BBS挑战100数学九上第一章二次函数综合检测
浙教版九年级上册数学第1章《二次函数》考试测试卷、答案
浙教版九上数学第1章《二次函数》测试卷、答案考试时间:120分钟 满分:120分 班级 姓名一、选择题(本大题有12小题,每小题3分,共36分) 1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x 2+2D. y=x ﹣22.在下列二次函数中,其图象对称轴为x=2的是( )A. y=2x 2﹣4B. y=2(x-2)2C. y=2x 2+2D. y=2(x+2)2 3.抛物线 与 轴的交点坐标为( ) A. B. C. D.4.函数(1)y =2x+1,(2)y =﹣,(3)y =x 2+2x+2,y 值随x 值的增大而增大的有( )个.A. 0个B. 1个C. 2个D. 3个 5.二次函数y =﹣(x ﹣3)2+1的最大值为( )A. 1B. ﹣1C. 3D. ﹣3 6.下列关于抛物线y=(x+2)2+6的说法,正确的是( )A. 抛物线开口向下B. 抛物线的顶点坐标为(2,6)C. 抛物线的对称轴是直线x=6D. 抛物线经过点(0,10)7.如图,一次函数y=﹣x 与二次函数为y=ax 2+bx+c 的图象相交于点M ,N ,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数C. 没有实数根D. 以上结论都正确(第7题) (第8题) (第11题) (第12题) 8.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误的是( )A. a >0B. b >0C. c <0D. abc >0 9.抛物线y= -(x-4)2+1与坐标轴的交点个数是( )A. 0个B. 1个C. 2个D. 3个 10.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2017年该产品的产量为y 吨,则y 关于x 的函数关系式为( ) A. y =100(1﹣x )2 B. y =100(1+x )2 C. y =D. y =100+100(1+x )+100(1+x )211.二次函数y =ax 2+bx+c 的图象如图所示,则下列结论中错误的是( ) A. 函数有最小值 B. 当﹣1<x <2时,y >0 C. a+b+c <0 D. 当x <,y 随x 的增大而减小12.已知二次函数y =ax 2+bx+c ,其函数y 与自变量x 之间的部分对应值如表所示: 则可求得 (4a ﹣2b+c )的值是( )A. 8B. ﹣8C. 4D. ﹣4X … ﹣1 2 3 … Y … 0 0 4 …二、填空题(本大题有6小题,每小题3分,共18分)13.把抛物线y=﹣(x﹣2)2﹣2先向左平移1个单位,再向下平移1个单位,得到的抛物线的解析式为________。
第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册
二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。
浙教版数学九年级上第1章二次函数综合达标测试卷(含答案)
第1章综合达标测试卷
(满分:100分时间:90分钟)
一、选择题(每小题2分,共20分)
1.二次函数y=-3x2-6x+5的图象的顶点坐标是(A)
A.(-1,8) B.(1,8)
C.(-1,2) D.(1,-4)
2.二次函数y=kx2+2x+1(k<0)的图象可能是(C)
3.二次函数y=x2+2x+3自变量x的取值范围为(B)
A.x>0 B.x为一切实数
C.y>2 D.y为一切实数
4.抛物线y=2x2-3的顶点在(D)
A.第一象限B.第二象限
C.x轴上D.y轴上
5.已知a<-1,且点(a-1,y1),(a,y2),(a+1,y3)都在函数y=x2的图象上,则(C) A.y1<y2<y3B.y1<y3<y2
C.y3<y2<y1D.y2<y1<y3
6.把二次函数y=x2+bx+c的图象向右平移3个单位长度,再向下平移2个单位长度,所得函数图象的解析式为y=x2-3x+5,则(A)
A.b=3,c=7 B.b=6,c=3
C.b=-9,c=-5 D.b=-9,c=21
7.关于二次函数y=ax2+bx+c(a≠0)的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,ax2+bx+c=0必有两个实数根;③函数图
象最高点的纵坐标是4ac-b2
4a
;④当b=0时,函数图象关于y轴对称.其中正确的个数是
(C)
A.1 B.2
C.3 D.4
8.当-4≤x≤2时,函数y=-(x+3)2+2的取值范围为(B) A.-23≤y≤1 B.-23≤y≤2
C.-7≤y≤1 D.-34≤y≤2。
《第1章二次函数》同步能力达标测评(附答案)2021-2022学年九年级数学浙教版上册
2021-2022学年浙教版九年级数学上册《第1章二次函数》同步能力达标测评(附答案)一.选择题(共6小题,每小题3分,共计18分)1.对抛物线y=﹣x2+4x﹣3而言,下列结论正确的是()A.开口向上B.与y轴的交点坐标是(0,3)C.与两坐标轴有两个交点D.顶点坐标是(2,1)2.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.53.若抛物线y=2x2﹣bx+c的对称轴为直线x=2,且该抛物线与x轴交于A、B两点,若AB 的长是6,则该抛物线的顶点坐标为()A.(2,10)B.(2,18)C.(2,﹣10)D.(2,﹣18)4.二次函数y=ax2+bx+c图象如图,下列结论中:①b2>4ac;②abc<0;③2a+b﹣c>0;④a﹣b+c<0.正确的有()A.1个B.2个C.3个D.4个5.在同一平面直角坐标系中,若抛物线y=﹣x2﹣(2m+2n)x﹣6n+9与y=x2+(5m﹣n)x+m2关于x轴对称,则m2+n2的值为()A.13B.18C.24D.366.若点A(﹣1,y1),B(2,y2),C(3,y3)在抛物线y=﹣2x2+8x+c的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y3<y1<y2二.填空题(共14小题,每小题3分,共计42分)7.已知抛物线y=x2﹣ax+a﹣1的顶点恰好在x轴上,则a=.8.抛物线y=﹣x2+bx+c的部分图象如图所示,其对称轴是x=﹣1,若y≥3,则x的取值范围是.9.设抛物线y=x2+(a+1)x+a,其中a为实数.(1)若抛物线经过点(﹣1,m),则m=;(2)将抛物线y=x2+(a+1)x+a向上平移2个单位,所得抛物线顶点的纵坐标的最大值是.10.某网店某种商品成本为50元/件,售价为60元/件时,每天可销售100件;售价单价高于60元时,每涨价1元,日销售量就减少2件.据此,当销售单价为元时,网店该商品每天盈利最多.11.抛物线y=mx2+(1﹣4m)x+1﹣5m一定经过非坐标轴上的一点P,则点P的坐标为.12.如图,矩形ABCD中,AB=2cm,AD=5cm,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s).连接PC,以PC为一边作正方形PCEF,连接DE、DF,则△DEF面积最小值为.13.二次函数y=mx2+2mx+c(m、c是常数,且m≠0)的图象过点A(3,0),则方程mx2+2mx+c =0的根为.14.为了在校运会中取得更好的成绩,小丁积极训练,在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是1.68米,当铅球运行的水平距离为2米时,达到最大高度2米的B处,则小丁此次投掷的成绩是米.15.如图,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).若抛物线y=x2﹣2x+k上有点Q,使△BCQ是以BC为直角边的直角三角形,则点Q的坐标为.16.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是.17.将抛物线C1:y=x2﹣2x+3向左平移一个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于y轴对称,则抛物线C3的表达式为.18.在抛物线形拱桥中,以抛物线的对称轴为y轴,顶点为原点建立如图所示的平面直角坐标系,抛物线解析式为y=ax2,水面宽AB=6m,AB与y轴交于点C,OC=3m,当水面上升1m时,水面宽为m.19.已知二次函数y1=(x+1)2﹣3向右平移2个单位得到抛物线y2的图象,则阴影部分的面积为.20.已知抛物线y=(x﹣m)2+n与x轴交于点(1,0),(4,0),则关于x的一元二次方程(x﹣m﹣3)2+n=0的解是.三.解答题(共6小题,每小题10分,共计60分)21.抛物线y=x2+bx+c经过点A,B,已知A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)若抛物线的顶点为C,直线AC交y轴于点D,连接AC、BC、BD,求△BCD的面积.22.某建筑公司有甲、乙两位师傅建造养鸡场,建造时按养鸡场的建造面积收费.已知甲师傅建造2m2的费用与乙师傅建造3m2的费用总和为440元,甲师傅建造3m2的费用与乙师傅建造2m2的费用总和为460元.(1)分别求出甲、乙两位师傅建造1m2养鸡场的费用;(2)若乙师傅计划用总长度为24米的材料建造两个一侧靠墙且位置相邻的矩形养鸡场(如图),已知墙的长为9米,则养鸡场的宽AB为多少时,建造费用最多?最多为多少元?23.某商店销售一种纪念册,每本进价30元,规定销售单价不低于32元,且获利不高于60%,在销售期间发现销售数量y(件)与销售单价x(元)的关系如下表:x32333435y420410400390(1)请你根据表格直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当每本纪念册销售单价是多少元时,商店每天获利3400元?(3)将这种纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w(元)最大?最大利润是多少元?24.如图,已知抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大,若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.25.如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).(1)填空:点A的坐标为,点D的坐标为,抛物线的解析式为;(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;(3)P是抛物线对称轴上一动点,是否存在点P,使△P AC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.26.如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).(1)求m的值和直线BC对应的函数表达式;(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.参考答案一.选择题(共6小题,每小题3分,共计18分)1.解:A、二次项系数a=﹣1<0,抛物线开口向下,结论错误,不符合题意;B、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),结论错误,不符合题意;C、Δ=42﹣4×(﹣1)×(﹣3)=4>0,抛物线与x轴有两个交点,与y轴有1个交点,即与两坐标轴有3个交点,结论错误,不符合题意;D、由y=﹣x2+4x﹣3=﹣(x﹣2)2+1知,抛物线顶点坐标为(2,1),结论正确,符合题意;故选:D.2.解:如图∵抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),∴可画出上图,∵抛物线对称轴x==1,∴点(0,﹣5)的对称点是(2,﹣5),∴当x=2时,y的值为﹣5.故选:A.3.解:∵抛物线y=2x2﹣bx+c的对称轴为直线x=2,∴x=2=﹣,解得b=8,故抛物线的表达式为y=2x2﹣8x+c,令y=2x2﹣8x+c=0,解得x=2±,则AB=2+﹣2+=2=6,解得c=﹣10,故抛物线的表达式为y=2x2﹣8x﹣10,当x=2时,y=2x2﹣8x﹣10=﹣18,故顶点的坐标为(2,﹣18),故选:D.4.解:(1)由图象与x轴有两个交点可判别,①正确;(2)开口向下则a<0,对称轴“左同右异”则b<0,与y轴交于正半轴则c>0,则abc >0,②错误;(3)由对称轴x=﹣1可得b=2a,则2a+b﹣c=4a﹣c,由a<0,c>0可知4a﹣c<0,③错误;(4)当x=﹣1时y=a﹣b+c>0,④错误.故选:A.5.解:∵抛物线y=﹣x2﹣(2m+2n)x﹣6n+9与y=x2+(5m﹣n)x+m2关于x轴对称,∴﹣y=x2+(2m+2n)x+6n﹣9,∴x2+(2m+2n)x+6n﹣9=x2+(5m﹣n)x+m2,∴,解得m=3,n=3,∴m2+n2=18.故选:B.6.解:∵抛物线y=﹣2x2+8x+c中a=﹣2<0,∴抛物线开口向下,对称轴为直线x==2,∵点A(﹣1,y1)的对称点为(5,y1),又∵5>3>2,即A、B、C三个点都位于对称轴右边,函数值随自变量增大而减小.∴y1<y3<y2,故选:C.二.填空题(共14小题,每小题3分,共计42分)7.解:x2﹣ax+a﹣1=0中判别式Δ=a2﹣4(a﹣1),由题意得a2﹣4(a﹣1)=0,解得a=2.故答案为:2.8.解:由图象可得抛物线对称轴为直线x=﹣1,∵抛物线经过点(0,3),由对称性可得抛物线经过点(﹣2,3),∴y≥3时x的取值范围是﹣2≤x≤0.故答案为:﹣2≤x≤0.9.解:(1)点(﹣1,m)代入抛物线解析式y=x2+(a+1)x+a,得(﹣1)2+(a+1)×(﹣1)+a=m,解得m=0.故答案为:0.(2)y=x2+(a+1)x+a向上平移2个单位可得,y=x2+(a+1)x+a+2,∴y=(x+)2﹣(a﹣1)2+2,∴抛物线顶点的纵坐标n=﹣(a﹣1)2+2,∵﹣<0,∴n的最大值为2.故答案为:2.10.解:设销售单价为x元,则每天可销售100﹣2(x﹣60)=(220﹣2x)件,每天盈利w 元,依题意得:w=(x﹣50)(220﹣2x)=﹣2x2+320x﹣11000=﹣2(x﹣80)2+1800,∵﹣2<0,∴当x=80时,w有最大值,最大值为1800元,故答案为:80.11.解:y=mx2+(1﹣4m)x+1﹣5m=(x2﹣4x﹣5)m+x+1,令x2﹣4x﹣5=0,解得x=﹣1或x=5,当x=﹣1时,y=0;当x=5时,y=6;∴非坐标轴上的点P的坐标为(5,6).故答案为:(5,6).12.解:设△PCD的面积为y,由题意得:AP=t,PD=5﹣t,∴y==5﹣t,∵四边形EFPC是正方形,∴S△DEF+S△PDC=S正方形EFPC,∵PC2=PD2+CD2,∴PC2=22+(5﹣t)2=t2﹣10t+29,∴S△DEF=(t2﹣10t+29)﹣(5﹣t)=t2﹣4t+=(t﹣4)2+,当t为4时,△DEF的面积最小,且最小值为.故答案为:.13.