第十二章 滑动轴承 §12—1 概述

合集下载

机械设计第十二章滑动轴承

机械设计第十二章滑动轴承
任意截有极大值 ,此时 ,该截面的流量为:
流体是连续的
一维雷诺方程
讨论 1)油膜压力沿 x 方向变化规律 由
• 对平行板 平行板间油膜压力沿 x 方向无 变化,等于入口处压力( )
( )成正比,因此限制 值也就是限制轴承的温升,
从而避免温度过高使润滑失效。对于连续运转轴承,通常
都应进行这项计算。
轴颈的转速,r/min
轴颈的圆周速度,m/s 轴承材料的 许用
3. 限制速度 :
值,见P280表12-2
当 过大,即使 和 值都在允许的范围内,轴
承也可能很快磨损,故还必须限制滑动速度。

油槽的 尺寸可 查相关 的手册
§12-5 滑动轴承润滑剂的选用
润滑目的:减小摩擦,降低磨损,冷却,防锈,防尘和吸振。 润滑剂分类:流体(液体为主),脂,固体。润滑油为常用。
一.润滑脂的选择
润滑脂是润滑油与金属皂的混合物,呈半固体形态
。其稠度大,不易流失,无冷却效果,物化稳定性差,
摩阻大,有缓冲、吸振作用、承载能力大,故只适合低
3)润滑油油性良好,与固 6)润滑油不可压缩。
体表面吸附牢固。 取截面x处的一个单元体分
移动板A 0
h
析,存在如下静力平衡条件:
静止板B y
化简后得: 考虑到假设 4)有: 于是: 积分得: 1.油层的速度分布
带入边界条件: 解得:
即:
移动板A 0
静止板B b y
h
2.润滑油的流量 假设:无侧漏,z方向尺寸无限大,则通过间隙高度为 的
层与层间靠内摩擦阻 力(粘性)带动前进 沿 方向按线性变化
油层间压力无变化,平行板间润滑油不产生压力
轴颈和轴瓦偏心时 两倾斜板的摩擦状况

《机械设计基础》第十二章 滑动轴承解析

《机械设计基础》第十二章 滑动轴承解析

一、向心轴承
1、轴承的压强p 限制轴承压强p,以保证润滑油不被过大的压力所挤出,轴瓦不致产生 过度的磨损。即
轴承径向载荷,N
F p [ p] Bd
轴瓦材料的许用压强,MPa
轴瓦宽度,mm
轴颈直径,mm
2、轴承的pv值 pv值简略地表征轴承的发热因素,它与摩擦功率损耗成正比。Pv值越 高,轴承温升越高,容易引起边界油膜的破裂。
F
润滑油应由非承载区引入,所以在顶部 开进油孔。 在轴瓦内表面,以进油口为中心沿纵向、 斜向或横向开有油沟,以利于润滑油均匀分布 在整个轴颈上。
油沟的形式 B 一般油沟离轴瓦端面保持一定距离,以防止漏油。
当载荷垂直向下或略有偏斜时,轴承中分面常为水平方向。 当载荷方向有较大偏斜时,则轴承中分面斜着布置(通常倾斜45º )。
3)验算压强p p
根据上述计算,可知选用铸锡锌铅青铜(ZQSn6-3-3)作为轴瓦材 料是足够的,其[p]=8N/mm2,[pv]=10N· m/(mm2· s)。
§12-5 动压润滑的形成原理
B板静止不动,A板以速度v向左运动,板间充满润滑油。
当板上无载荷时两平行板之间液体的速度呈三角形分布,板A、B之间 带进的油量等于带出的油量,因此两板间油量保持不变,即板A不会下沉。 若板A上承受载荷F时,油向两侧挤出,于是板A逐渐下沉,直到与B 板接触。 两平行板之间是不可能形成压力油膜的
pvm≤[ pv]
平均直径,(d1+d2)/2
例12-1 试按非液体摩擦状态设计电动绞车中卷筒两端的滑动轴承。钢绳 拉力W为20kN,卷筒转速为25r/min,结构尺寸如图所示,其中 轴颈直径d=60mm。 解: 1)求滑动轴承上的径向载荷 当 钢绳绕在卷筒的边缘时,一侧滑动轴 承上受力最大,为

河南理工大学机械设计基础第12章 滑动轴承

河南理工大学机械设计基础第12章 滑动轴承
38
第7节 其他形式滑动轴承简介
39
休 息 一 会 儿
2011年6月
……
40
[v]—材料的许用滑动速度 4.选择配合 一般可选H9/d9或H8/f7、H7/f6
31
第6节 液体动压润滑径向滑动轴承的设计计算
液体动力润滑径向滑动轴承的设计计算1
一、流体动力润滑基本方程的建立 对流体平衡方程(Navier-Stokes方程)作如下假设,以便得到简 化形式的流体动力平衡方程。这些假设条件是 :
2
第1节 概述
工作时轴承和轴颈的支撑面间形成直接或间接活动摩擦的 轴承,称为滑动轴承。
滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在 以下场合,则主要使用滑动轴承:
1.工作转速很高,如汽轮发电机。
2.要求对轴的支承位置特别精确,如精密磨床。
3.承受巨大的冲击与振动载荷,如轧钢机。 4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。 6.在特殊条件下工作的轴承,如军舰推进器的轴承。
◆ ◆
◆ ◆
流体为牛顿流体,即 (
u ) y

