高中数学 第一章 余弦函数的图像与性质教案1 北师大版必修4
余弦函数的图像与性质教案
导学案学科数学主笔人李丽莉审核人杨明东课题余弦函数的图像与性质课型新授教学目标知识目标:能利用五点作图法作出余弦函数在[0 ,2π ] 上的图像;熟练根据余弦函数的图像推导出余弦函数的性质;能力目标:能学以致用,尝试用五点作图法作出余弦函数的图像,并能结合图像分析得到余弦函数的性质;情感目标:培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心 .重难点重点: 1)余弦函数的图像及性质;2)用“五点法” 作出函数 y=cosx 在 0, 2π上的简图 .难点:会运用余弦函数的性质解决实际问题.教学观察、思考、交流、讨论、概括。
方法教学过程高中必修 4 教案第2页共3页板书设计一、交流订正三、重点精讲例 1求y 3 cos x 1 的最大值和最小值.分析:利用余弦函数的最值即可求解.当 cos x 1时, y min2即 x x 2k , k Z , y min2当 cos x1时, y max4即 x x2k , k Z , y max4例 2 判断下列函数的奇偶性.(1) f ( x) cos x2解:定义域为Rf (- x) cos( x) 2 cos x 2 f ( x)对一切 x R 都成立,∴函数 f ( x) cosx2是偶函数(2) f ( x)sin x cos x高中必修 4 教案第3页共3页解:定义域为Rf ( x) sin( x) cos( x)sin x cos x f (x)对任意 x R恒成立,∴函数 f ( x)sin x cos x 是奇函数方法总结:利用函数的奇偶性定义来判断.四、总结反馈1、学习小结知识点:余弦函数的图象; 余弦函数的性质 ; 五点作图法学习方法:数形结合的方法类比的学习方法2、课堂练习1)利用“五点法”作函数y sin x 在0, 2π上的图像。
2)利用“五点法”作函数y cos x在0, 2π上的图像。
3)求y3cos x 1 的最大值和最小值.3、布置作业习题 1-6 :A 组的第 1、2、4, B 组的第 3 题。
高一数学北师大版必修4第一章6.1余弦函数图象的性质
安边中学 高一 年级 下 学期 数学 学科导学稿 执笔人: 王广青 总第 课时 备课组长签字: 王广青 包级领导签字: 学生: 上课时间: 集体备课个人空间一、课题: 6.1-6.2余弦函数图象的性质二、学习目标1.会用“五点法”画余弦函数的图像;2.了解正弦函数、余弦函数图像之间的关系;3.掌握余弦函数的性质及其应用。
三、教学过程【自主预习】阅读课本P 30内容,完成下列任务。
1. 在下列坐标系中画出y =cosx 的图像;2. 总结y=cosx 图像的画法:(1)变换法,将正弦曲线y=sinx 的图像向 平移 个单位长度得到。
(2)五点法,在平面直角坐标系中描出五个关键点:, , , , 。
然后用光滑曲线将五个点连接起来,得y=cosx,x ∈[0,2π]的图像,再向左、右平移得到y=cosx 的图像。
3. 思考:如何刻画余弦线,运用余弦线作出函数图像。
xyo【合作探究】阅读课本P 31内容,思考下列问题。
1. 余弦函数y=cosx,x ∈R 的性质:2. 定义域: ; 值域: ;3. 最值:当x = 时,y 取最大值1;当x = 时,y 取最小值-1;4. 周期性:最小正周期是 ;5. 单调性:增区间 ; 减区间 ;6.奇偶性: 函数。
【检测训练】0cos )2(21cos 1.1>≤x x x )(的集合求满足下面条件的1cos 3y 1.2+-=x )(最小值:求下列函数的最大值及xx x f cos )(1.32-=)(判断下列函数的奇偶性x 2cos y .4=区间求下列函数的单调递增反思栏。
高中数学必修四正弦函数、余弦函数的图象教案
1.4.1正弦函数、余弦函数的图像与性质【教学分析】1.学习过指数函数和对数函数;2.学习过周期函数的定义;3.学习过正弦函数、余弦函数上的图像。
【教学目标】一、知识目标:1.正弦函数的性质;2.余弦函数的性质;二、能力目标:1.能够利用函数图像研究正弦函数、余弦函数的性质;2.会求简单函数的单调区间;三、德育目标:渗透数形结合思想和类比学习的方法。
【教学重点】正弦函数、余弦函数的性质【教学难点】正弦函数、余弦函数的性质的理解与简单应用【教学方法】通过引导学生观察正弦函数、余弦函数的图像,从而发现正弦函数、余弦函数的性质,加深对性质的理解。
(启发诱导式)【教学过程】一、复习导入1.我们是从哪个角度入手来研究指数函数和对数函数的?2.正弦、余弦函数的图像在上是什么样的?二、讲授新课[]π2,0[]π2,01.正弦函数的图像和性质(由教师讲解)通过展示出正弦函数在内的图像,利用函数图像探究函数的性质:(1)定义域:正弦函数的定义域是实数集R(2)值域从图像上可以看到正弦曲线在这个范围内,所以正弦函数的值域是(3)单调性结合正弦函数的周期性和函数图像,研究函数单调性,即:(4)最值观察正弦函数图像,可以容易发现正弦函数的图像与虚线的交点,都是函数的最值点,可以得出结论:(5)奇偶性正弦函数的图像关于原点对称,所以正弦函数的奇函数。
(6)周期性正弦函数的图像呈周期性变化,函数最小正周期为2。
2.余弦函数的图像和性质(由学生分组讨论,得出结论)通过展示出余弦函数的图像,由学生类比正弦函数的图像及性质进行讨论,探究余弦函数的性质:(1)定义域:余弦函数的定义域是实数集R(2)值域从图像上可以看到余弦曲线在这个范围内,所以余弦函数的值域是(3)单调性结合余弦函数的周期性和函数图像,研究函数单调性,即:(4)最值观察余弦函数图像,可以容易发现余弦函数的图像与虚线的交点,都是函数的最值点,可以得出结论:[]ππ2,2-[]1,1-[]1,1-π[]1,1-[]1,1-上是增函数;在)(22,22Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ上是减函数;在)(232,22Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ1,22max =∈+=y Z k k x 时,当ππ1,22min -=∈-=y Z k k x 时,当ππ[]上是增函数;在)(2,2Z k k k ∈-πππ[]上是减函数;在)(2,2Z k k k ∈+πππ1,2max =∈=y Z k k x 时,当π1,2min -=∈+=y Z k k x 时,当ππ(5)奇偶性余弦函数的图像关于y 轴对称,所以余弦函数的偶函数。