解:函数的对称轴为直线x=﹣=﹣=﹣1设抛物线与x轴的另一个交点坐标为:(x,0),∵抛物线与x轴的两个交点到对称轴的距离相等,∴(3+x)=﹣1,解得:x=﹣5,∴抛物线与x轴的另一个交点坐标为:(﹣5,0),∴关于x的一元二次方程ax2+bx+c=0的解是3或﹣5,故答案为:3或﹣5.14.解:建立坐标系,如图所示:由题意得:A(0,1.68),B(2,2),点B为抛物线的顶点,设抛物线的解析式为y=a(x﹣2)2+2,把A(0,1.68)代入得:4a+2=1.68,解得a=﹣0.08,∴y=﹣0.08(x﹣2)2+2,令y=0,得﹣0.08(x﹣2)2+2=0,解得x1=7,x2=﹣3(舍),∴小丁此次投掷的成绩是7米.故答案为:7.15.解:∵抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).∴y=x2﹣2x﹣3,B点坐标为(3,0),假设存在一点Q,则QC⊥BC与C,设经过C点和Q点的直线可以表示为:y=mx﹣3,而直线BC可以表示为:y=x﹣3,∵QC⊥BC,∴m=﹣1∴直线CQ解析式为:y=﹣x﹣3,联立方程组:,解得x=0或者x=1,舍去x=0(与点C重合,应舍去)的解,从而可得点Q为(1,﹣4);同理如果点B为直角定点,同样得到两点(3,0)(同理舍去)和(﹣2,5),从而可得:点Q的坐标为:(1,﹣4)和(﹣2,5).16.解:∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4,∴二次函数y的取值为﹣4≤y<5,∴﹣4≤t<5;故答案为:﹣4≤t<5.17.解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于y轴对称,∴抛物线C3的开口方向相同,顶点为(0,2),∴抛物线C3的解析式为y=x2+2.故答案是:y=x2+2.18.解:∵AB=6m,OC=3m,∴点B坐标为(3,﹣3),将B(3,﹣3)代入y=ax2得:﹣3=a×32,∴a=﹣,∴y=﹣x2.∴当水面上升1m时,即纵坐标y=﹣2时,有:﹣2=﹣x2,∴x2=6,∴x1=﹣,x2=.∴水面宽为:﹣(﹣)=2(m).故答案为:2.19.解:设点M为抛物线y1的顶点,点N为抛物线y2的顶点,连接MA、NB,则四边形AMNB的面积和阴影部分的面积相等,∵二次函数y1=(x+1)2﹣3,∴该函数的顶点M的坐标为(﹣1,﹣3),∴点M到x轴的距离为3,∵MN=2,∴四边形AMNB的面积是2×3=6,∴阴影部分的面积是6,故答案为:6.20.解:抛物线y=(x﹣m)2+n与x轴交于点(1,0),(4,0),将抛物线y=(x﹣m)2+n向右平移3个单位得到y=(x﹣m﹣3)2+n,则平移后的抛物线与x轴的交点为(4,0)、(7,0),故一元二次方程(x﹣m﹣3)2+n=0的解是x1=4,x2=7,故答案为x1=4,x2=7.三.解答题(共6小题,每小题10分,共计60分)21.解:(1)将A(﹣1,0),B(3,0)代入y=x2+bx+c得:,解得b=﹣2,c=﹣3,∴抛物线解析式为:y=x2﹣2x﹣3,(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,∴C(1,﹣4),设AC解析式为y=mx+n,将A(﹣1,0),C(1,﹣4)代入得:,解得,∴AC解析式为y=﹣2x﹣2,令x=0得y=﹣2,∴D(0,﹣2),∴S△BCD=S△ABC﹣S△ABD=×[3﹣(﹣1)]×4﹣×[3﹣(﹣1)]×2=4,22.解:(1)设甲、乙两位师傅建造1m2养鸡场的费用分别为x元和y元,根据题意得:,解得:答:甲、乙两位师傅建造1m2养鸡场的费用分别为100元和80元;(2)设AB为z,面积为S,则BC=(24﹣3z)米,∵墙长为9米,∴24﹣3z≤9,解得:z≥5,根据题意得:S=z(24﹣3z)=﹣3(z﹣4)2+48,∵a=﹣3<0,对称轴为z=4,∴当z>4时S随着z的增大而减小,∴当z=5时面积最大为45m2,费用为45×80=3600元,∴养鸡场的宽AB为5米时,建造费用最多;最多为3600元.23.解:(1)由表中数据可知,销售单价每上涨一元,每天销售量减少10本,∴y与x之间的函数关系式是一次函数,设y=hx+b,把(32,420)和(33,410)代入,得:,解得:,∵销售单价不低于32元,且获利不高于60%,∴≤60%,即x≤48,∴32≤x≤48,∴y=﹣10x+740(32≤x≤48);(2)由题意,可列出方程为:(x﹣30)(﹣10x+740)=3400,整理并化简得,x2﹣104x+2560=0,解得,x1=40,x2=64,∵32≤x≤48,答:销售单价是40元时,商店每天获利3400元;(3)w=(x﹣30)y=﹣10x2+1040x﹣22200=﹣10(x﹣52)2+4840,∵a=﹣10<0,∴开口向下,∵对车轴为x=52,∴当32≤x≤48时,w随x的增大而增大∴当x=48时,w最大=﹣10(48﹣52)2+4840=4680(元),答:销售单价定为48元时,商店每天销售纪念册获得的利润w最大,最大利润是4680元.24.(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=,∴y=﹣(x﹣4)(x﹣1)=﹣x2+x﹣2,故该抛物线的解析式为:y=﹣x2+x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:,解得,∴直线AC:y=x﹣2,设点D坐标为(x,﹣x2+x﹣2),则点E坐标为(x,x﹣2),S△DCA=S△DCE+S△DAE=×DE×x E+×DE×(x A﹣x E)=×DE×x A=×DE×4=2DE,∵DE=(﹣x2+x﹣2)﹣(x﹣2)=﹣x2+2x,∴S△DCA=2DE=2×(﹣x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=﹣x2+x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.25.解:(1)∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x+c,∵点B(3,0)是抛物线与x轴的交点,∴9﹣12+c=0,∴c=3,∴y=x2﹣4x+3,令y=0,x2﹣4x+3=0,∴x=3或x=1,∴A(1,0),∵D是抛物线的顶点,∴D(2,﹣1),故答案为(1,0),(2,﹣1),y=x2﹣4x+3;(2)当m+2<2时,即m<0,此时当x=m+2时,y有最小值,则(m+2)2﹣4(m+2)+3=,解得m=,∴m=﹣;当m>2时,此时当x=m时,y有最小值,则m2﹣4m+3=,解得m=或m=,∴m=;当0≤m≤2时,此时当x=2时,y有最小值为﹣1,与题意不符;综上所述:m的值为或﹣;(3)存在,理由如下:A(1,0),C(0,3),∴AC=,AC的中点为E(,),设P(2,t),∵△P AC是以AC为斜边的直角三角形,∴PE=AC,∴=,∴t=2或t=1,∴P(2,2)或P(2,1),∴使△P AC是以AC为斜边的直角三角形时,P点坐标为(2,2)或(2,1).26.解:(1)将B(3,0)代入y=mx2+(m2+3)x﹣(6m+9),化简得,m2+m=0,则m=0(舍)或m=﹣1,∴m=﹣1,∴y=﹣x2+4x﹣3.∴C(0,﹣3),设直线BC的函数表达式为y=kx+b,将B(3,0),C(0,﹣3)代入表达式,可得,,解得,,∴直线BC的函数表达式为y=x﹣3.(2)如图,过点A作AP1∥BC,设直线AP1交y轴于点G,将直线BC向下平移GC个单位,得到直线P2P3.由(1)得直线BC的表达式为y=x﹣3,A(1,0),∴直线AG的表达式为y=x﹣1,联立,解得,或,∴P1(2,1)或(1,0),由直线AG的表达式可得G(0,﹣1),∴GC=2,CH=2,∴直线P2P3的表达式为:y=x﹣5,联立,解得,,或,,∴P2(,),P3(,),;综上可得,符合题意的点P的坐标为:(2,1),(1,0),(,),(,);(3)如图,取点Q使∠ACQ=45°,作直线CQ,过点A作AD⊥CQ于点D,过点D 作DF⊥x轴于点F,过点C作CE⊥DF于点E,则△ACD是等腰直角三角形,∴AD=CD,∴△CDE≌△DAF(AAS),∴AF=DE,CE=DF.设DE=AF=a,则CE=DF=a+1,由OC=3,则DF=3﹣a,∴a+1=3﹣a,解得a=1.∴D(2,﹣2),又C(0,﹣3),∴直线CD对应的表达式为y=x﹣3,设Q(n,n﹣3),代人y=﹣x2+4x﹣3,∴n﹣3=﹣n2+4n﹣3,整理得n2﹣n=0.又n≠0,则n=.∴Q(,﹣).。
数学浙教版九年级上册第1章 二次函数 单元检测卷(解析版)
数学浙教版九年级上册第1章二次函数单元检测卷(解析版)时间:120分钟总分值:120分一、选择题〔本大题共10小题,每题3分,共30分〕1. 以下函数不属于二次函数的是〔〕A. y=〔x﹣1〕〔x+2〕B. y= 〔x+1〕2C. y=1﹣x2D. y=2〔x+3〕2﹣2x22. 函数y=x2+2x+1写成y=a〔x﹣h〕2+k的方式是〔〕A. y=〔x﹣1〕2+2B. y=〔x﹣1〕2+C. y=〔x﹣1〕2﹣3D. y=〔x+2〕2﹣13. 关于抛物线,以下说法正确的选项是〔〕A.启齿向下,顶点坐标(5,3)B.启齿向上,顶点坐标(5,3)C.启齿向下,顶点坐标〔-5,3〕D.启齿向上,顶点坐标〔-5,3〕4. 在正比例函数中,当x>0时,y随x的增大而增大,那么二次函数的图象大致是图中的〔〕A. B. C. D.5. 二次函数y=x2 -2x-3的图象如下图.当y<0时,自变量x的取值范围是〔〕.A.-1<x<3B.x<-1C.x>3D.x<-1或x>36. :二次函数,以下说法错误的选项是〔〕A.当时,y随x的增大而减小B.假定图象与x轴有交点,那么C.当时,不等式的解集是D.假定将图象向上平移1个单位,再向左平移3个单位后过点,那么7. 以下实践效果中,可以看作二次函数模型的有〔〕①正常状况下,一团体在运动时所能接受的每分钟心跳的最高次数b与这团体的年龄a之间的关系为b=0.8〔220-a〕;②圆锥的高为h,它的体积V与底面半径r之间的关系为V=πr2h〔h为定值〕;③物体自在下落时,下落高度h与下落时间t之间的关系为h=gt2〔g为定值〕;④导线的电阻为R,当导线中有电流经过时,单位时间所发生的热量Q与电流I之间的关系为Q=RI2〔R为定值〕.A.1个B.2个C.3个D.4个8. 二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),那么关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=39. 关于二次函数的图象与性质,以下结论错误的选项是〔〕A.当时,函数有最大值B.当时,y随x的增大而增大C.抛物线可由经过平移失掉D.该函数的图象与x轴有两个交点10. 设函数〔k为常数〕,以下说法正确的选项是〔〕.A.对恣意实数k,函数与x轴都没有交点B.存在实数n,满足当时,函数y的值都随x的增大而减小C.k取不同的值时,二次函数y的顶点一直在同一条直线上D.对恣意实数k,抛物线都肯定经过独一定点二、填空题〔本大题共6小题,每题3分,共18分〕11. 飞机着陆后滑行的距离s〔单位:米〕与滑行的时间t〔单位:秒〕之间的函数关系式是s=60t ﹣1.5t2.飞机着陆后滑行________秒才干停上去.12. 抛物线y=x2-4x+m与x轴的一个交点的坐标为〔1,0〕,那么此抛物线与x轴的另一个交点的坐标是________13. 在函数式①y= ,②y= ,③y=x2﹣,④y=〔x﹣1〕〔x﹣3〕中,二次函数是________〔填序号〕.14. 假定抛物线y=ax2+bx+c的顶点是A〔2,﹣1〕,且经过点B〔1,0〕,那么抛物线的函数关系式为________.15. 如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为________m.16. 启齿向下的抛物线y=(m2-2)x2+2mx+1的对称轴经过点(-1,3),那么m=________.三、解答题〔本大题共7小题,共72分〕17. (8分) 二次函数y=ax2﹣2ax+c的图象与x轴交于A、B两点〔A左B右〕,与y轴正半轴交于点C,AB=4,OA=OC,求:二次函数的解析式.18. ( 10分)〔1〕y=〔m2+m〕+〔m﹣3〕x+m2是x的二次函数,求出它的解析式.〔2〕用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.19. ( 10分) 抛物线y=x2-mx+m-2.〔1〕求证此抛物线与x轴有两个交点;〔2〕假定抛物线与x轴的一个交点为(2,0),求m的值及抛物线与x轴另一交点坐标.20. ( 10分) 图①中是一座钢管混泥土系杆拱桥,桥的拱肋ACB可视为抛物线的一局部〔如图②〕,桥面〔视为水平的〕与拱肋用垂直于桥面的系杆衔接,测得拱肋的跨度AB为200米,与AB中点O 相距20米处有一高度为48米的系杆。
浙教版九年级上册数学第一章《二次函数》测试卷及答案
