3 变量间的相关关系 教案人教A必修3
高中数学 2.3变量间的相关关系教案 新人教A版必修3
高一数学必修3导学案(教师版)〖复习回顾〗标准差的公式为:______________________________________________________〖创设情境〗1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。
”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3、“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?〖新知探究〗思考:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?一、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。
【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。
思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。
吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。
你认为这样的结论可靠吗?如何证明这个问题的可靠性?分析:(1)吸烟只是影响健康的一个因素,对健康的影响还有其他的一些因素,两者之间非函数关系即非因果关系;(2)不对,这也是相关关系而不是函数关系。
上面提到了很多相关关系,那它们之间的相关关系强还是弱?我们下面来研究一下。
人教A版高中数学必修三变量之间的相关关系教案
2.3.1变量之间的相关关系教学目标:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。
教学重点:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。
教学过程:案例分析:一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。
为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表。
(1)根据上表中的数据,制成散点图。
你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。
(3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下。
从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的。
那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)二点确定一条直线。
同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同。
同学3:多取几组点对,确定几条直线方程。
再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距。
同学4:我从左端点开始,取两条直线,如下图。
再取这两条直线的“中间位置”作一条直线。
同学5:我先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多。
1015202530150155160165170175180185190195同学6:我先将所有的点分成两部分,一部分是身高在170 cm 以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线。
高中数学人教A版必修三2.3.1教学设计《变量之间的相关关系》
变量之间的相关关系1.知识与技能(1)通过收集现实问题中两个有关联变量的数据认识变量间的相关关系和函数关系。
(2)明确事物间的相互联系,认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系并利用散点图直观体会这种相关关系。
(3)通过实例体会并利用散点图直观体会相关关系,了解正相关,负相关。
2.过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
3.情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
【教学重点】会画散点图,利用散点图直观认识两个变量之间的线性关系。
【教学难点】会画散点图,利用散点图直观认识两个变量之间的线性关系。
(一)新课导入在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。
”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,显然,这种关系不能用我们熟悉的函数关系来描述,那么这究竟是一种什么关系?下面我们共同来研究。
(二)新课讲授(1)两变量之间的关系①函数关系:当自变量取值一定时,因变量取值由它唯一确定;例:正方形面积S与其边长x之间的函数关系S=x2 ,对自变量边长的每一个确定值,都有唯一确定的面积的值与之对应。
(确定关系)②相关关系:当自变量取值一定时,因变量的取值带有一定的随机性;例:一块农田的水稻产量与施肥量之间的关系。
水稻产量并不是由施肥量唯一确定,在取值上带有随机性。
(不确定关系)思考1:当一个变量的取值一定时,另一个变量的取值被唯一确定,则这两个变量之间是怎样的关系?考察下列问题中两个变量之间是什么关系?为什么?(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄。
答:当一个变量的取值一定时,另一个变量的取值被唯一确定,这两个变量是一个函数关系。
高中数学变量间的相关关系教案1 新人教A版必修3
2.2.3 变量间的相关关系[知识与技能]1 两个变量间的相关关系(1)、两个变量间的相关关系的定义。
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。
(2)、两个变量间的种类。
两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系。
例如“身高者,体重也重”。
我们就说身高与体重这两个变量具有相关关系。
2 两个变量间的相关关系的判断(1)、散点图。
(2)、根据散点图中变量的对应点的离散程度,可以准确的判断两个变量是否具有相关关系。
(3)、正相关、负相关的概念。
3 回归直线方程(1)回归直线的概念(2)回归直线方程4、回归直线方程的系数公式[过程与方法][例1] 下列关系中,是带有随机性相关关系的是①正方形的边长面积之间的关系;②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系。
[分析] 两变量之间的关系有两种:函数关系与带有机性的相关关系。
①正方形的边长与面积之间的关系是函数关系。
②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系。
③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系。
④降雪量与交通事故的发生率之间具有相关关系,因此填②、④。
[例2] 现随机抽取某校10名学生在入学考中的数学成绩X与入学后的第一次数学考试成绩Y,数据如下:[分析] 应用散点图分析解:(图略)这10名同学的两次数学考试成绩具有相关关系。
[创新思维训练]一、选择题1、在下列各图中,每个图的两个变量具有相关关系的图是()(2)(3)(4)A :(1)(2)B :(1)(3)C :(2)(4)D :(2)(3) 2、线性回归方程a bx y +=∧必过[ ]A :(0,0)点B :(x ,0)点C :(0,y )点心D :(y x ,)点 3、设有一个直线回归方程为y=2-1.5x, 则变量x 增加一个单位时 A :y 平均增加1.5个单位于 B :y 平均增加2个单位 C :y 平均减少1.5个单位 D :y 平均减少2个单位二、填空题4、变量与变量之间的关系有两类:一类是 ,另一类是。
2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系
变量间的相关关系(1)函数关系与相关关系的区别与联系是什么?(2)如何判断两个变量之间是否具备相关关系?(3)什么是正相关、负相关?与散点图有什么关系?[新知初探]1.相关关系如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系叫做相关关系.2.散点图将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,利用散点图,可以判断两个变量是否相关,相关时是正相关还是负相关.3.正相关和负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域.(2)负相关:散点图中的点散布在从左上角到右下角的区域.[点睛]对正相关和负相关的理解(1)正相关随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少变多.(2)负相关随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关关系,我们称为负相关.例如,汽车越重,每消耗1 L 汽油所行驶的平均路程就越短.4.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).②设所求回归方程为y ^=b ^x +a ^,其中a ^,b ^是待定参数. ③由最小二乘法得⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y ∑i =1n x 2i-n x 2a ^=y -b ^x其中:b ^是回归方程的斜率,a ^是截距.[小试身手]1.下列命题正确的是( ) ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A .①③④B .②③④C .③④⑤D .②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关. 3.若施肥量x (kg)与水稻产量y (kg)的线性回归方程为y ^=5x +250,当施肥量为80 kg 时,预计水稻产量约为________kg.解析:把x =80代入回归方程可得其预测值y ^=5×80+250=650(kg). 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8 y3040605070若已求得它们回归直线的方程为______________________.解析:由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50).设回归直线方程为y ^=6.5x +a ^, ∵回归直线过样本中心(x ,y ), ∴50=6.5×5+a ^,即a ^=17.5, ∴回归直线方程为y ^=6.5x +17.5 答案:y ^=6.5x +17.5相关关系的判断①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.(2)某个男孩的年龄与身高的统计数据如下表所示.年龄x(岁)12345 6身高y(cm)788798108115120①画出散点图;②判断y与x是否具有线性相关关系.[解析](1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:③由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i . (5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1n x i y i -n x y∑i =1n x 2i-n x2,a ^=y -b ^x .(6)写出回归直线方程y ^=b ^x +a ^. [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.(2)x =1+2+3+44=52,y =1+3+4+54=134, ∑i =14x i y i =1+6+12+20=39.∑i =14x 2i =1+4+9+16=30,b ^=39-4×52×13430-4×⎝⎛⎭⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求的回归直线方程.利用线性回归方程对总体进行估计[典例] 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑i =14x 2i =32+42+52+62=86, 所以b ^=∑i =14x i y i -4x y ∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.(3)当x =100时,y ^=0.7×100+0.35=70.35(吨标准煤),90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:i t i y i t 2i t i y i 1 2 3 4 51 2 3 4 55 6 7 8 101 4 9 16 255 12 21 32 50这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.