高中数学_余弦函数的图像与性质教学设计学情分析教材分析课后反思
1.3.2余弦函数的图象与性质教学设计一、教学内容分析:“余弦函数的图象与性质”是高中人教B 版《数学》必修4第一章基本初等函数(Ⅱ)第三节的内容。
是在学习了三角函数定义、诱导公式及正弦函数的图象与性质的基础上引入的,是对学习了正弦函数图象与性质后的一个很好的方法的应用,又是对后面正切函数的图象与性质的学习,起了更进一步的知识基础和方法储备.这使得余弦函数的图象与性质的教学起到了呈上启下的作用.它与正弦函数一样也是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律的最强有力的数学工具.二、学生学习情况分析:本部分内容是在学生学习了三角函数定义,诱导公式及正弦函数的图象和性质的基础上引入的。
学生可类比正弦函数来学习本节内容。
整体说来,学生学起来会比较轻松。
但学生在探究出了余弦函数的图象和性质之后,会暂时出现混淆的状态,所以需要在授课中引导学生时刻和正弦函数作对比,区分记忆.对余弦函数的性质的应用,学生需要在练习中时刻与正弦函数类比,有个逐步熟练的过程。
三、设计思想本节课的设计遵循从已知到未知的原则,时刻抓住正弦与余弦间的联系,由问题引入新课题。
运用类比的数学方法,适当运用多媒体辅助教学手段,让学生在观察分析、自主探索、合作交流的过程中,掌握余弦函数的图象及性质,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,提高学生的分析问题、解决问题的能力。
四、教学目标1.会利用"图象变换法"和”五点法”作余弦函数的图象;掌握余弦函数的主要性质(定义域、值域、单调性、奇偶性、周期性)。
并掌握性质的应用;2.培养学生自主探索与合作学习的能力,同时也培养学生应用类比、化归以及数形结合等数学思想方法在解决问题中的应用能力;3. 让学生亲身经历数学的研究过程,使学生在学习活动中获得成功感,感受数学的魅力;体验学习的乐趣,增强自信心,树立积极的学习态度;从而培养学生热爱数学、积极学习数学、应用数学的热情。
38581_《余弦函数、正切函数的图像与性质》教案1 新人教B版必修4
1.3.2余弦函数、正切函数的图像与性质(第一课时)余弦函数的图象及性质一、教学目标1.知识目标(1)学会利用平移变换的方法和五点作图法作出余弦函数的图象;(2)根据余弦函数图象的特征,结合正弦函数的性质学习余弦函数的性质:定义域、值域、单调性、奇偶性、周期性等。
2、能力目标(1)让学生进一步学会作图;(2)引导学生利用类比的思想分析同类函数的图象与性质;(3)培养学生独立研究问题,提炼性质的能力。
3、情感目标(1)渗透数形结合的数学思想;(2)培养学生静与动的辨证思想;(3)培养学生欣赏数学美的素质。
二、教学重、难点重点:本节内容旨在利用正弦函数的特征来学习余弦函数的图象、性质,引导学生学会应用旧知解决新问题。
难点:从正弦函数到余弦函数的变换;学生自主探究余弦函数性质。
三、教学方法结合本节内容的特征,主要采用启发诱导式教学方式,让学生自主地去探求知识。
适当借助多媒体等教学辅助手段。
四、教学过程教学环节教学内容师生互动设计意图复习引入1、正弦函数的图象——解决的方法:用单位圆中的正弦线(几何画法)。
2、“五点描图法”作图。
3、)2sin(cosπ+=xx1、教师提问,学生回答;2、学生在草稿纸上推理。
1、引导学生复习巩固“五点描图法”作图;2、回顾诱导公式;3、回顾平移。
概念形成1、利用五点描图法画出]2,0[),2sin(ππ∈+=xxy的图象。
2、图象向两边延伸于是得到余弦函数的图象。
余弦函数xy cos=的图象叫做余弦曲线。
通过观察图象,我们不难发现,起着关键作用的点是五个点:(0,1),(2π,0)、(π,-1),(23π,0),(2π,1).3、类比正弦函数的性质及余弦函数的图象,得余弦函数图象的性质:(1)定义域:y=cos x的定义域为R(2)值域:①引导回忆单位圆中的三角函数线,结论:|cos x|≤1(有界性)再看正弦函数线(图象)验证上述结论:值域为[-1,1]②对于y=cos x当且仅当x=2k?k?Z时y ma x=1当且仅当x=2k?+?k?Z时y min=-1③观察R上的y=cos x的图象可知当2k?-2π<x<2k?+2π(k?Z)时y=cos x>0当2k?+2π<x<2k?+23π(k?Z)时y=cos x<0(3).周期性:(观察图象)①余弦函数的图象是有规律不断重复出现的;②规律是:每隔2?重复出现一次(或者说每隔2k?,k?Z重复出现)③这个规律由诱导公式cos(2k?+x)=cos x也可以说明余弦函数的最小正周期是T=2π.(4).奇偶性由诱导公式:cos(-x)=cos x得余弦函数是偶函数。
高中数学必修4第一章(第8课时)正弦函数余弦函数的图象
课 题:14.1正弦函数、余弦函数的图象教学目的:1.理解并掌握作正弦函数和余弦函数图象的方法.2.理解并熟练掌握用五点法作正弦函数和余弦函数简图的方法.3.理解并掌握用正弦函数和余弦函数的图象解最简单的三角不等式的方法. 教学重点:用单位圆中的正弦线作正弦函数的图象. 教学难点:用单位圆中的余弦线作余弦函数的图象. 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:先利用正弦线画出函数x y sin = ,x ∈[0,π2]的图象,并根据“终边相同的角有相同的三角函数值”,把这一图象向左、右平行移动,得到正弦曲线;在此基础上,利用诱导公式,把正弦曲线向左平行移动2π个单位长度,得到余弦曲线接着根据这两种曲线的形状和特点,研究了正弦、余弦函数的性质,然后又研究了正弦函数的简图的画法,简要地介绍了利用正切线画出正切函数的图象以及正切函数的性质教学过程:一、复习引入:正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.第一步:列表首先在单位圆中画出正弦线和余弦线.在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成几等份,过圆上的各分点作x 轴的垂线,可以得到对应于角6,0π,3π,2π,…,2π的正弦线及余弦线(这等价于描点法中的列表).第二步:描点.