浙教版九年级上册数学第一章《二次函数》测试卷考试时间:120分钟 满分:120分一、选择题(本大题有12小题,每小题3分,共36分) 下面每小题给出的四个选项中,只有一个是正确的. 1.下列函数中,是二次函数的是( )A. y=8x 2+1B. y=8x+1C. xy 8=D. 128+=x y2.已知点(﹣2,4)在抛物线y=ax 2上,则a 的值是( )A. ﹣1B. 1C. ±1D.81 3.二次函数y=(a ﹣1)x 2(a 为常数)的图象如图所示,则a 的取值范围为( )A. a >1B. a <1C. a >0D. a <0(第3题) (第6题) (第9题) (第10题)4.将抛物线y=-3x 2先向右平移4个单位,再向下平移5个单位,所得图象的解析式为( ) A. y=-3(x-4)2-5 B. y=-3(x+4)2+5 C. y=-3(x-4)2+5 D. y=-3(x+4)2-55.抛物线y=x 2+2x ﹣3的最小值是( )A. 3B. ﹣3C. 4D. ﹣46.如图,二次函数y =ax 2+bx+c 图象的对称轴是直线x =1,与x 轴一个交点A (3,0),则与x 轴的另一个交点坐标是( ) A. (0, 21-) B. (21- ,0) C. (0,﹣1) D. (﹣1,0) 7.将 化成 的形式,则 的值是( )A. -5B. -8C. -11D. 5 8.已知抛物线 经过 和 两点,则n 的值为( ) A. ﹣2 B. ﹣4 C. 2 D. 49.从地面竖直向上抛出一小球,小球的高度 (单位: )与小球运动时间 (单位: )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是 ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度 时, .其中正确的是( )A. ①④B. ①②C. ②③④D. ②③ 10.已知反比例函数 y = 的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( )A. B. C. D.11.在平面直角坐标系中,对于二次函数 ,下列说法中错误的是( ) A. 的最小值为1B. 图象顶点坐标为(2,1),对称轴为直线C. 当 时, 的值随 值的增大而增大,当 时, 的值随 值的增大而减小D. 它的图象可以由 的图象向右平移2个单位长度,再向上平移1个单位长度得到12.已知,抛物线y=ax 2+bx+c 的部分图象如图,则下列说法:①对称轴是直线x=1;②当﹣1<x <3时,y <0;③a+b+c=﹣4;④方程ax 2+bx+c+5=0无实数根.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 13.若 是关于自变量x 的二次函数,则________.14.二次函数y=x 2+2x -3与x 轴两交点之间的距离为________.15.抛物线y= 21x 2+4x+3的顶点坐标是________16.矩形的周长等于40,则此矩形面积的最大值是________. 17.若二次函数 的对称轴为直线 ,则关于 的方程 的解为________.18.如图,在平面直角坐标系中,抛物线y=1)3(412--x 的顶点为A ,直线l 过点P (0,m )且平行于x 轴,与抛物线交于点B 和点C.若AB=AC ,∠BAC=90°,则m=________.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.19.(8分)已知二次函数y=x 2+3x+m 的图象与x 轴交于点A (﹣4,0). (1)求m 的值;(2)求该函数图象与坐标轴其余交点的坐标.20.(8分)如图,二次函数图象过A ,B ,C 三点,点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB=OC . (1)求点C 的坐标;(2)求二次函数的解析式.21.(10分)已知抛物线y =x 2+bx+c 的图象如图所示,它与x 轴的一个交点的坐标为A (﹣1,0),与y轴的交点坐标为C(0,﹣3).(1)求抛物线的解析式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,y<0?(3)在抛物线的对称轴上有一动点P,求PA+PB的值最小时的点P的坐标.22.(10分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=- 时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.23.(10分)在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.24.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.(10分)如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE 上(点A在点B的左边),点C ,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H,且直线GH平分矩形的面积时,求抛物线平移的距离.参考答案一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1. A2. B3. B4. A5. D6. D7. A 8. B 9. D 10. C 11. C 12. D二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13. 214. 415. (-4,-5)16. 10017. ,18. 3三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.19.解(1)将A点坐标(﹣4,0)代入y=x2+3x+m得:16﹣12+m=0,解得:m=﹣4;(2)当x=0时,则:y=﹣4,∴函数图象与y轴的交点为(0,﹣4).令y=0,则x2+3x﹣4=0,解得:x1=1,x2=﹣4,∴函数图象与x轴的另一个交点为(1,0).20.解(1)解:∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴AB=1+4=5,∵AB=OC,∴OC=5,∴C点的坐标为(0,5)(2)解:设过A、B、C点的二次函数的解析式为y=ax2+bx+c,把A、B、C的坐标代入得:,解得:a=﹣,b= ,c=5,所以二次函数的解析式为y=﹣x2+ x+521.(1)解:由二次函数y=x2+bx+c的图象经过(﹣1,0)和(0,﹣3)两点,得,解得.则抛物线的解析式为y=x2﹣2x﹣3;∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣3)(x+1),则该抛物线与x轴的交点坐标是:A(﹣1,0),B(3,0);(2)根据图象知,当﹣1<x<3时,y<0;(3)∵A(﹣1,0),B(3,0),∴对称轴是直线x=1.当A、B、P三点共线时,PA+PB的值最小,此时点P是对称轴与x轴的交点,即P(1,0).22. (1)解:①当a=- 时,y=- (x-4)2+h,将点P(0,1)代入,得:- ×16+h=1,解得:h= ;②把x=5代入y=- (x-4)2+ ,得:y=- ×(5-4)2+ =1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x-4)2+h,得:,解得:,∴a=- .23.解:(1)∵y=x2-2mx+m2-m+2=(x-m)2-m+2,∴D点的坐标为(m,-m+2).(2)∵抛物线经过点B(1,m),∴m=1-2m+m2-m+2,解得m=3或m=1.(3)根据题意,∵A点的坐标为(-3,m),B点的坐标为(1,m),∴线段AB为y=m(-3≤x≤1),与y=x2-2mx+m2-m+2联立得x2-2mx+m2-2m+2=0,令y'=x2-2mx+m2-2m+2,若抛物线y=x2-2mx+m2-m+2与线段AB只有1个公共点,即函数y'在-3≤x≤1范围内只有一个零点,当x=-3时,y'=m2+4m+11<0,∵Δ>0,∴此种情况不存在,当x=1时,y'=m2-4m+3≤0,解得1≤m≤3.24. (1)解:由题意得:.故y与x之间的函数关系式为:y=-10x+700.(2)解:由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元(3)解:w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.25.解(1)设抛物线的函数表达式为y=ax(x-10)∵当t=2时,AD=4∴点D的坐标是(2,4)∴4=a×2×(2-10),解得a=∴抛物线的函数表达式为(2)由抛物线的对称性得BE=OA=t∴AB=10-2t当x=t时,AD=∴矩形ABCD的周长=2(AB+AD)=∵<0∴当t=1时,矩形ABCD的周长有最大值,最大值是多少.(3)如图,当t=2时,点A,B,C,D的坐标分别为(2,0),(8,0),(8,4),(2,4)∴矩形ABCD对角线的交点P的坐标为(5,2)当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分。
九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)
九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.函数221m m y mx --=是关于x 的二次函数,则m 的值是( )A .3B .1-C .3-D .1-或3 2.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+ 3.已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( )A .y =2x 2+4x ﹣1B .y =x 2+4x ﹣2C .y =-2x 2+4x +1D .y =2x 2+4x +14.将二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是( )A .()2772--=x yB .()2172--=x yC .()2732--=x yD .()2132--=x y 5.函数y =﹣x 2﹣2x+m 的图象上有两点A (1,y 1),B (2,y 2),则( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1、y 2的大小不确定6.已知点 A (a ,2)、B (b ,2)、C (c ,7)都在抛物线()212--=x y 上,点A 在点B 左侧,下列选项正确的是( )A .若0<c ,则b c a << B.若0<c ,则c b a <<C .若0>c ,则b c a <<D .若0>c ,则c b a <<7.在同一坐标系中,函数y =ax 2+b 与y =bx 2+ax 的图象只可能是( )8.如图抛物线y =ax 2+bx +c (a ≠0)经过点(3,0)且对称轴为直线x =1.有四个结论:①ac <0;②b 2﹣4ac =0;③a ﹣b +c =0;④若m >n >0,则x =1﹣m 时的函数值小于x =1+n 时的函数值,其中正确的结论个数是( )A .1B .2C .3D .49.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0),对称轴为直线x =﹣1,结合图象给出下列结论:①a +b +c =0;②a ﹣2b +c <0;③关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1;④若点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,则y 1<y 2<y 3;⑤a ﹣b <m (am +b )(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个 10.如图1,在菱形ABCD 中,060=∠A ,动点P 从点A 出发,沿折线CB DC AD →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB ∆的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ) A.3 B.32 C. 33 D. 34二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知二次函数2y x bx c =++的图象经过()1,1与()2,3两点,则这个二次函数的表达式为__________12.已知抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线13.将抛物线y =x 2﹣2x +3向左平移2个单位长度,所得抛物线为14.已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为____________15.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当10≤x ≤20时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额﹣总成本).16.抛物线y =ax 2+bx +c 的部分图象如图所示,对称轴为直线x =﹣1,直线y =kx +c 与抛物线都经过点(﹣3,0).下列说法:①ab >0;②4a +c >0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x有最大值.其中正确的是___________________(填序号)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)已知二次函数y=x2﹣4x+c(c是常数)的图象与x轴只有一个交点,求c的值及这个交点的坐标.18(本题8分)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.19.(本题8分)已知二次函数y=ax2+bx﹣6(a≠0)的图象经过点A(4,﹣6),与y轴交于点B,顶点为C(m,n).(1)求点B的坐标;(2)求证:4a+b=0;(3)当a>0时,判断n+6<0是否成立?并说明理由.20(本题10分)已知函数y=-x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值;(2)当﹣4≤x≤0时,求y的最大值;(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.21.(本题10分)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.22(本题12分)如图,已知抛物线()()a x x ay +-=21 ()0>a 与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值;(2)在(1)的条件下,解答下列问题;①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH +EH 的值最小,直接写出点H 的坐标.23(本题12分).如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线与x轴交于A 、B 两点,与y 轴交于C 点,其中A (1,0),C (0,3).(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)点Q 为BC 上一动点,过Q 作x 轴垂线交抛物线于点P (点P 在第二象限),求线段PQ 长度最大值.参考答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵函数221m m y mx --=是关于x 的二次函数,∴2212m m --=,且0m ≠,由2212m m --=得,3m =或1m =-,∴m 的值是3或-1,故选择:D .2.答案:A解析:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π,∴圆环面积216y x ππ=-.故选择:A .3.答案:A 解析:根据题意得48145a c a c -+=-⎧⎨++=⎩, 解得:21a c =⎧⎨=-⎩, ∴抛物线解析式为y =2x 2+4x ﹣1.故选择:A .4.答案:D解析:由二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是()()2133242522--=+-+-=x x y ; 故选择:D.5.答案:B 解析:∵图象的对称轴为直线01,122<-=-=---=a x , ∴在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小,∵图象上有两点A (1,y 1),B (2,y 2),-1<1<2,∴y1>y2,故选择:B.6.答案:D解析:∵抛物线y=(x−1)2−2,a>0∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x−1)2−2上,点A在点B左侧,∴a<b若c<0,则c<a<b,故A、B均不符合题意;若c>0,则a<b<c,故C不符合题意,D符合题意;故选择:D.7.