流体的流动是层流,即层与层之间没有物质和能量的交换;
忽略压力对流体粘度的影响,实际上粘度随压力的增高而增加;
略去惯性力及重力的影响,故所研究的单元体为静平衡状态或匀速直 线 运动,且只有表面力作用于单元体上;
◆ ◆
流体不可压缩,故流体中没有“洞”可以“吸收”流质;
四.润滑装置及润滑方法 常用的润滑方法有:
油润滑
1)间歇式供油
旋套式注油油杯
压配式压注油杯
26
第4节 滑动轴承的润滑剂和润滑方法
2)连续式供油
3)飞溅润滑

滑动轴承的计算

滑动轴承的计算

t t m t1 2
先给定tm,再按上式求出Δt,再求t1=35℃~45℃ a) 若t1>>(35~45)℃, 热平衡易建立,则应降低tm,再行计算。 b) 若t1<(35~45) ℃,不易达到热平衡状态→降低粗糙度→重新计算 c) t2>80℃→易过热失效,→改变相对间隙和油的粘度→重新计算
dp f ( , ) d
z
从压力区起始角 1 至任意角 进行积分,得任意角处的压力 再求压力在外载荷方向上的分量
py
将上式在压力区内积分(求和),得到轴承单位宽度上的油膜 承载能力 2Z 2 引入修正系数A,考虑端泄的影响 p y p y A1 B
第十二章
滑动轴承
§12—1 概述
滑动轴承、滚动轴承 一、滑动轴承类型 按承载: 径向轴承(向心轴承)(受Fr) 止推轴承(推力轴承)(受Fa) 按润滑状态:流体润滑轴承、非流体润滑轴承、无润滑轴承 二、滑动轴承的特点 三、应用
§12—2 径向滑动轴承的主要类型
一、整体式径向滑动轴承
如图,由轴承座、整体轴 套、油孔等组成
(1)粘度↓→间隙改变,使轴承的承载能力下降
(2)会使金属软化→发生抱轴事故 热平衡条件:单位时间内 摩擦产生的热量H = 端泄润滑油所带走热量H1 + 轴承散发热量H2
( )P t t 2 t1
f
S Q c ( ) Bd v

(C )
润滑油平均温度tm 为保证承载要求tm<75℃
v
h0
移动件
p max
O
x
移动件
静止件
v
h0
h>h0 y p x >0 p x =0

滑动轴承概述

滑动轴承概述

说明
用于高速、重载 下工作的重要轴 承,变载荷下易 于疲劳,价贵。
铅基 ZPbSb16Sn16Cu2 15 12
轴承
合金 ZPbSb15Sn56Cu3Cd2 5
8
用于中速、中等
10
载荷作的轴承,
1 1 3 5 不宜受显著冲击。
可作为锡锑轴承
5
合金的代用品。
ZCuSn10P1
锡青铜
(10-1锡青铜) ZCuSn5Pb5Zn5
胶合----当瞬时温升过高,载荷过大,油膜破裂时或供 油不足时,轴承表面材料发生粘附和迁移,造成轴承 损伤。 疲劳剥落----在载荷得反复作用下,轴承表面出现与滑 动方向垂直的疲劳裂纹,扩展后造成轴承材料剥落。
腐蚀----润滑剂在使用中不断氧化,所生成的酸性物质 对轴承材料有腐蚀,材料腐蚀易形成点状剥落。
对移动。 轴向 凸缘定位 ----将轴瓦一端或两端做凸缘。 定位 凸耳(定位唇)定位
凸缘
凸耳
紧定螺钉 周向定位
销钉
三、轴瓦的油孔和油槽 作用:把润滑油导入轴颈和轴承所构成的运动副表面。
F 进油孔
油槽
开孔原则:
1)尽量开在非承载区,尽量不要降低或少降低承载区
油膜的承载能力;
2)轴向油槽不能开通至轴承端部,应留有适当的油封面。
(5-5-5锡青铜)
15 8
10 3
铅青铜
ZCuPb30 (30铅青铜)
25 12
15 15
35
用于中速重载及
1
1
受变载荷的轴承 用于中速中载的
轴承
用于高速、重载
30Βιβλιοθήκη 3 4 4 2 轴承,承受变载和冲击
铝青铜
ZCuAl10Fe3 (10-3铝青铜)