我们把x 轴上从0到2π这一段分成几等份,把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.现在来作余弦函数y=cosx ,x ∈[0,2π]的图象: 第一步:列表 表就是单位圆中的余弦线.第二步:描点.把坐标轴向下平移,过1O 作与x 轴的正半轴成4π角的直线, 又过余弦线1O A 的终点A 作x 轴的垂线,它与前面所作的直线交于A ′,那么1O A 与AA ′长度相等且方向同时为正,我们就把余弦线1O A “竖立”起来成为AA ′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x 轴上相应的点x 重合,则终点就是余弦函数图象上的点.第三步:连线.用光滑曲线把这些竖立起来的线段的终点连结起来,就得到余弦函数y=cosx ,x ∈[0,2π]的图象.以上我们作出了y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象,现在把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.3.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 用五点法作图:y=cosx x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)三、讲解范例:例1 作下列函数的简图(1)y=sinx ,x ∈[0,2π], (2)y=cosx ,x ∈[0,2π], (3)y=1+sinx ,x ∈[0,2π], (4)y=-cosx ,x ∈[0,2π],例2 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 解:作出正弦函数y=sinx ,x ∈[0,2π]的图象: 由图形可以得到,满足条件的x 的集合为:Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππ21cos )2(≤x 解:作出余弦函数y=cos ,x ∈[0,2π]的图象: 由图形可以得到,满足条件的x 的集合为:Z k k k ∈⎥⎦⎤⎢⎣⎡++,235,23ππππ四、课堂练习:五、小结 用五点法作正弦函数和余弦函数的简图. 六、课后作业: 七、板书设计(略)。
北师大版高中必修4第一章三角函数教学设计
北师大版高中必修4第一章三角函数教学设计一、教学目标1.理解三角函数的概念及基本性质。
2.掌握常用三角函数的定义、图像、性质及互相之间的关系。
3.学会求解三角函数在特定角度下的取值及应用实例。
二、教学内容1.三角函数的定义及基本性质。
2.正弦函数、余弦函数、正切函数、余切函数的定义、图像、性质及互相之间的关系。
3.三角函数的特殊角度取值及运用。
三、教学方法1.讲授法。
2.实验法。
3.互动探究法。
4.小组讨论法。
四、教学步骤第一步:导入简单介绍三角函数的概念及基本性质,引导学生思考三角函数与直角三角形的关系,培养学生良好的学习态度。
第二步:概念及性质学习1.通过讲解,帮助学生了解三角函数的定义及基本性质。
2.分别讲授正弦函数、余弦函数、正切函数、余切函数的定义、图像、性质及互相之间的关系,激发学生兴趣,加深对概念及性质的理解。
第三步:实验探究1.通过实验,深入探究正弦函数、余弦函数、正切函数、余切函数的图像及特点。
2.鼓励学生动手实验,培养实验探究能力,提高学生自主学习的能力。
第四步:小组讨论1.分组讨论,积极思考三角函数的实际应用。
2.引导学生探讨三角函数在实际问题中的应用方法,培养学生解决实际问题的能力。
第五步:课堂练习1.给学生提供相关的练习题,让学生进行自主练习。
2.老师及时进行检查,及时纠正学生的错误。
五、教学评价1.通过小组讨论、课堂展示等方式对学生进行评价,检验学生掌握的知识及运用能力。
2.多角度评价学生的能力,既包括基础知识掌握的程度,也包括后续实际应用的能力。
六、教学总结三角函数是数学的重要分支,基础理论牢固、实际应用广泛。
因此,在教学设计中应注重理论与实践的结合,采用多种教学方法,培养学生探究、实践和创新能力,让学生在掌握知识的同时,能够应用到实际生活中。
高中数学第一章三角函数1.6余弦函数的图像与性质课件北师大版必修4
•学习目标 1.了解余弦函数与正弦函数之间的关系.2. 理解“五点法”作出余弦函数的图像(重点).3.掌握余弦 函数的图像性质及其运用(难点).
知识点 1 余弦函数的图像 余弦函数 y=cos x(x∈R)的图像叫余弦曲线. 根据诱导公式 sinx+π2=cos x,x∈R.只需把正弦函数 y=sin x, x∈R 的图像向左平移π2个单位长度即可得到余弦函数图像(如 图).
• 答案 B
• 3.函数y=cos x,x∈[0,2π]的图像和直线y=1围成 一个封闭的平面图形,这个封闭图形的面积是 ________.
• 解析 如图,可把x轴下方图形补到x轴上方阴影 部分,此时所围面积可变成一个矩形.
• 答案 2π
4.使 cos x=11-+mm有意义的实数 m 的取值范围是________. 解析 -1≤11-+mm≤1;即11+-mm≤1;|1+m|≤|1-m|且 m≠1, 得 m≤0.
答案 D
(2)作出函数 y=1-13cos x 在[-2π,2π]上的图像. 解 ①列表:
x y=cos x
0
π 2
π
3π 2
2π
1 0 -1 0 1
y=1-13cos x
2 3
1
4 3
1
2 3
②作出 y=1-13cos x 在 x∈[0,2π]上的图像.由于该函数为偶函数, 作关于 y 轴对称的图像.从而得出 y=1-13cos x 在 x∈[-2π,2π] 上的图像.
•规律方法 对于余弦函数的性质,要善于结合余弦函 数图像并类比正弦函数的相关性质进行记忆,其解题 规律方法与正弦函数的对应性质解题方法一致.
【训练 2】 (1)求函数 y=1-12cos x 的单调区间; (2)比较 cos-π7与 cos187π的大小. 解 (1)∵-12<0, ∴y=1-12cos x 的单调性与 y=cos x 的单调性相反. ∵y=cos x 的单调增区间是[2kπ-π,2kπ](k∈Z),减区间是[2kπ, 2kπ+π](k∈Z). ∴y=1-12cos x 的单调减区间是[2kπ-π,2kπ](k∈Z),增区间 是[2kπ,2kπ+π](k∈Z).