∑i =1nt 2i -n t -2=55-5×32=10,∑i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( ) A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C. 2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A.y ^=1.5x +2 B.y ^=-1.5x +2 C.y ^=1.5x -2 D.y ^=-1.5x -2解析:选B 设回归方程为y ^=b ^x +a ^,由散点图可知变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,所以b ^<0,a ^>0,因此方程可能为y ^=-1.5x +2.3.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( )A .直线l 过点(x ,y )B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误.4.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0解析:选C 当b ^=0时,r =0,这时不具有线性相关关系,但b ^能大于0,也能小于0. 5.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出. (参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)解:依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.17,a ^=y -b ^x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81=2.34(万元).可估计年收入为9万元的家庭每年饮食支出约为2.34万元.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( )A .确定性关系B .相关关系C .函数关系D .无任何关系解析:选B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.2.农民工月工资y (元)依劳动生产率x (千元)变化的回归直线方程为y ^=50+80x ,下列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元解析:选B 由回归直线方程y ^=50+80x 知,x 每增加1,y 增加80,但要注意x 的单位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析:选C 计算得,x =174+176+176+176+1785=176,y =175+175+176+177+1775=176,根据回归直线经过样本中心(x ,y )检验知,C 符合.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.y ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.y ^<b ′,a ^<a ′解析:选C 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2.求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136, ∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57, a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′.5.正常情况下,年龄在18岁到38岁的人,体重y (kg)对身高x (cm)的回归方程为y ^=0.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右.解析:用回归方程对身高为178 cm 的人的体重进行预测,当x =178时,y ^=0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a ,则a =________. 解析:x =4+5+6+7+8+96=132,y =92+82+80+80+78+686=80,由回归方程过样本中心点(x ,y ) 得80=-4×132+a ^.即a ^=80+4×132=106.答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y 具备线性相关关系,回归方程为y ^=10.47-1.3x ,估计该台机器最为划算的使用年限为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的人数5~32人,船员人数y 关于吨位x 的回归方程为y ^=9.5+0.006 2x ,(1)若两艘船的吨位相差1 000,求船员平均相差的人数; (2)估计吨位最大的船和最小的船的船员人数. 解:(1)设两艘船的吨位分别为x 1,x 2,则 y ^1-y ^2=9.5+0.006 2x 1-(9.5+0.006 2x 2) =0.006 2×1 000≈6, 即船员平均相差6人.(2)当x =192时,y ^=9.5+0.006 2×192≈11, 当x =3 246时,y ^=9.5+0.006 2×3 246≈30.即估计吨位最大和最小的船的船员数分别为30人和11人.9.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:(1)求x ,y ;(2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件? (提示:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487)解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917≈79.86.(2)∵b ^=3 487-7×6×79.86280-7×62≈4.75,a ^=79.86-4.75×6=51.36,∴纯利与每天销售件数x 之间的回归直线方程为y ^=51.36+4.75x . (3)当y ^=200时,200=4.75x +51.36,所以x ≈31.29.因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎫1+1+…+1n =2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4 用水量y4.5432.5用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n +2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=(x-y)2=x2+y2-2xy=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44716.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x 人,依题意得5100=x 40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 频率是0.25知, 10M =0.25,所以M =40. 因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8, y =1n ∑i =1n y i =2010=2, 又∑i =110x 2i -10x 2=720-10×82=80,∑i =110x i y i -10x y =184-10×8×2=24,由此得b ^=∑i =110x i y i -10x y∑i =110x 2i -10x 2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。
高中数学(23变量间的相关关系)教案设计 新人教A版必修3 教案
2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关整体设计教学分析变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.三维目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想. 课时安排2课时教学过程第1课时导入新课思路1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?请同学们如实填写下表(在空格中打“√” ):学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?推进新课新知探究提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23 27 38 41 45 49 50脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2年龄53 54 56 57 58 60 61脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加.我们可以作散点图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例思路1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价: 品牌所含热量的百分比口味记录A 25 89B 34 89C 20 80D 1978E 26 75F 20 71G 19 65H 24 62I 19 60J 13 52(1)作出这些数据的散点图.(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.性别身高/cm 右手一拃长/cm 性别身高/cm 右手一拃长/cm女152 18.5 女153 16.0女156 16.0 女157 20.0女158 17.3 女159 20.0女160 15.0 女160 16.0女160 17.5 女160 17.5女160 19.0 女160 19.0女160 19.0 女160 19.5女161 16.1 女161 18.0 女162 18.2 女162 18.5 女163 20.0 女163 21.5 女164 17.0 女164 18.5 女164 19.0 女164 20.0 女165 15.0 女165 16.0 女165 17.5 女165 19.5 女166 19.0 女167 19.0 女167 19.0 女168 16.0 女168 19.0 女168 19.5 女170 21.0 女170 21.0 女170 21.0 女171 19.0 女171 20.0 女171 21.5 女172 18.5 女173 18.0 女173 22.0 男162 19.0 男164 19.0 男165 21.0 男168 18.0 男168 19.0 男169 17.0 男169 20.0 男170 20.0 男170 21.0 男170 21.5 男170 22.0 男171 21.5 男171 21.5 男171 22.3 男172 21.5 男172 23.0 男173 20.0 男173 20.0 男173 20.0 男173 20.0 男173 21.0 男174 22.0 男174 22.0男175 16.0 男175 20.0男175 21.0 男175 21.2男175 22.0 男176 16.0男176 19.0 男176 20.0男176 22.0 男176 22.0男177 21.0 男178 21.0男178 21.0 男178 22.5男178 24.0 男179 21.5男179 21.5 男179 23.0男180 22.5 男181 21.1男181 21.5 男181 23.0男182 18.5 男182 21.5男182 24.0 男183 21.2男185 25.0 男186 22.0男191 21.0 男191 23.0(1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的. 知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x(个)10 20 30 40 50 60 70 80 90 100加工时间y(min) 62 68 75 81 89 95 102 108 115 122 画出散点图;关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积(m2)115 110 80 135 105销售价格(万元)24.8 21.6 18.4 29.2 22(1)画出数据对应的散点图;(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系.课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.作业习题2.3A组3、4(1).设计感想本节课学习了变量之间的相关关系和两个变量的线性相关的部分内容,通过身边的具体实例说明了两个变量的相关关系,并学会了利用散点图及其分布来说明两个变量的相关关系的种类,为下一节课作了铺垫,思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度和学习方法,树立时间观,培养勤奋、刻苦耐劳的精神.。
2022学年人教A版必修三变量相关关系教案
课题内容
必修3第二章统计变量间的相关关系
时间
2009.9
教学
资源
分析
课程标准
考试说明
课程标准:基本要求1.了解变量之间的相关关系。
2.理解两变量的线性相关关系,了解正相关、负相关的概念。
3.学会利用散点图直观认识变量间的相关关系。
4.了解回归直线的概念,掌握计算回归直线的斜率与截距的一般公式。
5.了解最小二乘法的思想。能利用计算器或计算机求出回归直线方程。
6.会利用回归直线进行预测。
发展要求
1.理解相关关系的强与弱的含义。 2.能利用相关关系判定两变量的相关性。
考试说明:09已经不作高考要求.