滚动轴承和滑动轴承PPT课件

滚动轴承和滑动轴承PPT课件
脂润滑 油润滑 固体润滑
2021
20
3.滚动轴承的密封
目的:防止灰尘、水分、杂质等侵入轴承内部并阻 止润滑剂的流失。
接触式密封 毛毡圈密封 皮碗密封
间隙密封 非接触式密封
曲路密封:径向、轴向
2021
21
接触式密封
毛毡圈密封
2021
皮碗密封
22
非接触式密封
曲路密封: 径向
间隙密封
曲路密封: 轴向
2021
15
2.前置代号和后置代号
轴承代号的补充,只有在轴承的结构形状、尺寸、公 差、技术要求等有所改变时才使用,一般情况下可部分或 全部省略,其详细内容请查阅《机械设计手册》中相关标 准规定。
2021
16
3.滚动轴承代号示例
2021
17
四、滚动轴承类型的选择
轴承所受载荷的大小、方向和性质 轴承转速的高低 支承刚度 结构状况
在轴承代号中,轴承类型代 号和尺寸系列代号以组合代号的 形式表达。
在组合代号中,轴承类型代 号“0”省略不表示;除3类轴承 外,尺寸系列代号中的宽度系列 代号“0”省略不表示。
2021
直径系列示意图
14
内径代号
一般由两位数字表示,并紧接在尺寸系列代号之后 标写。
内径d≥10 mm的滚动轴承内径代号
不a同)尺寸
b)带防尘盖结构 c)
2021
8
滚动轴承代号的构成
2021
ቤተ መጻሕፍቲ ባይዱ
9
1.基本代号 表示轴承的基本类型、结构和尺寸。
轴承类型代号 尺寸系列代号 内径代号
2021
10
轴承类型代号
2021
11
尺寸系列代号

第十二章滑动轴承

第十二章滑动轴承

二、摩擦状态 1.干摩擦 固体表面直接接触,因而 →功耗↑ 磨损↑ 不许出现干摩擦! 2.边界摩擦 运动副表面有一层厚度<1 μ m 的薄油膜, 不足以将两金属表面分开,其表面微观高峰 部分仍将相互搓削。
vv
温度↑ →烧毁轴瓦
v
比干摩擦的磨损轻, f ≈ 0.1~0.3 3.液体摩擦 有一层压力油膜将两金属表面隔开,彼此不 直接接触。 摩擦和磨损极轻, f ≈ 0.001~0.01
v
在一般机器中,处于以上情况的混合状态。 边界摩擦
f
混合摩擦 液体摩擦
o
摩擦特性曲线
η n/p
称无量纲参数η n/p 为轴承特性数η -动力粘度, p-压强, n-每秒转数。
三、磨损 典型的磨损过程 1、磨合磨损过程 在一定载荷作用下形成一 个稳定的表面粗糙度,且在以 后过程中,此粗糙度不会继续 改变,所占时间比率较小。
二、轴瓦的结构
厚壁轴瓦 卷制轴套 薄壁轴瓦 轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分布 在整个轴径上。 进油孔 油沟 F
整体轴套
油沟形式
d
宽径比 B/d----轴瓦宽度与轴径直径之比, 是重要参数。 液体润滑摩擦的滑动轴承: 非液体润滑摩擦的滑动轴承: B/d=0.5~1 B/d=0.8~1.5
常采用自动调心式轴承,一般 B/d=0.5~1.5。
2、止推(推力)滑动轴承 作用:用来承受轴向载荷 结构特点:由轴承座和止推轴颈组成
a)实心式
b)空心式
c)单环式
d)多环式
§12-2
滑动轴承的失效形式、轴(轴承衬)瓦材料、结构 和轴承润滑
一、失效形式: 1、磨粒磨损 2、刮伤 3、胶合 4、疲劳剥落 5、腐蚀

第12章滑动轴承PPT课件

第12章滑动轴承PPT课件

邓 召
错动。

轴承盖上部开有螺纹孔,用以安装油杯。
轴瓦也是剖分式的,通常由下轴瓦承受载荷。
为了节省贵重金属或其它需要,常在轴瓦内 表面上浇注一层轴承衬。
在轴瓦内壁非承载区开设油槽,润滑油通过 油孔和油槽流进轴承间隙。
轴承剖分面最好与载荷方向近似垂直,多数 * 轴承的剖分面是第12水章滑平动轴承的(也有做成6倾斜的)。
用的结构形式有空心式,单环式和多环式, 下
其结构及尺寸见下图。通常不用实心式轴径,
邓 召
因其端面上的压力分布极不均匀,靠近中心 义
处的压力很高,对润滑极为不利。
空心式轴径接触面上压力分布较均匀,润滑条 件较实心式有所改善。
单环式是利用轴颈的环形端面止推,而且可以 利用纵向油槽输入润滑油,结构简单,润滑方 便,广泛用于低速,轻载的场合。
学习目标
滑动轴承的特点和应用场合;对滑动轴承的典型结 构、轴瓦材料及其选用原则有一较全面的认识;掌 握不完全液体润滑滑动轴承和液体动力润滑径向滑 动轴承的设计原理及设计方法 。
*
第12章滑动轴承
1
§12-1 概述

根据轴承中摩擦性质的不同,可把轴承分为滑动轴承和滚动轴
械 设
承两大类。

滚动轴承由于摩擦系数低,起动阻力小,且已标准化,对设计、下
另外,只能从轴颈端部装拆,对于重型机器的 轴或具有中间轴颈的轴,装拆很不方便,甚至 无法实现
所以这种轴承多用在低速、轻载或间歇性工作的 机器中。
*
第12章滑动轴承
5
(二)对开式径向滑动轴承
机 械