【北师大版】高中数学必修四全册学案(全册共340页 附答案)
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。
【北师大版】高中数学必修4第一章:1.5.1正弦函数的图像 教学设计
【北师大版】高中数学必修四 正弦函数的图像教学设计 教学设计一、教材分析《正弦函数的图像与性质》是数学必修四(北师大版)第一章三角函数第五节部分内容,其主要内容是正弦函数的图像与性质。
过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数的图像与性质,为今后余弦函数、正切函数的图像与性质、函数的图像的研究打好基础。
因此,本节的学习有着极其重要的地位。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出x y sin =,[]π2,0∈x 的图像,考察图像的特点,介绍“五点作图法”,再利用图像研究正弦函数的主要性质(定义域、值域、周期性、奇偶性和单调性) 二、设计思想 教法分析(1)教学模式:建构式教学法本节课应用这种教学模式的具体操作程序是:创设问题情景——小组协作探索——猜想尝试整理——动手画图验证——知识巩固应用——方法归纳整合。
这种教学模式的特点是:学生在一定的情境背景(已具备函数基础知识和三角函数线知识)下,借助老师和学习伙伴的帮助,利用必要的学习资料等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的(即在学习过程中帮助学生很好地掌握正弦函数的图像的画法,并对与正弦函数有关的图像平移变换和对称变换达到较深刻的理解)。
(2)教学手段:利用计算机多媒体辅助教学为了给学生认识理解“正弦函数的图像”提供更加形像、直观、清晰的材料,我准备利用电脑动画模拟演示利用单位圆中的正弦线画出正弦函数的图像的过程。
运用多媒体教学手段使问题变得形像直观,易于突破难点,借以帮助学生完成对所学知识的过程建构 学法分析引导学生认真观察“正弦函数的几何作图法”教学课件的演示,指导学生进行分组讨论交流,促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养学生勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案【摘要】本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特征。
通过系统的内容安排,学生将了解到正弦函数和余弦函数的数学定义、性质以及图像特点,并明确教学重点。
教学方法包括理论讲解、示例演练和实际应用,帮助学生更好地掌握知识。
教学效果评价将从学生的表现和理解程度入手,评估教学效果。
通过学习本教案,学生将对正弦函数和余弦函数有更深刻的认识,提高数学素养和图像思维能力。
【关键词】《正弦函数余弦函数的图像》、教案、制作目的、内容安排、教学重点、教学方法、教学效果评价、引言、结论1. 引言1.1 引言在数学教学中,正弦函数和余弦函数是非常重要的函数之一,它们在图像和性质上有很多有趣的特点。
通过学习正弦函数和余弦函数的图像,可以帮助学生更深入地理解这两个函数的规律和变化。
在本节课中,我们将围绕正弦函数和余弦函数的图像展开教学,通过直观的图像展示和实际计算,让学生更加直观地理解正弦函数和余弦函数的性质。
正弦函数和余弦函数是周期函数,它们的图像呈现出明显的周期性和对称性。
通过分析正弦函数和余弦函数在不同参数下的图像变化,可以帮助学生建立起对这两个函数的直观认识,并且深入理解它们的数学性质。
在本节课中,我们将通过实际的例题和练习来帮助学生掌握正弦函数和余弦函数的图像特点,培养他们的数学思维和分析能力。
希望通过本节课的学习,学生能够更加深入地理解正弦函数和余弦函数的图像,为以后的学习打下良好的基础。
2. 正文2.1 1.4.1《正弦函数余弦函数的图像》教案的制作目的本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特征,以及它们在数学中的应用。
通过学习本教案,学生将能够掌握正弦函数和余弦函数的周期、振幅、相位和对称性等重要概念,并能够准确绘制它们的图像。
本教案还旨在培养学生的数学思维能力和图形绘制能力,提高他们对数学的兴趣和自信心。
通过实际练习和应用案例的引导,学生将能够更好地理解正弦函数和余弦函数在现实生活中的应用,进而提高他们的数学解决问题的能力和应用能力。
必修四第一章《正弦函数余弦函数的性质》教学设计(王卫)
§1.4.2正弦函数余弦函数的性质评1节.二、教学目标及解析目标:1、通过图象理解正弦函数、余弦函数的周期性、奇偶性、单调性、最值和对称性,体会数形结合方法;2、会求简单正弦函数、余弦函数的周期、单调区间、最值等。
解析:1、目标1在于让学生体会到数形结合、归纳的数学思想,能独立归纳出的正弦函数、余弦函数的性质。
2、目标2在于让学生学会运用性质对简单正弦函数、余弦函数的奇偶性、单调性、最值等的求解。
三、问题诊断分析本节课的教学中,学生可能出现如下几个问题:①函数周期性的定义是什么?②如何求出正弦函数、余弦函数的周期?③不理解正弦函数、余弦函数的单调区间?不能正确写出正弦函数、余弦函数的单调区间?学生出现这几个问题的原因是不理解正弦函数、余弦函数的本质,对函数的周期性、单调性理解不透彻。
学生运用数学知识解决实际问题的能力还不强;在处理问题时学生考虑问题不深入,往往会造成错误的结果。
解决这些问题的关键是结合图像变化趋势加以理解;结合定义,通过例题加以模仿。
在此过程中,需要学生感受归纳的数学思想,找出函数之间的共同点和规律,通过讨论、合作交流、辩论得到正确的知识。
四、教学条件支持本节课的教学中需要用到几何画板和智能黑板,因为使用几何画板有利于展示函数的图像,能够给学生直观的认识。
五、教学过程1、自学问题1:周期函数的概念是什么?问题2:正、余弦函数有怎样的奇偶性和单调性?问题3:正、余弦函数的最值与对称性分别是什么?2、互学导学问题1:周期函数的概念是什么?设计意图:让学生观察函数的图像,了解函数的变化规律,培养学生的归纳能力。
师生活动:学生思考并回答,教师指导。
小问题1:如何作出正弦函数、余弦函数的图象?答:描点法(几何法、五点法),图象变换法。
并要求学生回忆哪五个关键点。
小问题2:研究一个函数的性质从哪几个方面考虑?答:定义域、值域、奇偶性、单调性、周期性、对称性等小问题3:正弦函数和余弦函数的图象分别是什么?二者有何相互联系?给出正弦、余弦函数的图象,让学生观察,并思考下列问题:世界上有许多事物都呈现“周而复始”的变化规律,如年有四季更替,月有阴晴圆缺.这种现象在数学上称为周期性,在函数领域里,周期性是函数的一个重要性质.小问题4:由正弦函数的图象可知, 正弦曲线每相隔2π个单位重复出现,这一规律的理论依据是什么?sin(2)sin ()x k x k Z π+=∈小问题5:为了突出函数的这个特性,我们把函数f(x)=sinx 称为周期函数,2k π为这个函数的周期.一般地,如何定义周期函数?由inx k x s 2sin =+π)(知: 知:最小正周期是π2.小问题8:就周期性而言,对正弦函数有什么结论?对余弦函数呢?由x k x cos )2cos(=+π知: 正、余弦函数是周期函数,2k π(k ∈Z, k ≠0)都是它的周期,最小正周期是2π.例1 求下列函数的周期: (1)y=3cosx,x ∈R ; (2)y=sin2x,x ∈R ;(3)y=2sin(2x -6π),x ∈R .(1) 因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx ≠3cosx,所以π不是周期.(2) 教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π).所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π; (2)周期为π; (3)周期为4π.变式1、P36练习第2题.小问题9:周期性是正、余弦函数所具有的一个基本性质,此外,正、余弦函数还具有哪些性质呢?我们将对此作进一步探究.问题2:正、余弦函数有怎样的奇偶性和单调性?设计意图:让学生观察函数的图像,了解函数的变化规律,数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,培养学生的归纳能力。