教材分析
(1)学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算机基础,主要是电子表格的使用。
2.问题引出:在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据:
人体的脂肪百分比和年龄
年龄
23
27
39
41
45
49
50
脂肪
9.5
17.8
21.2
25.9
27.5
26.3
28.2
年龄
53
54
56
57
58
60
61
脂肪
29.6
30.2
31.4
30.8
33.5
35.2
34.6
针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?教师特别向学生强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:
高中数学 第2章 统计 2.3 变量间的相关关系(教师用书)教案 新人教A版必修3-新人教A版高一必
2.3 变量间的相关关系2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关学 习 目 标核 心 素 养1.了解变量间的相关关系,会画散点图,并利用散点图判断两个变量之间是否具有相关关系.(重点)2.了解线性回归思想,会求回归直线方程.(难点)1.通过对数据的分析、统计,培养数据分析素养.2.借助变量间相关关系的研究,提升数学运算素养.1.变量间的相关关系 (1)相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.(2)散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形叫做散点图. (3)正相关与负相关①正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.②负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.2.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.⎩⎪⎨⎪⎧b ^=i =1n (x i-x )(y i-y )i =1n (x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b ^x ,其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.1.以下两个变量具有相关关系的是( ) A .角度和它的余弦值 B .圆的半径和该圆的面积 C .正n 边形的边数和它的内角和 D .居民的收入与存款D [A 、B 、C 中两变量是确定的函数关系.]2.变量x ,y 之间具有线性相关关系,其散点图如下图,那么其回归方程可能为( )A.y ^x +2 B.y ^x +2 C.y ^x -2 D.y ^x -2B [由散点图知,变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,故只有B 选项符合.]3.5位学生的数学成绩和物理成绩如下表:学科 A B C D E 数学 80 75 70 65 60 物理7066686462那么数学成绩与物理成绩之间( ) A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关 C [数学成绩x 和物理成绩y 的散点图如下图.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关.]4.设有一个回归方程为y ^x ,那么变量x 每增加1个单位时,y 平均减少________个单位. 1.5[因为y ^x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(xx )=-1.5,所以y 平均减少1.5个单位.]相关关系及判断【例1】 某个男孩的年龄与身高的统计数据如下表所示. 年龄x (岁) 1 2 3 4 5 6 身高y (cm) 788798108115120(1)画出散点图;(2)判断y 与x 是否具有线性相关关系. [解] (1)散点图如下图.(2)由图知,所有数据点接近一条直线排列,因此,认为y 与x 具有线性相关关系.相关关系的判断方法(1)两个变量x 和y 具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断; ③经验法:借助积累的经验进行分析判断.(2)判断两个变量x 和y 之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[跟进训练]1.以下关系中,属于相关关系的是________(填序号). ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.②④[在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.]求回归方程1.任意两个统计数据是否均可以作出散点图? [提示]任意两个统计数据均可以作出散点图.2.任何一组数据都可以由最小二乘法得出回归方程吗?[提示]用最小二乘法求回归方程的前提是先判断所给数据具有线性相关关系,否那么求回归方程是无意义的.3.回归系数b ^的含义是什么?[提示](1)b ^代表x 每增加一个单位,y 的平均增加单位数,而不是增加单位数. (2)当b ^>0时,两个变量呈正相关关系,含义为:x 每增加一个单位,y 平均增加b ^个单位数;当b ^<0时,两个变量呈负相关关系,含义为:x 每增加一个单位,y 平均减少b ^个单位数. 【例2】 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间y (分)626875818995102108115122(1)y 与x 是否具有线性相关关系?(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程.思路点拨:画散点图→确定相关关系→求回归直线系数→写回归直线方程. [解] (1)画散点图如下:由上图可知y 与x 具有线性相关关系. (2)列表、计算: i 1 2 3 4 5 6 7 8 9 10 x i 10 20 30 40 50 60 70 80 90 100 y i 62 68 75 81 89 95 102 108 115 122 x i y i6201 3602 2503 2404 4505 7007 1408 64010 35012 200x =55,y =91.7,∑i =110=x 2i =38 500,∑i =110y 2i =87 777,∑i =110x i y i =55 950求回归直线方程的步骤(1)收集样本数据,设为(x i,y i)(i=1,2,…,n)(数据一般由题目给出).(2)作出散点图,确定x,y具有线性相关关系.[跟进训练]2.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:x 24568y 3040605070(1)(2)求回归方程.[解](1)散点图如下图.(2)列出下表,并用科学计算器进行有关计算.i 1 2 3 4 5 x i 2 4 5 6 8 y i 30 40 60 50 70 x i y i 60 160 300 300 560 x 2i4162536 64x =5,y =50,∑i =15x 2i =145,∑i =15x i y i =1 380于是可得,b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=1 380-5×5×50145-5×52=6.5,a ^=y -b ^x ×5=17.5. 于是所求的回归方程是y ^x +17.5.回归方程的应用响,对近五年该农产品的年产量和价格统计如表:x 1 2 3 4 5 y86542x 和y (1)求x ,y ;(2)求y 关于x 的线性回归方程y ^=b ^x +a ^; (3)假设年产量为4.5吨,试预测该农产品的价格.[解] (1)计算可得x =1+2+3+4+55=3,y =8+6+5+4+25=5.因为线性回归直线过(x ,y ),那么a ^=y -b ^x ×3)=9.2, 故y 关于x 的线性回归方程是y ^x +9.2. (3)当x =4.5时,y ^×4.5+9.2=2.9(千元/吨).利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据. (2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点;①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否那么即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.[跟进训练]3.在一段时间内,分5次测得某种商品的价格x (万元)和需求量y (吨)之间的一组数据为价格x 2 需求量y1210753(1)根据上表数据,求出回归直线方程y ^=b ^x +a ^;(2)试根据(1)中求出的回归方程预估当价格为1.9万元时,需求量大约是多少吨?[解] (1)因为x =15×9=1.8,y =15×37=7.4,1.判断变量之间有无相关关系,简便可行的方法就是绘制散点图.根据散点图,可看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线的方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否那么应首先进行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ^,b ^的值时,要先算出b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.假设回归方程为y ^=b ^x +a ^,那么x =x 0处的估计值为y ^0=b ^x 0+a ^.1.判断以下结论的正误(正确的打“√〞,错误的打“×〞) (1)相关关系是两个变量之间的一种确定的关系.( ) (2)回归直线方程一定过样本中心点.( )(3)选取一组数据的部分点得到的回归方程与由整组数据得到的回归方程一定相同.( )[答案](1)× (2)√ (3)×2.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0C [当b ^=0时,不具有相关关系,b ^可以大于0,也可以小于0.]3.假设施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ^=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.650[当x =80时,y ^=400+250=650.]4.2019年元旦前夕,某市统计局统计了该市2018年10户家庭的年收入和年饮食支出的统计资料如下表:如果y 与x 是线性相关的,求回归方程.(参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)[解] 依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98,又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.17,a ^=y -b ^x =0.81, ∴y ^x +0.81.∴所求的回归方程为y ^x +0.81.。
人教A版高中数学必修三相关关系学案
变量间的相关关系学案一、学习目标:1、了解变量间的相关关系,能利用散点图直观认识变量间的相关关系,并能初步判定这种相关关系。
2、经历描述两个变量线性相关关系的过程。
了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
3、体会统计思想与确定性思维的差异。
4、体会研究相关性问题在现实生活中的重要性。
二、学习过程知识探究(一):相关关系思考1:考察下列问题中两个变量之间的关系:(1)正方形的边长与面积;(2)匀速直线运动中速度与路程的关系;(3)商品销售收入与广告支出经费;(4)粮食产量与施肥量;这些问题中两个变量之间的关系哪些是确定性关系,那些是非确定性关系?知识探究(二):散点图在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:(见课本)以x轴表示年龄,y轴表示脂肪含量,在直角坐标系中描出样本数据对应的图形概念:正相关负相关思考2:上面所作的图叫做散点图,从散点图中,我们得到的结论是概念:回归直线思考3:如何求这条回归直线的方程?知识探究(三):回归直线的方程思考4:设已经得到具有线性相关关系的一组数据:,设其回归方程为,其中a、b是待定系数。
用哪些数量关系来刻画各样本点与回归直线的接近程度?思考5:为了从整体上反映n个样本数据与回归直线的接近程度,选用哪个数量关系来刻画比较合适?试着写出这个关系式。
公式:b= a=概念:最小二乘法。
年龄脂肪含量例题讲解1、下表是某小卖部6天卖出热茶的杯数与当天气温的对比表(用计算器直接求回归直线):(1)画散点图;(2)从散点图中发现温度与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)按照回归方程,计算温度为10度时销售杯数。
为什么与表中不同?如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数;三、达标检测1、下列两个变量之间的关系哪个不是函数关系?()A、角度和它的余弦值B、正方形边长和面积C、正n边形的边数和顶点角度之和D、人的年龄和身高2、下列说法中正确的是()A.任何两个变量都具有相关关系B.人的知识与其年龄具有相关关系C.散点图中的各点是分散的没有规律D.根据散点图求得的回归直线方程都是有意义的3、变量y与x之间的回归方程()A.表示y与x之间的函数关系B.表示y和x之间的不确定关系C.反映y和x之间真实关系的形式D.反映y与x之间的真实关系达到最大限度的吻合4、线性回归方程ˆy=bx+a必过()A、(0,0)点B、(x,0)点C、(0,y)点D、(x,y)点5、设一个回归方程为ˆy=3—1.2x,则变量x增加一个单位时A、y平均增加1.2个单位B、y平均增加3个单位C、y平均减少1.2个单位D、y平均减少3个单位6、对于回归方程ˆy=2.75x+9,当x=4时,y的估计值是,7、某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:(1)画出散点图;(2)求回归直线方程;(3)预测广告费支出为10万元时的销售额。
2.3变量间的相关关系 教案(人教A版必修3).