答案:D解析:A、两个函数的开口方向都向上,那么a>0,b>0,可得第一个函数的对称轴是y轴,与y轴交于正半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;B、两个函数的开口方向都向下,那么a<0,b<0,可得第一个函数的对称轴是y轴,与y轴交于负半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;C、D、两个函数一个开口向上,一个开口向下,那么a,b同号,可得第二个函数的对称轴在y轴的右侧,故C错误,D正确,故选择:D.8.答案:C解析:∵抛物线开口向下,∴a<0,∵抛物线交y轴的正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误;∵抛物线的对称轴为直线x=1,而点(3,0)关于直线x=1的对称点的坐标为(﹣1,0),∴a ﹣b +c =0,故③正确;∵抛物线开口向下,对称轴为直线x =1,∴横坐标是1﹣m 的点的对称点的横坐标为1+m ,∵若m >n >0,∴1+m >1+n ,∴x =1﹣m 时的函数值小于x =1+n 时的函数值,故④正确.故选择:C .9.答案:C解析:①∵二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0), ∴a +b +c =0,故①正确; ②∵抛物线的对称轴为直线12-=-=a b x , ∴b =2a ,∵抛物线开口向上,与y 轴交于负半轴,∴a >0,c <0,∴a ﹣2b +c =c ﹣3a <0,故②正确;③由对称得:抛物线与x 轴的另一交点为(﹣3,0),∴关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1,故③正确;④∵对称轴为直线x =﹣1,且开口向上,∴离对称轴越近,y 值越小,∵|﹣4+1|=3,||﹣2+1|=1,|3+1|=4,∵点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,∴y 2<y 1<y 3,故④不正确;⑤∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤am 2+bm +c (m 为任意实数),∴a ﹣b ≤m (am +b ),故⑤不正确.所以正确的结论有①②③,共3个.故选择:C .10.答案:B解析:在菱形ABCD 中,060=∠A ,∴△ABD 为等边三角形,设a AB =,由图2可知,△ABD 的面积为33, ∴33432==∆a S ABD , 解得:32=a故选择:B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:21y x x =-- 解析:把(1,1)与(2,3)分别代入y =x 2+bx +c 得11423b c b c ++=⎧⎨++=⎩,解得11b c =-⎧⎨=⎩; 所以二次函数的解析式为21y x x =--;12.答案:2=x解析:∵抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,∴对称轴为2251=+-=x , 故答案为:x =2.13.答案:()212++=x y 解析:将抛物线y =x 2﹣2x +3=(x ﹣1)2+2向左平移2个单位长度得到解析式:y =(x +1)2+2, 故答案为:y =(x +1)2+2.14.答案:4解析:∵二次函数y =2x 2﹣4x ﹣1=2(x ﹣1)2﹣3,∴抛物线的对称轴为x =1,顶点(1,﹣3),∴当y =﹣3时,x =1,当y =15时,2(x ﹣1)2﹣3=15,解得x =4或x =﹣2,∵当0≤x ≤a 时,y 的最大值为15,∴a =4,15.答案:121解析:当10≤x ≤20时,设y =kx +b ,把(10,20),(20,10)代入可得: ⎩⎨⎧=+=+10202010b k b k 解得⎩⎨⎧=-=301b k , ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =﹣x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x ﹣8)y =(x ﹣8)(﹣x +30)=﹣x 2+38x ﹣240=﹣(x ﹣19)2+121,∵﹣1<0,∴当x =19时,w 有最大值为121,故答案为:121.16.答案:①④,解析:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1, ∴12-=-ab , ∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a +c =a <0,∴②的结论不正确;∵抛物线的对称轴为直线x =﹣∴点(﹣2,y 1)关于直线x =﹣1对称的对称点为(0,y 1), ∵a <0,∴当x >﹣1时,y 随x 的增大而减小. ∵21>0>﹣1, ∴y 1>y 2.∴③的结论不正确;∵抛物线的对称轴为直线x =﹣1,抛物线经过点(﹣3,0), ∴抛物线一定经过点(1,0),∴抛物线y =ax 2+bx +c 与x 轴的交点的横坐标为﹣3,1, ∴方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1,∴④的结论正确;∵直线y =kx +c 经过点(﹣3,0),∴﹣3k +c =0,∴c =3k .∵3a +c =0,∴c =﹣3a ,∴3k =﹣3a ,∴k =﹣a .∴函数y =ax 2+(b ﹣k )x=ax 2+(2a +a )x =ax 2+3ax =2216923a x a +⎪⎭⎫ ⎝⎛+, ∵a <0,∴当x =﹣23时,函数y =ax 2+(b ﹣k )x 有最大值, ∴⑤的结论不正确.综上,结论正确的有:①④,三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.解析:∵二次函数c x x y +-=42的图象与x 轴只有一个交点,∴方程042=+-c x x 只有一个实数根,∴()044422=--=-=∆c ac b , 4=∴c ,∴0442=+-x x ,解得2=x ,∴二次函数c x x y +-=42的图象与x 轴的交点坐标为(2,0).18.解析:(1)由题意,得y 1=2(x-1)(x-2). 图象的对称轴是直线23=x (2)由题意,得y 1=2x 2-4hx+2h 2-2,∴b+c=2h 2-4h-2,=2(h-1)2-4,∴当h=1时,b+c 的最小值是-4.(3)解:由题意,得y=y 1-y 2=2(x-m)(x-m-2)-(x-m)=(x-m)[2(x-m)-5],∵函数y 的图象经过点(x 0,0),∴(x 0-m)[2(x 0-m)-5]=0,∴x 0-m=0,或x 0-m =25.19.解析:(1)∵x =0时,y =﹣6∴点B 坐标为(0,﹣6)(2)证明:∵二次函数的图象经过点A (4,﹣6)∴16a +4b ﹣6=﹣6∴4a +b =0(3)当a >0时,n +6<0成立,理由如下: ∵a b a b a n 4642422--=--= ∴ab n 462-=+ ∵a >0,4a +b =0即b ≠0∴b 2>0 ∴042<-ab ∴n +6<0成立20.解析:(1)把(0,-3),(-6,-3)代入c bx x y ++-=2,得b =-6,c=-3(2)∵()633622++-=---=x x x y , 又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)①当-3<m ≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为,∴ +(-3)=2, ∴m =-2或m =-4(舍去).②当m ≤-3时,当x =-3时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴ =-4,∴m =103--或m =103+-(舍去).综上所述,m =-2或 103-- .21.解析:(1)∵ y=a(x+1)2-4(a ≠0)经过点A(1,0),∴0=a ·22-4,∴a=1,∴y=(x+1)2-4.(2)解:∵将L 1的图象向上平移了m 个单位得到L 2 ,∴设L 2的解析式为y=(x+1)2-4+m ,∴顶点坐标为(-1,m-4),∵L 2的顶点关于原点O 的对称点在L 1的图象上,∴(1,4-m )在L 1的图象上,∴4-m=(1+1)2-4,∴m=4.(3)解: ∵抛物线L 1的图象向右平移了n 个单位得到L 3,∴设L 3的解析式为y=(x+1-n )2-4,∴抛物线开口向上,对称轴为x=n-1,∵B (1,y 1),C (3,y 2)都在抛物线L 3上,且y 1>y 2,∴B 、C 两点的中点坐标在对称轴的左侧,∴(1+3)÷2<n-1,∴n >3.22.解析:(1)将M (﹣2,﹣2)代入抛物线解析式得:()()a a +---=-22212, 解得:a =4;(2)①由(1)抛物线解析式()()4241+-=x x y , 当y =0时,得:()()42410+-=x x , 解得:x 1=2,x 2=﹣4,∵点B 在点C 的左侧,∴B (﹣4,0),C (2,0),当x =0时,得:y =﹣2,即E (0,﹣2), ∴62621=⨯⨯=∆BCE S ; ②由抛物线解析式()()4241+-=x x y ,得对称轴为直线x =﹣1, 根据C 与B 关于抛物线对称轴直线x =﹣1对称,连接BE ,与对称轴交于点H ,即为所求, 设直线BE 解析式为y =kx +b ,将B (﹣4,0)与E (0,﹣2)代入得:⎩⎨⎧-==+-204b b k ,解得:⎪⎩⎪⎨⎧-=-=221b k∴直线BE 解析式为221--=x y , 将x =﹣1代入得:23221-=-=y 则H (﹣1,23-).23.解析:(1)依题意得: ⎪⎪⎩⎪⎪⎨⎧==++-=-3012c c b a a b ,解得:⎪⎩⎪⎨⎧=-=-=321c b a ,∴抛物线解析式为y =﹣x 2﹣2x +3,∵对称轴为直线x =﹣1,且抛物线经过A (1,0),∴把B (﹣3,0)、C (0,3)分别代入直线y =mx +n , 得⎩⎨⎧==+-303n n m , 解得:⎩⎨⎧==31n m , ∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小. 把x =﹣1代入直线y =x +3得,y =2,∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)设Q (a ,a +3),此时P (a ,﹣a 2﹣2a +3),∴PQ =﹣a 2﹣2a +3﹣(a +3)=﹣a 2﹣3a =﹣(a +23)2+49. ∴该抛物线顶点坐标是(﹣23,49),且开口向下, ∴当a =﹣23时,PQ 取最大值49.。
九年级上册数学《二次函数》单元综合检测(附答案)
人教版数学九年级上学期《二次函数》单元测试[考试时间:90分钟分数:100分]班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.下列函数是二次函数的是( )A .y=x+B .y=3(x﹣1)2C .y=A x2+B x+C D.y=+3x 2.若点M在抛物线y=(x+3)2﹣4的对称轴上,则点M的坐标可能是( )A .(3,﹣4)B .(﹣3,0)C .(3,0)D .(0,﹣4) 3.二次函数y=2(x﹣3)2+2图象向左平移6个单位,再向下平移2个单位后,所得图象的函数表达式是( )A .y=2x2﹣12xB .y=﹣2x2+6x+12C .y=2x2+12x+18D .y=﹣2x2﹣6x+184.在同一直角坐标系中,函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )A .B .C .D .5.关于x的函数y=A x2+(2A +1)x+A ﹣1与坐标轴有两个交点,则A 的取值有( )A .1个B .2个C .3个D .4个6.二次函数y=A x2+B x+C (A ≠0,A 、B 、C 为常数)中,函数y与自变量x的部分对应值如下表,则方程A x2+B x+C =0的一个解的范围是( )x 3.17 3.18 3.19y﹣0.03 ﹣0.01 0.02A .﹣0.03<x<﹣0.01B .3.18<x<3.19C .﹣0.01<x<0.02D .3.17<x<3.187.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是y=x2+6x(0≤x≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是( )A .1米B .2米C .5米D .6米8.把抛物线y=x2﹣2x+4向左平移2个单位,再向下平移6个单位,所得抛物线的顶点坐标是( )A .(3,﹣3)B .(3,9)C .(﹣1,﹣3)D .(﹣1,9)9.如图,已知二次函数y=A x2+B x+C 的图象与x轴相交于A (﹣2,0)、B (1,0)两点.则以下结论:①A C >0;②二次函数y=A x2+B x+C 的图象的对称轴为x=﹣1;③2A +C =0;④A ﹣B +C >0.其中正确的有( )个.A .0B .1C .2D .310.已知二次函数y=x2﹣2B x+2B 2﹣4C (其中x是自变量)的图象经过不同两点A (1﹣B ,m),B (2B +C ,m),且该二次函数的图象与x轴有公共点,则B +C 的值为( )A .﹣1B .2C .3D .4二.填空题(每题4分,共20分)11.若二次函数y=x2+mx+3的图象关于直线x=1对称,则m的值为.12.已知抛物线的顶点为(,﹣),与x轴交于A ,B 两点,在x轴下方与x轴距离为4的点M在抛物线上,且S△A MB =10,则点M的坐标为.13.已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为A ,最小值为B ,则A ﹣B 的值为.14.若直线y=2x+t与函数y=x2﹣2|x﹣1|﹣1的图象有且只有两个公共点时,则t的取值范围是.15.二次函数y=A x2+B x+C (A 、B 、C 为常数,A ≠0)中的x与y的部分对应值如表:x﹣1 0 3y n﹣3 ﹣3当n>0时,下列结论中一定正确的是.(填序号即可)①B C >0;②当x>2时,y的值随x值的增大而增大;③n>4A ;④当n=1时,关于x 的一元二次方程A x2+(B +1)x+C =0的解是x1=﹣1,x2=3.三.解答题(每题10分,共50分)16.如图,在平面直角坐标系xOy中,抛物线y=x2+B x+C 与x轴交于A 、B 两点,与y轴交于点C ,对称轴为直线x=2,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A 重合),连接PC .当∠PC B =∠A C B 时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D ,点P的对应点为点Q,当OD ⊥D Q时,求抛物线平移的距离.17.