LTC2451CTS8#TRMPBF;LTC2451CDDB#TRMPBF;LTC2451ITS8#TRMPBF;LTC2451CDDB#TRPBF;中文规格书,Datasheet资料

合集下载

液晶常用电源管理芯片

液晶常用电源管理芯片

液晶常⽤电源管理芯⽚1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V得稳压⼆极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/A T1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可⽤SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R ⽤cm0565r代换(取掉4脚得稳压⼆极管) DP104 5S0765 DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可⽤SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为2047KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STRG5643D STRG5653D、STRG8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接⼊THX202H TFC719THX203H TFC718STOP246Y TOP247YV A7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V、31W);ICE2A265(2A/650V、52W);ICE2B0565(0、5A/650V、23W):ICE2B165(1A/650V、31W);ICE2B265(2A/650V、52W);ICE2A180(1A/800V、29W);ICE2A280(2A/800、50W)、KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(⼤⼩两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这就是⼀类得,这些型号得引脚功能全都⼀样,只就是输出功率不⼀样。

245芯片

245芯片

245芯片245芯片是德州仪器(TI)公司推出的一款通用单片机(Microcontroller),它采用标准的CMOS工艺制造,集成了CPU、存储器(RAM和ROM)、IO口、定时器和通信接口等丰富的功能模块。