2.3 变量间的相关关系●三维目标1.知识与技能通过收集现实问题中两个有关联变量的数据,认识变量间的相关关系.2.过程与方法明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.情感、态度与价值观通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想.●重点难点重点:(1)通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;(2)利用散点图直观认识两个变量之间的线性关系.难点:(1)变量之间相关关系的理解;(2)作散点图和理解两个变量的正相关和负相关.从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来.通过对典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律.通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系强化本节重点.通过学生讨论、交流,用TI图形计算器展示、对比自己作出的散点图,得出线性相关关系、正负相关关系的概念.教师及时将求线性方程的公式展示出来,通过例题的讲解和训练,进一步加深对散点图和回归方程的理解,突破难点.●教学建议结合本节课的教学内容和学生的认知水平,充分发挥教师的主导作用,让学生真正成为教学活动的主体.通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性.本节课宜采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“散点图”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,通过例题和变式训练进一步巩固本节知识,将自己所学知识应用于对现实生活的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.●教学流程创设问题情境引入问题:人体内脂肪的含量与年龄之间有何关系?⇒引导学生结合必修一中函数图象的画法将对应点在坐标系中描出,观察比较,分析这些点的特征⇒通过引导学生回答所提问题理解相关关系与散点图的概念进一步探究这些点的特征给出求b ∧,a ∧的公式⇒通过例1及变式训练使学生进一步理解和掌握线性相关的应用,及散点图与线性相关的关系⇒通过例2及其变式训练,使学生掌握线性回归方程的求法⇒研究现实生活中的实际问题,应用本节知识完成例3及变式能够对总体进行估计⇒归纳整理,进行课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固所掌握的知识,并进行反馈矫正课标解读1.理解两个变量的相关关系的概念.(难点)2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.(重点) 3.会求回归直线方程.(重点)4.相关关系与函数关系.(易混点)变量间的相关关系【问题导思】下表是水稻产量与施化肥量的一组观测数据:施化肥量15202530354045水稻产量320330360410460470480 1.将上述数据制成散点图.【提示】散点图如下:2.施化肥量与水稻产量有关系吗?【提示】有关系.1.相关关系:不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.2.散点图:将样本中几个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形.3.正相关与负相关:散点图中的点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,称它为正相关.若散点图中的点分布在从左上角到右下角的区域内,对于两个变量的这种相关关系,称它为负相关.回归直线方程【问题导思】一台机器由于使用时间较长,生产的零件有一些会有缺陷.按不同转速生产出有缺陷的零件的统计数据如下:转速x(转/秒)1614128每小时生产有缺1198 5陷的零件数y(件)1.在平面直角坐标系中作出散点图.【提示】2.从散点图中判断x和y之间是否具有相关关系?【提示】有.3.若转速为10转/秒,能否预测机器每小时生产缺陷的零件件数?【提示】可以.根据散点图作出一条直线,求出直线方程后可预测.1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程.3.最小二乘法求回归直线时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.4.求回归方程若两个具有线性相关关系的变量的一组数据为:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则所求的回归方程为y ∧=b ∧x +a ∧,其中a ∧,b ∧为待定的参数,由最小二乘法得:⎩⎪⎨⎪⎧b ∧=∑i =1n(x i -x )(y i -y )∑i =1n(x i-x )2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2,a ∧=y -b ∧x .b ∧是回归直线斜率,a ∧是回归直线在y 轴上的截距.线性相关关系的判断以下是在某地搜集到的不同楼盘新房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.619.429.222(1)画出数据对应的散点图;(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【思路探究】涉及两个变量房屋面积与销售价格,以房屋面积为自变量,考察销售价格的变化趋势从而做出判断.【自主解答】(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.两个随机变量x和y相关关系的确定方法:1.散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断.2.表格、关系式法:结合表格或关系式进行判断.3.经验法:借助积累的经验进行分析判断.5个学生的数学和物理成绩如下表:学生A B C D E成绩学科数学8075706560物理7066686462画出散点图,并判断它们是否具有线性相关关系.【解】以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如图所示,由散点图可知,两者之间具有线性相关关系,且是正相关.求回归直线方程一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x(个)102030405060708090100 加工时间y(分)626875818995102108115122 (1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求y关于x的回归直线方程.【思路探究】画散点图→确定相关关系→求回归直线系数→写回归直线方程【自主解答】(1)画散点图如下:由上图可知y 与x 具有线性相关关系. (2)列表、计算: i 1 2 3 4 5 6 7 8 9 10 x i 10 20 30 40 50 60 70 80 90 100 y i 62 68 75 81 89 95 102 108 115 122 x i y i62016025034044505007408 40105012200x =55,y =91.7,∑i =110=x 2i =38 500,∑i =110y 2i =87 777,∑i =110x i y i =55 950b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x2=55 950-10×55×91.738 500-10×552≈0.668,a ∧=y -b ∧x =91.7-0.668×55=54.96.即所求的回归直线方程为:y ∧=0.668x +54.96.用公式求回归方程的一般步骤: 1.列表x i ,y i ,x i y i ; 2.计算x ,y,∑ni =1x 2i ,∑n i =1x i y i ;3.代入公式计算b ∧、a ∧的值; 4.写出回归方程.从某一行业随机抽取12家企业,它们的生产产量与生产费用的数据如下表:企业编号 1 2 3 4 5 6 7 8 9 10 11 12 产量x /台 40 42 50 55 85 78 84 100 116 125 130 140 费用y /万元130150155140150154165170167180175185(1)绘制生产产量x 和生产费用y 的散点图;(2)如果两个变量之间是线性相关关系,请用最小二乘法求出其回归直线方程. 【解】 (1)两个变量x 和y 之间的关系的散点图如图所示.(2)根据散点图可知,两个变量x 和y 之间的关系是线性相关关系.下面用最小二乘法求回归直线方程. l 12 3 4 5 6 7 8 9 10 11 12 合计 x i 40 42 50 55 85 78 84 100 116 125 130 140 1 045 y i 130 150 155 140 150 154 165 170 167 180 175 185 1 921 x i y i 5200 6300 7750 7700 12750 12012 13860 17000 19372 22500 22750 25900 173094 x 2i160017642500325 7225 6084 7056 10000 13456 15625 16900 19600 104835x ≈87.08,y ≈160.1,n x y =167 298.096,n x 2≈90 995.116 8设所求的回归直线方程是y ∧=b ∧x +a ∧,所以b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=173 094-167 298.096104 835-90 995.116 8 = 5 795.90413 839.883 2≈0.42, a ∧=y -b ∧x =160.1-0.42×87.08≈123.53.所求的回归直线方程是y ∧=0.42x +123.53.利用回归方程对总体进行估计(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程y ∧=b ∧x +a ∧;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【思路探究】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ∧,a ∧的值;(3)实际上就是求当x =100时,对应的y 的值.