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A (2,0)和抛物线E上的点B (﹣1,n),请完成下列任务:(1)当t=2时,抛物线E的顶点坐标是;(2)判断点A 是否在抛物线E上;(3)求n的值.(4)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是.(5)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.(6)以A B 为一边作矩形A B C D ,使得其中一个顶点落在y轴上,若抛物线E经过点A 、B 、C 、D 中的三点,求出所有符合条件的t的值.18.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件) 11 19日销售量y(件) 18 2请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?19.某班“数学兴趣小组”对函数y=﹣x2+3|x|+4的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…﹣6 0 4 6 6 4 6 6 4 0 m…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)直线y=kx+B 经过(,),若关于x的方程﹣x2+3|x|+4=kx+B 有4个不相等的实数根,则B 的取值范围为.20.如图,已知抛物线y=A x2+B x+C (A ≠0)的对称轴为直线x=﹣1,抛物线经过A (1,0),C(0,3)两点,与x轴交于A 、B 两点.(1)若直线y=mx+n经过B 、C 两点,求直线B C 和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A 的距离与到点C 的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△B PC 为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).答案与解析一.选择题1.解:A 、y=x+是一次函数,此选项错误;B 、y=3(x﹣1)2是二次函数,此选项正确;C 、y=A x2+B x+C 不是二次函数,此选项错误;D 、y=+3x不是二次函数,此选项错误;故选:B .2.解:∵y=(x+3)2﹣4,∴抛物线对称轴为x=﹣3,∵点M在抛物线对称轴上,∴点M的横坐标为﹣3,故选:B .3.解:二次函数y=2(x﹣3)2+2图象向左平移6个单位,再向下平移2个单位后,所得图象的函数表达式是:y=2(x﹣3+6)2+2﹣2,即y=2x2+12x+18.故选:C .4.解:A 、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A 选项错误;B 、由函数y=mx+m的图象可知m<0,对称轴为x=﹣=﹣=<0,则对称轴应在y轴左侧,与图象不符,故B 选项错误;C 、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C 选项错误;D 、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=﹣=<0,则对称轴应在y轴左侧,与图象相符,故D 选项正确;故选:D .5.解:∵关于x的函数y=A x2+(2A +1)x+A ﹣1的图象与坐标轴有两个交点, ∴可分如下三种情况:①当函数为一次函数时,有A =0,∴A =0,此时y=x﹣1,与坐标轴有两个交点;②当函数为二次函数时(A ≠0),与x轴有一个交点,与y轴有一个交点,∵函数与x轴有一个交点,∴△=0,∴(2A +1)2﹣4A (A ﹣1)=0,解得A =﹣;③函数为二次函数时(A ≠0),与x轴有两个交点,与y轴的交点和x轴上的一个交点重合,即图象经过原点,∴A ﹣1=0,∴A =1.当A =1,此时y=x2+3x,与坐标轴有两个交点.综上所述,A 的取值为0,﹣,1,故选:C .6.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围为:3.18<x<3.19,故选:B .7.解:方法一:根据题意,得y=x2+6x(0≤x≤4),=﹣(x﹣2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x==2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B .8.解:∵抛物线y=x2﹣2x+4=(x﹣1)2+3,∴顶点坐标为(1,3),∴把点(1,3)向左平移2个单位,再向下平移6个单位得到(﹣1,﹣3).故选:C .9.解:对于①:二次函数开口向下,故A <0,与y轴的交点在y的正半轴,故C >0,故A C <0,因此①错误;对于②:二次函数的图象与x轴相交于A (﹣2,0)、B (1,0),由对称性可知,其对称轴为:,因此②错误;对于③:设二次函数y=A x2+B x+C 的交点式为y=A (x+2)(x﹣1)=A x2+A x﹣2A ,比较一般式与交点式的系数可知:B =A ,C =﹣2A ,故2A +C =0,因此③正确;对于④:当x=﹣1时对应的y=A ﹣B +C ,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故A ﹣B +C >0,因此④正确.∴只有③④是正确的.故选:C .10.解:由二次函数y=x2﹣2B x+2B 2﹣4C 的图象与x轴有公共点,∴(﹣2B )2﹣4×1×(2B 2﹣4C )≥0,即B 2﹣4C ≤0 ①,由抛物线的对称轴x=﹣=B ,抛物线经过不同两点A (1﹣B ,m),B (2B +C ,m),B =,即,C =B ﹣1 ②,②代入①得,B 2﹣4(B ﹣1)≤0,即(B ﹣2)2≤0,因此B =2,C =B ﹣1=2﹣1=1,∴B +C =2+1=3,故选:C .二.填空题(共5小题)11.解:∵二次函数y=x2+mx+3的图象关于直线x=1对称,∴对称轴为:x=﹣=1,解得:m=﹣2,故答案为:﹣2.12.解:抛物线的顶点为(,﹣),因此设抛物线的关系式为y=A (x﹣)2﹣, 点M到x轴的距离为4,即△A B M底边A B 上的高为4,∵S△A MB =10,∴ A B ×4=10,∴A B =5,又∵抛物线的对称轴为x=,∴抛物线与x轴的两个交点坐标为(﹣2,0)(3,0),把(3,0)代入得,0=A (3﹣)2﹣,解得,A =1,∴抛物线的关系式为y=(x﹣)2﹣,当y=﹣4时,即(x﹣)2﹣=﹣4,解得,x1=2,x2=﹣1,∴点M(2,﹣4)或(﹣1,﹣4).13.解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为A ,最小值为B ,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴A =1+4+3=8,B =﹣1,∴A ﹣B =8﹣(﹣1)=8+1=9,故答案为:9.14.解:由函数y=x2﹣2|x﹣1|﹣1可知y=,画出函数的图象如图:由图象可知函数的最低点为(﹣1,﹣4),把(﹣1,﹣4)代入y=2x+t解得t=﹣2,若直线y=2x+t与函数y=x2﹣2x+1有一个交点时,x2﹣4x+1﹣t=0,则△=16﹣4(1﹣t)=0,解得t=﹣3,若直线y=2x+t与函数y=x2+2x﹣3有一个交点时,x2﹣3﹣t=0,则△=4(3+t)=0,解得t=﹣3,由图象可知:直线y=2x+t与函数y=x2﹣2|x﹣1|﹣1的图象有且只有两个公共点时t 的取值范围是t>﹣2或t=﹣3.故答案为t>﹣2或t=﹣3.15.解:①函数的对称轴为直线x=(0+3)=,即=﹣,则B =﹣3A ,∵n>0,故在对称轴的左侧,y随x的增大而减小,故抛物线开口向上,则A >0,对称轴在y轴的右侧,故B <0,而C =﹣3,故B C >0正确,符合题意;②x=2在函数对称轴的右侧,故y的值随x值的增大而增大,故②正确,符合题意;③当x=﹣1时,n=y=A ﹣B +C =4A ﹣3<4A ,故③错误,不符合题意;④当n=1时,即:x=﹣1时,y=1,A x2+(B +1)x+C =0可以变形为A x2+B x+C =﹣x,即探讨一次函数y=﹣x与二次函数为y=A x2+B x+C 图象情况,当x=1,y=﹣1,即(1,﹣1)是上述两个图象的交点,根据函数的对称性,另外一个交点的横坐标为:×2=3,则该交点为(3,﹣3),故两个函数交点的横坐标为﹣1、3,即关于x的一元二次方程A x2+(B +1)x+C =0的解是x1=﹣1,x2=3,正确,符合题意, 故答案为:①②④.三.解答题(共5小题)16.解:(1)∵对称轴为直线x=2,点A 的坐标为(1,0),∴点B 的坐标是(3,0).将A (1,0),B (3,0)分别代入y=x2+B x+C ,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P作PN⊥x轴于N,过点C 作C M⊥PN,交NP的延长线于点M,∵∠C ON=90°,∴四边形C ONM是矩形.∴∠C MN=90°,C O=MN、∴y=x2﹣4x+3,∴C (0,3).∵B (3,0),∴OB =OC =3.∵∠C OB =90°,∴∠OC B =∠B C M=45°.又∵∠A C B =∠PC B ,∴∠OC B ﹣∠A C B =∠B C M﹣∠PC B ,即∠OC A =∠PC M.∴tA n∠OC A =tA n∠PC M.∴=.故设PM=A ,MC =3A ,PN=3﹣A .∴P(3A ,3﹣A ),将其代入抛物线解析式y=x2﹣4x+3,得(3A )2﹣4(3﹣A )+3=3﹣A .解得A 1=,A 2=0(舍去).∴P(,).(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.∴D (2,﹣1﹣m).如图2,过点D 作直线EF∥x轴,交y轴于点E,交PQ延长线于点F,∵∠OED =∠QFD =∠OD Q=90°,∴∠EOD +∠OD E=90°,∠OD E+∠QD P=90°.∴∠EOD =∠QD F.∴tA n∠EOD =tA n∠QD F,∴=.∴=.解得m=.故抛物线平移的距离为.17.解:(1)将t=2代入抛物线E中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2).故答案为:(1,﹣2);(2)将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A (2,0)在抛物线E上.(3)将x=﹣1代入抛物线E的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.(4)将抛物线E的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4∴抛物线E必过定点(2,0)、(﹣1,6).故答案为:A (2,0)、B (﹣1,6);(5)将x=2代入y=﹣3x2+5x+2,y=0,即点A 在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6,即可得抛物线y=﹣3x2+5x+2不经过点B ,二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.(6)如图,作矩形A B C 1D 1和矩形A B C 2D 2,过点B 作B K⊥y轴于K,过点D 1作D 1G ⊥x轴于G,过点C 2作C 2H⊥y轴于H,过点B 作B M⊥x轴于M,C 2H与B M交于点T.∵∠A MB =∠B KC 1,∠KB C 1=∠A B M,∴△KB C 1∽△MB A ,∴=,∵A M=3,B M=6,B N=1,∴=,∴C 1K=,∴点C 1(0,).∵B C 1=A D 1,∠A GD 1=∠B KC 1=90°,∠GA D 1=∠KB C 1, ∴△KB C 1≌△GA D 1(A A S),∴A G=1,GD 1=,∴点D 1(3,).同理△OA D 2∽△GA D 1,∴=,∵A G=1,OA =2,GD 1=,∴OD 2=1,∴点D 2(0,﹣1).同理△TB C 2≌△OD 2A ,∴TC 2=A O=2,B T=OD 2=1,∴点C 2(﹣3,5).∵抛物线E总过定点A (2,0)、B (﹣1,6),∴符合条件的三点可能是A 、B 、C 或A 、B 、D .当抛物线E经过A 、B 、C 1时,将C 1(0,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4), 解得t1=﹣;当抛物线经过A 、B 、D 1时,将D 1(3,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t=,当抛物线经过A 、B 、C 2时,将C 2(﹣3,5)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t =﹣,当抛物线经过A 、B 、D 2时,将D 2(0,﹣1)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t =,∴满足条件的所有t的值为:﹣,,﹣,.18.解:(1)设甲、乙两种商品的进货单价分别是A 、B 元/件,由题意得:,解得:.∴甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+B 1,将(11,18),(19,2)代入得:,解得:.∴y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).(3)由题意得:w=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400=﹣2(x﹣15)2+50(11≤x≤19).∴当x=15时,w取得最大值50.∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.19.解:(1)把x=5代入函数y=﹣x2+3|x|+4中,得y=﹣25+15+4=﹣6,∴m=﹣6,故答案为:﹣6;(2)连线得,(3)由函数图象可知①该函数的图象关于y轴对称:②该函数的图象有最高点:(答案不唯一)(4)∵直线y=kx+B 经过(,),∴,∴k=∵关于x的方程﹣x2+3|x|+4=kx+B 有4个不相等的实数根,∴x2﹣3x﹣4+kx+B =0和方程x2+3x﹣4+kx+B =0各有两个不相等的实数根,即方程x2﹣(3﹣)x﹣4+B =和0x2+(3+)x﹣4+B =0各有两个不相等的实数根,∴,解得B ≠,且B >或B <,∴B 的取值范围为B >或B <.故答案为:B >或B <.20.解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A (1,0),∴把B (﹣3,0)、C (0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线B C 与对称轴x=﹣1的交点为M,则此时MA +MC 的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A 的距离与到点C 的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B (﹣3,0),C (0,3),∴B C 2=18,PB 2=(﹣1+3)2+t2=4+t2,PC 2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B 为直角顶点,则B C 2+PB 2=PC 2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C 为直角顶点,则B C 2+PC 2=PB 2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB 2+PC 2=B C 2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,).。