245芯片的主要特点包括以下几个方面:1. 高性能:245芯片的CPU采用16位结构,工作频率可达到几十MHz,具有较高的计算能力和处理速度。

同时,芯片内部集成了一定容量的RAM和ROM,作为临时存储和程序存储,能够满足复杂系统的需求。

2. 丰富的外设接口:245芯片提供了多个IO口,支持多种外设的连接,如键盘、显示器、LED等。

此外,芯片还集成了多个通信接口,如UART、SPI、IIC等,便于与外部设备进行数据交互。

3. 强大的定时器功能:245芯片内部集成了多个定时器模块,能够精确计时,实现周期性任务的处理。

这使得芯片在控制和测量方面具有较高的灵活性和精度。

4. 低功耗设计:245芯片采用了先进的功耗优化设计,通过降低工作电压、优化电路结构和引入睡眠模式等策略,可在保证性能的同时尽量降低功耗,延长电池寿命。

5. 多种封装形式:245芯片提供了多种封装形式,如DIP、SOP、QFP等,以满足不同应用场景的需求。

这使得245芯片可以广泛应用于家电、工业控制、仪器仪表、汽车电子等领域。

6. 开发工具丰富:245芯片支持多种开发工具和开发环境,如Keil、IAR等,开发人员可以根据自己的需求选择合适的工具进行软件开发、调试和烧录。

总之,245芯片作为一款高性能的通用单片机,具备丰富的功能和接口,适用于各种复杂的控制系统和嵌入式应用。

它在计算能力、通信能力、定时控制和功耗等方面都具备较高水平,并且具有广泛的应用领域和开发支持。

LTC2941 LTC2942 电池气体计测试电路说明书

LTC2941 LTC2942 电池气体计测试电路说明书

DC1496A-A1dc1496fD ESCRIPTION Battery Gas Gauge with I 2C Interface [and 14-Bit ADC(DC1496A-B)]Demonstration circuit 1496A-A (Figure 1) features the L TC ®2941. Demonstration circuit 1496A-B features the L TC2942. Both devices measure battery charge state in handheld PC and portable product applications. The operating range is perfectly suited for single cell Li-Ion batteries. A precision analog coulomb counter integrates current through a sense resistor between the battery’s positive terminal and the load or charger . The L TC2942 adds battery voltage and on-chip temperature measurement with an internal 14-bit No Latency ΔΣ™ ADC. The three measured quantities (charge, voltage and temperature) are stored in internal registers accessible via the onboard SMBus/I 2C interface.The L TC2941 has programmable high and low thresholds for accumulated charge. The L TC2942 has programmable high and low thresholds for all three measured quantities. If a programmed threshold is exceeded, the device reports an alert using either the SMBus alert protocol or by setting a fl ag in the internal status register .L , L T , L TC, L TM, Linear Technology and the Linear logo are registered trademarks and No Latency ΔΣ is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.The L TC2941 and L TC2942 require only a single low value sense resistor to set the measured current range. The default value assembled on the DC1496 is 100mΩ for a maximum current measurement of 500mA. Both parts have a software-confi gurable charge complete/alert pin. When the pin is set for charge complete, a jumper con-nects the pushbutton which simulates a logic high input to indicate a full battery. When the pin is confi gured for alert, the same jumper is used to connect a red LED that indicates an alert is present.The DC1496A-A/B is a part of the QuikEval system for quick evaluation with a host controller through a PC.Design fi les for this circuit board are available at http://www.linear.com/demo.Figure 1. DC1496A-A/B2dc1496fDEMO MANUAL DC1496A-A/B QUICK START PROCEDUREDemonstration circuit 1496A is easy to set up to evaluate the performance of the L TC2941/L TC2942. Refer to Figure 2 for proper measurement equipment setup and follow the procedure below.1. C onnect a 1-cell Li-I on battery across V_BAT and GND.2. Connect a load across V_CHRG/LD and GND for battery discharge measurement. Up to 500mA supplied from the battery can be measured with the board default 100mΩ sense resistor . Use SENSE + and SENSE – test points to read voltage across the sense resistor .3. Connect a 2.7V to 5.5V battery charger supply across V_CHRG/LD and GND. Up to 500mA supplied to the battery can be measured with the board default 100mΩ sense resistor . Use SENSE + and SENSE – test points to read voltage across the sense resistor .4. Connect a DC590 to 14-pin connector J1 for evaluation with QuikEval, or connect a host controller I 2C bus to the SDA, SCL and GND test turrets.5. Set JP1 to QuikEval if a DC590 is present. Otherwise set JP1 to Bat/Chrg for bus pull-up to the battery, or fl oat JP1 and supply a bus pull-up voltage to VP .6. Read and write to the L TC2941/L TC2942 through I 2C.7. Through I 2C, configure the AL /CC pin. Set JP2 accordingly.8 f AL /CC is set for charge complete, use pushbutton switch S1 to simulate a logic high from a controller to indicate a fully charged battery.Figure 2. DC1496A-A/B Basic Setup3dc1496fDEMO MANUAL DC1496A-A/BQuikEval INTERFACEThe DC1496A-A/B can be connected to a DC590 and used with the QuikEval software. The DC590 connects to a PC through USB. QuikEval automatically detects the demo board and brings up the L TC2941/L TC2942 evaluation software interface (Figure 3). Compact and Detailed FormWhen the interface is brought up, a compact form is fi rst shown with a display for the accumulated charge register (ACR), voltage ADC and temperature ADC. To expand the form for a more detailed display of the L TC2941/L TC2942 registers and board confi gurations, click on Detail. To go back to the compact form, click on Hide.Start/RefreshClick on Start to begin a polling routine that refreshes the interface every 1 second. Click on Stop to halt the poll-ing. For a single update, click on Refresh. Each refresh scans through the internal I 2C registers and updates the respective displays.L TC2941 and L TC2942 DisplayOn a refresh or poll, the software reads Status bit A[7] to determine communication with an L TC2941 or L TC2942. When an L TC2941 is detected, the voltage and temperature ADC and threshold displays are not shown. Control bits B[7:6] confi gure VBAT Alert for the L TC2941 and ADC Mode for the L TC2942.ACR DisplayThe data in the ACR (registers C and D) is displayed in one of three selected formats: Counter in coulombs, Counter in mA • hour , battery gas gauge in mA • hour , and battery gas gauge in charge percentage of battery. The two gas gauge displays correspond to the battery gas gauge full battery confi guration set in the detailed form.Voltage and Temperature ADC (L TC2942)Data from the Voltage ADC (registers I and J) and the Temperature ADC (registers M and N) is displayed here in Volts and Celsius.Figure 3. L TC2941/LTC2942 QuikEval InterfaceDEMO MANUAL DC1496A-A/B QuikEval INTERFACEAddress/I2C StatusThe write address for the L TC2941/L TC2942 is C8h and the read address is C9h. The alert response address (ARA) is 19h. If an error occurs while reading from the L TC2941/ L TC2942, the I2C status will read as an error. Otherwise, the status is good. If the L TC2941/L TC2942 AL/CC pin is set for alert mode and an alert has been latched, the device will pull down this pin. Click on ARA to send out an ARA on to the bus lines and the device will respond with its address. The Alert pin will then be cleared if the alert is no longer present.StatusThe individual status bits A[0:7] and their states are shown here. A red indicator next to bits A[0:5] indicates the re-spective alert is currently present and will latch the Alert pin if confi