对开式滑动轴承由轴承座、轴承盖、剖分式 计
轴瓦和双头螺柱等组成。

第十二章_滑动轴承

第十二章_滑动轴承
1.按照轴承承受载荷的方向分 (1)向心滑动轴承:只能承受径向载荷,轴承上的反作用力
与轴的中心线垂直。 (2)推力滑动轴承:只能承受轴向载荷,轴承上的反作用力
与轴中心线方向一致。 (3)径向止推滑动轴承,又称复合滑动轴承,同时动压润滑轴承、静压润滑轴承、动静压润滑轴承、非流体润 滑轴承、自润滑轴承、磁悬浮润滑轴承和电磁悬浮润滑轴承 等。 3.按轴承所使用的润滑剂分 液体润滑轴承、气体润滑轴承、脂润滑轴承和固体润滑轴承 等。
(4)固体润滑剂: 固体润滑剂主要有石墨、二硫化钼、动物蜡u、聚四氟乙烯、 聚氯氟乙烯、尼龙和某些软金属(如铅、锡、铟等)。固体润 滑剂常用于自润滑轴承。
3、润滑剂的性能指标 (1)润滑油的性能指标:粘度、内油性、闪点、凝点、酸值、 残碳量等。
四、润滑方式及润滑装置 滑动轴承润滑的供油方式分为间歇式相连续式。 1、手工润滑 间歇式是利用油壶或油枪通过轴承座上的油孔由人工定时
(1)整体式结构 轴承座通常采用铸铁铸造而成, 轴承套采用减摩性好的材料制成。 优点:构造简单,价格较低,常 用于低速、载荷不大的间歇工作 的机器上。 缺点:
1)当滑动表面磨损而间隙过大时,无法调整轴承间隙; 2)轴颈只能从端部装入,对于粗重的轴或具有中轴颈的轴安 装不便。
(2)剖分式结构轴承
剖分式轴承由轴承座、轴承盖、剖 分轴瓦、轴承盖螺柱等组成
3、油环润滑 如图14—19所示,将一油环套在轴颈上,油环下部浸在
油中,当轴颈旋转时,靠摩擦力带动油环旋转,从而把油 带入轴承进行润滑。
4、压力循环润滑
这是利用油泵将润滑油经输油管送入轴承的高效润滑方式, 供油充分、散热性好,压力及供油量均可调节。但结构复杂、 费用高。因而多用于高速、重载轴承的润滑。
二、滑动轴承材料滑动轴承的失效形式:轴承的摩擦表面的磨 损、胶合与疲劳破坏,以及用双层金属或三层金属制作的轴瓦 的轴承衬的脱落。

机械设计第十二章滑动轴承

机械设计第十二章滑动轴承

摩擦:滚动摩擦滚动摩擦轴承滚动轴承滑动摩擦滑动摩擦轴承滑动轴承第十二章滑动轴承第一节概述1、滑动轴承应用场合:1)工作转速特高轴承,如汽轮发电机;2)要求对轴的支撑位置特别精确的轴承,如精密磨床;3)特重型的轴承,如水轮发电机;4)承受巨大的冲击和振动,如轧钢机;5)根据工作要求必须做成剖分式的轴承,如曲轴轴承;6)在特殊的工作条件下(如在水中或腐蚀性介质中)工作的轴承,如军舰推进器的轴承;7)在安装轴承处的径向空间尺寸受到限制时,也常采用滑动轴承,如多辊轧钢机。

2、分类①按载荷方向:径向(向心)轴承、止推轴承、向心止推②按接触表面之间润滑情况:液体滑动轴承、非液体滑动轴承液体滑动轴承:完全是液体非液体滑动轴承:不完全液体润滑轴承、无润滑轴承不完全液体润滑轴承(表面间处于边界润滑或混合润滑状态)无润滑轴承(工作前和工作时不加润滑剂)③液体润滑承载机理:液体动力润滑轴承(即动压轴承)液体静压润滑轴承(即液体静压轴承)3、如何设计滑动轴承(设计内容)1)轴承的型式和结构2)轴瓦的结构和材料选择3)轴承的结构参数4)润滑剂的选择和供应5)轴承的工作能力及热平衡计算4.特点:承载能力大,工作平稳可靠,噪声小,耐冲击,吸振,可剖分等特点。