2019-2020年浙教版九年级上第1章二次函数综合测评卷(含答案)
第1章综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C ). A.x 2+2y 2=2 B.x=y 2C.3x 2-2y=1 D.21x +2y-3=0 2.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C ). A.开口向下 B.对称轴是直线x=-1 C.顶点坐标是(1,3) D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C ).A.16m 2B.12m 2C.18m 2D.以上都不对 4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C ). A.0 B.1 C.2 D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D ). A.abc >0 B.b <a+c C.a+b+c <0 D.c <2b(第5题) (第6题) (第7题) (第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A′,则AA′的长度为(A ). A.343 B.241C.32D.3 8.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m 9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为(D ). A.m=21n B.m=41n C.m=21n 2D.m=41n 2 10.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为(D ). A.25 B.2 C. 23 D. 21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5, 解得n=2或n=-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=25,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m<0,∴此种情形不合题意.∴m+n=-2+25=21.故选D. 二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是 y=3(x+2)2+3 (只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为 0 .(第12题)(第13题) (第14题) (第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是 (-2,0) .14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为 y=-34x 2+38x+1 . 15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为 y=60+x .16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是 2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25). (1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小? 【答案】(1)设抛物线的函数表达式为y=a (x-2)2-3,把(1,- 25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略. (2)∵抛物线对称轴为直线x=2,且a>0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标. (2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x -21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8). (2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点, (1)求A ,B 两点的坐标. (2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A,B 两点的坐标分别为(0,3),(1,4).(2)∵A,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23. (3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min. 21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A. (1)当a=21时,求点A 的坐标. (2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b<0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0). (2)∵b 2=2a ,∴a=21b 2,∴y=21b 2x 2+bx+21=21 (bx+1)2.当y=0时,x=-b 1,∴A (-b1,0).将点A (-b 1,0)代入y=x+k ,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m=22b b -.∴m=22bb-=2(21b -b21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b 1的增大而减小.∵-1≤b<0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3. 22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值. 【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x -y+1)=0.当x 2+2x=0,x -y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m ≤-1.23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H . 【特例探究】(1)当m=0时,OP= 1 ,PH= 1 ;当m=4时,OP= 5 ,PH= 5 . 【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想. 【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程. ②求m 的值及点N 的坐标.(第23题)【答案】 (1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q ∵P 在y=41x 2-1上,∴P (m ,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH. (3)①∵M (2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m=-45. ∵GN=2+m=2-45=43,∴N (2,-43).。
【浙教版】九年级数学上册 第一章 二次函数整章水平测试(含答案)
第一章二次函数整章水平测试(A)一.精心选一选(每题3分,共30分)1.已知点(a,8)在二次函数y=a x2的图象上,则a的值是()A.2B.-2C.±2D.±22.抛物线y=x2+2x-2的图象最高点的坐标是()A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)3.若y=(2-m)23mx-是二次函数,且开口向上,则m的值为( )A.5± B.-5 C.5 D.04.二次函数的图象如图所示,则下列结论正确的是()A.B.C.D.5.如果二次函数(a>0)的顶点在x轴上方,那么()A.b2-4ac≥0B.b2-4ac<0C.b2-4ac>0D.b2-4ac=06.已知二次函数y=-12x2-3x-52,设自变量的值分别为x1,x2,x3,且-3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是( )A.y1>y2>y3B.y1<y2<y3;C.y2>y3>y1D.y2<y3<y17.关于二次函数y=x2+4x-7的最大(小)值,叙述正确的是( )A.当x=2时,函数有最大值B.x =2时,函数有最小值C.当x =-1时,函数有最大值D.当x =-2时,函数有最小值8.二次函数的图象向右平移3个单位,得到新图象的函数表达式是( )A. B. C. D.9.老师出示了如图小黑板上的题后,小华说过点(3,0);小彬说过点(4,3);小明说;小颖说抛物线被x 轴截得的线段长为2。
你认为四个人的说法中正确的有( )。
A. 1个 B. 2个 C. 3个 D. 4个10.设二次函数11212())0(()y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,若函数21y y y =+的图象与x 轴仅有一个交点,则( )A.12()a x x d -= B.21()a x x d -= C.212()a x x d -= D.()212a x x d +=二.细心填一填(每题3分,共30分) 11.抛物线的顶点坐标为__________。
数学浙教版九年级上册第1章 二次函数 单元检测题(解析版)
数学浙教版九年级上册第1章二次函数单元检测题(解析版)一、选择题〔本大题共10小题,每题3分,共30分〕1.假定y=〔k+2〕是二次函数,且当x>0时,y随的增大而增大.那么k=〔〕A. ﹣3B. 2C. ﹣3或2D. 32. 将抛物线y=2x2如何平移可失掉抛物线y=2〔x﹣4〕2﹣1〔〕A.向左平移4个单位,再向上平移1个单位B.向左平移4个单位,再向下平移1个单位C.向右平移4个单位,再向上平移1个单位D.向右平移4个单位,再向下平移1个单位3. 抛物线y=ax2+bx+c〔a≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔〕A.a<0B.b>0C.a+b+c=0D.4a﹣2b+c>04. 点〔﹣2,y1〕,〔﹣5.4,y2〕,〔1.5,y3〕在抛物线y=2x2﹣8x+m2的图象上,那么y1,y2,y3大小关系是〔〕A.y2>y1>y3B.y2>y3>y1C.y1>y2>y3D.y3>y2>y15.假定二次函数的解析式为y=2x2﹣4x+3,那么其函数图象与x轴交点的状况是〔〕A. 没有交点B. 有一个交点C. 有两个交点D. 以上都不对6.二次函数y=ax2+bx+c,且a<0,a﹣b+c>0,那么一定有〔〕A.b2﹣4ac>0B.b2﹣4ac=0C.b2﹣4ac<0D.b2﹣4ac≤07.由于被墨水污染,一道数学题仅能见到如下文字:二次函数y=ax2+bx+c的图象过点〔1,0〕…求证:这个二次函数的图象关于直线x=2对称.依据现有信息,题中的二次函数不一定具有的性质是〔〕A. 过点〔3,0〕B. 顶点是〔﹣2,﹣2〕C. 在x轴上截得的线段的长度是2D. c=3a8.林书豪身高1.91m,在某次投篮中,球的运动路途是抛物线y= x2+3.5的一局部〔如图〕,假定命中篮圈中心,那么他与篮底的距离约为〔〕A.3.2mB.4mC.4.5mD.4.6m9. 函数,假定使y=k成立的x值恰恰有三个,那么k的值为〔〕A.0B.1C.2D.310. 如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为〔4,0〕,∠AOC=60°,垂直于x轴的直线l从y轴动身,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC 的两边区分交于点M,N〔点M在点N的上方〕,假定△OMN的面积为S,直线l的运动时间为t 秒〔0≤t≤4〕,那么能大致反映S与t的函数关系的图象是〔〕A. B.C. D.二、填空题〔本大题共6小题,每题3分,共18分〕11.抛物线y=﹣2x2+6x﹣1的顶点坐标为________ 。
BBS挑战100浙教版数学九上二次函数及图像练习及答案
BBS挑战100浙教版数学九上二次函数及图像练习及答案二次函数及图像练习一、选择题:1、[2014·兰州]抛物线3)1(2--=x y 的对称轴是()A 、y 轴B 直线1-=xC 、直线1=xD 、直线3-=x2、已知x 是实数,且满足01)2)(2(=---x x x ,则相应的二次函数12++=x x y 的值为()A 、13或3B 、7或3C 、3D 、13或7或33、抛物线432+--=x x y 与坐标轴的交点个数是()A 、3B 、2C 、1D 、04、将抛物线342+-=x x y 平移,使它平移后的顶点为(﹣2,4),则需将该抛物线()A 、先向右平移4个单位,再向上平移5个单位B 、先向右平移4个单位,再向下平移5个单位C 、先向左平移4个单位,再向上平移5个单位D 、先向左平移4个单位,再向下平移5个单位5、抛物线32-+=bx ax y 经过点(2,4),则代数式8a +4b +1的值为()A 、3B 、9C 、15D 、—156、[2014·遵义]已知抛物线bx ax y +=2和直线b ax y +=在同一坐标系内的图象如图,其中正确的是() A B C D 7、如图,平面直角坐标系内二次函数12+=x y 的图象通过A ,B 两点,且坐标分别为(a ,429),(b ,429),则AB 的长度为() A 、5 B 、425 C 、229 D 、229 8、某市举办了苏迪曼杯羽毛球混合团体锦标赛,在比赛中,某次羽毛球的运动线路可以看做是抛物线c bx x y ++-=24 1的一部分(如图),其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的表达式是()A 、143412++-=x x y B 、143412-+-=x x y C 、143412+--=x x yD 、143412---=x x y 9、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A 、h k n m >=,B 、h k n m <=,C 、h k n m =>,D 、h k n m =<,10、坐标平面上,若移动二次函数6)176)(175(2+--=x x y 的图象,使其与x 轴交于两点,且此两点的距离为1单位,则移动方式可为下列哪一种()A 、向上移动3单位B 、向下移动3单位C 、向上移动6单位D 、向下移动6单位二、填空题11、若函数3)2()4(22+++-=x k x k y 是二次函数,则k12、[2014·天津]抛物线322+-=x x y 的顶点坐标是13、若函数122++=x mx y 的图象与x 轴只有一个公共点,则常数m 的值是 14、抛物线c bx x y ++=2的图象如图所示,则它关于y 轴对称的抛物线表达式是(第14题图)(第15题图)(第16题图)15、已知二次函数c bx ax y ++=2的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m (am +b )(m ≠1的实数),其中正确结论的序号有16、如图,抛物线的顶点为P (—2,2),与y 轴交于点A (0,3),若平移该抛物线使其顶点P 沿直线移动到‘P (2,—2),点A 的对应点为’A ,则抛物线上PA 段扫过的区域(阴影部分)的面积为三、解答题17、已知二次函数c x ax y +-=32,当2-=x 时,函数值是1-;当1=x 时,函数值是4-.求这个二次函数的表达式。