gured for alert. Bit A[7] shows if an L TC2941 or L TC2942 is detected.Sense ResistorEnter here the sense resistor value used in the application. The default for the DC1496A-A/B is a 100mΩ sense resis-tor. Check L TC2941-1/L TC2942-1 if one of these devices is used in place of the default IC. This sets the sense resistor value to 50mΩ, the value of the internal sense resistor in these devices. The sense resistor can only be changed when not polling. The software only accepts sense resis-tors between 0.1mΩ to 5Ω.Battery Gas GaugeThe battery capacity in the application is entered here. The ACR full scale (FFFFh) is set to this value and affects the two Gas Gauge ACR display options. Instead of counting up from 0 as in the Coulomb Counters, the Gas Gauge is used to count down from a full battery. The battery capacity can only be entered when not polling. The data in the ACR when a battery should be empty is calculated based off of R SENSE, and pre-scaler M, and displayed in hexadecimal below the ACR full scale.ControlConfi gurations done in the Control section write to the Control register (register B). For the L TC2941, the Control bits B[7:6] enables a battery monitor to one of three set voltage thresholds (2.8V, 2.9V, or 3V) or disables this battery voltage alert. The ADC mode with the L TC2942 is default to Sleep where both Voltage and Temperature ADCs (L TC2942) are disabled. Setting ADC Mode to Automatic Mode enables full-time the Voltage and Temperature ADC. Selecting Manual Voltage or Temperature mode enables the respective ADC once and returns the ADC to Sleep mode.Select a pre-scaler M value to scale the ACR according to battery capacity and maximum current. Changing the pre-scaler will halt the poll. A calculator tool is provided in the tool bar under Tools to assist in calculating a pre-scaler value and sense resistor (Figure 4).The AL#/CC pin can be confi gured for Alert mode, Charge Complete mode, or disabled. Select the corresponding settings on the DC1496A-A/B jumper J2.The Shutdown Analog Section is checked to disable the Analog portion of the L TC2941/42 and set the device in a low current state.Register Read/WriteData in the internal registers of the L TC2941/L TC2942 is displayed here in hexadecimal or appropriate units. Data can also be entered and written to the write registers. Enter data to be written in hexadecimal, or select Unit and enter data in decimal form. Data in decimal scale is auto corrected if the maximum or minimum full scale is exceeded. Select the ACR display in Counter (Coulombs) to be able to write to the ACR and charge thresholds in Coulombs, or select Counter (mAh) to be able to write to the ACR and charge thresholds in mA • hour. Voltage and Temperature High thresholds are rounded down in the calculations to the nearest lower count, while the low thresholds are rounded up to nearest higher count.4dc1496f5dc1496fDEMO MANUAL DC1496A-A/BSwitching back and forth between Hex and Unit can be used as a conversion tool.The LSB value for the 16-bit ACR and charge thresholds is displayed on the bottom. This value is adjusted with the sense resistor and pre-scaler M. The units are in mAh or mC depending on the selected ACR display. Shown for the L TC2942 is the LSB for the 14-bit voltage ADC, 10-bit temperature ADC, and 8-bit high and low thresholds for voltage and temperature.Calculator ToolA calculator tool is available in the tool bar options under Tools. In this calculator (Figure 4), enter the maximum cur-rent passed through the sense and the maximum battery capacity. Click on Calculate to calculate a recommended sense resistor and pre-scaler (M) value. The display shows the battery capacity in comparison to ACR full scale and provides an LSB value in mAh. Also shown is the recom-mended equation to use to determine an appropriate sense resistor as a function of the maximum battery charge and maximum current.Figure 4. L TC2941/L TC2942 Pre-Scaler and Sense Resistor CalculatorQuikEval INTERFACEDEMO MANUAL DC1496A-A/BPARTS LISTITEM QTY REFERENCE PART DESCRIPTION MANUFACTURE/PART NUMBER12C1, C2CAP., CHIP X7R, 0.1μF, 25V, 0603AVX, 06033C104KAT2A24E1-E4TURRET, Test Point 0.094"MILL-MAX, 2501-2-00-80-00-00-07-035E5-E9TURRET, Test Point 0.064"MILL-MAX, 2308-241E10, E11TURRET, Test Point 0.037"MILL-MAX, 2309-150TP1, TP2(SMT Pads Only)62JP1, JP2HEADER, 3Pin 1 Row 0.079CC SAMTEC, TMM-103-02-L-S72for (JP1, JP2)SHUNT, 0.079" Center SAMTEC, 2SN-BK-G81J1HEADERS, Vertical Dual 2X7 0.079CC MOLEX, 87831-142091D1LED, RED, LIGHT EMITTING DIODES PANASONIC, LN1251CTR101R1RES., CHIP, 0.1Ω, 1/8W, 1%, 1206IRC, LRC-LR1206LF-01-R100-F113R6, R7, R8RES., CHIP, 5.10k, 1%, 0603VISHAY, CRCW06035K10FKEA123R2, R3, R4RES., CHIP, 10k, 5%, 0603VISHAY, CRCW060310K0JNEA131R5RES., CHIP, 1k, 5%, 0603VISHAY, CRCW06031K00JNEA141R9RES., CHIP, 100k, 5%, 0603VISHAY, CRCW0603100KJNEA151S1SWITCH, SMT Pushbutton PANASONIC, EVQPE105K161U2I.C., Serial EEPROM TSSOP8MICROCHIP, 24LC025-I/ST171for (J1)CABLE ASSY., 8" STRIP LINEAR RIBBON CABLE CA-24406dc1496f7dc1496fDEMO MANUAL DC1496A-A/BSCHEMATIC DIAGRAM8dc1496fDEMO MANUAL DC1496A-A/B Silkscreen TopComponent SideInner Layer 2PCB LAYOUT AND FILM9dc1496fDEMO MANUAL DC1496A-A/BI nformation furnished by Linear Technology Corporation is believed to be accurate and reliable. However , no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.PCB LAYOUT AND FILMInner Layer 3Solder SideSilkScreen Bottom10dc1496f DEMO MANUAL DC1496A-A/BLinear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear .com © LINEAR TECHNOLOGY CORPORA TION 2010LT 0510 • PRINTED IN USADEMONSTRATION BOARD IMPORTANT NOTICELinear Technology Corporation (L TC) provides the enclosed product(s) under the following AS IS conditions:This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONL Y and is not provided by L TC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union direc-tive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT , SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.The user assumes all responsibility and liability for proper and safe handling of the goods. Further , the user releases L TC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).No License is granted under any patent right or other intellectual property whatsoever. L TC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.L TC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive .Please read the DEMO BOARD manual prior to handling the product . Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged .This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a L TC applica-tion engineer .Mailing Address:Linear Technology1630 McCarthy Blvd.Milpitas, CA 95035Copyright © 2004, Linear Technology CorporationDC1496A-A。