【自主解答】 (1)散点图,如图所示.(2)由题意,得 i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,i =14x 2i =32+42+52+62=86,∴b ∧=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ∧=y -b ∧x =3.5-0.7×4.5=0.35, 故线性回归方程为y ∧=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨), 故耗能减少了90-70.35=19.65(吨标准煤).1.回归分析是寻找相关关系中非确定性关系的某种确定性.2.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的几种对应数据如下表所示:x(0.01%)104180190177147134150191204121y(分)10020021185155135170205235125(1)作出散点图,判断冶炼时间y对钢水含碳量x是否线性相关;(2)求回归直线方程;(3)预测当钢水含碳量为160个0.01%时应冶炼多少分钟.【解】(1)以x轴表示含碳量,y轴表示冶炼时间,可作散点图如图所示.从图中可以看出,各点散布在一条直线附近,即它们线性相关.(2)列表如下:i 12345678910x i104180190177147134150191204121 y i100200210185155135170205235125 x i y i10400360003990032745227851809025500391554794015125x=159.8,y=172,∑i =110x 2i =265 448,∑i =110x i y i =287 640 设所求的回归直线方程为y ∧=b ∧x +a ∧.b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x2=287 640-10×159.8×172265 448-10×159.82≈1.27,a ∧=y -b ∧x ≈172-1.27×159.8≈-30.95, 即所求的回归直线方程为y ∧=1.27x -30.95. (3)当x =160时,y ∧=1.27×160-30.95≈172(分),即大约冶炼172分钟.数形结合在线性相关性中的应用(12分)下表数据是退水温度x(℃)对黄硐延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为正态变量,其方差与x无关.x(℃)300400500600700800y(%)405055606770(1)画出散点图;(2)指出x,y是否线性相关;(3)若线性相关,求y关于x的线性回归方程;(4)估计退水温度是1 000 ℃时,黄硐延长性的情况.【思路点拨】根据所给数据画出散点图,然后可借助函数的思想分析.【规范解答】(1)散点图如图所示.4分(2)由散点图可以看出样本点分布在一条直线的附近,可见y 与x 线性相关.5分(3)列出下表,并用科学计算器进行有关计算.i 12 3 4 5 6 x i 300 400 500 600 700 800 y i 40 50 55 60 67 70 x i y i 12000 20000 27500 36000 46900 56000 x 2i90000160000250000360000490000640000x =550,y =57,∑i =16x 2i =1 990 000,∑i =16x i y i =198 400于是可得:b ∧=∑i =16x i y i -6x y∑i =16x 2i -6x2=198 400-6×550×571 990 000-6×5502≈0.058 857,8分a ∧=y -b ∧x =57-0.058 857×550=24.628 65.9分 因此所求的线性回归方程为y ∧=0.058 857x +24.628 65.10分(4)将x =1 000代入回归方程得y ∧=0.058 857×1 000+24.628 65=83.486,即退水温度是1 000 ℃时,黄硐延长性大约是83.486%.12分1.在研究两个变量是否存在某种关系时,必须从散点图入手,对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一函数曲线附近,那么变量之间具有相关关系;(3)如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系.2.利用散点图判断两个变量之间是否具有线性相关关系,体现了数形结合思想的作用,而用回归直线方程进行估计又体现了函数与方程思想的应用.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ∧,b ∧的值时,要先算出b ∧,然后才能算出a ∧.3.利用回归方程,我们可以进行估计和预测.若回归直线方程为y ∧=b ∧x +a ∧,则x =x 0处的估计值为y ∧0=b ∧x 0+a ∧. 由于回归直线将部分观测值所反映的规律进行了延伸,所以它在情况预报、资料补充等方面有着广泛的应用.1.下列变量之间的关系是相关关系的是( ) A .正方体的表面积与体积 B .光照时间与果树产量C .匀速行驶车辆的行驶距离与时间D .中国足球队的比赛成绩与中国乒乓球队的比赛成绩 【解析】 A 、C 是函数关系,D 无相关关系. 【答案】 B2.设一个回归方程y ∧=3+1.2x ,则变量x 增加一个单位时( )A .y 平均增加1.2个单位B .y 平均增加3个单位C .y 平均减少1.2个单位D .y 平均减少3个单位 【解析】 由b =1.2>0,故选A. 【答案】 A3.若施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ∧=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右. 【解析】 当x =80时,y ∧=400+250=650. 【答案】 6504.某公司利润y (单位:千万元)与销售总额x (单位:千万元)之间有如下表对应数据:x 10 15 17 20 25 28 32 y11.31.822.62.73.3(1)画出散点图;(2)判断y 与x 是否具有线性相关关系. 【解】 (1)散点图如下:(2)由图可知,所有数据点接近直线排列,因此,认为y与x有线性相关关系,且为正相关.1.判断下列图形中具有相关关系的两个变量是()【答案】 C2.(2013·广州高一检测)已知x 与y 之间的一组数据:x 0 1 2 3 4 y13579则y 与x 的线性回归方程y ∧=bx +a 必过点( ) A .(1,2) B .(5,2) C .(2,5) D .(2.5,5)【解析】 线性回归方程一定过样本中心(x ,y ). 由x =0+1+2+3+45=2,y =1+3+5+7+95=5.故必过点(2,5). 【答案】 C3.(2013·长沙高一检测)某商品销售量y (件)与销售价格x (元/件)呈负相关,其回归方程可能是( )A.y ∧=-10x +200 B.y ∧=10x +200C.y ∧=-10x -200 D.y ∧=10x -200【解析】 由于y 与x 呈负相关,∴x 的系数为负, 又y 不能为负值,∴常数必须是正值. 【答案】 A4.两个相关变量满足如下关系:x 10 15 20 25 30 y1 0031 0051 0101 0111 014两变量的回归直线方程为( )A.y ∧=0.56x +997.4 B.y ∧=0.63x -231.2C.y ∧=50.2x +501.4 D.y ∧=60.4x +400.7 【解析】 x =15(10+15+20+25+30)=20,y =15(1 003+1 005+1 010+1 011+1 014)=1 008.6,代入所给选项A 符合. 【答案】 A5.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ∧=0.85x -85.71,则下列结论中不正确...的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg【解析】 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本中心点(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.【答案】 D 二、填空题6.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ∧=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 由于y ∧=0.254x +0.321知,当x 增加1万元时,年饮食支出y 增加0.254万元. 【答案】 0.2547.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:月平均气温x (℃) 17 13 8 2 月销售量y (件)24234055由表中数据算出线性回归方程中的b ∧=-2.气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量约为________件. 【解析】 样本中心点是(10,35.5), 则a ∧=y --b ∧ x -=35.5-(-2)×10=55.5,故线性回归方程为y ∧=-2x +55.5, 将x =6代入得 y ∧=-2×6+55.5 =43.5≈44. 【答案】 448.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据(由资料显示y 与x 呈线性相关关系):x 2 4 5 6 8 y3040605070根据上表提供的数据得到回归方程y ∧=b ∧x +a ∧中的b ∧=6.5,预测销售额为115万元时约需________万元广告费. 【解析】x =15(2+4+5+6+8)=5,y =15(30+40+60+50+70)=50,由b ∧=6.5知,a ∧=y -b ∧·x =50-6.5×5=17.5, ∴y ∧=17.5+6.5x ,当y ∧=115时,解得x =15. 【答案】 15三、解答题9.某工厂对某产品的产量与成本的资料分析后有如下数据:产量x (千件) 2 3 5 6 成本y (万元)78912(1)画出散点图;(2)求成本y 与产量x 之间的线性回归方程.