湖南大学2006年高等代数考研真题

合集下载

2006-数一真题大全及答案

2006-数一真题大全及答案

2006年全国硕士研究生入学考试数学一真题一、填空题(1)0ln(1)lim1cos x x x x→+=−. (2)微分方程(1)y x y x−'=的通解是 .(3)设∑是锥面z =(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++−=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫= ⎪−⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =.(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,).xf x y dy ⎰⎰(B)(,).f x y dy ⎰⎰(C)(,).yf x y dx ⎰⎰(C)(,).f x y dx ⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=−∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP −= (B )1.C PAP −=(C ).T C P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ−<>−<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.16 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<== . 求: (Ⅰ)证明lim n x x →∞存在,并求之 .(Ⅱ)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. 17 将函数()22xf x x x=+−展开成x 的幂级数. 18 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=. (Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 19 设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t>0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L,都有0),(),(=−⎰dy y x xf dx y x yf L.20 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=−⎧⎪++−=−⎨⎪++−=⎩有个线性无关的解 Ⅰ证明方程组系数矩阵A 的秩()2r A = Ⅱ求,a b 的值及方程组的通解21 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=−−=−是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.22 随机变量x 的概率密度为()()21,1021,02,,40,x x f x x y x F x y ⎧−<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩令其他为二维随机变量(X,Y)的分布函数.(Ⅰ)求Y 的概率密度()Y f y (Ⅱ)1,42F ⎛⎫−⎪⎝⎭23 设总体X 的概率密度为()()01,0112010x F X x θθθθ<<⎧⎪=−≤<<<⎨⎪⎩其中是未知参数其它,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,1n x x x 中小于的个数,求θ的最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+−= 2 .221cos 1,)1ln(x x x x −+ (0x →当时)(2)微分方程(1)y x y x−'=的通解是(0)xy cxe x −=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++−=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===−1236P Q R x y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯= 而123(1)0dydz ydzdx z dxdy ∑⨯++−=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dy f x y dy πθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于(C)(,)(D)(,)ydy f x y dxf x y dx ⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a aC a aD a∞=∞∞==∞∞∞+++===−+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y x y x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=−='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ−−,,1}1{1111⎭⎬⎫<⎩⎨⎧−=<−σσμμX P X P.1}1{2222⎭⎬⎫⎩⎨⎧<−=<−σσμμY P Y P 因 },1{}1{21<−><−μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<−>⎭⎬⎫⎩⎨⎧<−σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdyx y xydxdy x y r I dxdy d dr r x yr ππππθ−+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤−−+−−+⎢⎥⎢⎥−⎢⎥⎢⎥−⎣⎦⎣⎦−=====2(17)()2xf x x x x =+−将函数展开成的幂极数 ()(2)(1)21x A Bf x x x x x ==+−+−+解: 2(1)(2)2,32,3A xB x xx A A ++−====令 11,31,3x B B =−=−=−令)](1[131)21(131)1(131)2(132)(x x x x x f −−⨯−−⨯=+⨯−−⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=−−=+−<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y ∂'''=+∂+()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==−=−+⎰⎰则ln ln ,()cp u c f u p u'=−+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y −=证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=−⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t −=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=− 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=− 再令 (,),(,)P yf x y Q xf x y ==−所给曲线积分等于0的充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=−−∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=− 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换: 1 1 1 1 -1 1 1 1 1 -1 (A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0(22)随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<−=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,的分布函数.(Ⅰ)求Y 的概率密度;(Ⅱ))4,21(−F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式 ⎰⎰=+=≤≤−=−yy y dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤−=−y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数的最基本的概率定义入手,对y 进行适当的讨论即可,在新东方的辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(−F )212()22,21()4,21()4,21(2−≤≤−=≤≤−−≤=≤−≤=≤−≤=X P X X P X X P Y X P 4121211==⎰−−dx . (23)设总体X 的概率密度为⎪⎩⎪⎨⎧≤≤−<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体的简单随机样本,记N 为样本值n x x x ,,21中小于1的个数.求θ的最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<−=++−其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时, )1ln()(ln )(ln θθθ−−+=N n N L ,01)(ln =−−−=θθθθN n N d L d ,所以nN =最大θ.。

