八年级上册数学沪科版第14章全等三角形复习课件ppt_20
合集下载
【沪科版】初中八年级数学上册第14章全等三角形课件
证明:过点A作AD⊥BC,交BC于点D.
在△ABD与△ACD中 ∵∠ADB=∠ADC=900 又∵ AB=AC, AD=AD, ∴ △ABD≌△ACD.
∴ ∠B=∠C(全等三角形的对应角相等).
这种方法行吗?
A
B
C
D
两边及其中一边的对角对应相等 的两个三角形不一定全等.
如果其中一边所对的角是直角呢?
沪科版八年级数学上册
第14章 全等三角形
同一张底片洗出的照片是 能够完全重合的
观察 (1)
(2)
(3)
思 考
每组的两个图形有什么特点?
能够重合,大小相同,形状相同
能够完全重合的两个图形叫做全等形:
议一议
(1) 你还能说出生活中全等图形的例子吗? (2) 如果两个图形全等,它们的形状大小一定都相同吗?
解:∵ △ABC≌△AED,(已知)
A
∴∠E= ∠B= 35°(全等三角形对应角相等)
B
C
∠ADE=∠ACB=18O°- 25°- 35° =120 ° (全等三角形对应角相等)
D E DE=BC=1cm, AE=AB=3cm
(全等三角形对应边相等)
通过这节课的学习,你有 什么收获?
• 小结提高
求证:∠AOP=∠BOP.
已知P是∠ AOB内部一点,PD ┴ OA, PE ┴ OB
A
∵ AB=A’B’
∴ BC=B’C’(等腰三角形三线合一)
∵ AC=A’C’(公共边) • ∴ RtΔABC ≌ RtΔA’B’C’(SSSB)
1
(你还有其他方法吗?)
2
如图在Δ ABC和Δ A’B’C’中,
∠C= ∠C’=Rt∠ ,AB=A’B’,
八年级数学上册 第14章 全等三角形本章复习课件沪科沪科级上册数学课件
第十一页,共十七页。
2. 如图,AC∥ DB,AC=2DB,E是AC的中 点(zhōnɡ diǎn),求证:BC=DE.
第十二页,共十七页。
证明 ∵AC=2DB,AE=EC (已知) ∴DB=EC 又∵ AC∥ DB(已知) ∠DBE=∠CEB (两直线平行,内错角相等) ∵BE=EB(公共(gōnggòng)边) ∴ ΔDBE≌ΔCEB(SAS) ∴ BC=DE (全等三角形的对应边相等)
全等(可以简写成“角角边”或“AAS”).
第九页,共十七页。
直角三角形全等判定(pàndìng):HL
A
A′
B
C
B′
C′
第十页,共十七页。
练习
1. 如图,点B在AE上,∠CAB=∠DAB,要使ΔABC≌ΔABD.可补充
(bǔchōng)的一个条件是
.
∠C=∠D 或AD=AC
或∠CBE=∠DBE
或∠CBA=∠DBA
边”或“SAS”)
CF
B
E
第五页,共十七页。
用符号语言表达(biǎodá)为:
在△ABC与△DEF中
A
D
AC=DF
∠C=∠F BC=EF
CF
B
E
∴△ABC≌△DEF(SAS)
第六页,共十七页。
三角形全等判定(pàndìng)方法3
有两角和它们夹边对应(duìyìng)相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
AB=DE(已知) ∠A=∠D(已证) AC=DF (已知) ∴ΔABC≌ΔDEF(SAS)
第十五页,共十七页。
(2)解:根据”全等三角形的对应(duìyìng)边(角 )相等”可知: ①BC=EF, ②∠C=∠F, ③∠ABC=∠ DEF, ④ EF∥BC, ⑤AE=DB等.
2. 如图,AC∥ DB,AC=2DB,E是AC的中 点(zhōnɡ diǎn),求证:BC=DE.
第十二页,共十七页。
证明 ∵AC=2DB,AE=EC (已知) ∴DB=EC 又∵ AC∥ DB(已知) ∠DBE=∠CEB (两直线平行,内错角相等) ∵BE=EB(公共(gōnggòng)边) ∴ ΔDBE≌ΔCEB(SAS) ∴ BC=DE (全等三角形的对应边相等)
全等(可以简写成“角角边”或“AAS”).