74LVC245A; 74LVCH245A 八位总线收发器; 3-state 产品数据手册说明书

74LVC245A; 74LVCH245A 八位总线收发器; 3-state 产品数据手册说明书

74LVC245A; 74LVCH245AOctal bus transceiver; 3-stateRev. 9 — 11 September 2018Product data sheet1. General descriptionThe 74LVC245A; 74LVCH245A are 8-bit transceivers featuring non-inverting 3-state buscompatible outputs in both send and receive directions. The device features an output enable(OE) input for easy cascading and a send/receive (DIR) input for direction control. OE controls theoutputs so that the buses are effectively isolated.Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied tothe outputs. These features allow the use of these devices in mixed 3.3 V and 5 V applications.The 74LVCH245A bus hold on data inputs eliminates the need for external pull-up resistors to holdunused inputs.2. Features and benefits• 5 V tolerant inputs/outputs for interfacing with 5 V logic•Wide supply voltage range from 1.2 V to 3.6 V•CMOS low-power consumption•Direct interface with TTL levels•Inputs accept voltages up to 5.5 V•High-impedance when V CC = 0 V•Bus hold on all data inputs (74LVCH245A only)•Complies with JEDEC standard:•JESD8-7A (1.65 V to 1.95 V)•JESD8-5A (2.3 V to 2.7 V)•JESD8-C/JESD36 (2.7 V to 3.6 V)•ESD protection:•HBM JESD22-A114F exceeds 2000 V•MM JESD22-A115B exceeds 200 V•CDM JESD22-C101E exceeds 1000 V•Specified from -40 °C to +85 °C and -40 °C to +125 °C3. Ordering information4. Functional diagram5. Pinning information5.1. Pinning74LVC245A 74LVCH245ADIR V CC A0OE A1B0A2B1A3B2A4B3A5B4A6B5A7B6GND B7001aak2921234567891012111413161518172019Fig. 3.Pin configuration SOT163-1 (SO20),SOT339-1 (SSOP20) and SOT360-1 (TSSOP20)001aak29374LVC245A 74LVCH245AT ransparent top viewB6A6A7B5A5B4A4B3A3B2A2B1A1B0A0OE G N D B 7D I R V C C9128137146155164173182191011120terminal 1 index areaGND (1)(1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND.Fig. 4.Pin configuration SOT764-1 (DHVQFN20)5.2. Pin description6. Functional descriptionTable 3. Function selectionH = HIGH voltage level; L = LOW voltage level; X = don’t care; Z = high impedance OFF-state.7. Limiting valuesTable 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).[1]The minimum input voltage ratings may be exceeded if the input current ratings are observed.[2]The output voltage ratings may be exceeded if the output current ratings are observed.[3]For SO20 packages: above 70 °C derate linearly with 8 mW/K.For (T)SSOP20 packages: above 60 °C derate linearly with 5.5 mW/K.For DHVQFN20 packages: above 60 °C derate linearly with 4.5 mW/K.8. Recommended operating conditions9. Static characteristicsTable 6. Static characteristicsAt recommended operating conditions. Voltages are referenced to GND (ground = 0 V).[1]All typical values are measured at V CC = 3.3 V (unless stated otherwise) and T amb = 25 °C.[2]The bus hold circuit is switched off when V I ˃ V CC allowing 5.5 V on the input terminal.[3]For I/O ports the parameter I OZ includes the input leakage current.[4]Valid for data inputs of bus hold parts only (74LVCH245A). Note that control inputs do not have a bus hold circuit.[5]The specified sustaining current at the data input holds the input below the specified V I level.[6]The specified overdrive current at the data input forces the data input to the opposite input state.10. Dynamic characteristicsTable 7. Dynamic characteristicsVoltages are referenced to GND (ground = 0 V). For test circuit see Fig. 7.[1]Typical values are measured at T amb = 25 °C and V CC = 1.2 V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively.[2]t pd is the same as t PLH and t PHL.t en is the same as t PZL and t PZH.t dis is the same as t PLZ and t PHZ.[3]Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.[4]C PD is used to determine the dynamic power dissipation (P D in μW).P D = C PD × V CC2 × f i × N + Σ(C L × V CC2 × f o) where:f i = input frequency in MHz; f o = output frequency in MHzC L = output load capacitance in pFV CC = supply voltage in VoltsN = number of inputs switchingΣ(C L × V CC2 × f o) = sum of the outputs.10.1. Waveforms and test circuit11. Package outlineSO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1Fig. 8.Package outline SOT163-1 (SO20)SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm SOT339-1Fig. 9.Package outline SOT339-1 (SSOP20)TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm SOT360-1Fig. 10.Package outline SOT360-1 (TSSOP20)DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;Fig. 11.Package outline SOT764-1 (DHVQFN20)12. Abbreviations13. Revision history14. Legal informationData sheet status[1]Please consult the most recently issued document before initiating orcompleting a design.[2]The term 'short data sheet' is explained in section "Definitions".[3]The product status of device(s) described in this document may havechanged since this document was published and may differ in case ofmultiple devices. The latest product status information is available onthe internet at https://.DefinitionsDraft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.DisclaimersLimited warranty and liability — Information in this document is believedto be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracyor completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removalor replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.Right to make changes — Nexperia reserves the right to make changesto information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunctionof an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitableand fit for the customer’s applications and products planned, as well asfor the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above thosegiven in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.Terms and conditions of commercial sale — Nexperia products aresold subject to the general terms and conditions of commercial sale, as published at /profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia’s standard warranty and Nexperia’s product specifications.Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.TrademarksNotice: All referenced brands, product names, service names and trademarks are the property of their respective owners.Contents1. General description (1)2. Features and benefits (1)3. Ordering information (2)4. Functional diagram (2)5. Pinning information (3)5.1. Pinning (3)5.2. Pin description (3)6. Functional description (3)7. Limiting values (4)8. Recommended operating conditions (4)9. Static characteristics (5)10. Dynamic characteristics (7)10.1. Waveforms and test circuit (8)11. Package outline (10)12. Abbreviations (14)13. Revision history (14)14. Legal information (15)© Nexperia B.V. 2018. All rights reservedFor more information, please visit: Forsalesofficeaddresses,pleasesendanemailto:*************************** Date of release: 11 September 2018Mouser ElectronicsAuthorized DistributorClick to View Pricing, Inventory, Delivery & Lifecycle Information:N experia:74LVC245AD74LVCH245AD74LVCH245ADB74LVCH245APW74LVC245APW74LVC245ABQ,115 74LVC245AD,11274LVC245ADB,11274LVC245ADB,11874LVC245AD,11874LVC245APW,11274LVC245APW,11874LVCH245ABQ,11574LVCH245AD,11274LVCH245ADB,11274LVCH245ADB,118 74LVCH245AD,11874LVCH245APW,11274LVCH245APW,11874LVC245ABX,11574LVCH245ABX,115 74LVCH245APW/AUJ74LVC245APW/AUJ。

c245t稳压二极管参数

c245t稳压二极管参数

c245t稳压二极管参数c245t稳压二极管参数简介稳压二极管是一种用来维持电压恒定的电子元件。

c245t稳压二极管是其中一种常见的型号。

本文将对c245t稳压二极管的参数进行介绍,并探讨其在电子设备中的应用。

首先,我们来了解一下c245t稳压二极管的结构和工作原理。

c245t稳压二极管通常由PN结构构成,其内部有P区和N区两部分。

当正向电流通过稳压二极管时,P区的杂质浓度较高,会引起电子与空穴的复合,从而形成一个电子级,消耗掉多余的电流。

当逆向电压施加到稳压二极管上时,该二极管会出现Zener电压,此时就会发生击穿现象,导致导电,起到稳压效果。

一、c245t稳压二极管的参数1. 额定功耗(Pd):c245t稳压二极管的额定功耗是指在特定工作条件下,能够稳定正常工作的功率范围。

额定功耗一般以瓦特(W)为单位来表示。

2. 阻抗(Zz):阻抗是c245t稳压二极管的重要参数之一,其数值越小,说明稳压二极管的稳压能力越强。

阻抗一般以欧姆(Ω)为单位来表示。

3. 稳定电压(Vz):稳定电压是c245t稳压二极管能够稳定输出的电压值。

稳定电压是通过改变稳压二极管的材料和工艺来实现的。

4. 最大电流(Imax):最大电流是指稳压二极管能够承受的最大电流值。

超过最大电流,稳压二极管可能会被击穿或损坏。

5. 温度系数(Tc):温度系数是c245t稳压二极管在不同温度下稳定电压变化的比率,它以百分比或毫伏/摄氏度(mV/℃)表示。

温度系数值越小,说明稳定性越好。

二、c245t稳压二极管的应用c245t稳压二极管由于其稳定性和可靠性,被广泛应用于各种电子设备和电路中。

以下是它的几个主要应用场景:1. 电源稳压:c245t稳压二极管可以用于电源电路的稳压,以保证电子设备在电压波动较大的情况下依然稳定工作。

稳定的电源电压对于各类电子设备尤为重要,可以防止电压过高或过低对设备的损坏。

2. 电压瞬变抑制:在某些场合下,电路中会出现电压瞬变,可能会对电子设备造成干扰或损坏。

8位半万用表大比拼

8位半万用表大比拼

8位半万用表大比拼 2008-06-14 17:34要了解8位半这种目前精度最高的数字万用表,就不能不了解8位半万用表的历史,但限于个人认知,很多历史背景并不了解,所以错误在所难免,如果您知道事实,敬请指正。