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1~6小题,每小题4分,共24分.把答案填在题中横线上. (1)曲线xx xx ycos 25sin 4-+=的水平渐近线方程为______.【答案】51=y【考点】水平渐近线 【难易度】★★ 【详解】解析:,51cos 25sin 41lim cos 25sin 4lim lim =-+=-+=∞→∞→∞→xx x xx x x x y x x x 所以水平渐近线方程为51=y . (2)设函数⎪⎩⎪⎨⎧==/=⎰,,0,d sin 1)(023x a x t t x x f x在x =0处连续,则a =______.【答案】13【考点】函数连续的概念 【难易度】★★ 【详解】解析:按连续性定义,313sin lim d sin lim)(lim )0(220320=====→→→⎰x x x t t x f f a x xx x . (3)广义积分⎰+∞+022)1(d x xx =______.【答案】12【考点】无穷限的反常积分 【难易度】★★ 【详解】 解析:211121)1(d 21)1(d 02022222=+-=+=++∞∞+∞+⎰⎰x x x x x x(4)微分方程xx y y )1(-='的通解是______. 【答案】xy Cxe -=,C 为∀常数 【考点】变量可分离的微分方程【难易度】★★ 【详解】解析:这是可变量分离的一阶方程,分离变量得x xy y d )11(d -=. 积分得 1ln ln y x x C =-+,即1C x y ex e -=.因此,通解为xy Cxe -=,C 为∀常数. (5)设函数()y y x =由方程1yy xe =-确定,则0|d d =x xy=______. 【答案】e -【考点】隐函数的导数 【难易度】★★ 【详解】解析:在原方程中令0(0)1x y =⇒=.将方程两边对x 求导,并令0x =得y y y e xe y ''=--,(0)(0)y y e e '=-=-.(6)设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足BA =B +2E ,则B =______.【答案】2【考点】抽象型行列式的计算 【难易度】★★★ 【详解】解析:由BA =B +2E 得()2B A E E -=,两边取行列式,有4B A E ⋅-=.因为11211A E -==-,所以2B =. 二、选择题:7~14小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数y =f (x )具有二阶导数,且x x f x f ∆>">',0)(,0)(为自变量x 在点x 0处的增量,∆y 与d y 分别为f (x )在点x 0处对应的增量与微分,若∆x >0,则( ) (A )0<d y <∆y . (B )0<∆y <d y . (C )∆y <d y <0. (D )d y <∆y <0. 【答案】(A )【考点】函数单调性的判别;函数图形的凹凸性 【难易度】★★★ 【详解】解析:方法1:因为()0,f x '>则()f x 严格单调增加()0,f x ''> 则()f x 是凹的又0x >V ,故0dy y <<V .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--V V V0()()f x f x x ξ''=-V V0()()f x x ηξ''=-V 其中000,x x x x ξηξ<<+<<V由于()0f x ''>,从而0y dy ->V 又由于0()0dy f x x '=>V ,故选(A )(8)设()f x 是奇函数,除x =0外处处连续,x =0是其第一类间断点,则t t f xd )(0⎰是( )(A )连续的奇函数. (B )连续的偶函数.(C )在x =0间断的奇函数. (D )在x =0间断的偶函数.【答案】(B )【考点】积分上限的函数及其导数 【难易度】★★★ 【详解】解析:方法1(排除法): 设 ()f x =1,00,01,0x x x >⎧⎪=⎨⎪-<⎩此()f x 满足题设条件,它是一个奇函数,除0x =外处处连续,0x =是其第一类间断点.0()()0xxx F x f t dt xx >⎧==⎨-<⎩⎰当当并且0(0)()0F f t dt ==⎰即 0()()000xx x F x f t dt x x x >⎧⎪==>⎨⎪-<⎩⎰当当当 ()F x 是一个连续的偶函数,所以不选(A )、(C )、(D ),只能选(B ).方法2(论证法):由题设条件,()f x 除0x =外,处处连续,在0x =处为第一类间断点,且()f x 为奇函数,从而知,(0)0f =,且00lim ()lim ()0x x f x A f x A A +-→→-≠存在记为,存在, 作函数 (),0)0,0(),0f x A x x x f x A x ϕ->⎧⎪==⎨⎪-<⎩当(当当)x ϕ(为连续的奇函数,0()xt dt ϕ⎰为可导的偶函数.另一方面,00(),0()0,0(),0x x xf t dt Ax x t dt x f t dt Ax x ϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当所以,00(),0()0,0(),0x xxt dt Ax x f t dt x t dt Ax x ϕϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当 即()()xxf t dt t dt A x ϕ=+⎰⎰,所以0()xf t dt ⎰为连续的偶函数,故选(B ).(9)设函数()g x 可微,1()()g x h x e +=,(1)1h '=,(1)2g '=,则(1)g 等于( )(A )ln3-1. (B )-ln3-1.(C )-ln2-1.(D )ln2-1.【答案】(C )【考点】复合函数的求导法则 【难易度】★★ 【详解】 解析:由1()()g x h x e +=两边对x 求导,得1()()()g x h x g x e+''=,再以1x =代入,并由已知数值得1(1)12g e+=,于是1(1)ln1ln 212g =-=--.故选(C ). (10)函数212x x xy C e C e xe -=++满足的一个微分方程是( )(A ).e 32xx y y y =-'-" (B ).e 32xy y y =-'-"(C ).e 32xx y y y =-'+" (D ).e 32xy y y =-'+"【答案】(D ) 【考点】线性微分方程解的结构定理;自由项为指数函数的二阶常系数非齐次线性微分方程 【难易度】★★★ 【详解】解析:该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=对应的齐次微分方程为 -20y y y '''+= 所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解xy xe *=代入方程左边,计算得()()-23xy y y e ***'''+=,故选(D ).(11)设f (x ,y )为连续函数,则r r r r f d )sin ,cos (d 14π0θθθ⎰⎰等于( )(A )⋅⎰⎰-y y x f x x xd ),(d 21220(B )⋅⎰⎰-y y x f x x d ),(d 210220(C ).d ),(d 22012x y x f y y y⎰⎰- (D ).d ),(d 210220x y x f y y ⎰⎰-【答案】(C )【考点】交换累次积分的次序与坐标系的转换 【难易度】★★ 【详解】 解析:y x y x f r r r r f Dd d ),(d )sin ,cos (d 14π0⎰⎰⎰⎰=θθθ.D 的极坐标表示是:0≤r ≤1,4π0≤≤θ.见右图.现转换为先x 后y 的积分顺序. 原式x y x f y y yd ),(d 21220⎰⎰-=.因此选(C ).(12)设(,)f x y 与(,)x y ϕ均为可微函数,且0),(=/'y x y ϕ.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【答案】(D )【考点】多元函数极值存在的必要条件;拉格朗日乘数法 【难易度】★★★ 【详解】解析:引入函数(,,)(,)(,)F x y f x y x y λλϕ=+,有(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y f x y x y f x y x y x y λλϕλϕϕ'''⎧+=⎪'''+=⎨⎪'=⎩F =F =F =000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'Q 代入(1)得00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选D.(13)设12,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关. (D )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关. 【答案】(A )【考点】向量组线性相关的判别法 【难易度】★★ 【详解】解析:方法1:若12,,,s αααL 线性相关,则存在不全为0的数12s ,,,k k k L 使得11220s s k k k ααα+++=L用A 左乘等式两边,得11220s s k A k A k A ααα+++=L于是12,,,s A A A αααL 线性相关. 方法2:因为:1.12,,,s αααL 线性相关⇔ 12(,,,)s r s ααα<L .2.()()r AB r B <. 所以有:矩阵1212(,,,)(,,,)s s A A A A αααααα=L L ,因此1212(,,,)(,,,)s s r A A A r s αααααα≤<L L由此可判断答案应为A .(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010011P ,则( ) (A )1C P AP -=. (B )1C PAP -=.(C )T C P AP =.(D )TC PAP =.【答案】(B )【考点】矩阵的初等变换;逆矩阵的计算 【难易度】★★ 【详解】解析:将A 的第2行加到第1行得B ,即 110010001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=PA将B 的第1列的-1倍加到第2列得C ,即110010001C B -⎛⎫ ⎪= ⎪ ⎪⎝⎭记 BQ因PQ =110010001⎛⎫ ⎪ ⎪ ⎪⎝⎭110010001-⎛⎫⎪ ⎪ ⎪⎝⎭E =,故1Q P -=从而 11C BP PAP --== ,故选(B ).三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)试确定常数A ,B ,C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.【考点】高阶无穷小;泰勒公式;洛必达法则 【难易度】★★★ 【详解】解析:方法一:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得11021026B A C B B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩由此可解得13A =, 23B =-,16C =方法二:用洛必达法则.由23(1)1()x e Bx Cx Ax o x ++=++,(0x →)⇒ )(记J0)1(e )1(lim 320=+-++-→x Ax Cx Bx x x ⇒ 203])1[(e 2limx Ax A Cx B x x +-++-→ (要求分子极限为0,即1+B -A =0,否则J =∞)⇒ xAx A C J x x 6)12(e 2lim0--+=-→ (要求分子极限为0,即2A +2C -1=0,否则J =∞),⇒ 06316)31(e lim0=-=+-=-→AAx A J x x ,即1-3A =0. 解 ⎪⎩⎪⎨⎧=-=-+=-+,031,0122,01A C A A B 得61,32,31=-==C B A . (16)(本题满分10分)求.d e e sin arc x xx⎰【考点】不定积分的分部积分法;不定积分的第二类换元法 【难易度】★ 【详解】解析:x x xx x x x xx x x 2e1d e ee sin arc e de e sin arc d e e sin arc -+-=-=---⎰⎰⎰ 1)e (de e sin arc e 2---=---⎰x x xx其中,22sec tan sec sec ln sec tan ln ()1tan ()1x x x x x t te t dt tdt t t C e e C te -----===++=+-+-⎰⎰⎰因此,x x xd ee sin arc ⎰.|1e e |ln e sin arc e 2C x x x x +-+--=--- (17)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥,计算二重积分⎰⎰⋅+++-=Dy x y x xyI d d 1122【考点】二重积分的计算;利用极坐标计算二重积分 【难易度】★★★ 【详解】解析:D 为右半单位圆,它关于x 轴对称,于是0d d 122=++⎰⎰y x y x xyD, 从而 ⎰⎰⎰⎰++=++=122221d d 2d d 11D Dy x yx y x yxI . 又 {}10D D y =⋂≥,如图,作极坐标变换,cos x r θ=,sin y r θ=, 则 10,2π0:1≤≤≤≤r D θ.因此 2ln 2π)1ln(2πd 11d 21221022π0=+=+=⎰⎰r r r r I θ.(18)(本题满分12分)设数列{}n x 满足10x π<<,1sin n n x x +=(1,2,n =L ). (Ⅰ)证明n n x ∞→lim 存在,并求该极限;(Ⅱ)计算.)(lim 211n x nn n x x +∞→【考点】函数极限与数列极限的关系;单调有界准则【难易度】★★★★ 【详解】解析:(Ⅰ)由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=≤ 说明数列{}n x 单调减少且0n x >.由单调有界准则知lim n n x →∞存在.记为A递推公式两边取极限得 sin ,0A A A =∴=(Ⅱ)原式21sin lim(),n x n n nx x →∞=为∞"1"型 由于离散型不能直接用洛比达法则先考虑22011sin lim ln()0sin lim()t ttt t t t e t→→=用洛比达法则2323203311(cos sin )1110()0()lim 26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====g g(19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. 【考点】函数单调性的判别 【难易度】★★★ 【详解】证明:令()sin 2cos f x x x x x π=++ 只需证明0x π<<时,()f x 单调增加(严格)()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+ ()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴ 单调减少(严格)又()cos 0f ππππ'=+=,故0()0()x f x f x π'<< >时则单调增加(严格)()()b a f b f a >>由则,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(20)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且)(22y x f z +=满足等式.02222=∂∂+∂∂yzx z (Ⅰ)验证;0)()(='+"uu f u f (Ⅱ)若1)1(,0)1(='=f f ,求函数()f u 的表达式. 【考点】多元复合函数的求导法;变量可分离的微分方程 【难易度】★★★ 【详解】解析:(I)z zf fx y∂∂''==∂∂()22222z xf fx x y x y ∂'''=+∂++()()22322222x yf fx y x y '''=+++()() 22232 22222z y xf fy x y x y∂'''=+∂++同理222200()()0z zfx yf uf uu∂∂''+==∂∂'''∴+=代入得成立(II)令(),f u p'=于是上述方程成为dp pdu u=-,则dp ducp u=-+⎰⎰ln ln,()cp u c f u pu'=-+∴==22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+===由得,于是22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+==∴=由,(21)(本题满分12分)已知曲线L的方程为)0(4,122≥⎪⎩⎪⎨⎧-=+=tttytx,(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.【考点】导数的几何意义;由参数方程所确定的函数的导数;平面图形的面积【难易度】★★★【详解】解析:(Ⅰ)4222,42,12dx dy dy tt tdt dt dx t t-==-==-222312110(0)2dydd y dxtdxdx dt t t tdt⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<>⎪⎝⎭处∴曲线L (在0t >处)是凸.(Ⅱ)切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则 2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得 200000020,(1)(2)001t t t t t t +-=-+=>∴=Q点为(2,3),切线方程为1y x =+(Ⅲ)设L 的方程()x g y =, 则 ()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=±+解出t 得由于(2,3)在L上,由(23221()y x x g y ===-+=得可知(309(1)S y y d y ⎡⎤=----⎣⎦⎰33(102)4y dy y =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)(本题满分9分)已知非齐次线性方程组⎪⎩⎪⎨⎧=+++-=-++-=+++13,1534,1432143214321bx x x ax x x x x x x x x有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求a ,b 的值及方程组的通解.【考点】非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系;非齐次线性方程组的通解 【难易度】★★★ 【详解】解析:(Ⅰ)设123,,ααα是方程组的3个线性无关的解,则2131,αααα--是0Ax =的两个线性无关的解.于是0Ax =的基础解系中解的个数不少于2,即4()2r A -≥,从而()2r A ≤.又因为A 的行向量是两两线性无关的,所以()2r A ≥. 两个不等式说明()2r A =.(Ⅱ)对方程组的增广矩阵作初等行变换:[]A b = 1111|11111|14351|10115|3,13|1004245|42a b a a b a --⎡⎤⎡⎤⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥-+--⎣⎦⎣⎦由()2r A =,得出 2,a = 3b =-.代入后继续作初等行变换:1024|20115|3.0000|0-⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦得同解方程组 1342342-24-3-5x x x x x x =+⎧⎨=+⎩求出一个特解(2,3,0,0)T-和0Ax =的基础解系(2,1,1,0)T-,(4,5,0,1)T-.得到方程组的通解: 12(2,3,0,0)(2,1,1,0)(4,5,0,1)T T Tc c -+-+-,12,c c 任意.(23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量1(1,2,1)T α=--,2(0,1,1)Tα=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.【考点】矩阵的特征值的计算;矩阵的特征向量的计算;施密特正交化;相似对角矩阵 【难易度】★★★ 【详解】解析:(Ⅰ) 由A 的每行元素之和为3,有(1,1,1)(3,3,3)T TA =故,0(1,1,1)Tα=是A 的特征向量,特征值为3.又12,αα都是0AX =的解说明它们也都是A 的特征向量,特征值为0.由于12,αα线性无关, 特征值0的重数大于1. 于是A 的特征值为3,0,0.属于3的特征向量:0c α, c 0≠.属于0的特征向量: 1122c c αα+,12,c c 不都为0. (Ⅱ)将0α单位化,得0333(, , )333T η=. 对12,αα作施密特正交化,得122(0, , )22T η=-,2666( )366Tη=--. 作123(,,)Q ηηη=,则Q 是正交矩阵,并且-13 0 00 0 00 0 0T Q AQ Q AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭。