第九页,共十七页。
直角三角形全等判定(pàndìng):HL
A
A′
B
C
B′
C′
第十页,共十七页。
练习
1. 如图,点B在AE上,∠CAB=∠DAB,要使ΔABC≌ΔABD.可补充
(bǔchōng)的一个条件是
.
∠C=∠D 或AD=AC
或∠CBE=∠DBE
或∠CBA=∠DBA
边”或“SAS”)
CF
B
E
第五页,共十七页。
用符号语言表达(biǎodá)为:
在△ABC与△DEF中
A
D
AC=DF
∠C=∠F BC=EF
CF
B
E
∴△ABC≌△DEF(SAS)
第六页,共十七页。
三角形全等判定(pàndìng)方法3
有两角和它们夹边对应(duìyìng)相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
AB=DE(已知) ∠A=∠D(已证) AC=DF (已知) ∴ΔABC≌ΔDEF(SAS)
第十五页,共十七页。
(2)解:根据”全等三角形的对应(duìyìng)边(角 )相等”可知: ①BC=EF, ②∠C=∠F, ③∠ABC=∠ DEF, ④ EF∥BC, ⑤AE=DB等.
沪科版八年级上册数学课件(第14章 全等三角形)
,请指出图中对应边和对应角. 边
A
边
AC= AD BC= ED
D
C
角 ∠A= ∠A 角 ∠B= ∠E
角 ∠ACB=∠ADE
B
E
归纳 有公共角的,公共角一定是对应角.
变式:
A
D
C
B
如图,已知△ABC≌△AED若AB =6,AC=2, ∠B=25°,你还 能说出△ADE中其他角的大小和 边的长度吗?
解:∵△ABC≌△AED, ∴∠E=∠B=25°
找一找下列全等图形的对应元素?
A
D
A
2 B E CF
A
3 2 14
BE
CF
B
D CF
A
D
1
23
4
B
C
二 全等三角形的性质
我们知道,能够完全重合的两条线段是相等
的,能够完全重合的两个角是相等的,由此得到
: 全等三角形的对应边相等,对应角相等.
全等三角形的性质的几何语言
A
F
B
CD
E
∵△ABC≌△FDE
解:结论:EF∥NM
想一想:你还能得出
证明: ∵ △EFG≌△NMH, 其他结论吗?
∴ ∠E=∠N. ∴ EF∥NM.
当堂练习
1.如图,△ABC≌△BAD,如果AB=5cm, BD=
4cm,AD=6cm,那么BC的长是 ( A )
A.6cm B.5cm C.4cm D.无法确定
2.在上题中,∠CAB的对应角是 ( B )
探究归纳
寻找对应边、对应角有什么规律?
1.有公共边
A
A AD
D
B
D
B
B
沪科版数学八上14.三角形全等的判定(SAS)课件(共26张)
例2 如图,有一池塘,要测池塘两端A、B的距离,可 先在平地上取一个可以直接到达A和B 的点C,连接AC并
延长到D, 使CD=CA.连接BC并延长到E,使CE=CB. 连接DE,
那么量出DE的长,就是A、B的距离.为什么?
证明:在△ABC 和△DEC中,
CA = CD, ∠ACB =∠DCE, CB =CE ,
3. 下列条件中,不能证明△ABC≌△DEF的是( C )
A.AB=DE,∠B=∠E,BC=EF B.AB=DE,∠A=∠D,AC=DF C.BC=EF,∠B=∠E,AC=DF D.BC=EF,∠C=∠F,AC=DF
解析:要判断能不能使△ABC≌△DEF,应看所给出的条件是不是两边 和这两边的夹角,只有选项C的条件不符合,故选C. 总结:在判断三角形全等时,注意两边与其中一边的对角相等的两个三角形 不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判 定三角形全等的.
C
A
B
E
C
C′
A
作法:
A′ B
D B′
(1)画∠DA'E=∠A;
(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;
(3)连接B'C '.
想一想:作图的结果反应了什么规律?你能用文字语言和符号语言概括吗?