(结果保留两位小数) 【解】 (1)散点图如图所示.(2)设y 与产量x 的线性回归方程为y ∧=b ∧x +a ∧, x =2+3+5+64=4,y =7+8+9+124=9,b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=(x 1y 1+x 2y 2+x 3y 3+x 4y 4)-4x y x 21+x 22+x 23+x 24-4x 2=1110=1.10, a ∧=y -b ∧x =9-1.10×4=4.60. ∴回归方程为:y ∧=1.10x +4.60.10.高三(1)班的10名学生每周用于数学学习的时间x (h)与数学成绩y (分)之间有如下对应数据:x 24 15 23 19 16 11 20 16 17 13 y92799789644783687159如果y 与x 之间具有线性相关关系,求回归直线方程.(保留2位小数) 【解】 列出下表,并用科学计算器进行有关计算.i 1 2 3 4 5 6 7 8 9 10 x i 24 15 23 19 16 11 20 16 17 13 y i92799789644783687159x i y i 2 208 1 185 2 2311 6911 024517 1 660 1 088 1 207 767x =17.4,y =74.9,∑i =110x 2i =3 182,∑i =110x i y i=13 578b ∧=∑i =110x i y i -10x ·y∑i =110x 2i -10x2=545.4154.4≈3.53, a ∧=y -b ∧x =74.9-3.53×17.4≈13.48,∴所求的回归方程是y ∧=3.53x +13.48.11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份 2004 2006 2008 2010 2012 需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程y ∧=b ∧x +a ∧; (2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.【解】 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据预处理如下:年份-2008 -4 -2 0 2 4 需求量-257-21-111929对预处理的数据,容易算得x =0,y =3.2,b ∧=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5,a ∧=y -b ∧x =3.2.由上述计算结果,知所求回归直线方程为 y ∧-257=b ∧(x -2 006)+a ∧=6.5(x -2 006)+3.2. 即y ∧=6.5×(x -2 006)+260.2.(2)利用所求得的回归方程,可预测2014年的粮食需求量为 6.5×(2 014-2 006)+260.2=6.5×8+260.2=312.2(万吨).一般地,一个人的身高越高,他的手就越大.为了调查这一问题,对10名高三男生的身高与右手一拃长测量得如下数据(单位:cm): 身高168 170 171 172 174 176 178 178 180 181 一拃长19.0 20.0 21.0 21.5 21.022.024.023.022.523.0(1)根据上述数据制作散点图,能发现两者有何近似关系吗? (2)如果两个变量近似成线性关系,求线性回归方程; (3)如果一个学生身高185 cm ,估计他的右手一拃长.【思路探究】 作散点图→判断→求a ∧,b ∧→得回归方程→估计 【自主解答】 (1)以横轴表示身高,以纵轴表示一拃长,作散点图.由散点图可以看出,各点散布在一条直线附近,即它们线性相关. (2)设线性回归方程为y ∧=b ∧x +a ∧.用计算器计算可得b ∧≈0.303,a ∧≈-31.246, ∴回归方程为y ∧=0.303x -31.246.(3)当x=185时,y∧=24.809.即一个学生身高185 cm,估计他的右手一拃长24.809 cm.在10年间,某城市居民的年收入x(万元)与某种商品的销售额y(万元)之间的关系有如下数据:12345678910 城市居民年32.231.132.935.837.138.039.043.044.646.0收入某商品销售25.030.034.037.039.041.042.044.048.051.0额(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线的附近,求y与x之间的回归直线方程.【解】(1)散点图如图所示:(2)列表如下:i 1 2 3 4 5 6 7 8 9 10 x i 32.2 31.1 32.9 35.8 37.1 38.0 39.0 43.0 44.6 46.0 y i 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 51.0 x i y i8059331118.61324.61446.9 1558 1 63818922140.82346x -=37.97,y -=39.1,∑i =110x 2i =14 663.67,∑i =110x i y i =15 202.9b ∧=∑i =110x i y i -10x -y -∑i =110x 2i -10 x2=15 202.9-10×37.97×39.114 663.67-10×37.972=356.63246.461≈1.447, a ∧=y --b ∧ x -=39.1-1.447×37.97≈-15.843,因此所求的回归直线方程是 y ∧=b ∧x +a ∧=1.447x -15.843.。
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_1
第二章统计2.3 变量间的相关关系一.教学目标1.知识与技能:理解变量间的相关关系,能够根据数据绘制散点图,理解正相关和负相关的概念,会利用最小二乘法求出回归方程。
2.过程与方法:通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法,培养学生观察、分析、比较和归纳能力。
3.情感态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程进行分析和预测的意识,体会研究此类问题在现实生活中的重要性。
二.教学重、难点:重点:利用散点图直观认识两个变量的线性关系,用最小二乘法计算线性回归方程。
难点: 利用最小二乘法计算线性回归方程。
三.教法、学法、课前准备教法分析:1.采用“问答探究”式的教学方法,层层深入。
2.发挥教师的主导作用,让学生成为教学活动的主体。
学法分析:从贴近实际生活的例子中理解相关关系的概念,并理解与函数关系的区别,绘制散点图并由散点图直观的认识正相关、负相关的概念,特别注意最小二乘法中各个符号的含义,体会这一方法对于实际生活的意义。
课前准备:打开多媒体,让学生准备好直尺四.教学过程:【新课导入】思考:我们以前有没有学过描述变量间的关系的工具呢?函数关系:圆的面积与半径的关系:2r=π。
正方体的体积与s⋅棱长的关系:3aV=,2y+=x。
3两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系。
(1)生活中,施肥量与农作物产量之间的关系:一般来说,施肥量越多,农作物产量越高,施肥量越少,农作物产量越低。
但农作物的产量还要受到土壤质量,降雨量,田间管理水平等多方面因素的影响。
(2)学生的数学成绩与物理成绩的关系,一般来说,数学成绩越高,物理成绩也相对越高,数学成绩越低,物理成绩相对越低,但数学成绩不能完全决定物理成绩。
物理成绩的好坏还与学生是否喜欢物理,用在物理上的学习时间等因素有关系。
像这种两个变量之间相关,但这种关系又不能用函数关系精确的表达出来,这样的两个变量之间的关系应当被称作是什么关系呢?【新课讲授】1.相关关系的定义:当自变量的取值一定时,因变量的取值带有一定的随机性,两个变量之间的关系称为相关关系。
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_17
《变量间的相关关系》教学设计(2课时)一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算机基础,主要是电子表格的使用。
教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。
为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。
结合教材特点及学情,特制定三维教学目标如下:二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及2回归方程系数公式的推导过程,利用电子表格求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。
②通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。
3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。
利用计算机让学生动手操作,合作交流激发学生的学习兴趣。
三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想借助电子表格求出回归方程。
教学内容的难点:对最小二乘法的数学思想和回归方程的理解教学实施过程中的难点:根据给出的线性回归方程的系数公式建立线性回归方程。
四、教学媒体设计本节课涉及大量数据计算及分析,用传统方法很难突破,故我主要采用电子表格和几何画板,通过学生动手操作、教师动画演示、师生合作交流来突出重点、突破难点。
学生学习效果有明显提高。
五、教学设计(具体如下表)(一)、创设情境导入新课1、相关关系的理解师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。
生活中的任何两个变量之间是不是只有确定关系呢?让学生举例,教师总结如:生:不是。
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_3
变量间的相关关系一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。
教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。