2006考研数学二真题及答案解析

2006考研数学二真题及答案解析

2006年数学(二)考研真题及解答一、填空题(1)曲线4sin 52cos x x yxx的水平渐近线方程为.(2)设函数231sin ,0,(),xt dt xf x xa x在0x 处连续,则a.(3)广义积分22(1)xdxx .(4)微分方程(1)y x y x的通解是.(5)设函数()yy x 由方程1y yxe 确定,则A dy dx= .(6)设矩阵2112A,E 为2阶单位矩阵,矩阵B 满足2B A B E,则B = .二、选择题(7)设函数()yf x 具有二阶导数,且()0,()0f x f x ,x 为自变量x 在0x 处的增量,y 与dy分别为()f x 在点0x 处对应的增量与微分,若0x ,则(A )0.dy y (B )0.y dy (C )0.ydy(D )0.dyy 【】(8)设()f x 是奇函数,除0x 外处处连续,0x 是其第一类间断点,则0()x f t dt 是(A )连续的奇函数. (B )连续的偶函数(C )在0x 间断的奇函数(D )在0x间断的偶函数.【】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x eh g ,则(1)g 等于(A )ln31.(B )ln3 1.(C )ln 2 1.(D )ln 2 1.【】(10)函数212xxxyC eC e xe 满足一个微分方程是(A )23.xy y y xe (B )23.xy y y e (C )23.xyyyxe (D )23.xyyye (11)设(,)f x y 为连续函数,则140(cos ,sin )df r r rdr 等于(A )22120(,).x xdxf x y dy (B )22120(,).x dxf x y dy (C )22120(,).y ydyf x y dx (D )22120(,).y dyf x y dx 【】(12)设(,)f x y 与(,)x y 均为可微函数,且1(,)0yx y . 已知00(,)x y 是(,)f x y 在约束条件(,)0x y 下的一个极值点,下列选项正确的是(A )若00(,)0x f x y ,则00(,)0y f x y . (B )若00(,)0x f x y ,则00(,)0y f x y . (C )若00(,)0x f x y ,则00(,)0y f x y . (D )若00(,)0x f x y ,则00(,)0y f x y .【】(13)设12,,,,a a a 均为n 维列向量,A 是m n 矩阵,下列选项正确的是(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关. (C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关. (D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关.【】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记11001001P ,则(A )1.C P AP (B )1.C PAP (C ).TC P AP (D ).TCPAP 三解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe BxCx Ax o x ,其中3()o x 是当30x x 时比的高阶无穷小。