三角形全等的基本事实:边角边(SAS)
文字语言:两边及其夹角分别相等的两个三角形全等.
∴△ABC ≌△DEC.(SAS)
A
B
C
∴AB=DE.(全等三角形的对应边相等)
E
D
例3 已知:如图,AC=AD,∠CAB=∠DAB.
八年级数学上册 第14章 全等三角形 14.1 全等三角形教学课件 (新版)沪科版
D
⑵.找出对应边,它们有什么关系?(口答)
对应边:_O__A_=__O_B_ _O__D__=__O_C_ _A__D__=_B_C_
⑶.找出对应角,它们有什么关系? (口答)
A
对应角:∠__A__=_∠__B_ _∠__D__=_∠__C_
∠__D__O_A__=_∠__C_O__B_
A
⑷.如果∠A=35°,∠D=75°,那么
∠COB=__7_0_° 2、如图2,如果△ADE ≌ △CBF,那
DB
么AE∥CF吗? _是__ (口答“是”或“不是”) 精选ppt
C
O
B
图1
C
EF
图2 12
五、布置作业
习题14.1
精选ppt
13
本课结束
精选ppt
14
对应角:∠A和∠A1,∠B精和选pp∠t B1,∠C和∠C1
10
三、归纳小结
这节课我们学到了什么?
1、全等形定义及全等三角形; 2、全等三角形的性质.
精选ppt
11
四、强化训练
1、⑴. 已知:如图1,△OAD与△OBC全等, 请用式子表示出这种关系:_△__O__A_D__≌___△__O_B_C_
精选ppt
8
二、新课讲解
A1
A1
B1
C1
B1
C1
能够完全重合的两个三角形称为全等三角形. 记作:△ABC≌△A1B1C1
精选ppt
9
二、新课讲解
全等三角形的对应边相等,对应角相等.
A
A1
B
C
B1
C1
对应顶点:点A和点A1,点B和点B1,点C和点C1
对应边:AB和A1B1,AC和A1C1 ,BC和B1C1
沪科版八年级上册数学课件(第14章 全等三角形)
所以△ADE≌△AFE,所以∠DAE=∠FAE.
因为∠BAF=56°,∠BAD=90°,所以
∠DAF=90°-∠BAF=90°-56°=34°,
所以∠DAE= 1 ∠DAF= 1 ×34°=17°.
2
2
总结
解决折叠问题的关键是弄清在折叠 过程中发生的是全等变换,即折叠前后 的两个图形(本例是三角形)全等,其折 叠前后的对应边相等,对应角相等.类 似地,还有平移和旋转问题.在此过程 中,往往产生了全等三角形,然后根据 全等三角形的性质解题.
第14章 全等三角形
14.2 三角形全等的判定
第1课时 两边及其夹角分别 相等的两个三角形
1 课堂讲解 判定两三角形全等的基本事实:边角边
全等三角形判定“边角边”的简单应用
2 课时流程
逐点 导讲练
知3-讲
解:∵Rt△ABC≌Rt△CDE, ∴∠BAC=∠DCE. 又∵在Rt△ABC中,∠B=90°, ∴∠ACB+∠BAC=90°. ∴∠ACB+∠ECD=90°. ∴∠ACE=180°-(∠ACB+∠ECD) =180°-90°=90°.
总结
(1)利用全等三角形的性质求角的度数的方法: 利用全等三角形的性质先确定两个三角形中角 的对应关系,由这种关系实现已知角和未知角 之间的转换,从而求出所要求的角的度数.
总结
两种解法的入手点分别是“同底等高、等底 等高的三角形面积相等”,这一结论要结合具体 图形理解.如图,l1∥l2,点A,B,F在l1上, AB =BF,点C,D,E是l2上任取的点,则根据上述 结论,知S△ABC=S△ABD=S△BFE.
知3-讲
知3-练
1 若△ABC与△DEF全等,点A和点E,点B和点D
知1-讲
第14章全等三角形期末复习PPT课件(沪科版)
第14章 全等三角形的判定
复习要点 1.全等三角形的定义
能够完全重合的两个三角形称为全等三角形. 2.全等三角形的性质:
全等三角形的对应边相等. 全等三角形的对应角相等. 全等三角形的对应边上的高相等. 全等三角形的对应边上的中线相等. 全等三角形的对应角的平分线相等.