为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。
二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。
2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。
②通过动手操作培养学生观察、分析、比较和归纳能力。
3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。
三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。
难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。
四、教学设计)(一)、创设情境导入新课1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。
生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。
这就是我们这节课要共同探讨的内容————变量间的相关关系。
生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。
通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。
让学生体会研究变量之间相关关系的重要性。
感受数学来源于生活。
(二)、初步探索,直观感知1、根据样本数据作出散点图,直观感知变量之间的相关关系。
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_22
《2.3.1变量之间的相关关系》教学目标:1.知识与技能(1)理解两个变量之间的相关关系概念,以及它与函数关系的区别,并会判断两个变量之间是否相关关系;(2)能根据两个有关联变量的数据作出散点图,并利用散点图直观认识两变量的相关关系.2. 过程与方法(1)通过类比函数概念,体会统计思维与确定性思维的差异,注意到统计结果的随机性;(2)通过举例,体会相关关系在现实中是大量存在的,了解研究相关关系的必要性; (3)通过类比函数的研究方法,来研究相关关系,体会数学中类比的思想,学会用已学的知识来探索解决未知的知识.3. 情感态度与价值观现代社会是信息化社会,人们常常需要收集数据,根据所获得的数据提取有价值的信息,作出合理决策.学习变量间的相关关系,可以解决此类问题,增强学生分析问题解决问题的能力.教学重点与难点:重点:理解两个变量之间的相关关系概念,以及它与函数关系的区别.难点:利用散点图认识变量间的相关关系.教学过程的设计一、创设情境,激发兴趣活动预设:介绍“北大才子”王若度,不仅打游戏厉害,而且学习也是出类拔萃,现在是加拿大滑铁卢大学的助理教授,又是中国首批国家体委认证的电子竞技运动员。
◆游戏高手——学习能力强◆游戏高手——规划能力强◆游戏高手——学习成绩优异【思考】:这几组变量之间是什么关系?活动预设:学生根据生活经验,会发现游戏高手,学习能力一般都挺强的,规划能力不一定强,学习成绩不一定优异. 教师继续追问:它们的关系确定吗?学生明确的说不一定。
但是有关系吗?教师再引导学生回忆已学过两个变量之间的关系是什么关系(函数关系)。
【函数概念】设集合A是一个非空数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种关系叫做集合A上的一个函数.【设计意图】:通过介绍“北大才子”王若度的经历,激发学生学习新知的兴趣和欲望. 也借此提出游戏高手与学习等之间的关系,引出本节的课题,从学生最热爱的游戏事情引入,有利学生快速进入学习状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3变量间的相关关系●三维目标1.知识与技能通过收集现实问题中两个有关联变量的数据,认识变量间的相关关系.2.过程与方法明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.情感、态度与价值观通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想.●重点难点重点:(1)通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;(2)利用散点图直观认识两个变量之间的线性关系.难点:(1)变量之间相关关系的理解;(2)作散点图和理解两个变量的正相关和负相关.从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来.通过对典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律.通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系强化本节重点.通过学生讨论、交流,用TI图形计算器展示、对比自己作出的散点图,得出线性相关关系、正负相关关系的概念.教师及时将求线性方程的公式展示出来,通过例题的讲解和训练,进一步加深对散点图和回归方程的理解,突破难点.下表是水稻产量与施化肥量的一组观测数据:1.【提示】散点图如下:2.施化肥量与水稻产量有关系吗?【提示】有关系.1.相关关系:不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.2.散点图:将样本中几个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形.3.正相关与负相关:散点图中的点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,称它为正相关.若散点图中的点分布在从左上角到右下角的区域内,对于两个变量的这种相关关系,称它为负相关.一台机器由于使用时间较长,生产的零件有一些会有缺陷.按不同转速生产出有缺陷的零件的统计数据如下:1.【提示】2.从散点图中判断x和y之间是否具有相关关系?【提示】有.3.若转速为10转/秒,能否预测机器每小时生产缺陷的零件件数?【提示】可以.根据散点图作出一条直线,求出直线方程后可预测.1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. 3.最小二乘法求回归直线时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.4.求回归方程若两个具有线性相关关系的变量的一组数据为:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则所求的回归方程为y ∧=b ∧x +a ∧,其中a ∧,b ∧为待定的参数,由最小二乘法得: ⎩⎪⎨⎪⎧b ∧=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x -y -∑i =1nx 2i-n x -2,a ∧=y -b ∧x .b ∧是回归直线斜率,a ∧是回归直线在y 轴上的截距以下是在某地搜集到的不同楼盘新房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:(1)(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【思路探究】涉及两个变量房屋面积与销售价格,以房屋面积为自变量,考察销售价格的变化趋势从而做出判断.【自主解答】(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.两个随机变量x和y相关关系的确定方法:1.散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断.2.表格、关系式法:结合表格或关系式进行判断.3.经验法:借助积累的经验进行分析判断.5个学生的数学和物理成绩如下表:【解】以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如图所示,由散点图可知,两者之间具有线性相关关系,且是正相关.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程. 【思路探究】 【自主解答】 (1)画散点图如下:由上图可知y 与x 具有线性相关关系. (2)列表、计算:b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668,a ∧=y -b ∧x =91.7-0.668×55=54.96.即所求的回归直线方程为:y ∧=0.668x +54.96.用公式求回归方程的一般步骤: (1)列表x i ,y i ,x i y i ; (2)计算x ,y,∑ni =1x 2i ,∑n i =1x i y i ; (3)代入公式计算b ∧、a ∧的值; (4)写出回归方程.假设关于某设备的使用年限x 和所支出的维修费用y (万元)有如下的统计资料:(1)作出散点图,判断y 对x 是否线性相关,若线性相关,求线性回归方程y ^=b^x +a ^中的a ^,b ^; (2)估计使用年限为10年时的维修费用.【解】 (1)作出散点图,如图所示,由散点图可知y 对x 是线性相关的.制表如下:于是有b ^=112.3-5×4×590-5×42=12.310=1.23,a ^=y --b ^x -=5-1.23×4=0.08. (2)回归直线方程是y ^=1.23x +0.08,当x =10时,y ^=1.23×10+0.08=12.38(万元),即估计使用10年时维修费用是12.38万元.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)(2)请根据上表提供的数据,用最小二乘法求出回归方程y ∧=b ∧x +a ∧; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【思路探究】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ∧,a ∧的值;(3)实际上就是求当x =100时,对应的y 的值.【自主解答】 (1)散点图,如图所示.(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86,∴b ∧=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ∧=y -b ∧x =3.5-0.7×4.5=0.35, 故线性回归方程为y ∧=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨标准煤).