考研数学-湖南大学高等代数2005--2009年考研真题[1]

考研数学-湖南大学高等代数2005--2009年考研真题[1]

高等代数——2005年真题一.(20分)证明:数域F 上的一个n 次多项式()f x 能被它的导数整除的充要条件是()()nf x a x b =-,(),a b F 其中是中的数.二.(20分)设120n a a a ≠,计算下面的行列式:12311111111111111111111na a a a++++三.(15分)已知矩阵A PQ =,其中2431P ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2121Q ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭,Q ',求矩阵2100,A A A 和。

四.(20分)给定线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 当1234,,,a a a a 满足什么条件时,方程组(1)有惟一解?无穷多解?无解? 五.(20分)设()fX XA X '=是一实二次型,若有实n 维向量1X ,2X 使得()()12f X f X >0,<0,证明:必存在实n 维向量00X ≠使()00f X =。

六.设W 是齐次线性方程组1234512352300x x x x x x x x x +-+-=⎧⎨+- +=⎩ (2)的解空间。

1.W 中的向量与方程组(2)的系数矩阵的行向量有何关系?2。

求W 的一组标准正交基。

七.(15分)求复矩阵131616576687⎛⎫ ⎪--- ⎪ ⎪---⎝⎭的不变因子,初等因子及Jordan 标准形。

八.(10分)设整系数线性方程组1nij ji j a xb ==∑,()1,2,,i n =对任意整数12,,,n b b b 均有整数解。

证明该方程组的系数矩阵的行列式必为1±。

九.(15分)设,,A B C 为复数域上n 维空间V 的线性变换,AB BA C -=,并且C 可以与,A B 交换。

2006—数一真题、标准答案及解析

2006—数一真题、标准答案及解析

2006年全国硕士研究生入学考试数学一真题一、填空题(1) lim Xln(1 x)X 01 COSX -----------------(2 )微分方程y y(1 x)的通解是__________________ .X(3)设是锥面z x2—y2( 0 z 1)的下侧,贝U xdydz 2ydzdx 3(z 1)dxdy(4)点(2,1, 0)到平面3x 4y 5z 0的距离z =(5 )设矩阵A E为2阶单位矩阵,矩阵B满足BA B 2E ,贝U B(6)设随机变量X与Y相互独立,且均服从区间[0, 3]上的均匀分布,则P max{X,Y} 1 = ______________、选择题(7)设函数y f(x)具有二阶导数,且f (x) 0, f (x) 0 ,x为自变量x在x0处的增量, y与dy(A) 0 dx y. (B) 0 y dy(C)y dy 0. (D)dy y 0104d 0f(rcos,rsin )rdr等于(A) 02dx x f (X, y)dy.(B) 0勺x°1x2f(x,y)dy.(C) 0「y1y2f(x,y)dx. (C) ^dy J 7 f(x, y)dx. 【】(9)若级数a n收敛,则级数n 1(A) a n收敛.n 1(C) a n a n 1收敛. (B) ( 1)n a n收敛.n 1(D) 3n 3n 1收敛. 【】分别为f(x)在点X。

处对应的增量与微分,若x 0,则(8)设f(x, y)为连续函数,则(10)设f (x, y)与(x, y)均为可微函数,且y (x, y) 0 •已知(x 0, y 0)是f (x, y)在约束条件(x, y) 0 下的一个极值点,下列选项正确的是 0,则 f y (x 0, y 0) 0 0,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 0(A) 若a !, a 2,L , a,线性相关,则 (B) 若a !, a ?丄,a,线性相关,则 (C) 若印,玄2丄,a,线性无关,则(A ) P(A B) P(A). (B )P(A B)P(B). (C ) P(A B) P(A).(D )P(A B)P(B). 【】14 )设随机变量X 服从正态分布N( 1, 212) , Y 服从正态分布N( 2, 2),且P{| X1| 1} P{| Y 2| 1},(A ) 1 2.(B ) 1 2.( C )12.(D )1 2.【 】(12 )设A 为3 阶矩阵,将A 的第 2 行加到第 1 行得B ,再将B 的第 1 列的 -1 倍加到第 2 列得C ,记1 10P0 1 0 ,则0 01(A ) CP 1AP.(B ) C PAP 1.(C )C P T AP . (D )C PAP T .【】13)设 A, B 为随机事件,且p(B) 0, p(A|B)1, 则必有(D) 若a !, a ?丄,a,线性无关,则】(A) 若 f x (x 。

2006考研数学(二)真题及参考答案

2006考研数学(二)真题及参考答案

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )22120(,).x xdx f x y dy -⎰⎰(B )22120(,).x dx f x y dy -⎰⎰(C )22120(,).y ydy f x y dx -⎰⎰(D )22120(,).y dy f x y dx -⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y +=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<== 设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim()n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )2212(,)x xdx f x y dy -⎰⎰(B )2212(,)x dx f x y dy -⎰⎰(C )2212(,)y ydy f x y dx -⎰⎰(D )2212(,)y dy f x y dx -⎰⎰(12)设(,)(,)f xyxy ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令21arcsin arcsin ()1t dttd t t t t =-=-+-⎰⎰2222arcsin arcsin 1(2)12(1)1t tdt t udu t u t t u u t t -=-+-==-+--⎰⎰令2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++22arcsin arcsin 111ln 211x x x x x x e e e dx C e e e --∴=-++-+⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且()22Z fx y=+满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I )()()22222222;zx zy f x y f x y xyx yx y∂∂''=+=+∂∂++()()()()22222223222222zx y f x yf x yx x y x y ∂'''=+++∂++()()()()22222223222222zy x f x yf x yy x y x y ∂'''=+++∂++()2222222222()0()()0f x y z zf x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰ ()224024241t t y y x y -+==±-=±-+解出t 得由于(2,3)在L 上,由()232241()y x x y g y ===--+=得可知()30944(1)S y y y dy ⎡⎤=-----⎣⎦⎰ 3300(102)44y dy ydy =---⎰⎰3333220002(10)44(4)214(4)3y y yd y y =-+--=+⨯⨯-⎰8642213333=+-=- (22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2.② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0。