复习要点 3.全等三角形的判定方法
C
D
∴BC=DC.
16. 如图,已知AC=BD, BC、AD相交于点E,且
BC⊥AC,BD⊥AD. AD 是∠BAC的平分线. 求证:BC
是∠ABD的平分线.
C
证明:∵ BC⊥AC,BD⊥AD,
D
∴∠C=∠D=90°.
在△RtABC和Rt△BAD中
AB=BA
A
B
AC=BD
∴ △RtABC ≌ Rt△BAD (HL)
要证:DE=AE-DC A 要证:AE=BD DC=BE 要证: △ABE≌△BCD
D 1E
∠ABE=∠BCD.
B
C
∠ABC=120° ∠D=60°
例2 如图,在△ABC中, ∠ABC=120°, AB=BC,
BD是∠ABC内的射线 ,若连接DC, ∠D=60°,点E是
线段BD上一点,且∠1=60°. 求证:DE=AE-DC.
一般三角形:SSS SAS ASA AAS 直角三角形:HL SAS ASA AAS
结论:判定两个三角形全等的条件中 至少有一组边对应相等.
复习要点
判定两个三角形全等的条件中至少有
一组边对应相等.
4. 判
S SSS
定
S
SAS
全 第一
等 的
找边S
A HL ASA
思
复习要点 1.全等三角形的定义
能够完全重合的两个三角形称为全等三角形. 2.全等三角形的性质:
全等三角形的对应边相等. 全等三角形的对应角相等. 全等三角形的对应边上的高相等. 全等三角形的对应边上的中线相等. 全等三角形的对应角的平分线相等.
复习要点 3.全等三角形的判定方法
C
D
∴BC=DC.
16. 如图,已知AC=BD, BC、AD相交于点E,且
BC⊥AC,BD⊥AD. AD 是∠BAC的平分线. 求证:BC
是∠ABD的平分线.
C
证明:∵ BC⊥AC,BD⊥AD,
D
∴∠C=∠D=90°.
在△RtABC和Rt△BAD中
AB=BA
A
B
AC=BD
∴ △RtABC ≌ Rt△BAD (HL)
要证:DE=AE-DC A 要证:AE=BD DC=BE 要证: △ABE≌△BCD
D 1E
∠ABE=∠BCD.
B
C
∠ABC=120° ∠D=60°
例2 如图,在△ABC中, ∠ABC=120°, AB=BC,
BD是∠ABC内的射线 ,若连接DC, ∠D=60°,点E是
线段BD上一点,且∠1=60°. 求证:DE=AE-DC.
一般三角形:SSS SAS ASA AAS 直角三角形:HL SAS ASA AAS
结论:判定两个三角形全等的条件中 至少有一组边对应相等.
复习要点
判定两个三角形全等的条件中至少有
一组边对应相等.
4. 判
S SSS
定
S
SAS
全 第一
等 的
找边S
A HL ASA
思
沪科版八年级数学上册 第14章 全等三角形 复习课件 (共22张PPT)
第14章 全等三角形
复习题
要点梳理
一、全等三角形的性质 能够完全重合的两个图形叫全等图形,能够完全重合的两个三角形叫全等三角形. 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点, 重合的边叫做对应边, 重合的角叫做对应角.
D B和 点E ,点C和_点F _是对应顶点. 其中点A和 点 ,点 AB和 DE ,BC和EF ,AC和 DF 是对应边.
∠BAO =∠CAO吗?为什么?
解: ∠BAO=∠CAO, 理由:∵ OB⊥AB,OC⊥AC,
B A C O
∴ ∠B=∠C=90°.
在Rt△ABO和Rt△ACO中,
OB=OC,AO=AO,
∴ Rt△ABO≌Rt△ACO ,(HL)
∴ ∠BAO=∠CAO.