回归分析的三个步骤(1)判断两个变量是否线性相关:可以利用经验,也可以画散点图.(2)求线性回归方程,注意运算的正确性.(3)根据回归直线进行预测估计:估计值不是实际值,两者会有一定的误差.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的几种对应数据如下表所示:(2)求回归直线方程;(3)预测当钢水含碳量为160个0.01%时应冶炼多少分钟.【解】 (1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示.从图中可以看出,各点散布在一条直线附近,即它们线性相关. (2)列表如下:设所求的回归直线方程为y ∧=b ∧x +a ∧.b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x 2=287 640-10×159.8×172265 448-10×159.82≈1.27,a ∧=y -b ∧x ≈172-1.27×159.8≈-30.95, 即所求的回归直线方程为y ∧=1.27x -30.95. (3)当x =160时,y ∧=1.27×160-30.95≈172(分), 即大约冶炼172分钟.数形结合在线性相关性中的应用(12分)下表数据是退水温度x (℃)对黄硐延长性y (%)效应的试验结果,y 是以延长度计算的,且对于给定的x ,y 为正态变量,其方差与x 无关.(1)(2)指出x,y是否线性相关;(3)若线性相关,求y关于x的线性回归方程;(4)估计退水温度是1 000 ℃时,黄硐延长性的情况.【思路点拨】根据所给数据画出散点图,然后可借助函数的思想分析.【规范解答】(1)散点图如图所示.4分(2)由散点图可以看出样本点分布在一条直线的附近,可见y与x线性相关.5分(3)列出下表,并用科学计算器进行有关计算.于是可得:b ∧=∑i =16x i y i -6x y∑i =16x 2i -6x2=198 400-6×550×571 990 000-6×5502≈0.058 857,8分a ∧=y -b ∧x =57-0.058 857×550=24.628 65.9分 因此所求的线性回归方程为y ∧=0.058 857x +24.628 65.10分(4)将x =1 000代入回归方程得y ∧=0.058 857×1 000+24.628 65=83.486,即退水温度是1 000 ℃时,黄硐延长性大约是83.486%.12分1.在研究两个变量是否存在某种关系时,必须从散点图入手,对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一函数曲线附近,那么变量之间具有相关关系;(3)如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系.2.利用散点图判断两个变量之间是否具有线性相关关系,体现了数形结合思想的作用,而用回归直线方程进行估计又体现了函数与方程思想的应用.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ∧,b ∧的值时,要先算出b ∧,然后才能算出a ∧.3.利用回归方程,我们可以进行估计和预测.若回归直线方程为y ∧=b ∧x +a ∧,则x =x 0处的估计值为y ∧0=b ∧x 0+a ∧.由于回归直线将部分观测值所反映的规律进行了延伸,所以它在情况预报、资料补充等方面有着广泛的应用.1.下列变量之间的关系是相关关系的是( ) A .正方体的表面积与体积 B .光照时间与果树产量C .匀速行驶车辆的行驶距离与时间D .中国足球队的比赛成绩与中国乒乓球队的比赛成绩 【解析】 A 、C 是函数关系,D 无相关关系. 【答案】 B2.设一个回归方程y ∧=3+1.2x ,则变量x 增加一个单位时 ( ) A .y 平均增加1.2个单位 B .y 平均增加3个单位 C .y 平均减少1.2个单位 D .y 平均减少3个单位 【解析】 由b =1.2>0,故选A. 【答案】 A3.若施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ∧=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.【解析】 当x =80时,y ∧=400+250=650. 【答案】 6504.某公司利润y(单位:千万元)与销售总额x(单位:千万元)之间有如下表对应数据:(1)(2)判断y与x是否具有线性相关关系.【解】(1)散点图如下:(2)由图可知,所有数据点接近直线排列,因此,认为y与x有线性相关关系,且为正相关.一、选择题1.判断下列图形中具有相关关系的两个变量是()【解析】A、B为函数关系,D无相关关系.【答案】 C2.已知x与y之间的一组数据:则y 与x 的线性回归方程y ∧=bx +a 必过点( ) A .(1,2) B .(5,2) C .(2,5)D .(2.5,5)【解析】 线性回归方程一定过样本中心(x ,y ). 由x =0+1+2+3+45=2,y =1+3+5+7+95=5.故必过点(2,5). 【答案】 C3.(2013·湖北高考)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确...的结论的序号是( ) A .①② B .②③ C .③④D .①④【解析】 由正负相关性的定义知①④一定不正确. 【答案】 D4.两个相关变量满足如下关系:A.y ∧=0.56x +997.4B.y ∧=0.63x -231.2C.y ∧=50.2x +501.4 D.y ∧=60.4x +400.7【解析】 x =15(10+15+20+25+30)=20,y =15(1 003+1 005+1 010+1 011+1 014)=1 008.6, 代入所给选项A 符合. 【答案】 A5.(2013·福建高考)已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b^>b ′,a ^>a ′ B.b^>b ′,a ^<a ′ C.b^<b ′,a ^>a ′ D.b^<b ′,a ^<a ′ 【解析】 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2. 求b^,a ^时, ∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136,∑i =16x 2i =1+4+9+16+25+36=91,∴b^=58-6×3.5×13691-6×3.52=57,a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′. 【答案】 C 二、填空题6.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y对x 的回归直线方程:y ∧=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 由于y ∧=0.254x +0.321知,当x 增加1万元时,年饮食支出y 增加0.254万元.【答案】 0.2547.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程中的b =-2.气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量约为________件.【解析】 样本中心点是(10,35.5),则a ∧=y --b ∧ x -=35.5-(-2)×10=55.5, 故线性回归方程为y ∧=-2x +55.5,将x =6代入得y ∧=-2×6+55.5=43.5≈44. 【答案】 448.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据(由资料显示y与x呈线性相关关系):根据上表提供的数据得到回归方程y=b x+a中的b=6.5,预测销售额为115万元时约需________万元广告费.【解析】x=15(2+4+5+6+8)=5,y=15(30+40+60+50+70)=50,由b∧=6.5知,a∧=y-b∧·x=50-6.5×5=17.5,∴y∧=17.5+6.5x,当y∧=115时,解得x=15.【答案】15三、解答题9.某工厂对某产品的产量与成本的资料分析后有如下数据:(1)(2)求成本y与产量x之间的线性回归方程.(结果保留两位小数) 【解】(1)散点图如图所示.(2)设y 与产量x 的线性回归方程为y ∧=b ∧x +a ∧, x =2+3+5+64=4,y =7+8+9+124=9,b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=(x 1y 1+x 2y 2+x 3y 3+x 4y 4)-4x yx 21+x 22+x 23+x 24-4x 2=1110=1.10,a ∧=y -b ∧x =9-1.10×4=4.60. ∴回归方程为:y ∧=1.10x +4.60.10.高三(1)班的10名学生每周用于数学学习的时间x (h)与数学成绩y (分)之间有如下对应数据:) 【解】 列出下表,并用科学计算器进行有关计算.b ∧=∑i =110x i y i -10x ·y∑i =110x 2i -10x 2=545.4154.4≈3.53,a ∧=y -b ∧x =74.9-3.53×17.4≈13.48,∴所求的回归方程是y ∧=3.53x +13.48.11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ∧; (2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.【解】 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据预处理如下:对预处理的数据,容易算得x =0,y =3.2, b ∧=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5,a ∧=y -b ∧x =3.2.由上述计算结果,知所求回归直线方程为 y ∧-257=b ∧(x -2 008)+a ∧=6.5(x -2 008)+3.2. 即y ∧=6.5×(x -2 008)+260.2.(2)利用所求得的回归方程,可预测2014年的粮食需求量为 6.5×(2 014-2 008)+260.2=6.5×6+260.2=299.2(万吨).。