力阻渣 F=G+J 惯4.特殊结构对集渣的影响5.结构为平直冒口工艺 冒口:铸型内用于储存金属液的空腔,在铸件凝固过程中补给金属,起到防止缩孔,缩松,排气和集渣的作用 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧分,依加压方式分特种冒口:依加热方式顶部覆盖普通冒口:依位置,依通用冒口易割冒口补缩口,控制压力冒口,无实用冒口:直接实用冒冒口冒口的补缩条件:1.冒口凝固时间应大于或等于铸件被补缩部分的凝固时间2.冒口的体积只要足够大,使之有足够的金属液补充铸件的液态收缩,凝固收缩以及浇注后型腔扩大的体积3.在凝固期间,冒口与被补缩部位之间应始终保持通畅的补缩通道,目扩张角向着冒口 凝固方向上的温度梯度大小 扩张角大小 方向 补缩通道的通畅性冒口的补缩距离:冒口补缩后形成的致密冒口区和致密末端区之和 补缩范围:冒口的补缩距离加上冒口根部尺寸 冒口=冒口区+轴线缩松区+末端区HT 由于可利用石墨化共晶膨胀压力来克服缩松,冒口补缩距离较大QT 糊状凝固,补缩条件不好因而L 有较HT 小 凝固范围(凝固区)越小⇒补缩距离越大 在多个位置设置多块外冷贴的方法可大大延长冷铁末端区的长度增大冒口的补缩能力,能克服型内气体负压力产生的不利影响(增大冒口高度,采用压力冒口)补贴:铸件需补缩的高度或长度超过有效补缩距离时,为实现顺序凝固和增强补缩效果,在靠近冒口的壁厚上补加倾斜的金属块,增加壁厚,建立温度梯度 冒口的补缩效果 常用冒口模数的大小评定冒口的补缩效果 球形散热面积小,模数大,凝固时间最长(好) 通用冒口:适用于现实顺序凝固的一切合金铸件(如铸钢,铝合金铸件)实用冒口:冒口及冒口颈先于被补缩铸件部分凝固(设计关键),利用全部或部分的共晶膨胀在铸件内部建立压力,实现自补缩,可避免由于二次收缩引起的缺陷(实用冒口的核心)通用冒口:顺序凝固原则 补缩量 补缩通道 凝固方式:顺序凝固 同时凝固 均衡凝固△ABC 铸件在凝固过程中的总收缩量△ADC 铸件在凝固过程中的总膨胀量 △AB ’E 表观收缩量 AC :铸件总凝固时间 AE :铸件达到表观收缩为D 所需时间(表观收缩时间) E : 均衡点AE :外部收缩时间均衡凝固:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式 针对石墨化,E 向A 移动,石墨化能力控制压力冒口,其模数主要与铸件大部分模数与冶金质量有关和铸型强度依据:M ⇓铸件凝固顺序调整凝固温度场,控制集渣排气补缩冒口的作用:.4.3.2.1自补缩可利用石墨的膨胀实现和顺序凝固铸钢,轻合金钢QT HT →⇒决定了⇒决定了膨胀收缩←5.2M →冒口直接实用无冒口补缩(液态)一次收缩共晶膨胀二次收缩B 'B C tE DA 凝固重合,全程补缩,顺序、铸钢件(无石墨),负面,更依赖于补缩越是薄,对石墨化影响C E影响物态 转变过程 成形质量砂型铸造的特点: 1.适用生产各类铸件 2.成本低,方便 3.污染大 造型方法:手工造型、机器造型 型砂:水玻璃砂、树脂砂、普通潮模砂砂型的基本组成:骨料、粘接剂、辅助材料(煤粉,形成还原性气体,防止金属液进入型砂,减少型砂热膨胀,形成光亮碳)金属型铸造特点 1.铸件质量和精度高(机械性能提高,冷却速度提高-表层结晶组织致密,加工余量减少)2.主要适用于低熔点合金3.工艺成品率高,节约15~30%4.用于批量生产5.模具制备是关键6.存在的问题:模具成本高;金属型不透气,冷却速度过大,已出现浇不足,开裂等。