2006年考研数学一试题与答案解析

2006年考研数学一试题与答案解析

2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-. (2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T =C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P AB P A > (B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.(16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x の幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y ∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A . (2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)xy cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1000(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dy f x y dy πθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于(C)(,)(D)(,)yf x y dxf x y dx ⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考の是线性相关性の判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0の数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdy x yxydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n nx x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数 ()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y xy∂'''=+∂++()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+==∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty tf x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解.解:① 设α1,α2,α3是方程组の3个线性无关の解,则α2-α1,α3-α1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A の行向量是两两线性无关の,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0の基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组の通解:(2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0の解. ① 求A の特征值和特征向量. ② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 α0=(1,1,1)T是A の特征向量,特征值为3.又α1,α2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于α1,α2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c α0, c ≠0.属于0の特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,のη1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 . 0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数. (Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=y y y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-yyy dx dx y X y P 0434121)()1(式; ⎰⎰+=+=≤≤-=-yy dx dx y X y P 0141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型. (Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体の简单随机样本,记N 为样本值n x x x ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ,在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN=最大θ.2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ] (14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t S X n (D) ).1,1(~)1(2221--∑=n F X X n n i i[ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov。

2006年考研数学一真题及参考答案

2006年考研数学一真题及参考答案

2006年全国硕士研究生入学考试数学(一)一、填空题(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =16 .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )2210(,).x xf x y dy -⎰⎰(B )2210(,).x f x y dy -⎰⎰(C )2210(,).y yf x y dx -⎰⎰(C )2210(,).y f x y dx -⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 A 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 B 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰。

2006年考研数学三真题及完整解析

2006年考研数学三真题及完整解析

2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z =(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______. (6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ](8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ ] (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ ](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有 (A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. (16)(本题满分7分) 计算二重积分2d d Dy xy x y -⎰⎰,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()T T T 1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+ ()T44,4,4,4a α=+,问a为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数. (Ⅰ)求Y 的概率密度()Y f y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分13分) 设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计2006年考研数学(三)真题解析二、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim 1.nn n n -→∞+⎛⎫=⎪⎝⎭【分析】将其对数恒等化ln eNN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n -有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0nn n n →∞+⎛⎫-= ⎪⎝⎭. 故 ()101lim e 1nn n n -→∞+⎛⎫==⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可. 【详解】由题设知,()()e f x f x '=,两边对x 求导得()()()2e()e f x f x f x f x '''==,两边再对x 求导得 ()()23()2e()2e f x f x f x f x ''''==,又()21f =,故 ()323(2)2e 2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .z x y =-【分析】利用二元函数的全微分公式或微分形式不变性计算. 【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以 ()()()1,21,21,2d d d 4d 2d z z z x y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦. 方法二:对()224z f x y =-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--,故 ()()1,2d (0)8d 2d 4d 2d z f x y x y '=-=-.(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有()2B A E E -= 于是有 4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2 2.ES =【分析】利用样本方差的性质2ES DX =即可. 【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰, 22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x +∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e2e d 2e 2x x xx x +∞-+∞--+∞=-+=-=⎰,所以 ()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以 22ES DX ==.二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .[ A ]【分析】 题设条件有明显的几何意义,用图示法求解.【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ C ] 【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim1h f h h →=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()2(0)lim ()lim 0x h f f x f h→→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f h t++→→-'===.所以(0)f +'存在,故本题选(C ). (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ D ] 【分析】 可以通过举反例及级数的性质来判定. 【详解】 由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D). 或利用排除法: 取1(1)nn a n=-,则可排除选项(A),(B); 取1(1)nn a n=-,则可排除选项(C).故(D)项正确. (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ B ] 【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是[]12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D ]【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ A ] 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ B ]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得1101101101110,010********1001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ , 而 1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有 (A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ A ]【分析】 利用标准正态分布密度曲线的几何意义可得.【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭. 其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. 【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ) ()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+ ⎪⎪⎝⎭sin 11111lim 1arctan arctan y x yxy x x x x y ππ→∞⎛⎫ ⎪ ⎪-⎪⎪-=-=-⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭. (Ⅱ) ()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分) 22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++====(16)(本题满分7分) 计算二重积分2d d Dy xy x y -⎰⎰,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可. 【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以1220d d d d yDy xy x y y y xy x -=-⎰⎰⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. 【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数. 【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得 y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得 ()11d d 2e e d x x x x y ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰, 又(1)0f =,所以C a =-.故曲线L 的方程为 2y ax ax =-(0)x ≠.(Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰ ()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x.【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n xx u x n n ++-+→∞→∞-++==--. 所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛, 故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而 12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑, 所以 111201()(0)()d d arctan 1xxs x s s t t t x t ''''-===+⎰⎰,又1(0)0s '=,于是 1()arctan s x x '=.同理 11100()(0)()d arctan d xxs x s s t t t t '-==⎰⎰()20201arctan d arctan ln 112xx t t tt x x x t =-=-++⎰, 又 1(0)0s =,所以 ()211()arctan ln 12s x x x x =-+.故 ()22()2arctan ln 1s x x x x x =-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =± 处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-.(20)(本题满分13分)设4维向量组()()()T T T 1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+ ()T44,4,4,4a α=+,问a为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组. 【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234a a A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===; 当10a =-时, 1α2α 3α 4α9234183412741236A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭, 由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由TQ AQ =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T (1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交. 取 11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得121231211136212,,036111236ββαηηηαββ⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪⎪ ⎪ ⎪⎪====== ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭, 令 []123,,Q ηηη=,则1T QQ -=,由A 是实对称矩阵必可相似对角化,得T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦. (Ⅲ)由(Ⅱ)知 T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T 11111136********121210011136666011111111036222A Q Q ⎛⎫⎛⎫--⎪ ⎪⎪ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=Λ=--=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭. 666T T T 333222Q A E Q Q A E Q Q AQ E ⎡⎤⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 6666633223333022203322E ⎛⎫⎛⎫⎡⎤⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭ ⎪⎛⎫⎢⎥ ⎪ ⎪⎛⎫⎛⎫ ⎪⎢⎥ ⎪ ⎪=-== ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪⎝⎭⎝⎭ ⎪⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎪⎝⎭⎝⎭, 则666T 333222A E Q EQ E ⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ) 求Y 的概率密度()Y f y ; (Ⅱ) Cov(,)X Y ;(Ⅲ) 1,42F ⎛⎫-⎪⎝⎭. 【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算. 【详解】 (I ) 设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则 1) 当0y <时,()0Y F y =;2) 当01y ≤<时, ()2()()Y F y P X y P y X y =<=-<<0113d d 244y y x x y -=+=⎰⎰. 3) 当14y ≤<时,()2()()1Y F y P X y P X y =<=-<<101111d d 2442y x x y -=+=+⎰⎰. 4) 当4y ≥,()1Y F y =. 所以3,0181()(),1480,Y Y y y f y F y y y⎧<<⎪⎪⎪'==≤<⎨⎪⎪⎪⎩其他. (II ) 22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而 02101d d 244x x EX x x -=+=⎰⎰,22022105d d 246x x EX x x -=+=⎰⎰, 3323107d d 248x x EX x x -=+=⎰⎰, 所以 7152Cov(,)8463X Y =-⋅=. (Ⅲ) 1,42F ⎛⎫-⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计【分析】 利用矩估计法和最大似然估计法计算. 【详解】(Ⅰ)因为()1213(;)d d 1d 2EX xf x x x x x x θθθθ+∞-∞==+-=-⎰⎰⎰, 令 32X θ-=,可得θ的矩估计为 32X θ=- .(Ⅱ)记似然函数为()L θ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=- 个个. 两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--,令d ln ()0d 1L N n Nθθθθ-=-=-,解得N n θ= 为θ的最大似然估计.。