虽然我可能不是最适合写这篇文章的人,但我仍然愿意抛砖引玉,吸引更多大牛参与进来,相互学习。

1. 历史第一台8位半万用表相信是英国Solarton生产的7081,采用多斜积分转换技术。

Solartron的万用表部门后被Schlumberger收购。

下图即为Solartron/Schlumberger 推出的7081。

但现在schlumberger的网页上已查不到7081,市面上只有二手流通。

要了解Schlumberger,就不得不提及Willtek,且看下面的介绍。

威尔泰克通讯技术有限公司的发展轨迹可以追溯到1957年,当时由一群工程师在慕尼黑南部创办了最初的公司。

几年后该公司被Schlumberger收购,并管理公司达36年之久。

1994年Schlumberger把公司卖给了Wavetek公司,同时将美国印第安那州的团队并入。

1998年,Wavetek公司与德国的Wandel&Goltermann公司合并成立WWG公司。

两年后美国Dynatech公司买下了WWG公司,并将它与其子公司TTC合并。

Acterna公司由此诞生,该公司在世界各地拥有员工4800名。

其无线网络部的一个分部——无线电仪器部2001年接管了英国的Chase通讯公司以及它的无线空中接口业务。

在2002年,Acterna公司管理层通过MBO,剥离了它的无线仪器部门。

2003年3月,Investcorp公司购得其多数股权,为Willtek公司融资,用于开拓公司的新产品和新市场。

Willtek 于2005年7月成为Wireless Telecom Group, Inc. 的全资子公司。

图1,Solartron/Schlumberger 7081英国的Datron是第二个推出8位半万用表的厂商,最早型号是1271,同样采用了多斜积分技术。

LC245A中文资料

LC245A中文资料

GQN OR ZQN PACKAGE (TOP VIEW)
1234
A B C D E
TERMINAL ASSIGNMENTS
1
2
3
4
A
A1
DIR
VCC
OE
B
A3
B2
A2
B1

C
A5
A4
B4
B3
D
A7
B6
A6
B5
E
GND
A8
B8
B7
FUNCTION TABLE
INPUTS
OE DIR
L
L
L
H
H
X
OPERATION
QFN – RGY
Reel of 1000
SN74LVC245ARGYR
SOIC – DW
Tube of 25 Reel of 2000
SN74LVC245ADW SN74LVC245ADWR
SOP – NS
Reel of 2000
SN74LVC245ANSR
SSOP – DB
Reel of 2000
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
DIR 1 A1 2 A2 3 A3 4 A4 5 A5 6 A6 7 A7 8 A8 9 GND 10

S8211C

S8211C

精度±20%
(3) 充电器连接端子采用高耐压器件(VM端子、CO端子﹕绝对最大额定值 = 28 V)
(4) 可选择向0 V电池充电功能的“可能”/“禁止”
(5) 宽工作温度范围
−40°C ~ +85°C
(6) 低消耗电流
·工作时
3.0 µA 典型值、5.5 µA 最大值(+25°C)
·休眠时 0.2 µA 最大值(+25°C)
向0 V电池 的充电功能
可能 禁止 可能 可能 可能 可能 可能 禁止 禁止 禁止 禁止 禁止 可能 可能 可能 可能 禁止 可能 禁止 可能 可能 可能 可能
延迟时间 的组合*1
(1) (2) (3) (4) (5) (1) (1) (1) (1) (1) (1) (1) (5) (5) (5) (1) (1) (4) (1) (2) (1) (1) (4)
4.350 V 4.150 V
2.30 V
S-8211CAE-M5T1x
4.280 V 4.180 V
2.30 V
S-8211CAF-M5T1x
4.275 V 4.275 V
2.30 V
S-8211CAH-M5T1x
4.280 V 4.080 V
2.30 V
S-8211CAI-M5T1x
4.280 V 4.080 V
·过放电解除电压
2.0 V ~ 3.4 V*2
精度±100 mV
·放电过电流检测电压
0.05 V ~ 0.30 V(以10 mV进阶)
精度±15 mV
·负载短路检测电压
0.5 V(固定)
精度±200 mV
·充电过电流检测电压
−0.1 V(固定)