高中数学第一章三角函数1.6余弦函数的图像与性质sinx±cosx的符号规律及应用素材北师大版必修4
sin α±cos α的符号规律及应用由三角函数的定义,sin α=y r,cos α=xr ,则极易得到sin α±cos α的符号,即sin α±cos α=y xr±,故符号由y±x决定,易得以下规律. 一、符号规律①>0(或<0)⇔的终边在直线的上(或下)方;②>0(或<0)⇔的终边在直线的上(或下)方.③=0⇔的终边在直线上; ④=0⇔的终边在直线上.以上四条规律,可利用图1表示. 二、应用举例例1在(0,2π)内,使sinx >cosx 成立的x 的取值范围为( )(A) (4π,2π)∪(π,54π) (B) (4π,π)(C) (4π,54π) (D) (4π,π)∪(54π,32π)分析:移项,化为sinx -cosx >0,利用符号规律②即可解决.解:由sinx >cosx ,即sinx -cosx >0,故x 应在直线y -x =0上方的区域,故选(C). 评注:利用符号规律来解,体现了数形结合法思想.本题还可用特殊值法排除.例2已知点P(sin α-cos α,tan α)在第一象限,则在)20[π,内α的取值是 ( ) (A) (432ππ,)∪(45ππ,) (B) (24ππ,)∪(45ππ,) (C) (432ππ,)∪(2345ππ,) (D) (24ππ,)∪(ππ,43) 分析:由点P 在第一象限,则可转化为三角不等式组sin cos 0tan 0 ααα->⎧⎨>⎩,解此不等式即可.1图解:由题意,得sin cos 0 ①tan 0 ②ααα⎧->⎪⎨>⎪⎩,由①得α应在直线x -y =0上方,由②知α应在第一、三象限,所以α∈(24ππ,)∪(45ππ,),而选(B).评注:本题应注意α限制条件)20[π,内,同时解不等式组应取①②交集,但其结果是并集形式.例3 若,则取值范围是( )A.B.C.D.分析:粗看无从入手,但通过移项及因式分解,即发现可以转化为符号法则来解. 解:由,得,知与同号,角终边落在如图3所示的阴影部分,故选(D).评注:常规方法需用到三角变换公式,而符号规律法,用到的仅是定义法.而“回到定义去”也是数学解题大师波利亚特别强调一种重要解题方法.。
高中数学北师大版必修四:第一章 §6 余弦函数的图像与性质
2019年5月18日
缘分让我在这里遇见你缘分让我在这里 遇见你
20
利用图像的对称性可知该平面图形的面积等于矩形 OABC 的面积,
又∵|OA|=2,|OC|=2π, ∴S =S 平面图形 矩形 OABC=2×2π=4π.
法二:
利用余弦曲线的特点,该平面图形的面积等于三角形
ABC的面积(如图(2)). ∵|AC|=2π,B到AC距离等于4. ∴S平面图形=S△ABC=2(1)×2π×4=4π.
2019年5月18日
缘分让我在这里遇见你缘分让我在这里 遇见你
14
3.(1)判断函数 f(x)=cos(π-x)-xcosπ2-x 的奇偶性.
(2)求函数
y=cosπ6
-x的单调减区间.
[尝试解答] (1)∵f(x)=cos(π-x)-xcosπ2-x =-cos x-xsin x, ∴f(-x)=-cos(-x)-(-x)sin(-x) =-cos x-xsin x=f(x).
2019年5月18日
缘分让我在这里遇见你缘分让我在这里 遇见你
8
1.画余弦函数的图像,与画正弦函数图像的方法一样,
π ,0 关键要确定五个点.这五个点的坐标是(0,1),2 ,(π ,
3π ,0 -1), 2 ,(2π ,1).
2.形如 y=acos x+b,x∈[0,2π ]的函数,也可由五点
法画图像.
∴cos
π 8>cos
π 6.
∴cos-78π<cos
7π 6.
2019年5月18日
缘分让我在这里遇见你缘分让我在这里 遇见你
18
(2)∵sin 194°=sin(180°+14°)=-sin 14°=-cos 76°, cos 160°=cos(180°-20°)=-cos 20°. ∵0°<20°<76°<90°,∴cos 20°>cos 76°, ∴-cos 20°<-cos 76°,∴sin 194°>cos 160°.
正弦函数和余弦函数的定义教案
1.4 正弦函数和余弦函数的定义与诱导公式1.4.1 任意角的正弦函数、余弦函数的定义(必修4 第一章三角函数)《正弦函数和余弦函数的定义与诱导公式》教案一、教学目标1:知识与技能观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题。
培养分析、探索、类比和数形结合等数学思想方法在解决问题中的能力。
2:过程与方法理解利用单位圆定义的正弦函数、余弦函数的概念。
通过初中知识的回顾,探索新知,会利用单位圆研究正弦函数、余弦函数的周期性及诱导公式。
通过借助单位圆讨论正弦函数、余弦函数的过程,感悟数形结合思想方法是学习数学的重要思想方法之一。
3:情感态度与价值观由锐角的正,余弦函数推广到任意鱼的正,余弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题,解决问题的能力。
一二、学情分析初中运算以具体数字为主,运算量小;高中以字母为主,更加抽象(也更接近数学的本质),并且引入对字母的分类讨论,对学生的发散思维能力提出了很高要求,教师讲的太多,会导致学生产生依赖心理,时间一长,会形成恶性循环;教师讲的太多,往往拔苗助长,适得其反;让学生积极动脑思考,过程虽然慢一些,但可以培养学生捕捉问题的敏捷性,对以后的数学学习非常有利,可谓“磨刀不误砍柴工”。
教师要从各方面引导学习数学要深入下去,不能浅尝辄止,半途而废,要适时鼓励学生,给学生以学好数学的勇气和信心。
鼓励学生不要怕出错,大胆尝试,大胆地写,给学生敢写、敢做树立自信心。
在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,在第一册学生已经掌握了函数的有关对应的知识和概念,同时已经具备了一定的自学能力,这在我们今天学校用“五点法”作图提供了基础,让学生动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。
积极地鼓励学生自主的去完成作业。
遇到有疑问的问题积极的解决。
北师大版数学必修四课件:1.6余弦函数的图像和性质
2 的最大值为 ∴函数y=-3(1-cos 2x)-4cos x+4,x∈ [ , ] 3 3
【例】已知函数y1=a-bcosx,x∈R的最大值为
1 2
3 ,最小值 2
为 ,试求函数y2=b-acosx的最大值,并写出取得最大值 时自变量x的集合. 【审题指导】解答本题可先利用待定系数法求出a,b的值, 然后求函数y2=b-acos x的最大值.