九年级上册数学《二次函数》单元综合测试题附答案
【解析】
【分析】
设每张床位提高x个单位,每天收入为y元,根据等量关系“每天收入=每张床的费用×每天出租的床位”可求出y与x之间的函数关系式,运用公式求最值即可.
【详解】设每张床位提高x个2元,每天收入为y元.根据题意得:
y=(10+2x)(100﹣10x)=﹣20x2+100x+1000.
当x=﹣ =2.5时,可使y有最大值.
1.已知 ,点 , , 都在函数 的图象上,则()
A. B. C. D.
【答案】A
【解析】
【分析】
由a<﹣2即可得出a﹣1<a<a+1<﹣1,再根据在函数y=x2的图象上,当x<0时,y随着x的增大而减小,由此即可得出y1<y2<y3.
【详解】解:∵a<﹣2,∴a﹣1<a<a+1<﹣1.
∵在函数y=x2的图象上,当x<0时,y随着x的增大而减小,∴y1<y2<y3.
(1)求y与x之间 函数关系式(不求自变量的取值范围);
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?
(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?
浙教版九年级数学上第1章二次函数单元测试卷有答案
第1章二次函数班级姓名学号一、选择题(每小题3分,共30分)1.已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a、b的大小关系为()A.a>bB.a<bC.a=bD.不能确定2.二次函数y=x2-8x+c的最小值是0,那么c的值等于()(A)4 (B)8 (C)-4 (D)163.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=(x+2)2+2B.y=(x-2)2-2C.y=(x-2)2+2D.y=(x+2)2-24.一次函数与二次函数在同一坐标系中的图象可能是()5.已知抛物线的顶点坐标是,则和的值分别是()A.2,4B.C.2,D.,06.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()(A)a+c(B)a-c(C)-c(D)c7.对于任意实数,抛物线总经过一个固定的点,这个点是()A.(1, 0)B.(, 0)C.(, 3)D. (1, 3)8.如图2,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为,AE为,则关于的函数图象大致是()图2(A)(B)(C)(D)9.已知M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=-.下列结论中,正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b二、填空题(每小题3分,共30分)11.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“=”或“<”).12.如果二次函数16的图象顶点的横坐标为1,则的值为 .13.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.14.对于二次函数,已知当由1增加到2时,函数值减少3,则常数的值是 .15.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后需滑行 s才能停下来.16.设三点依次分别是抛物线与轴的交点以及与轴的两个交点,则△的面积是 .17.若函数y=a(x-h)2+k的图象经过原点,最小值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.18.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.19.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标是(5,0),(-2,0),则方程ax2+bx+c=0(a≠0)的解是_______.20.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线;乙:与轴两个交点的横坐标都是整数;丙:与轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________.三、解答题(共60分)21.(8分)当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.22.(8分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B的水平距离为600 m,炮弹运行的最大高度为1 200 m.(1)求此抛物线的解析式.(2)若在A、B之间距离A点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.23.(8分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.24.(8分)已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值.25.(8分)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x是多少时,这个三角形面积S最大?最大面积是多少?26.(10分)如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式;(2)已知该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?第1章二次函数检测题参考答案一、选择题1. A 解析:∵二次函数y=a(x+1)2-b(a≠0)有最小值1,∴a>0且x=-1时,-b=1.∴a>0,b=-1.∴a>b.2.C 解析:由函数图象可知,所以.3.B 解析:根据平移规律“左加右减”“上加下减”,将抛物线y=x2-4先向右平移2个单位得y=(x-2)2-4,再向上平移2个单位得y=(x-2)2-4+2=(x-2)2-2.4.C 解析:当时,二次函数图象开口向下,一次函数图象经过第二、四象限,此时C,D符合.又由二次函数图象的对称轴在轴左侧,所以,即,只有C符合.同理可讨论当时的情况.5.B 解析: 抛物线的顶点坐标是(),所以,解得.6.D 解析:由于函数图象开口向下,所以在对称轴左侧随的增大而增大,由对称轴为直线,知的取值范围是.7.D 解析:当时,,故抛物线经过固定点(1,3).8.D 解析:画出抛物线简图可以看出,所以.9. B 解析:∵点M的坐标为(a,b),∴点N的坐标为(-a,b).∵点M在双曲线y=上,∴ab=.∵点N(-a,b)在直线y=x+3上,∴ -a+3=b.∴a+b=3.∴二次函数y=-abx2+(a+b)x=-x2+3x=-(x-3)2+.∴二次函数y=-abx2+(a+b)x有最大值,最大值是.10. D 解析:由图象知a>0,c<0,又对称轴x=-=-<0,∴b>0,∴abc<0.又-=-,∴a=b,a+b ≠0.∵a=b,∴y=ax2+bx+c=bx2+bx+c.由图象知,当x=1时,y=2b+c<0,故选项A,B,C均错误.∵ 2b+c <0,∴ 4a-2b+c<0.∴ 4a+c<2b,D选项正确.二、填空题11. >解析:∵a=1>0,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故由x1>x2>1可得y1>y2.12.13.解析:因为当时,,当时,,所以.14.(5,-2)15. 600 解析:y=60x-1.5x2=-1.5(x-20)2+600,当x=20时,y最大值=600,则该型号飞机着陆时需滑行600 m才能停下来.16.解析:令,令,得,所以,所以△的面积是.17.18.本题答案不唯一,只要符合题意即可,如222218181818113377775555y x x y x x y x x y x x =-+=-+-=-+=-+-或或或 三、解答题 19. 分析:先求出当k 分别取-1,1,2时对应的函数,再根据函数的性质讨论最大值. 解:(1)当k =1时,函数y =-4x +4为一次函数,无最值.(2)当k =2时,函数y =x 2-4x +3为开口向上的二次函数,无最大值.(3)当k =-1时,函数y =-2x 2-4x +6=-2(x +1)2+8为开口向下的二次函数,对称轴为直线x =-1,顶点坐标为(-1,8),所以当x =-1时,y 最大值=8.综上所述,只有当k =-1时,函数y =(k -1)x 2-4x +5-k 有最大值,且最大值为8.点拨:本题考查一次函数和二次函数的基本性质,熟知函数的性质是求最值的关键. 20.解:将整理得. 因为抛物线向左平移2个单位,再向下平移 1个单位得, 所以将向右平移2个单位, 再向上平移1个单位即得,故,所以.示意图如图所示.21.解:(1)建立直角坐标系,设点A 为原点, 则抛物线过点(0,0),(600,0), 从而抛物线的对称轴为直线. 又抛物线的最高点的纵坐标为1 200, 则其顶点坐标为(300,1 200) , 所以设抛物线的解析式为, 将(0,0)代入所设解析式得,所以抛物线的解析式为.(2)将代入解析式,得,所以炮弹能越过障碍物.22.分析:日利润=销售量×每件利润,每件利润为元,销售量为[件,据此得关系式.解:设售价定为元/件.由题意得,,∵,∴当时,有最大值360.答:将售价定为14元/件时,才能使每天所赚的利润最大,最大利润是360元.23. 分析:(1)根据抛物线的对称轴为直线x==1,列方程求t的值,确定二次函数解析式. (2)把x=-3,y=m代入二次函数解析式中求出m的值,再代入y=kx+6中求出k的值.解:(1)由题意可知二次函数图象的对称轴为直线x=1,则-=1,∴t=-.∴y=-x2+x+.(2)∵二次函数图象必经过A点,∴m=-×(-3)2+(-3)+=-6.又一次函数y=kx+6的图象经过A点,∴ -3k+6=-6,∴k=4.24. 分析:(1)由三角形面积公式S=得S与x之间的关系式为S=·x(40-x)=-x2+20x.(2)利用二次函数的性质求三角形面积的最大值.解:(1)S=-x2+20x.(2)方法1:∵a=-<0,∴S有最大值.∴当x=-=-=20时,S有最大值为==200.∴当x为20 cm时,三角形面积最大,最大面积是200 cm2.方法2:∵a=-<0,∴S有最大值.∴当x=-=-=20时,S有最大值为S=-×202+20×20=200.∴当x为20 cm时,三角形面积最大,最大面积是200 cm2..点拨:最值问题往往转化为求二次函数的最值.25. 分析:(1)设抛物线的解析式为y=ax2+b,将(0,11)和(8,8)代入即可求出a,b;(2)令h= 6,解方程(t-19)2+8=6得t1,t2,所以当h≥6时,禁止船只通行的时间为|t2-t1|.解:(1)依题意可得顶点C的坐标为(0,11),设抛物线解析式为y=ax2+11.由抛物线的对称性可得B(8,8),∴ 8=64a+11.解得a=-,抛物线解析式为y=-x2+11.(2)画出h= (t-19)2+8(0≤t≤40)的图象如图所示.当水面到顶点C的距离不大于5米时,h≥6,当h=6时,解得t1=3,t2=35.由图象的变化趋势得,禁止船只通行的时间为|t2-t1|=32(小时).答:禁止船只通行的时间为32小时.点拨:(2)中求出符合题意的h的取值范围是解题的关键,本题考查了二次函数在实际问题中的应用.26.分析:(1)由函数的图象可设抛物线的表达式为,依题意可知图象经过的点的坐标,由此可得的值.进而求出抛物线的表达式.(2)当时,,从而可求得他跳离地面的高度.解:(1)设抛物线的表达式为.由图象可知抛物线过点(0,3.5),(1.5,3.05),所以解得所以抛物线的表达式为.(2)当时,,所以球出手时,他跳离地面的高度是(米).。
浙教版九年级数学上册 第一章 二次函数函数综合能力测试卷B(含答案)