热点四 利用全等三角形解决实际问题
例4 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面垂 直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的距离 相等吗? 【分析】将本题中的实际问题转化为数学问题 就是证明BD=CD.由已知条件可知AB=AC,
D.AB=DE,BC=EF, ∠ C= ∠ F
3.如图所示,AB与CD相交于点O, ∠A=∠B,OA=OB 添加 或∠AOC=∠BOD , 所以 条件 ∠C=∠D △AOC≌△BOD 理由是 AAS . 或ASA
C O A D
B
考点三 全等三角形的性质与判定的综合应用
例3 如图,在△ABC中,AD平分∠BAC,CE⊥AD于点G,交AB于点E,EF∥BC 交AC于点F, 求证:∠DEC=∠FEC.
A
D
BC=CB(公共边),
∠ACB=∠DBC(已知), ∴△ABC≌△DCB(ASA ).
B
C
复习题
要点梳理
一、全等三角形的性质 能够完全重合的两个图形叫全等图形,能够完全重合的两个三角形叫全等三角形. 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点, 重合的边叫做对应边, 重合的角叫做对应角.
D B和 点E ,点C和_点F _是对应顶点. 其中点A和 点 ,点 AB和 DE ,BC和EF ,AC和 DF 是对应边.
∠BAO =∠CAO吗?为什么?
解: ∠BAO=∠CAO, 理由:∵ OB⊥AB,OC⊥AC,
B A C O
∴ ∠B=∠C=90°.
在Rt△ABO和Rt△ACO中,
OB=OC,AO=AO,
∴ Rt△ABO≌Rt△ACO ,(HL)
∴ ∠BAO=∠CAO.
热点四 利用全等三角形解决实际问题
例4 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面垂 直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的距离 相等吗? 【分析】将本题中的实际问题转化为数学问题 就是证明BD=CD.由已知条件可知AB=AC,
D.AB=DE,BC=EF, ∠ C= ∠ F
3.如图所示,AB与CD相交于点O, ∠A=∠B,OA=OB 添加 或∠AOC=∠BOD , 所以 条件 ∠C=∠D △AOC≌△BOD 理由是 AAS . 或ASA
C O A D
B
考点三 全等三角形的性质与判定的综合应用
例3 如图,在△ABC中,AD平分∠BAC,CE⊥AD于点G,交AB于点E,EF∥BC 交AC于点F, 求证:∠DEC=∠FEC.
A
D
BC=CB(公共边),
∠ACB=∠DBC(已知), ∴△ABC≌△DCB(ASA ).
B
C
沪科版数学八年级上册十四章课件14.1全等三角形(共24张PPT)
对应角是: ∠A和∠A、 ∠ABE和 ∠ACF、 ∠AEB和∠AFC;对应边 是AB和AC、AE和AF、BE和CF。
2、 △ BCE ≌ △ CBF
3、 △ BOF ≌ △ COE
对应角是: ∠BOF和∠COE、 ∠BFO 和∠CEO、 ∠ FOB 和∠EOC。对应边是:OF和 OE、OB和OC、BF和CE。
观察:下列图形如何重合
B
E
A
A DC 图1
F
C
B
B
D
图2
A
B
A
A
B
D
C
D
图5
F
C
EB
图6
A
D
E
C
D
B
图3
ห้องสมุดไป่ตู้
E
C A
图4
D
E
C 图7
M
N
E
F
G
H
图8
问题
怎样的叠合方式才能使它们互相重合?
平移
对 折
旋 转
想
一
要使下列各对全等三角形分别完全重合,请说明
想
其重叠的方式
平
移
平移
平移
A
BC
DE
翻折
D A B
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/312021/8/312021/8/312021/8/318/31/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月31日星期二2021/8/312021/8/312021/8/31 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/312021/8/312021/8/318/31/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/312021/8/31August 31, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/312021/8/312021/8/312021/8/31
2、 △ BCE ≌ △ CBF
3、 △ BOF ≌ △ COE
对应角是: ∠BOF和∠COE、 ∠BFO 和∠CEO、 ∠ FOB 和∠EOC。对应边是:OF和 OE、OB和OC、BF和CE。
观察:下列图形如何重合
B
E
A
A DC 图1
F
C
B
B
D
图2
A
B
A
A
B
D
C
D
图5
F
C
EB
图6
A
D
E
C
D
B
图3
ห้องสมุดไป่ตู้
E
C A
图4
D
E
C 图7
M
N
E
F
G
H
图8
问题
怎样的叠合方式才能使它们互相重合?