“五点法”画函数的图像 “五点法”画函数的图像 (1)应用范围:画形如y=asin x+b (或y=acos x+b),x∈ [0,2π ]的函数的图像.
(2)基本步骤 ①列表,取x=0, ,π ,
2 3 ,2 π . 2
②求出相应的y值,确定点的坐标. ③描点. ④用光滑的曲线连线成图. 要注意用五点法画正、余弦函数图像的区别与 联系.
【例1】画出y=2cos x-1在[0,2π ]上的图像.
3 【审题指导】解答本题关键是画出x=0, ,π, ,2π时 2 2
图像上的点的位置.
【规范解答】按五个关键点列表,描点画出图像(如下)
函数奇偶性的判断及应用
1.有关函数奇偶性的结论: (1)奇函数的图像关于原点成中心对称图形; 偶函数的图像关于y轴成轴对称图形. (2)对于奇函数,当x=0属于定义域时必有f(0)=0. 对于偶函数,任意x属于定义域都有f(|x|)=f(x).
2 2 2 2
又∵y=cos x在区间[0,π]上是减少的, ∴ cos <cos ( ) sin .„„„„„„„„„„„„„4分
2
(2)∵cos A<sin B, ∴ cos A<cos ( B) .„„„„„„„„„„„„„„„6分
[推荐学习]高中数学第一章三角函数1.6余弦函数的图像与性质学案北师大版必修4
6.1 余弦函数的图像 6.2 余弦函数的性质1.会利用诱导公式,通过图像平移得到余弦函数的图像. 2.会用五点法画出余弦函数在[0,2π]上的图像.(重点) 3.掌握余弦函数的性质及应用.(重点、难点)[基础·初探]教材整理 余弦函数的图像与性质阅读教材P 31~P 33“思考交流”以上部分,完成下列问题. 1.利用图像变换作余弦函数的图像余弦函数y =cos x 的图像可以通过将正弦曲线y =sin x 向左平移π2个单位长度得到.如图1-6-1是余弦函数y =cos x (x ∈R )的图像,叫作余弦曲线.图1-6-12.利用五点法作余弦函数的图像画余弦曲线,通常也使用“五点法”,即在函数y =cos x (x ∈[0,2π])的图像上有五个关键点,为(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫32π,0,(2π,1),可利用此五点画出余弦函数y =cos x ,x ∈R 的简图(如图1-6-2).图1-6-23.余弦函数的性质判断(正确的打“√”,错误的打“×”) (1)余弦函数y =cos x 的定义域为R .( )(2)余弦函数y =cos x 的图像可由y =sin x 的图像向右平移π2个单位得到.( )(3)在同一坐标系内,余弦函数y =cos x 与y =sin x 的图像形状完全相同,只是位置不同.( )(4)正弦函数与余弦函数有相同的周期,最大值、最小值及相同的单调区间.( )【解析】 (1)(3)正确;余弦函数y =cos x =sin ⎝ ⎛⎭⎪⎫π2+x ,即可看作是y =sin x 向左平移π2个单位得到的,因而(2)错;正、余弦函数有相同的周期(都是2π),相同的最大值(都是1),相同的最小值(都是-1),也都有单调区间,但单调区间不同,因而(4)错.【答案】 (1)√ (2)× (3)√ (4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________ 解惑:___________________________________________________________ 疑问2:_________________________________________________________ 解惑:___________________________________________________________ 疑问3:_________________________________________________________解惑:___________________________________________________________[小组合作型]【精彩点拨】 利用“五点法”:【自主解答】 列表:作函数y =a cos x +b 的图像的步骤1.列表:由x =0,π2,π,3π2,2π时,cos x =1,0,-1,0,1,求出y 值.2.描点:在同一坐标系中描五个关键点. 3.连线:用平滑曲线.[再练一题]1.作出函数y =1-13cos x 在[-2π,2π]上的图像.【解】 ①列表:②作出y =1-3cos x 在x ∈[0,2π]上的图像.由于该函数为偶函数,作关于y 轴对称的图像,从而得出y =1-13cos x 在x ∈[-2π,2π]上的图像.如图所示:(1)f (x )=2cos x +1;(2)f (x )=log 2(-1+2cos x )+9-x 2.【精彩点拨】 写出使得函数有意义时所满足的条件,结合三角函数的定义域,求若干个不等式的交集即可.【自主解答】 (1)要使y =2cos x +1有意义,则必须满足2cos x +1≥0,即cos x ≥-12. 结合余弦函数的图像得y =2cos x +1的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π-2π3≤x ≤2k π+2π3,k ∈Z. (2)要使函数有意义,则⎩⎪⎨⎪⎧-1+2cos x >0,9-x 2≥0,即⎩⎪⎨⎪⎧cos x >12,x 2≤9,cos x >12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π3+2k π<x <π3+2k π,k ∈Z, x 2≤9的解集为{x |-3≤x ≤3},取交集得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π3<x <π3. ∴原函数的定义域为⎝ ⎛⎭⎪⎫-π3,π3.1.求三角函数的定义域时,一般要解三角不等式,其主要方法是借助于三角函数的图像,关键有两点:(1)选取一个合适的周期;(2)确定边界值.2.当函数由几部分构成时,应取使每一部分有意义的x 取值范围的公共范围,即取它们的交集.3.当三角不等式与代数不等式在一起时,在取交集时,应注意对三角不等式解集中的k 进行讨论.[再练一题]2.求下列函数的定义域. (1)y =32-cos x ;(2)y =log 12(2cos x -2). 【解】 (1)要使函数有意义,则有32-cos x ≥0, ∴cos x ≤32,可得2k π+π6≤x ≤2k π+11π6,k ∈Z . 故所求函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+11π6,k ∈Z. (2)要使函数有意义,则有2cos x -2>0, ∴cos x >22,故所求定义域为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π-π4<x <2k π+π4,k ∈Z.