第二节滑动轴承的典型结构一、整体式径向滑动轴承:特点:结构简单,易于制造,端部装入,装拆不便,轴承磨损后无法调整。

应用:低速、轻载或间歇性工作的机器中。

二、对开式径向滑动轴承:装拆方便,间隙可调,应用广泛。

特点:结构复杂、可以调整磨损而造成的间隙、安装方便。

应用场合:低速、轻载或间歇性工作的机器中。

三、止推式滑动轴承:多环式结构,可承受双向轴向载荷。

第三节滑动轴承的失效形式及常用材料一、失效形式1、磨粒磨损:硬颗粒对轴颈和轴承表面起研磨作用。

2、刮伤:硬颗粒划出伤痕。

3、胶合:轴承温度过高,载荷过大,油膜破裂或供油不足时,轴颈和轴承相对运动表面材料发生粘附和迁移,从而造成轴承损坏。

机械设计第十二章滑动轴承

机械设计第十二章滑动轴承
• 计算轴承宽度 B=d(B/d);
• 校核 p; • 校核 pv; • 校核 v; • 确定配合: H9/d9、H8/f7、H7/f6
机械设计
第十二章 滑动轴承
47
滑动轴承的常用配合及其应用
机械设计
第十二章 滑动轴承
48
12.5 液体动力润滑径向滑动轴承设计计算
1. 流体动力润滑
1) 概念
两个作相对运动物体的摩擦表面,用借助 于相对速度而产生的粘性流体膜将两摩擦表面 完全隔开,由液体膜产生的压力来平衡外载荷, 称为流体动力润滑。
hmin[h], [h]=(2~3)(Rz1+Rz2)
机械设计
第十二章 滑动轴承
69
4. 承载能力
F 2B 2
Cp
v, ,B, F
Cp —— 承载量系数 Cp (, B/d) 见表 12-6
机械设计
第十二章 滑动轴承
70
5. 参数的选择
1) 宽径比 B/d
B/d , F ; B/d =0.3~1.5
形成液体润滑。一般值主要根据载荷和速度 选取。速度越高, 值应越大;载荷越大, 值应越小。
n 60
4
31
9
10 9
机械设计
第十二章 滑动轴承
72
3) 动力粘度 F
n 60
1
3
7
Pas
10 6
运动粘度:
v
机械设计
第十二章 滑动轴承
73
滑动轴承常用润滑油牌号
机械设计
第十二章 滑动轴承
74
液体动力润滑径向滑动轴承设计计算总结
机械设计
第十二章 滑动轴承
49
机械设计
第十二章 滑动轴承

滑动轴承

滑动轴承

两工件之间的间隙必须有楔形间隙;
A
两工件表面必须有相对滑动速度。 其运动方向必须保证润滑油从大截面 流进,从小截面出来;
τ Bp
两工件表面之间必须连续充满润滑
油或其它液体。
.
y
x p+dp
τ+dτ
二、径向滑动轴承形成流体动力润滑的过程
1、动压油膜的形成过程
∑ Fy =F
静止 →爬升 →将轴起抬
∑ Fx = 0 F
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
制造方法:铸造 内表面:可附有轴承衬 轴承衬材料:轴承合金 瓦背材料:铸.铁、钢或青铜
一、轴瓦的形式和构造
整体式
整体轴套 单层材料 双层材料
结构形式
多层材料
对开式
厚壁轴瓦 薄壁轴瓦
制造方法:双金属板连续轧制批量生产
§12-4 轴瓦结构
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
静压轴承
.
§12-2 滑动轴承的主要结构形式
.
一、整体式径向滑动轴承
1、作用:主要承受径向载荷。
2、组成: 轴承座
减摩材料制成
整体轴套
3、优点:
结构简单

《机械设计基础》第十二章-滑动轴承解析

《机械设计基础》第十二章-滑动轴承解析
三、具有特殊性能的轴承材料
1、含油轴承 用粉末冶金法制得,具有多孔性组织,空隙内可贮存润滑 油,加一次油可使用较长时间,用于加油不方便的场合
2、灰铸铁、耐磨铸铁 低速轻载场合 3、橡胶轴承 具有较大的弹性,能减轻振动使运转平稳 4、塑料轴承 摩擦系数低,可塑性、跑合性能良好,耐磨,耐蚀
导热性差,膨胀系数大,容易变形,一般作轴承衬使用
上轴瓦为非承载区。
F
润滑油应由非承载区引入,所以在顶部
开进油孔。
在轴瓦内表面,以进油口为中心沿纵向、 斜向或横向开有油沟,以利于润滑油均匀分布 在整个轴颈上。
油沟的形式
B
一般油沟离轴瓦端面保持一定距离,以防止漏油。
当载荷垂直向下或略有偏斜时,轴承中分面常为水平方向。 当载荷方向有较大偏斜时,则轴承中分面斜着布置(通常倾斜45º)。
跑合,常用于高速、重载的轴承。
价格较贵,机械强 度较差,只能作为轴承 衬材料浇铸在钢、铸铁 或青铜轴瓦上。青铜的 导热性良好。
这种合金在110 ℃左右开始软化,为了安全,在设计、运行中常 将温度控制在70℃~80℃。
2、铅锑轴承合金
各方面性能与锡锑轴承合金相近,但这种材料较脆,不宜承受较 大的冲击载荷。一般用于中速、中载的轴承。
§12-1 滑动轴承的特点、应用
一、滑动轴承的特点
优点:1)普通滑动轴承结构简单,制造、拆装方便; 2)具有良好的耐冲击性和吸振性; 3)运转平稳,旋转精度高; 4)高速时比滚动轴承的寿命长; 5)可做成剖分式。
缺点:1)维护复杂; 2)润滑条件高; 3)边界润滑时轴承的摩擦损耗较大。
二、滑动轴承的应用
根据上述计算,可知选用铸锡锌铅青铜(ZQSn6-3-3)作为轴瓦材 料是足够的,其[p]=8N/mm2,[pv]=10N·m/(mm2·s)。