2006年考研数学一真题及解析

2006年考研数学一真题及解析

2006 年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】2.【详解】由等价无穷小替换,0x →时,21ln(1),1cos 2x x x x +-,2002ln(1)limlim 11cos 2x x x x x x x →→+=-=2(2)【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dxy x =-⎰⎰⎰⇒ln ln y x x c =-+⇒ln ln yx x cee-+=⇒xy Cxe-=(3)【答案】2π【详解】补一个曲面221:1x y z ⎧+≤∑⎨=⎩1,取上侧,则1∑+∑组成的封闭立体Ω满足高斯公式,1()P Q R dv Pdydz Qdzdx Rdxdy I x y z Ω∑+∑∂∂∂++=++=∂∂∂⎰⎰⎰⎰⎰ 设,2,3(1)P x Q y R z ===-,则1236P Q Rx y z∂∂∂++=++=∂∂∂∴I =6dxdydz Ω⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)注:以下几种解法针对于不同的方法求圆锥体体积V 方法1:I 623ππ=⨯=(高中方法,圆锥的体积公式,这种方法最简便)而123(1)0xdydz ydzdx z dxdy ∑++-=⎰⎰( 在1∑上:1,0z dz ==)方法2:先二重积分,后定积分.因为1V Sdz =⎰,r =222r x y =+,22r z =,22S r z ππ==,所以1122001133V z dz z πππ===⎰.从而6623I V ππ==⨯=方法3:利用球面坐标.1z =在球坐标下为:1cos ρθ=,1224cos 0006sin I d d d ππϕθϕρϕρ=⎰⎰⎰243002sin cos d d ππϕθϕϕ=⎰⎰2430cos (2)cos d d ππϕθϕ=-⎰⎰422001(2)()cos 2d ππθϕ-=--⎰202d πθπ==⎰方法4:利用柱面坐标.21106rI d dr rdz πθ=⎰⎰⎰216(1)d r rdrπθ=-⎰⎰122300116()23d r r πθ=-⎰202d πθπ==⎰(4)【详解】代入点000(,,)P x y z 到平面0Ax By Cz D +++=的距离公式d ===(5)【答案】2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=,两边取行列式,得()244B A E E E -===其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦,222E 4E ==因此,2422E B A E===-.(6)【答案】19【详解】根据独立性原理:若事件1,,n A A 独立,则{}{}{}{}1212n n P A A A P A P A P A =事件{}{}{}{}max{,}11,111X Y X Y X Y ≤=≤≤=≤≤ ,而随机变量X 与Y 均服从区间[0,3]上的均匀分布,有{}1011133P X dx ≤==⎰和{}1011133P Y dy ≤==⎰.又随机变量X 与Y 相互独立,所以,{}{}{}{}max(,)11,111P x y P x Y P x P Y ≤=≤≤=≤⋅≤1133=⨯19=二、选择题.(7)【答案】A 【详解】方法1:图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''>则()f x 是凹函数,又0x > ,画2()f x x =的图形结合图形分析,就可以明显得出结论:0dy y << .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+-- (前两项用拉氏定理)0()()f x f x xξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'' ,其中000,x x x x ξηξ<<+<< 由于()0f x ''>,从而0y dy -> .又由于0()0dy f x x '=> ,故选[]A 方法3:用拉格朗日余项一阶泰勒公式.泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+ ,其中(1)00()()(1)!n nn fx R x x n +=-+.此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆>又由0()0dy f x x '=∆>,选()A .O x 0x 0+Δx xyy=f (x )Δydy(8)【答案】()C 【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤,04πθ≤≤.题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意y x =与221x y +=在第一象限的交点是2222,)),于是2:02D y y x ≤≤≤≤所以,原式0(,)ydy f x y dx =.因此选()C (9)【答案】D 【详解】方法1:数列收敛的性质:收敛数列的四则运算后形成的新数列依然收敛因为1nn a ∞=∑收敛,所以11n n a ∞+=∑也收敛,所以11()n n n a a ∞+=+∑收敛,从而112n n n a a ∞+=+∑也收敛.选D.方法2:记n n a =,则1n n a ∞=∑收敛.但11n n n a ∞∞===∑(p 级数,12p =级数发散);111n n n n a a ∞∞+===∑∑p 级数,1p =级数发散)均发散。

2006—2011考研真题(线性代数)

2006—2011考研真题(线性代数)

考研真题(线性代数)2006数(一)(5)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(11)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关;(12) 设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )(T T PAP C D APP C C ==)()(20 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。

21 设3阶实对称矩阵A 的各行元素之和均为3,向量()T1211--=α,()T 1102-=α是线性方程组的两个解,(1)求A 的特征值;(2) 求正交矩阵Λ=ΛAQ Q Q T 使得和对角矩阵。

(6)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(13)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关; (14)设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )( T T PAP C D AP P C C ==)()(22 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。

湖南大学高等代数2005--2009年考研真题

湖南大学高等代数2005--2009年考研真题

高等代数——2005年真题一.(20分)证明:数域F 上的一个n 次多项式()f x 能被它的导数整除的充要条件是()()nf x a x b =-,(),a b F 其中是中的数.二.(20分)设120n a a a ≠ ,计算下面的行列式:12311111111111111111111na a a a ++++三.(15分)已知矩阵A PQ =,其中2431P ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2121Q ⎛⎫⎪- ⎪= ⎪- ⎪-⎝⎭,Q ',求矩阵2100,A A A 和。

四.(20分)给定线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 当1234,,,a a a a 满足什么条件时,方程组(1)有惟一解?无穷多解?无解? 五.(20分)设()fX XA X '=是一实二次型,若有实n 维向量1X ,2X 使得()()12f X f X >0,<0,证明:必存在实n 维向量00X ≠使()00f X =。

六.设W 是齐次线性方程组1234512352300x x x x x x x x x +-+-=⎧⎨+- +=⎩ (2)的解空间。

1.W 中的向量与方程组(2)的系数矩阵的行向量有何关系?2。

求W 的一组标准正交基。

七.(15分)求复矩阵131616576687⎛⎫ ⎪--- ⎪ ⎪---⎝⎭的不变因子,初等因子及Jordan 标准形。

八.(10分)设整系数线性方程组1nij ji j a xb ==∑,()1,2,,i n = 对任意整数12,,,n b b b 均有整数解。

证明该方程组的系数矩阵的行列式必为1±。

九.(15分)设,,A B C 为复数域上n 维空间V 的线性变换,AB BA C -=,并且C 可以与,A B 交换。

2006考研数学二真题及答案解析

2006考研数学二真题及答案解析

( ) 设函数 f (u)在(0, +∞) 内具有二阶导数,= 且 Z f
x2 + y2
满足等式
∂2z ∂x2
+
∂2z ∂y 2
= 0
(I)验证 f ′′(u) + f ′(u) = 0 ; (II)若= f (1) 0= , f ′(1) 1, 求函数 f (u)的表达式 . u
(21)(本题满分 12 分)
增量, y 与 dy 分别为 f (x) 在点 x0 处对应增量与微分,若 x > 0 ,则( )
(A) 0 < dy < y
(B) 0 < y < dy
(C) y < dy < 0
(D) dy < y < 0
x
∫ (8) 设 f (x) 是奇函数,除 x = 0 外处处连续, x = 0 是其第一类间断点,则 f (t)dt 是( ) 0
=1 3
注: 0 型未定式,可以采用洛必达法则;等价无穷小量的替换 sin x2 x2 0