(1)(2)比较大小cos 263π________cos ⎝ ⎛⎭⎪⎫-133π.【精彩点拨】 (1)y =1-2cos x 的单调性与y =-cos x 的单调性相同,与y =cos x 的单调性相反.(2)利用诱导公式将所给角转化到同一单调区间上比较.【自主解答】 (1)由于y =cos x 的单调减区间为[2k π,2k π+π](k ∈Z ),所以函数y =1-2cos x 的增区间为[2k π,2k π+π](k ∈Z ).(2)由于cos 263π=cos ⎝⎛⎭⎪⎫8π+2π3=cos 2π3, cos ⎝ ⎛⎭⎪⎫-13π3=cos ⎝ ⎛⎭⎪⎫13π3=cos ⎝ ⎛⎭⎪⎫4π+π3=cos π3,y =cos x 在[0,π]上是减少的.由π3<2π3知cos π3>cos 2π3, 即cos 263π<cos ⎝⎛⎭⎪⎫-13π3. 【答案】 (1)[2k π,2k π+π] (2)<1.形如y =a cos x +b (a ≠0)函数的单调区间 (1)当a >0时,其单调性同y =cos x 的单调性一致; (2)当a <0时,其单调性同y =cos x 的单调性恰好相反.2.比较cos α与cos β的大小时,可利用诱导公式化为[0,π]内的余弦函数值来进行.[再练一题]3.(1)比较大小:cos ⎝ ⎛⎭⎪⎫-235π与cos ⎝ ⎛⎭⎪⎫-174π;(2)求函数y =log 12(cos 2x )的增区间.【解】 (1)cos ⎝ ⎛⎭⎪⎫-235π=cos 23π5=cos ⎝ ⎛⎭⎪⎫4π+3π5=cos 3π5,cos ⎝ ⎛⎭⎪⎫-174π=cos 17π4=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4.∵0<π4<3π5<π,且y =cos x 在[0,π]上递减,∴cos 3π5<cos π4,即cos ⎝ ⎛⎭⎪⎫-235π<cos ⎝ ⎛⎭⎪⎫-174π. (2)由题意得cos 2x >0且y =cos 2x 递减. ∴x 只须满足:2k π<2x <2k π+π2,k ∈Z ,∴k π<x <k π+π4,k ∈Z ,∴y =log 12(cos 2x )的增区间为⎝ ⎛⎭⎪⎫k π,k π+π4,k ∈Z . [探究共研型]探究1 【提示】 不是.余弦函数y =cos x 在⎣⎢⎡⎦⎥⎤0,π2内是减函数,但不能说在第一象限是减函数.如390°和60°都是第一象限角,虽然有390°>60°,却有cos 60°<cos 390°.探究2 求与余弦函数相关的最值问题时应注意什么?【提示】 首先看函数的定义域,一定注意在定义域内求最值. 探究3 对于y =A cos 2x +B cos x +C 型的函数如何求最值? 【提示】 利用换元法转化为在固定区间上的二次函数求最值.求下列函数的最值. (1)y =-cos 2x +cos x ;(2)y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3.【精彩点拨】 本题中的函数可以看作是关于cos x 的二次函数,可以化归为利用二次函数求最值的方法求解.【自主解答】 (1)y =-⎝ ⎛⎭⎪⎫cos x -122+14. ∵-1≤cos x ≤1, ∴当cos x =12时,y max =14.当cos x =-1时,y min =-2.∴函数y =-cos 2x +cos x 的最大值为14,最小值为-2.(2)y =3cos 2x -4cos x +1 =3⎝⎛⎭⎪⎫cos x -232-13. ∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y max =154;当cos x =12,即x =π3时,y min =-14.∴函数在区间⎣⎢⎡⎦⎥⎤π3,2π3上的最大值为154,最小值为-14.求值域或最大值、最小值问题,一般依据为: (1)sin x ,cos x 的有界性; (2)sin x ,cos x 的单调性;(3)化为sin x =f (x )或cos x =f (x ),利用|f (x )|≤1来确定; (4)通过换元转化为二次函数.[再练一题]4.已知函数y =-cos 2x +a cos x -12a -12的最大值为1,求a 的值.【导学号:66470018】【解】 y =-cos 2x +a cos x -12a -12=-⎝⎛⎭⎪⎫cos x -a 22+a 24-a 2-12. ∵-1≤cos x ≤1,于是①当a2<-1,即a <-2时,当cos x =-1时,y max =-32a -32.由-32a -32=1,得a =-53>-2(舍去);②当-1≤a 2≤1,即-2≤a ≤2时,当cos x =a 2时,y max =a 24-a 2-12.由a 24-a 2-12=1,得a =1-7或a =1+7(舍去);③当a 2>1,即a >2时,当cos x =1时,y max =a 2-32.由a 2-32=1,得a =5. 综上可知,a =1-7或a =5.[构建·体系]1.函数y =2cos x -1的最大值、最小值分别是( ) A .2,-2 B .1,-3 C .1,-1D .2,-1【解析】 ∵-1≤cos x ≤1, ∴-2≤2cos x ≤2, ∴-3≤2cos x -1≤1, ∴最大值为1,最小值为-3. 【答案】 B2.函数y =sin x 和y =cos x 都是减少的区间是( ) A .⎣⎢⎡⎦⎥⎤2k π-π2,2k π(k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π-π,2k π-π2(k ∈Z )C.⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z )D.⎣⎢⎡⎦⎥⎤2k π,2k π+π2(k ∈Z )【解析】 结合函数y =sin x 和y =cos x 的图像知都减少的区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z ).【答案】 C3.函数y =cos x1+cos x 的定义域是________.【导学号:66470019】【解析】 由题意知1+cos x ≠0,即cos x ≠-1,结合函数图像知{}x | x ≠2k π+π,k ∈Z .【答案】{}x | x ≠2k π+π,k ∈Z4.满足2+2cos x ≥0(x ∈R )的x 的集合是________. 【解析】 ∵2+2cos x ≥0, ∴cos x ≥-22,结合图像(略)知: -34π+2k π≤x ≤3π4+2k π(k ∈Z ). 【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π-34π≤x ≤2k π+3π4,k ∈Z5.画出y =1-3cos x 在[0,2π]上的简图,并指出其最值和单调区间. 【解】 列表:图像如下:由图像可知,函数y =1-3cos x 在[0,2π]上的最大值为4,最小值为-2,单调增区间为[0,π],减区间为[π,2π].我还有这些不足:(1)______________________________________________________________ (2)______________________________________________________________ 我的课下提升方案:(1)______________________________________________________________ (2)______________________________________________________________。