滑动轴承

滑动轴承

一、径向滑动轴承的计算
已知条件 外加径向载荷F (N)、 轴颈转速n(r/mm) 轴颈直径d (mm) 验算设计内容 验算轴承的平均压力 验算轴承pv值
验算滑动速度
一、径向滑动轴承的计算
1、验算轴承的平均压力p
目的:限制轴承压强p,以保证润滑油不被过大的压力 挤出,从而避免轴瓦产生过渡的磨损。
F p= ≤[p] Bd
塑料轴承
具有摩擦系数低、可塑性、跑合性良好、耐磨、耐腐蚀、 可用水、油及化学溶液等润滑的优点。 但导热性差、膨胀系数大、容易变形。 轴瓦常用材料有( 轴承合金)、( 青铜 )、( 黄铜 ) ( 铸铁 )、(非金属材料 )。
§12-4
轴瓦结构
一、轴瓦的形式和构造
整体轴套 整体式 结构形式 对开式 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
F
单轴向油槽开在非承载区 (在最大油膜厚度处)
双轴向油槽开在非承载区 (在轴承剖分面上)
双斜向油槽 (用于不完全液体润滑轴承)
§12-5
滑动轴承润滑剂的选用
一、润滑脂及其选择
1、特点:
无流动性,可在滑动表面形成一层薄膜。
2、适用场合 :
要求不高、难以经常供油,或者低速重载以及作摆动运动 的轴承中。
验算轴承的平均压力
验算轴承pv值
F
d1 d2
二、止推滑动轴承的计算
1、验算轴承的平均压力p
Fa Fa p ≤[p] 2 A z (d 2 d12 ) 4
F
F
d2
z----轴环数 2、 验算轴承的pv值 pvm≤[pv]
d1 d2
d1
对于多环止推轴承,考虑承载的不均匀性, [p]、[pv]应降低 50%

第12章 滑动轴承解读

第12章 滑动轴承解读

嵌入性:材料容纳硬质颗粒嵌入,从而减轻轴承滑动的刮伤和磨粒磨损 的性能。 磨合性:轴瓦与轴颈表面应易于磨合,从而改善摩擦面的接触状况。 3)具有足够的强度和抗腐蚀性; 4)有良好的导热性、加工工艺性及经济性; 2. 常用材料: (见表12-2)

滑动轴承的材料
一、轴瓦的形式和构造
按构造 分 类 按材料 分 类
紧定螺钉
轴承座
轴瓦结构
为把润滑油导入轴承的工作面,在轴瓦上开设: 油孔: 油槽: 油室:

滑动轴承的轴瓦结构4
还起储油和稳定供油的作用,用于大型轴承。
原则: 1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。 2)对液体动压润滑轴承,油槽应开在非承载区 3)对混合润滑轴承,油槽应尽量延伸到最大压力区附近。
第十二章
滑动轴承
§12-1 滑动轴承的特点与类型
一、滑动轴承的特点
1.承载能力大,耐冲击;
2.工作平稳,噪音低; 3.结构简单,径向尺寸小。
滑动轴承概述2
二、滑动轴承的应用场合
1.高速、高精度、重载的场合;如汽轮发电机、水轮发电机、机床等。
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 3.结构上要求剖分的场合;如曲轴轴承 4.受冲击与振动载荷的场合;如轧钢机。

式中: υ -止推环平均直径 ( d m
d2 d0 )处的圆周速度。 2
Z=1时,查表12-5; [p υ ]- Z>1时,表中值降低50%。 注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。
(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
形成流体动压润滑的条件
◆ 对于边界膜的强度,目前尚无完善的计算方法,常进行条件性计算。 ◆

机械原理第十二章 滑动轴承

机械原理第十二章 滑动轴承

d D
整体轴套
轴瓦(衬 背) 轴承衬
卷制轴套
剖分式轴瓦有厚壁和薄壁轴瓦之分。 厚壁轴瓦是将轴承合金浇注在青铜或钢制瓦背上。
薄壁轴瓦用双金属板连续轧制而成。
为提高轴承合金与轴瓦背的结合强度,防止脱落,常在轴瓦背 表面制出螺纹、凹槽及榫头结构。
厚壁轴瓦
薄壁轴瓦
为防止轴瓦在轴承座中转动,轴瓦端部设置凸缘作轴向定位, 也可用紧定螺钉或销钉将其固定在轴承座上。
二、常用滑动轴承材料 (一)金属材料
(1)轴承合金(巴氏合金或白合金): 嵌入性、顺应和磨合性好,不易胶合。但轴承合金的强度很
低,只能做轴承衬。适用于重载、中高速场合。
青铜: 锡青铜、铅青铜、铝青铜 (2) 铜合金
黄铜
较高的强度、较好的减摩性和耐磨性。应用广泛
锡青铜减摩性和耐磨性最好,用于中速、重载场合;铅青铜抗 粘附能力强,用于高速、重载场合;铝青铜的强度与硬度较高,抗 粘附能力差,用于低速、重载场合。 (3)铝基轴承合金 耐腐蚀性好和疲劳强度较高,减摩性也较好,适用于高速、重载 的场合 (4) 铸铁
第四节 非液体润滑滑动轴承设计
工程上应用较多且较容易实现的是非液体润滑滑动轴承。非 液体润滑滑动轴承的工作能力和使用寿命取决于轴承的减摩性能、 机械强度和边界膜的强度。实践表明,磨损和胶合是滑动轴承的 主要失效形式。
这类滑动轴承可靠的工作条件是:边界膜不破裂,维持粗糙 表面微腔内有液体润滑存在。由于边界膜破裂的因素很复杂,因 此,仍采用简化的条件性计算 。
(三)圆周速度v值验算
v dn [v]
60 1000
式中 n——轴颈的转速(r/min); [v]——轴颈圆周速度的许用值,m/s。
二、推力轴承的计算