(3)【答案】1 2
【详解】
∫ ∫ +∞ xdx =1 +∞ dx2 =− 1 ⋅ 1 +∞ =1
0 (1+ x2 )2 2 0 (1+ x2 )2 2 1+ x2 0 2
(4) 【答案】 Cxe− x .
(A)连续的奇函数
(C)在 x = 0 间断的奇函数
(B)连续的偶函数
(D)在 x = 0 间断的偶函数
(9) 设函数 g(x) 可微,= h(x) e1+g(x)= , h′(1) 1,= g′(1) 2, 则 g(1) 等于( )

2006年考研数学二真题答案解析

2006年考研数学二真题答案解析

2006年全国硕士研究生入学考试数学(二)解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1y y xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y y y e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<< (D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23x y y y xe '''+-=(D )23x y y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )(,)xf x y dy ⎰(B )(,)f x y dy ⎰(C )(,)yf x y dx ⎰(D )(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P T AP . (D) C =PAP T . 解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1.0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰2arcsin 1t dut u =-+-⎰ arcsin 11ln 21t u C t u -=-+++arcsin arcsin 12x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t t t te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f =满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f x x y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+==∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+===±+解出t 得由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y dy ⎡⎤=----⎣⎦⎰33(102)4y dy =--⎰333322002(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 .0 0 0 0 0 得同解方程组x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解: (2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0 Q T AQ =Q -1AQ = 0 0 0 . 0 0 0。

2006年考研数学一真题及解析

2006年考研数学一真题及解析

x 2 + y 2 (0 ≤ z ≤ 1) 的下侧,则
∫∫ xdydz + 2 ydzdx + 3(z − 1)dx dy = 2π .
Σ
【分析】 本题 Σ 不是封闭曲面, 首先想到加一曲面 Σ1 : ⎨
⎧z =1 , 取上侧, 使 Σ + Σ1 2 2 ⎩x + y ≤1
构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计 算即可. 【详解】 设 Σ1 : z = 1( x + y ≤ 1) ,取上侧,则
未定式极限的求解利用等价无穷小代换即可本题为分析lim详解lim本方程为可分离变量型先分离变量然后两边积分即可分析原方程等价为详解两边积分得lnlndzdydydx构成封闭曲面然后利用高斯公式转化为三重积分再用球面或柱面坐标进行计
2006 年硕士研究生入学考试数学一试题及答案解析 一、填空题:1-6 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.
2 2
∫∫ xdydz + 2 ydzdx + 3(z − 1)dx dy
Σ
=

∫∫
Σ+ Σ1
xdydz + 2 ydzdx + 3( z − 1)dx dy − ∫∫ x dy dz + 2 y dz dx + 3(z − 1)dx dy .
Σ1 2π 1 1
∫∫
Σ+ Σ1 Σ1
xdydz + 2 ydzdx + 3( z −1)dx dy = ∫∫∫ 6dv = 6 ∫0 dθ ∫0 rdr ∫r dz = 2π ,
您所下载的资料来源于弘毅考研资料下载中心 获取更多考研资料,请访问

2006年考研数学一真题与的答案

2006年考研数学一真题与的答案

2006年考研数学一真题一、填空题(1~6小题,每小题4分,共24分。

)(1)limx→0xln(1+x)1−cosx= 。

【答案】2。

【解析】等价无穷小代换:当x→0时,l n(1+x)~x,1−cosx~12x2所以limx→0xln(1+x)1−cosx=limx→0x212x2=2综上所述,本题正确答案是2。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)微分方程y′=y(1−x)x的通解为__________。

【答案】y=Cxe−x(x≠0),C为任意常数。

【解析】原式等价于dyy =1−xxdxdy y =1−xxdx⇒ln|y|=ln|x|−lne x+ln|C|(两边积分)即y=Cxe−x(x≠0),C为任意常数综上所述,本题正确答案是y=Cxe−x(x≠0)。

【考点】高等数学—常微分方程—一阶线性微分方程(3)设Σ是锥面z=√x2+y2(0≤z≤1)的下侧,则∬xdydz+Σ2ydzdx+3(z−1)dxdy= 。

【答案】2π。

【解析】设Σ1:z =1(x 2+y 2≤1),取上侧,则∬xdydz +2ydzdx +3(z −1)dxdy =Σ∬xdydz +2ydzdx +3(z −1)dxdyΣ+Σ1−∬xdydz +2ydzdx +Σ13(z −1)dxdy而∬xdydz +2ydzdx +3(z −1)dxdy Σ+Σ1=∭6dvV=6∫dθ2π0∫rdr 10∫dz 1r=2π∬xdydz +2ydzdx +3(z −1)dxdy =Σ1所以∬xdydz +2ydzdx +3(z −1)dxdy = Σ2π综上所述,本题正确答案是2π。

【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(4)点(2,1,0)到平面3x +4y +5z =0的距离d = 。

【答案】√2。

【解析】点到平面的距离公式:d =|Ax +By +Cz +D|√A 2+B 2+C2其中(x 0,y 0,z 0)为点的坐标,Ax +By +Cz +D =0为平面方程 所以d =|3×2+4×1+5×0+0|√32+42+52=√2综上所述,本题正确答案是√2。

06年考研数四真题及答案解析

06年考研数四真题及答案解析

2006年全国硕士研究生入学考试数学(四)一、填空 1.(1)1lim()nn n n-→∞+= 2.设函数()f x 在2x =的某邻域内可导,且()()(2)1f x f x e f '-⋅=,则法(2)f '=3.设函数()f u 可微,且1()2f u '=,则22(4)z f x y =-在点(1,2)处的全微分 (1,2)|dz =4.已知12,a a 为2维列向量,矩阵1212(2,)A a a a a =+-,12(,)B a a =。

若行列式||6A =,则||B =5.设矩阵2112A ⎡⎤=⎢⎥-⎣⎦,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B 。