atc中文手册

atc中文手册

AT24C256中文资料2009-11-15 09:43特性???? 与1MHz I2C 总线兼容???? 到伏工作电压范围???? 低功耗CMOS 技术???? 写保护功能当WP 为高电平时进入写保护状态???? 64 字节页写缓冲器???? 自定时擦写周期???? 100,000 编程/擦写周期???? 可保存数据100 年???? 8 脚DIP SOIC 封装???? 温度范围商业级工业级和汽车级概述CAT24WC256 是一个256K 位串行CMOS E2PROM 内部含有32768 个字节每字节为8 位CATALYST 公司的先进CMOS 技术实质上减少了器件的功耗CAT24WC256 有一个64 字节页写缓冲器该器件通过I2C 总线接口进行操作管脚描述管脚名称功能A0 A1 地址输入SDA 串行数据/地址SCL 串行时钟WP 写保护Vcc + 电源Vss 地NC 未连接极限参数工作温度工业级-55 +125商业级0 +75贮存温度-65 +150各管脚承受电压 Vcc+Vcc 管脚承受电压 +封装功率损耗Ta=25焊接温度(10 秒) 300口输出短路电流100mA功能描述CAT24WC256 支持I2C 总线数据传送协议I2C 总线协议规定任何将数据传送到总线的器件作为发送器任何从总线接收数据的器件为接收器数据传送是由产生串行时钟和所有起始停止信号的主器件控制的CAT24WC256 是作为从器件被操作的主器件和从器件都可以作为发送器或接收器但由主器件控制传送数据发送或接收的模式管脚描述SCL 串行时钟CAT24WC256 串行时钟输入管脚用于产生器件所有数据发送或接收的时钟这是一个输入管脚SDA 串行数据/地址双向串行数据/地址管脚用于器件所有数据的发送或接收SDA 是一个开漏输出管脚可与其它开漏输出或集电极开路输出进行线或wire-ORWP 写保护当WP 脚连接到Vcc 所有内存变成写保护只能读当WP 引脚连接到Vss 或悬空允许器件进行读/写操作A0 A1 器件地址输入这些管脚为硬连线或者不连接对于单总线系统最多可寻址4 个CAT24WC256 器件参阅器件寻址当这些引脚没有连接时其默认值为0I2C 总线协议I2C 总线协议定义如下1 只有在总线空闲时才允许启动数据传送2 在数据传送过程中当时钟线为高电平时数据线必须保持稳定状态不允许有跳变时钟线为高电平时数据线的任何电平变化将被看作总线的起始或停止信号起始信号时钟线保持高电平期间数据线电平从高到低的跳变作为I2C 总线的起始信号停止信号时钟线保持高电平期间数据线电平从低到高的跳变作为I2C 总线的停止信号器件寻址主器件通过发送一个起始信号启动发送过程然后发送它所要寻址的从器件的地址8 位从器件地址的高5 位固定为10100 见图5 接下来的2 位A1 A0 为器件的地址位最多可以连接4 个器件到同一总线上这些位必须与硬连线输入脚A1 A0 相对应从器件地址的最低位作为读写控制位1表示对从器件进行读操作0 表示对从器件进行写操作在主器件发送起始信号和从器件地址字节后CAT24WC256 监视总线并当其地址与发送的从地址相符时响应一个应答信号通过SDA 线CAT24WC256 再根据读写控制位R/W 的状态进行读或写操作应答信号I2C 总线数据传送时每成功地传送一个字节数据后接收器都必须产生一个应答信号应答的器件在第9 个时钟周期时将SDA 线拉低表示其已收到一个8 位数据CAT24WC256 在接收到起始信号和从器件地址之后响应一个应答信号如果器件已选择了写操作则在每接收一个8 位字节之后响应一个应答信号当CAT24WC256 工作于读模式时在发送一个8 位数据后释放SDA 线并监视一个应答信号一旦接收到应答信号CAT24WC256 继续发送数据如主器件没有发送应答信号器件停止传送数据并等待一个停止信号写操作字节写在字节写模式下主器件发送起始信号和从器件地址信息R/W 位置0 给从器件在从器件送回应答信号后主器件发送两个8 位地址字写入CAT24WC256 的地址指针主器件在收到从器件的应答信号后再发送数据到被寻址的存储单元CAT24WC256 再次应答并在主器件产生停止信号后开始内部数据的擦写在内部擦写过程中CAT24WC256 不再应答主器件的任何请求页写在页写模式下单个写周期内CAT24WC256 最多可以写入64 个字节数据页写操作的启动和字节写一样不同在于传送了一字节数据后主器件允许继续发送63 个字节每发送一个字节后CAT24WC256 将响应一个应答位且内部低6 位地址加1 高位地址保持不变如果主器件在发送停止信号之前发送大于64 个字节地址计数器将自动翻转先前写入的数据被覆盖当所有64 字节接收完毕主器件发送停止信号内部编程周期开始此时所有接收到的数据在单个写周期内写入CAT24WC256应答查询可以利用内部写周期时禁止数据输入这一特性一旦主器件发送停止位指示主器件操作结束时CAT24WC256 启动内部写周期应答查询立即启动包括发送一个起始信号和进行写操作的从器件地址如果CAT24WC256 正在进行内部写操作将不会发送应答信号如果CAT24WC256 已经完成了内部写操作将发送一个应答信号主器件可以继续对CAT24WC256 进行下一次读写操作写保护写保护操作特性可使用户避免由于不当操作而造成对存储区域内部数据的改写当WP 管脚接高时整个寄存器区全部被保护起来而变为只可读取CAT24WC256 可以接收从器件地址和字节地址但是装置在接收到第一个数据字节后不发送应答信号从而避免寄存器区域被编程改写读操作CAT24WC256 读操作的初始化方式和写操作时一样仅把R/W 位置为1 有三种不同的读操作方式立即/当前地址读选择/随机读和连续读立即/当前地址读的地址计数器内容为最后操作字节的地址加1 也就是说如果上次读/写的操作地址为N 则立即读的地址从地址N+1 开始如果N=E 此处E=32767 则计数器将翻转到0 且继续输出数据CAT24WC256接收到从器件地址信号后R/W 位置1 它首先发送一个应答信号然后发送一个8 位字节数据主器件不需发送一个应答信号但要产生一个停止信号选择/随机读选择/随机读操作允许主器件对寄存器的任意字节进行读操作主器件首先通过发送起始信号从器件地址和它想读取的字节数据的地址执行一个伪写操作在CAT24WC256 应答之后主器件重新发送起始信号和从器件地址此时R/W 位置1 CAT24WC256 响应并发送应答信号然后输出所要求的一个8 位字节数据主器件不发送应答信号但产生一个停止信号连续读连续读操作可通过立即读或选择性读操作启动在CAT24WC256 发送完一个8 位字节数据后主器件产生一个应答信号来响应告知CAT24WC256 主器件要求更多的数据对应每个主机产生的应答信号CAT24WC256 将发送一个8 位数据字节当主器件不发送应答信号而发送停止位时结束此操作从CAT24WC256 输出的数据按顺序由N 到N+1 输出读操作时地址计数器在CAT24WC256 整个地址内增加这样整个寄存器区域在可在一个读操作内全部读出当读取的字节超过E 此处E=32767计数器将翻转到零并继续输出数据字节。

基准电源常用芯片

基准电源常用芯片

基准电源常用芯片
基准电源芯片(也称作电压基准源或参考电压源)是电子电路中用于提供精确、稳定且温度系数极低的固定输出电压的集成电路。

这类芯片在许多需要高精度和长期稳定的系统中扮演着重要角色,例如仪表仪器、数据转换器(ADC/DAC)、电源管理以及各类精密模拟电路。

以下是一些常见的基准电压芯片:
1. LM236系列:
LM236D-2.5, LM236DR-2.5, LM236LP-2.5:这些是Texas Instruments(TI)生产的2.5V基准电压源芯片,具有较宽的工作电流范围(400uA~10mA)。