第12章滑动轴承45086-PPT精品文档

第12章滑动轴承45086-PPT精品文档
的微幅相对运动的两个紧密接触的表面上。 轴瓦失效实例:
轴瓦磨损
华中农业大学专用
表面划伤
疲劳点蚀潘存云教授研制 Nhomakorabea 汽车用滑动轴承故障原因的平均比率
故障原因 比率/% 故障原因 比率/%
不干净 38.3 腐蚀 5.6
润滑油不足 11.1
制造精度低 5.5
安装误差 15.9 气蚀 2.8
对中不良 8.1
其它 6.7
华中农业大学专用
滚动轴承 优点多,应用广
滑动轴承
用于高速、高精度、重载、 结构上要求剖分等场合。
向心(径向)轴承
推力(止推)轴承
向心推力(径向止推)轴承
不完全液体润滑滑动轴承 不完全液体润滑滑动轴承
潘存云教授研制
三、滑动轴承的应用领域
1.工作转速特高的轴承,汽轮发电机;
2.要求对轴的支承位置特别精确的轴承,如精密磨床;
3.特重型的轴承,如水轮发电机;
4.承受巨大冲击和振动载荷的轴承,如破碎机;
5.根据装配要求必须做成剖分式的轴承,如曲轴轴承;
6.在特殊条件下(如水中、或腐蚀介质)工作的轴承,
如舰艇螺旋桨推进器的轴承;
7.轴承处径向尺寸受到限制时,可采用滑动轴承。 如多辊轧钢机。
四、滑动轴承的设计内容
轴承的型式和结构选择;轴瓦的结构和材料选择;
一、轴瓦的形式和结构
按构造 整体式 分 类 对开式
强度足够的材料可 以直接作成轴瓦,
轴 按尺寸 薄壁
瓦 分 类 厚壁 的 类 按材料 单材料 型 分 类 多材料
如黄铜,灰铸铁。
单一材料
轴瓦衬强度不足, 故采用多材料制作
按加工 分类
华中农业大学专用
轴瓦。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)滑动速度大
——粘度较低的润滑油
(3)粗糙或未经跑合的表面 ——粘度较高的润滑油
2、润滑脂
3、固体润滑剂
二、润滑方法 1、油润滑 间歇供油: 油壶或油枪 连续供油: 1) 滴油润滑 2) 绳芯润滑 3) 油环润滑 4) 浸油润滑 5) 飞溅润滑 6) 压力循环润滑 2、脂润滑 旋盖式油脂杯、黄油枪
v
静止件
y
x
dxdz
dy
p dy dz
dz
dx
(p + (+
p x
dx)dy
dz
y
dy
)dxdz
前后向压力 上下面剪切应力
p p p dx,得
p
x y
代入牛顿粘性流体定律:
u
y
p 2u
x y 2
u 1 py2
2x
c1yc2
y=0 时,u=v ; y=h 时,u=0, 得积分常数c1、c2
第十二章 滑动轴承
§12—1 概述
滑动轴承、滚动轴承 一、滑动轴承类型
按承载: 径向轴承(向心轴承)(受Fr) 止推轴承(推力轴承)(受Fa)
按润滑状态:流体润滑轴承、非流体润滑轴承、无润滑轴承
二、滑动轴承的特点
三、应用
§12—3 滑动轴承的材料及轴瓦结构
一、滑动轴承的材料 主要失效形式:磨损和胶合、疲劳破坏
a) 若t1>>(35~45)℃, 热平衡易建立,则应降低tm,再行计算。 b) 若t1<(35~45) ℃,不易达到热平衡状态→降低粗糙度→重新计算 c) t2>80℃→易过热失效,→改变相对间隙和油的粘度→重新计算
六、轴承参数选择 1、轴承的平均比压
PF/Bd 表12-1、表12-2
2、宽径比B/d
三、液体动力润滑状态的建立过程
1、起动时
2、不稳定运转阶段 3、稳定运转阶段
F
D d
(a)
F
(b)
F
(c)
四、径向滑动轴承的几何关系和承载能力
1、几何关系
直径间隙: 半径间隙: 偏心率: 偏心距: 相对间隙:
Dd
Rr
dr
e oo1
xe/
AOO1 根据余弦定律可得
F
极轴
hmax 、、、
a
e
O1
§12—5 非全液体润滑滑动轴承的计算
维持边界油膜不受破坏
一、径向滑动轴承 1、限制平均比压P 目的:避免在载荷作用下润滑油被完全挤出
p F [p] dB
2、限制轴承的p、v值 目的:限制pv是控制轴承温升,避免边界膜的破裂
p vFdn Fn [p v ] dB 6 0 101 09 0B 100
3、限制滑动速度v
目的:当p较小时,避免由于v过高而引起轴瓦加速磨损
v dn [v]
601000
二、推力滑动轴承 限制轴承平均比压p和pvm值
Fa
d (a)
Fa
d0 d (b)
Fa
d0 d (c)
Fa d
d0
(d)
§12—6 液体动力润滑径向滑动轴承的设计计算
一、流体动力润滑基本方程
z O
移动件
1f1df2df3dZ
F d2 BCF
CF——承载量系数 表12-4
hmin越小(x越大),B/d越大,CF越大,轴承的承载能力F越大。
3、最小油膜厚度hmin hmin不能小于轴颈与轴瓦表面微观不平度之和
h m inS(R Z 1R Z2)
上式与流体动力润滑的三个基本条件 ——流体动力润滑的充分必要条件
p max
O y
v 移动件
h>h0
p x
>0
p x
=0
静止件
h<h0
p x
<0
h0 h0
两滑动表面平行。平行油膜各 处油压与入口、出口处相等, 不能产生高于外面压力的油压 支承外载。
x
移动件
v
h=h0
p x =0
p =0
静止件
形成流体动力润滑的必要条件是 (1)相对运动两表面必须形成一个收敛楔形 (2)被油膜分开的两表面必须有一定的相对滑动速度vs, 其运动方向必须使润滑从大口流进,小口流出。 (3)润滑油必须有一定的粘度,供油要充分。
uv(hhy)y(h2y) p x
不计侧漏,沿x方向,任一截面单位宽度的流量为
h
qx0u
dy2 vh112 p xh3
p=pmax处油膜厚度为h0,流量:
v qx 2 h0
v 2h0
vh 1 ph3
2 12 x
p 6vhh0
x
h3
一维雷诺流体动力润滑方程
对x取偏导数: (h3 p) 6vh
x x x
考虑沿Z方向的流动:
二维雷诺流体动力 润滑方程:
x(h 3 p x)z(h 3 p z)6v h x
二、油楔承载机理
p 6vhh0
x
h3
油压的变化:润滑油的粘度、 表面滑动速度、油膜厚度
全部油膜压力之和即为油膜的承载能力
油膜呈收敛楔形,油楔内各处油压都大于 入口和出口处的压力,产生正压力以支承外载
B/d小 →端泄Q1↑ →摩擦功耗和温升↓ →减轻轴颈与轴瓦边缘接触但承载能力↓
高速重载轴承 低速重载轴承
B/d应取小值 B/d应取大值
3、相对间隙
/r/d
大→Qb大→ 温升小 →但承载能力和运转精度低 小→易形成流体膜→承载能力和运转精度↑
一般机器中常用 见书本
4 3
5 2
1
1
1-轴瓦;2-轴;3、5-螺母;4-轴承座
O 1
Rr
2
0
hmin
hA
h0
p max
任意位置的油膜厚度
h ( 1 x co ) r s( 1 x co ) s
1)压力最大处油膜厚度
2)油膜最小厚度hmin
2、油膜承载能力
极坐标形式的 雷诺方程
dp f (, ) d
F D
d
z
Bd =
1 4
=
1 3
=
1 2
=1
=∞
p 从压力区起始角 1 至任意角 进行积分,得任意角处的压力
(1)粘度↓→间隙改变,使轴承的承载能力下降
(2)会使金属软化→发生抱轴事故
热平衡条件:单位时间内 摩擦产生的热量H = 端泄润滑油所带走热量H1 + 轴承散发热量H2
( f )P
t t2 t1
c(
Q
)S
(C)
Bd v
润滑油平均温度tm
tm
t1
t 2
为保证承载要求tm<75℃
先给定tm,再按上式求出Δt,再求t1=35℃~45℃
再求压力在外载荷方向上的分量 y
将上式在压力区内积分(求和),得到轴承单位宽度上的油膜
承载能力 引入修正系数A,考虑端泄的影响
py
py
A1
2Z B
2
油膜能承受的载荷
B/2
F B/2 pydZ
6 r B/2 2
2 B/21
1f1d
f2d
f3d
Z
C FB 3 B B //2212
手柄