平移
对 折
旋 转
想
一
要使下列各对全等三角形分别完全重合,请说明
想
其重叠的方式
平
移
平移
平移
A
BC
DE
翻折
D A B
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/312021/8/312021/8/312021/8/318/31/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月31日星期二2021/8/312021/8/312021/8/31 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/312021/8/312021/8/318/31/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/312021/8/31August 31, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/312021/8/312021/8/312021/8/31
最新沪科版八年级数学上册第14章全等三角形PPT
思考:1、全等三角形的周长、面积相等吗? 2、两个三角形三边对应相等,三对角也对应相等, 这两个三角形全等吗?
当堂训练
有什么办法判断两个三角形全等?用数学式子表示两个 三角形全等 , 并指出对应角、对应边 . A B C E D F
平 移
两个三角形全等是通过什么方法验证的?
解:对应边是: AC与DF,AB与DE,BC与EF. ∠A与∠D,∠B与∠E,∠C与∠F. 对应角是:
第14章 14.1
全等三角形 全等三角形
合作探究
例 : 如图,△ OCA ≌△ OBD , C 和 B , A 和 D 是对应顶点, 说出这两个三角形中相等的边和角.
C O A
B
D
请观察,并说出你看到的现象.
(1)
(2)
(3)
(4) (5) 思考:它们能完全重合吗?
•形状、大小完全一样的两个图形能够完全重合.
小结:最大边(角)是对应边(角). 最小边(角)是对应边(角).
D
B
如图,△AOC≌△BOD.
1.对应边: OA与OB OC与OD,AC与BD
旋 转
O
2.∠AOC的对应角 是 ∠BOD ∠A的对应角 是 ∠B
A
C
小结:有对顶角的,对顶角也是对应角.
C
翻 折
A
C
B B
A
B
A
D 如图,△ABD≌△ABC. ⑴AD的对应边是 AC ;AB的对应边是 AB ⑵∠DAB的对应角是 ∠CAB 小结:有公共边的,公共边也是对应边.
BC= B’C’.
猜想结论:
有两边和它们的夹角对应相等的两个三角
形全等.
全等三角形的判定
边角边定理:有两边和它们的夹角对应相等 的两个三角形全等.
沪科版中考数学一轮复习第14章全等三角形复习课件
找这边的另一个邻角(ASA)
找这个角的另一个边(SAS) 找这边的对角 (AAS)
已知一边和它的对角
找一角(AAS) 已知角是直角,找一边(HL)
(3):已知两角--练习
找两角的夹边(ASA) 找夹边外的任意边(AAS)
例1:已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=BF,
求证:∠E=∠C
∴ DC∥AB
练习2:已知,△ABC和△ECD都是等边三角形,且点B,C,D在
一条直线上求证:BE=AD 证明:
E
∵ △ABC和△ECD都是等边三角形
A
∴ AC=BC DC=EC ∠BCA=∠DCE=60°
∴ ∠BCA+∠ACE=∠DCE+ ∠ACE
B
D
即∠BCE=∠DCA
C
在△ACD和△BCE中
E
答: △CBF≌△FEC
A
F
B
C
D
证明: ∵ △ABF≌△DEC
∴ BF=EC ∵ △ABC≌△DEF ∴ BC=EF 在△CBF和△FEC中
BF=EC
BC=EF
CF=FC
∴ △CBF≌△FEC (SSS)
练习
2:如图,已知,EG∥AF,请你从下面三个条件中,再选出两 个作为已知条件,另一个作为结论,推出一个正确的命题。 (只写出一种情况)①AB=AC ②DE=DF ③BE=CF
(3):全等三角形的对应边上的对应中线、角平分线、 高线分别相等。
3:三角形全等的判定方法有哪些?
SSS、SAS、ASA、AAS、HL(RT△)
方法指引
证明两个三角形全等的基本思路:
(1):已知两边----
找第三边 (SSS) 找夹角 (SAS) 找是否有直角 (HL)
相关主题