2. LM285系列:
LM285D-1.2, LM285D-2.5, LM285LP-2.5:这些是微功耗电压基准芯片,适用于电流需求较低的应用,工作电流范围为10uA至20mA。

3. LM336系列:
LM336BD-2.5:同样是TI的一款2.5V基准电压源,具有与LM285类似的微功耗特性,工作电流也在10uA至20mA之间。

4. 其他典型基准电压芯片:
MC1403:摩托罗拉(现NXP)生产的2.5V基准电压源。

TL431:一个精密可调基准稳压源,其输出电压可在2.5V至36V范围内调节,广泛应用于各种电源控制和保护电路中。

AZ431BN-ATRE1:可能是ADI公司的一款高精度电压基准芯片。

LTC4266A Quad LTPoE++ PSE Controller 演示电路 1815A 数据

LTC4266A Quad LTPoE++ PSE Controller 演示电路 1815A 数据

DC1815A-A DC1815A-B DC1815A-C DC1815A-DDescriptionQuad LTPoE++ PSE ControllerDemonstration circuit 1815A features the L TC®4266A quadpower sourcing equipment (PSE) controller, capable ofdelivering up to 90W of L TPoE++™ power to a compatibleL TPoE++ powered device (PD). A proprietary detection/classification scheme allows mutual identification betweenan L TPoE++ PSE and L TPoE++ PD while remaining com-patible and interoperable with existing Type 1 (13W) andType 2 (25.5W) PDs. The L TC4266A feature set is a supersetof the popular L TC4266. These PSE controllers utilize lowR ON external MOSFETs and 0.25Ω sense resistors whichare especially important at the L TPoE++ current levels tomaintain the lowest possible heat dissipation.The L TC4266A is available in multiple power grades, allow-ing delivered PD power of 13W, 25.5W, 38.7W, 52.7W, 70Wand 90W. The DC1815A has four variations DC1815A-A,DC1815A-B, DC1815A-C, and DC1815A-D which accom-modate the four L TPoE++ power levels (Table 1).Advanced power management features of the L TC4266Ainclude: a 14-bit current monitoring ADC, DAC-program-mable current limit, and versatile quick port shutdown.Advanced power management host software is availableunder a no-cost license. PD discovery uses a proprietarydual mode 4-point detection mechanism ensuring excellent immunity from false PD detection. The L TC4266A includes L, L T, L TC, L TM, Linear Technology and the Linear logo are registered trademarks andL TPoE++ and QuikEval are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.an I2C serial interface operable up to 1MHz. Optional I2C control is accessed on the DC1815A either with test points or a 14-pin ribbon cable for DC590B QuikEval™ GUI operation.The L TC4266A is configurable on the DC1815A as an AUTO pin high, MID pin high, autonomous midspan power injec-tor; input data from an existing network system is sent out, along with power, to a PD. The L TC4266A autonomously detects a PD, turns power on to the port, and discon-nects port power without the need for a microcontroller. OUT n LEDs indicate that port power is present. A single 55V supply is required to power the DC1815A. A simple LDO regulator circuit on the board powers the digital sup-ply of the L TC4266A. A SHDN pushbutton for each port shuts down the respective port and disables detection. Pre-programmed masked shutdown ports are shut down with the MSD pushbutton. A RESET pushbutton resets the L TC4266A to its AUTO pin logic state. Ports shut down with the SHDN or MSD pushbutton must be re-enabled via I2C or a device reset with the AUTO pin high. Design files for this circuit board are available at /demoTable 1. DC1815A Power Levels and Power SupplyDEMO BOARD PSE CONTROLLER MAX DELIVERED PD POWER POWER SUPPL Y*DC1815A-A L TC4266A-138.7W300WDC1815A-B L TC4266A-252.7W300WDC1815A-C L TC4266A-370W420WDC1815A-D L TC4266A-490W540W*Recommended DC1815A power supply minimum to avoid drooping in a worst-case scenario with I LIM current at all four ports. Set the voltage between 54.75V to 57V for L TPoE++ compliance1dc1815afc2dc1815afcDEMO MANUAL DC1815A quick start proceDureFigure 1. DC1815A SetupDemonstration circuit 1815A is easy to set up for evaluat-ing the performance of the L TC4266A. Refer to Figure 1 for proper test equipment setup and follow the procedure below.1. Set MID jumper JP5 to LO which disables midspan mode.2. Set AUTO jumper JP4 to HI which enables AUTO pin high mode.3. Connect a 55V to 57V power supply across AGND (+) and VEE (–). Size the power supply considering the maximum power delivered to the PDs.4. Connect with an Ethernet cable an 802.3at Type 1 or Type 2, or L TPoE ++ compatible PD to one of the four bottom ports of 2x4, RJ45 connector J1.5. (Optional) For data tests, connect a PHY with anEthernet cable to one of the four top ports of 2x4, RJ45 connector J1.6. (Optional) Connect a DC590B via ribbon cable to the DC1814A and via USB to a PC. Open the QuikEval software for I 2C GUI interfacing.3dc1815afcDEMO MANUAL DC1815AoperationIntroductionThe DC1815A demonstrates the features and capabilities of the L TC4266A, a quad controller for L TPoE ++ power sourcing equipment. The DC1815A provides a quick and simple PSE solution requiring only a VEE supply.Supply VoltagesSelect a VEE supply with enough power to sustain all four ports at maximum load. Table 1 shows the maximum delivered PD power of a single port as well as a recom-mended VEE power supply minimum to avoid drooping in a worst-case scenario with I LIM current at all four ports.The L TC4266A also requires a digital 3.3V supply. The DC1815A uses a simple LDO regulator circuit to power the 3.3V digital supply from the VEE supply. The L TC4266A VDD supply is allowed to be within 5V above or below AGND. On the DC1815A, VDD is tied to AGND and DGND is a negative voltage below AGND. D1, R5, Q5, R14, R15, and R25 generate the negative voltage referenced to AGND (Figure 2). These components are sized to handle the power required to supply the L TC4266A and LEDs on the DC1815A. Contact Linear Technology Applications for 3.3V options.AUTO PinThe L TC4266A AUTO pin is set high or low with jumper JP4 on the DC1815A. With the AUTO pin high after a device reset or power on, the L TC4266A operates in fully autonomous mode without the need for a microcontroller . The L TC4266A will automatically detect, classify, and power on IEEE 802.3at Type 1, Type 2 and L TPoE ++ PDs up to the power level rating of the L TC4266A version used. For full control via I 2C, the AUTO pin is to be pulled low. Modification of the AUTO pin jumper requires a device reset