第一章 二次函数综合能力测试卷(B)一、选择题(共10小题,每小题3分,满分30分)1、若二次函数22y ax bx a 2=++-(a ,b 为常数)的图象如图,则a 的值为( )A. 1B.2 C. 2- D. -2(第1题) (第3题)2、抛物线2y ax bx 3=+-经过点(2,4),则代数式8a 4b 1++的值为( ) A 、3 B 、9 C 、15 D 、15-3、二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A 、3-B 、3C 、6-D 、94、如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( ) A 、 x <﹣2B 、﹣2<x <4C 、x >0D 、x >4(第4题) (第6题)5、函数y =与y =﹣kx 2+k (k ≠0)在同一直角坐标系中的图象可能是( )A、B、C、D、6、如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A、b2<4acB、ac>0C、2a﹣b=0D、a﹣b+c=07、已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A、y1+y2>0B、y1﹣y2>0C、a(y1﹣y2)>0D、a(y1+y2)>08、如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2、关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A、①③④B、②④⑤C、①②⑤D、②③⑤(第8题)(第9题) (第10题)9、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A、②④B、①④C、①③D、②③10、如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2、若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2、例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0、下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或、其中正确的是()A、①②B、①④C、②③D、③④二、填空题(共6小题,每小题4分,满分24分)11、已知A(3,y1)、B(4,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:、12、一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是m、13、二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣3m)(其中m>0),顶点为D、该二次函数的解析式.(系数用含m的代数式表示)14、如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+C、则△AOB≌△≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,);15、抛物线y=ax2+bx+c的对称轴是x=﹣1、且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是、(填写正确结论的序号)第15题图第16题图16、如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n=三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D、(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;18、(8分)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16m ,AE =8m ,抛物线的顶点C 到ED 的距离是11m ,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系、(1)求抛物线的解析式;(2)已知从某时刻开始的40h 内,水面与河底ED 的距离h (单位:m )随时间t (单位:h )的变化满足函数关系21h=(t 19)+8(0t 40)128--≤≤且当水面到顶点C 的距离不大于5m 时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?19、(8分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C、抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B、(1)①直接写出点B的坐标;②求抛物线解析式、(2)若点P为直线AC上方的抛物线上的一点,连接P A,P C、求△P AC的面积的最大值,并求出此时点P的坐标、20、(10分)某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元、(1)根据题意,填写如表:蔬菜的批发量(千克)…25 60 75 90 …所付的金额(元)…125 300 …(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?21、(10分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点、抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数)、(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数、22、(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B、已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点、(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由、23、(12分)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8、(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由、参考答案一、选择题(共10小题,每小题3分,满分30分) 1.C; 2.C3、二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A 、3-B 、3C 、6-D 、9 【解答】 解:∵抛物线的开口向上,顶点纵坐标为﹣3,∴a >0,234b a-=-,即212b a =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源于老师来了网数学教师群二次函数综合检测428878328一、选择题(本题有10小题,每小题3分,共30分)1、以下各点中,在二次函数232--=x x y 的图象上的是( )A 、(1,1)B 、(0,2)C 、(2,-4)D 、(-1,3)2、已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3),那么该抛物线有( )A 、最小值-3B 、最大值-3C 、最小值2D 、最大值23、关于x 的二次函数))(1(m x x y -+=其图象的对称轴在y 轴的右侧,则实数m 的取值范围是( )A 、m <-1B 、-1<m <0C 、0<m <1D 、m >14、如图所示,桥拱是抛物线形,其函数的表达式为241x y -=,当水位线在AB 位置时,水面宽12m ,这时水面离桥顶的高度为( )A 、3mB 、62mC 、34mD 、9m5、若把函数y =x 的图象记作E (x ,x ),函数y =2x +1的图象记作E (x ,2x +1),….则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?( )A 、向上平移1个单位B 、向下平移1个单位C 、向左平移1个单位D 、向右平移1个单位6、一名男生推铅球,铅球行进高度y (m )与水平距离x (m )之间的函数关系是35321212++-=x x y .则他将铅球推出的距离是( ) A 、8m B 、9m C 、10m D 、11m 7、若二次函数c bx ax y ++=2的图象与x 轴有两个交点,坐标分别为(1x ,0),(2x ,0),且1x <2x ,图象上有一点M (0x ,0y )在x 轴下方,则下列判断正确的是( )A 、a >0B 、042≥-ac bC 、1x <0x <2xD 、a (0x -1x )(0x -2x )<08、[2014·舟山]当-2≤x ≤1时,二次函数1)(22++--=m m x y 有最大值4,则实数m 的值为( )A 、47-B 、3或3-C 、2或3-D 、2或3或47- 9、如图,已知抛物线1l :562+-=x x y 与x 轴交于A 、B 两点,顶点为M ,将抛物线1l沿x 轴翻折后再向左平移得到抛物线2l .若抛物线2l 过点B ,与x 轴的另一个交点为C ,顶点为N ,则四边形AMCN 的面积为( )A 、32B 、16C 、50D 、4010、设a 、b 是常数,且b >0,抛物线6522--++=a a bx ax y 为下图中四个图象之一,则a 的值为( )A 、6或-1B 、-6或1C 、6D 、-1二、填空题(本题有6小题,每小题4分,共24分)11、二次函数c bx x y -+=2的图象经过点(1,2),则b -c 的值为 .12、二次函数n x x y +-=62的部分图象如图所示,若关于x 的一元二次方程062=+-n x x 的一个解为11=x ,则另一个解=2x .13、将抛物线122-=x y 沿x 轴向右平移3个单位后,与原抛物线交点的坐标为 .(第12题) (第14题) (第16题)14、如图,在平面直角坐标系中,点A 是抛物线k x a y +-=2)3(与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .15、阅读下列材料:当抛物线的表达式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如,由抛物线3222-++-=a a ax x y ,得到3)(2-+-=a a x y ,抛物线的顶点坐标为(a ,a -3),即无论a 取任何实数,该抛物线顶点的纵坐标y 和横坐标x 都满足关系式y =x -3.请根据以上的方法,确定抛物线b bx x y ++=42顶点的纵坐标y 和横坐标x 都满足的关系式为 .16、如图,平行于y 轴的直线l 被抛物线1212+=x y ,1212-=x y 所截.当直线l 向右平移3个单位时,直线l 被两条抛物线所截得的线段扫过的图形面积为 平方单位.三、解答题(本题有8小题,共66分,其中第17,18,19题各6分,第20,21题各8分,第22,23题各10分,第24题12分)17、若抛物线322--=x x y 经过点A (m ,0)和点B (-2,n ),求点A 、B 的坐标.18、已知二次函数32-+=bx ax y 的图象经过点A (2,-3),B (-1,0).(1)求二次函数的表达式;(2)要使该二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移 个单位.19、某农机服务站销售一批柴油,平均每天可售出20桶,每桶盈利40元.为了支援我市抗旱救灾,农机服务站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,农机服务站平均每天可多售出2桶.(1)假设每桶柴油降价x 元,每天销售这种柴油所获利润为y 元,求y 与x 之间的函数关系式;(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?20、已知:抛物线与直线y =x +3分别交于x 轴和y 轴上同一点,交点分别是点A 和点C ,且抛物线的对称轴为直线x =-2.(1)求出抛物线与x 轴的两个交点A 、B 的坐标;(2)试确定抛物线的表达式;(3)观察图象,请直接写出二次函数值小于一次函数值的自变量x 的取值范围.21、如图所示,二次函数m x x y ++-=22的图象与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C .(1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上存在点D (x ,y )(其中x >0,y >0),使得ABC ABD S S △△=,求点D 的坐标.22、在平面直角坐标系x O y 中,抛物线)0(222≠--=m mx mx y 与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的表达式;(3)若该抛物线在-2<x <-1这一段位于直线l 的上方,并且在2<x <3这一段位于直线AB 的下方,求该抛物线的表达式.23、某跳水运动员进行10m 跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,重心在空中的最高处距水面3210m ,入水处与池边的距离为4m ,同时,运动员在距水面高度5m 以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的表达式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为533m ,问:运动员此次跳水会不会失误?请通过计算说明理由.24、如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,AC =BC ,OA =1,OC =4,抛物线c bx x y ++=2经过A 、B 两点,抛物线的顶点为D .(1)求b 、c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下解答下列问题.①求以点E ,B ,F ,D 为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,说明理由.参考答案:1~5:CBDDD 6~10:CDCAD11、1 12、5 13、(23,27) 14、18 15、x x y 212--= 16、6 17、A (3,0)或(-1,0),B (-2,5)18、(1)322--=x x y ;(2)419、(1)800602)220)(40(2++-=+-=x x x x y(2)1250)15(280060222+--=++-=x x x y ,当x =15时,y 有最大值1250,因此,每桶柴油降价15元后出售,可获得最大利润.1250-40×20=450,因此,与降价前比较,每天销售这种柴油可多获利450元.20、(1)A (-3,0)B (-1,0);(2)342++=x x y ;(3)-3<x <021、(1)m =3;(2)B (-1,0);(3)D (2,3)22、(1)A (0,-2),B (1,0);(2)22+-=x y ;(3)2422--=x x y23、(1)x x y 3106252+-=;(2)要判断会不会失误,只要看运动员是否在距水面高度5m 以前完成规定动作,于是只要求运动员在距池边水平距离为533m 时的纵坐标即可.∴横坐标为:533-2=531,即当x =531时,31658310)58()625(2-=⨯+⨯-=y ,此时运动员距水面的高为531431610<=-,因此,此次试跳会出现失误. 24、(1)b =-2,c =-3;(2)E (23,25); (3)①如图:顺次连接点E ,B ,F ,D 的四边形EBFD .可求出点F 的坐标(23,415-),点D 的坐标为(1,-4) 875)123(42521)234(42521=-⨯⨯+-⨯⨯=+=DEF BEF EBFD S S S △△四边形②如图,过点E 作a ⊥EF 交抛物线于点P ,设点P (m ,322--m m ),则有25322=--m m ,解得22611+=m ,22612-=m ∴1P (2261-,25),2P (2261+,25);过点F 作b ⊥EF 交抛物线于点3P ,设点3P (n ,322--n n ),则有415322-=--n n 解得:21=n ,232=n (与点F 重合,舍去),∴3P (21,415-),综上所述,所有点P 的坐标为1P (2261-,25),2P (2261+,25),3P (21,415-)能使△EFP 组成以EF 为直角边的直角三角形.。