调节螺母
杯体 弹簧
针阀
接头
油芯
20°
杯体
手柄

调节螺母
杯体 弹簧
针阀
接头
油芯
20°
杯体
手柄

调节螺母
杯体 弹簧
针阀
接头
油芯
20°
杯体
3、油槽轴向不能开通,以免油从油槽端部 大量流失
4、水平安装轴承油槽开半周,不要延伸到承载区,全周 油槽应开在靠近轴承端部处。
F O
O'
有油槽 油槽
无油槽
§12—4 滑动轴承的润滑
一、润滑剂的选择
工作载荷、相对滑动速度、工作温度和特殊工作环境 1、润滑油
(1)压力大、温度高、载荷冲击变动大 ——粘度大的润滑油
五、轴承的热平衡计算
1、轴承中的摩擦与功耗
由牛顿粘性定律可得油层中摩擦力
Ff
dB
摩擦系数:
f
Ff
2
n
F 30 p
f 0.55 p
摩擦功耗引起轴承单位时间内的发热量 H= f FV
2、轴承耗油量
进入轴承的润滑油总流量Q ≈ Q1 = 承载区端泄流量Q1 + 非承载区端泄流量Q2
3、轴承温升
+ 轴瓦供油槽两端流出的附加流量 Q3
1、对轴承材料的要求
2、常用材料 金属材料: 1)铸铁 2)轴承合金 3)铜合金 4)铝基合金 5)多孔质金属材料(粉末冶金)
非金属材料——塑料、橡胶
二、轴瓦结构 1、轴瓦的形式与结构
整体式轴瓦
剖分式轴瓦
2、油孔、油槽和油室
油孔、油槽开设原则 :
1、润滑油应从油膜压力最小处输入轴承
2、油槽(沟)开在非承载区,否则会降低油 膜的承载能力
相关文档
最新文档