高一数学正余弦、正切函数的图像与性质北师大版 知识精讲
高一数学正余弦、正切函数的图像与性质北师大版【本讲教育信息】一. 教学内容:①单位圆中的三角函数线与三角函数作图 ②正弦函数的图像与性质; ③余弦函数的图像与性质; ④正切函数的图像与性质二、学习目标1、能利用单位圆中的三角函数线解决一些简单的问题,如判断三角函数的符号、比较三角函数值的大小等;2、借助单位圆中的三角函数线画出,sin x y =x y cos =,x y tan =的图像,了解三角函数的周期性。
3、借助图像理解正弦函数、余弦函数在[]π2,0上,正切函数在⎪⎭⎫⎝⎛-2,2ππ上的性质(如单调性、最大值和最小值、图像与x 轴交点等)。
三、知识要点 1、三角函数线如图,设角α的终边与单位圆的交点为P ,过P 作x 轴的垂线,垂足为M ;又设单位圆与x 轴正半轴交点为A ,过点A 作x 轴的垂线交角α的终边或其反向延长线于T 。
根据正弦,余弦,正切的定义,则有MP =αsin ,OM =αcos ,AT =αtan这三条与单位圆有关的有向线段AT OM MP ,,分别叫做角α的正弦线,余弦线,正切线.【说明】(1)符号的判断:当MP 、OM 、AT 的方向与相应的坐标轴正方向一致的时候,取正值;相反时取负值;比如,当α为第一象限角时,MP 的方向与y 轴正向一致,故对应的sinα>0;(2)当角α的终边落在x 轴上时,M 与P 重合,A 与T 重合,此时正弦线,正切线分别变成一个点;当角α的终边在y 轴上时,O 与M 重合,余弦线变成一个点,过A 的切线平行于y 轴,不能与角α的终边相交,所以正切线不存在,此时角α的正切值不存在.2、三角函数线与诱导公式设α、β的终边分别与单位圆交于P 、P',则β=α+π+2kπ 由三角函数的定义可知:sinα=MP,sinβ=M'P'因为MP 与M'P'长度一致而方向相反,故:sinα=-sinβ即:sin(π+2kπ+α)=-sinα【说明】其它各个诱导公式均可根据三角函数线进行推导和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6 余弦函数的图像与性质
一、教学目标:
1、知识与技能:
(1)能利用五点作图法作出余弦函数在[0,2π]上的图像;
(2)熟练根据余弦函数的图像推导出余弦函数的性质;
(3)能区别正、余弦函数之间的关系;
(4)掌握利用数形结合思想分析问题、解决问题的技能。
2、过程与方法:
类比正弦函数的概念,引入余弦函数的概念;自主探究出余弦函数的诱导公式;能学以致用,尝试用五点作图法作出余弦函数的图像,并能结合图像分析得到余弦函数的性质。
3、情感态度与价值观:
使同学们对余弦函数的概念有更深的体会;会用联系的观点看问题,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
二、教学重、难点
重点:余弦函数的性质。
难点:性质应用。
三、学法与教法
我们已经知道正弦函数的概念是通过在单位圆中,以函数定义的形式给出来的,从而把锐角的正弦函数推广到任意角的情况;现在我们就应该与正弦函数的概念作比较,得出余弦函数的概念;用五点作图的方法作出y=cosx在[0,2π]上的图像,并由图像直观得到其性质。
教法:自主合作探究式
四、教学过程
(一)、创设情境,揭示课题
在上一次课中,我们知道正弦函数y=sinx的图像,是通过等分单位圆、平移正弦线而得到的,在精确度要求不高时,可以采用五点作图法得到。
那么,对于余弦函数y=cosx 的图像是不是也是这样得到的呢?有没有更好的方法呢?
(二)、探究新知
1.余弦函数y =cosx 的图像
由诱导公式有:与正弦函数关系 ∵y=cosx =cos(-x)=sin[
2π-(-x)]=sin(x +2π) 结论:(1)y =cosx, x ∈R 与函数y =sin(x +
2π) x ∈R 的图象相同 (2)将y =sinx 的图象向左平移2
π即得y =cosx 的图象 (3)也同样可用五点法作图:y =cosx x ∈[0,2π]的五个点关键是(0,1) (
2π,0) (π,-1) (
23π,0) (2π,1)
(4)类似地,由于终边相同的三角函数性质y =cosx x ∈[2k π,2(k+1)π] k ∈Z,k ≠0的图像与 y =cosx x ∈[0,2π] 图像形状相同只是位置不同(向左右每次平移2π个单位长度)
观察上图可以得到余弦函数y =cosx 有以下性质:
(1)定义域:y=cosx 的定义域为R
(2)值域: y=cosx 的值域为[-1,1],即有 |cosx|≤1(有界性) y
(3)最值:1︒对于y =cosx 当且仅当x =2k π,k ∈Z 时 y max =1
当且仅当时x =2k π+π, k ∈Z 时 y min =-1
2︒当2k π-
2π<x<2k π+2π (k ∈Z)时 y=cosx>0 当2k π+2π<x<2k π+2
3π (k ∈Z)时 y=cosx<0 (4)周期性:y =cosx 的最小正周期为2π
(5)奇偶性
cos(-x)=cosx
(6)单调性
增区间为[(2k -1)π, 2k π](k∈Z),其值从-1增至1;
减区间为[2k π,(2k +1)π](k∈Z),其值从1减至-1。
(三)、巩固深化,发展思维
1. 例题探析
例.请画出函数y =cosx -1的简图,并根据图像讨论函数的性质。
解:(略,见教材P31)
2.课堂练习:教材P32的练习1、2、3、4
(四)、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
(五)、布置作业:P33的习题1—6
五、教后反思:
精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂; 幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮
志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。