6.设随机变量X 与Y 相互独立,且均服从区间[1,3]上的均匀分布,由{max(,)1}P x y ≤=二、选择7.设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x 为自变量x 在点0x 处的增量y 与dy 分别为()f x 在点0x 处对应的增量与微分,若0x > ,则( ) (A )0dy y << (B )0y dy << (C )0y dy <<(D )0dy y <<8.设函数()f x 在0x =处连续,且220()lim 1n f n n→==,则( ) (A )(0)0f =且(0)f '存在 (B )(0)1f =且(0)f '存在 (C )(0)0f =且(0)f +'存在(D )(0)1f =且(0)f +'存在9.设函数()f x 与()g x 在[0,1]上连续,且()()f x g x ≤,且对任何(0,1)C ∈( ) (A )1122()()c cf t dtg t dt ≥⎰⎰(B )1122()()c cf t dtg t dt ≤⎰⎰(C )11()()ccf t dtg t dt ≥⎰⎰(D )11()()ccf t dtg t dt ≤⎰⎰10.设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解1()y x ,2()y x ,C 为任何常数,则该方程通解是( ) (A )12[()()]C y x y x - (B )112()[()()]y x C y x y x +- (C )12[()()]C y x y x +(D )112()[()()]y x C y x y x ++11.设(,)f x y 与(,)G x y 均为可微函数,且(,)0G x y '≠,已知00(,)x y 是(,)f x y 在约束条件(,)0G x y =下的一个极值点。

2006年考研数学一真题(含解析)

2006年考研数学一真题(含解析)

2006年全国硕士研究生入学考试数学一真题一、填空题 (1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A B E =+,则B =.(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则1400(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)0(,).xf x y dy ⎰⎰(B)00(,).f x y dy ⎰⎰(C)0(,).yf x y dx ⎰⎰(C)00(,).f x y dx ⎰⎰【 】(9)若级数1n n a ∞=∑收敛,则级数(A )1n n a ∞=∑收敛.(B )1(1)n n n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则 (A )1.C P AP -= (B )1.C PAP -=(C ).TC P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy xy+=++⎰⎰ .16 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<== . 求: (Ⅰ)证明lim n x x →∞存在,并求之 .(Ⅱ)计算211lim nx n x n x x +→∞⎛⎫ ⎪⎝⎭. 17 将函数()22x f x x x=+-展开成x 的幂级数.18 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220zz xy∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=.(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 19 设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t>0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L,都有0),(),(=-⎰dy y x xf dx y x yf L.20 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解 Ⅰ证明方程组系数矩阵A 的秩()2r A = Ⅱ求,a b 的值及方程组的通解21 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1T Tαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.22 随机变量x 的概率密度为()()21,1021,02,,40,x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩令其他为二维随机变量(X,Y)的分布函数.(Ⅰ)求Y 的概率密度()Y f y (Ⅱ)1,42F ⎛⎫-⎪⎝⎭23 设总体X 的概率密度为()()01,0112010x F X x θθθθ<<⎧⎪=-≤<<<⎨⎪⎩其中是未知参数其它,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,1n x x x 中小于的个数,求θ的最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题 (1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x xx x -+ (0x →当时)(2)微分方程(1)y x y x-'=的通解是(0)x y cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q R xyz∂∂∂++=++=∂∂∂∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积) 623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. (6)91二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1000(8)(,)(cos ,sin )[C ](A )(,)(B)(,)xf x y d f r r rdr f x y dyf x y dyπθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于(C )(,)(D )(,)yf x y dxf x y dx ⎰⎰⎰111111111(9)[D ]()()(1)()()()2n n nn n n n n n nn n n n n a A a B a a a C aa D a ∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑ 若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xyx yyx y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0, 用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T.解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B) P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P.1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A 三、解答题{}2222221212022221(15)(,)1,0,1:11ln(1)ln 21122DDDxyD x y x y x I dxdyxyxydxdy xyr I dxdy d dr r xyrππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim ():(1)sin ,01,2sin ,0,lim ,nn n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴= 设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim (),nxnn nx x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin limln()sin lim ()t t t tt t t et→→=先考虑232323311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt ttttte eee e→→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2x f x x x x=+-将函数展开成的幂极数()(2)(1)21x A B f x x x xx==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯=1001111()(1)(1),132332n n n n nn n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f =满足等式22220z z xy∂∂+=∂∂(I )验证 ()()0f u f u u'''+=(II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)z z f f x y∂∂''==∂∂()2222222z xf f xxyxy∂'''=+∂++()()22322222xyf f xyxy'''=+++()()2223222222z yxf f yxyxy∂'''=+∂++同理222200()()0z z f xyf u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c duupu'==-=-+⎰⎰则ln ln ,()c p u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f t x t y t f x y -=证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0的充分必要条件为Q P xy∂∂=∂∂今(,)(,)xQ f x y x f x y x∂'=--∂(,)(,)yP f x y y f x y y∂'=+∂ 要求Q P xy∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=-我们已经证明,Q P xy∂∂∴=∂∂,于是结论成立.(20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量. ② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T .对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T .作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0 Q T AQ =Q -1AQ = 0 0 0 . 0 0 0(22)随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,的分布函数.(Ⅰ)求Y 的概率密度;(Ⅱ))4,21(-F解:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=y y y y y XP y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式 ⎰⎰=+=≤≤-=-yyy dx dx y X y P 00434121)()1(式;⎰⎰+=+=≤≤-=-yy dx dx y X y P 0141214121)()2(式.所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y y y y y F y f Y Y这个解法是从分布函数的最基本的概率定义入手,对y 进行适当的讨论即可,在新东方的辅导班里我也经常讲到,是基本题型. (Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P XX P Y X P 4121211==⎰--dx .(23)设总体X 的概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体的简单随机样本,记N 为样本值n x x x ,,21中小于1的个数.求θ的最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pNp p xxx,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p Nn Nx x x x x x L θθθ,在pNp p xxx,,21<1,pn pN pN x x x ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L , 01)(ln =---=θθθθN n N d L d ,所以nN =最大θ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数——2006年真题
一.(20分)设矩阵1114335A x
y -⎛⎫ ⎪= ⎪ ⎪--⎝⎭
,已知A 有三个线性无关的特征向量,λ=2是A 的二重特征根。

试求可逆矩阵P ,使得1P AP -为对角形矩阵。

二.(20分)设()f x 与()g x 互素当且仅当()n f x 与()
n g x 互素(其中n 为正整数)。

三.设n
P 为数域P 上全体n 元数组向量所构成的线性空间,证明:
(1)存在n P 的子空间W 使W 中每个非零向量的分量都不是零;
(2)满足上述条件的子空间W 必为一维空间。

四.(20分)设U 和V 是n 阶的可逆矩阵,D 是m 阶的可逆矩阵()m n ≤,且 11000000D D U U V V --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭。

证明:
111
1000000D D U U V V ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.
五.(10分)若把行列式
111,111,11,11,111
n n
n n n n n
a a a D a a a ----- = 的第j 列换成()121,,,,1T
n x x x - 后得到的新行列式记为()1,2,,j D j n = ,试证: 12n D D D D +++= 。

六.化()123122313,,262f x x x x x x x x x =-+为标准型,并且写出变换矩阵,问这个二次型是否正定?
七.(15分)如果A 是一个非奇异的n 阶实矩阵,那么存在一个正交矩阵P 和一个下三角矩阵Q 使得A QP =。

八.(15分)设12,,,n a a a 都是正数,证明方程组
112222211221122000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩
只有零解。

九.(10分)设()1211n n n n f x a x a x a ---=+++ ,并且()0f ε=,其中ε是一个n 次单位
根。

求行列式: 12
311
22111322341n n n n n n n
n n n
a a a a a a a a a a a a a a a a a a a a ------。

相关文档
最新文档