or power cycle.Endpoint vs MidspanThe L TC4266A can be configured either for endpoint or midspan operation by setting the MID pin high or low respectively. This is selected with jumper JP5 on the DC1815A. The MID pin high state enables a two second detection back-off timer . The L TC4266A must be reset or power-cycled for the MID pin to be detected. For proper midspan operation the AUTO pin must also be high.I 2C ControlThe L TC4266A is a slave-only I 2C device, and commu-nicates with a host using a standard SMBus/I 2C 2-wire interface. On the DC1815A, a host can be connected to the SCL and SDA test points. Optionally, a DC590B board can be connected with a 14-pin ribbon cable to header J6.The L TC4266A has separate pins for SDAIN and SDAOUT to facilitate the use of opto-couplers. The SDAIN and SDAOUT lines are tied together on the DC1815A with a shunt resis-tor (R10) to provide a traditional bi-directional SDA line. The 7-bit I 2C address of the L TC4266A is 010A 3A 2A 1A 0b, where A 3 through A 0 are determined by pins AD3 through AD0 respectively. On the DC1815A board the state of these pins are controlled by the quad DIP switch, S1. All L TC4266 chips also respond to the global address 0110000b regardless of the state of their AD3-AD0 pins.Interrupts are signaled by the L TC4266A to the host via the INT pin. A red LED on the DC1815A indicates if the INT line is being pulled low.Figure 2. DC1815A LDO Circuit for the LTC4266A Digital Supply.4dc1815afcDEMO MANUAL DC1815A operationBoard LayoutProper components placement and board layout with the L TC4266A is important to provide electrical robustness and correct operation. The following mentioned components, also shown in Figure 3, must be close to their respective L TC4266A pins with no other components in between on the connection path. Place a 0.1µF capacitor (C1) directly across VDD and DGND. Place a 1µF , 100V capacitor (C4) and a SMAJ58A TVS (D3) directly across AGND and VEE. Place the OUT 0.22µF , 100V capacitors (C22, C36, C47, and C58) directly to their respective OUT pins all going to an AGND plane.The power path is from VEE to the sense resistor , to the MOSFET , and out to the port. Select a trace width appro-priate for the maximum current.Kelvin sensing is necessary to provide accurate current readings particularly with DC Disconnect. The sense resis-tors used with the L TC4266A must be 0.25Ω, 1% or better , and with a power rating that can handle the maximum DC current passed through them. A dedicated sense trace from each SENSE pin of the L TC4266A must go directly to the respective sense resistor solder pad (Figure 4). Do not connect to a copper area or trace between the sense resistor and the MOSFET .Figure 3. L TC4266A Key Application Componentsfor Board PlacementThe VEE side of the sense resistor must connect to a thick VEE plane through several large vias. At the L TC4266A, the VEE pins and exposed pad tie together on the top layer and connect to the VEE plane as well through its own multiple large vias. The via size, number of vias, copper thickness, trace width, and number of layers that connect VEE between the sense resistors and the L TC4266A VEE pins must total less than 15mΩ. A 2oz. copper thickness for the VEE copper plane must be used if there is only a single VEE plane connecting the L TC4266A VEE pins to the sense resistors.The VEE current path from the sense resistors to the main VEE power supply must be either through a copper plane, or a thick trace. If a trace is used, it must not pass under the L TC4266A. Instead the path must go out to VEE from the sense resistors as shown in Figure 4. The VEE connection is from the VEE supply to the sense resistors to the L TC4266A VEE pins and must stay in that order.Figure 4. L TC4266A VEE Pins and Sense Resistors Connect to a VEE Inner Layer Plane. A Kelvin Sense T race from each SENSE Pin Runs to the Respective Sense Resistor Pad. Connect the VEE Supply Path to the Sense Resistors First, Then to the L TC4266AVEE PinsDEMO MANUAL DC1815A operationWhen laying out multiple L TC4266A devices, group the four sets of port MOSFET and sense resistor with their respective L TC4266A as shown in Figure 5. Each L TC4266A has its own copper fill area on the surface that connects to the VEE plane with multiple large vias. The net effect is to reduce the layout problem down to 4-port groups;this arrangement is expandable to any number of ports.Figure 5. Multiple L TC4266 Layout Strategyto Reduce Mutual ResistancepcB LayoutTop SilkscreenLayer 1: Top Layer5dc1815afc6dc1815afcDEMO MANUAL DC1815A pcB LayoutLayer 2: Plane LayerLayer 3: Plane LayerLayer 4: Bottom LayerBottom SilkscreenDEMO MANUAL DC1815A parts ListITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBER 12C4, C65CAP, 0603 0.1µF 10% 25V X7R TDK C1608X7R1E104K216CT1-CT16CAP, 0805 0.01µF 5% 100V X7R AVX 0805C103JAT2A32C64, C66CAP, 0805 1µF 10% 100V X7S TDK C2012X7S2A105K41C2CAP, 10uF 20% 100V ALUM.PANASONIC EEE-2AA100UP 54C22, C36, C47, C58CAP, 1206 0.22µF 5% 100V X7R AVX 12061C224JAT2A610C5, C6, CG1-CG8CAP, 1808 1000pF 10% 2KV X7R TDK C4520X7R3D102K72J2, J3CONN, JACK, BANANA KEYSTONE 575-481J1CONN, RJ45, 8-PORT DUAL ROW SHIELDED TE CONNECTIVITY, 5569262-1 91CLD1DIODE, CURRENT LIMITING, 2.7mA, SOD-80CENTRAL SEMI CCLM2700108D8-D11, D24-D27DIODE, RECTIFIER, 100V 1A, SMA FAIRCHILD S1B111D3DIODE, TVS, 400W, 58V, SMA DIODES INC. SMAJ58A122D18, D20DIODE, TVS, 5000W, 60V, SMC LITTLEFUSE 5.0SMDJ60A131D1DIODE, ZENER 3.9V SOD-123ON SEMI, MMSZ4686T1G141D23DIODE, ZENER, 5.6V, SOT23FAIRCHILD, BZX84C5V6151J6HEADER, 2 × 7 2mm MOLEX 87831-1420162JP4, JP5HEADER, 3-PIN, 2mm SAMTEC TMM-103-02-L-S171U3IC, 24LC025, EEPROM, TSSOP MICROCHIP 24LC025-I/ST182D5, D7LED, AMBER ROHM SML-010DTT86L194D12-D15LED, GREEN ROHM SML-010FTT86L201D6LED, RED ROHM SML-010VTT86L2116F-1-F16FUSE, 3A, 63VDC 1206BEL FUSE C1Q3221R9RES, 0603 1Ω 5% 1/10W VISHAY CRCW06031R00JNEA231R10RES, 0603 10Ω 5% 1/10W VISHAY CRCW060310R0JNEA241R5RES, 0603 100k 5% 1/10W VISHAY CRCW0603100KJNEA252R1, R2RES, 0603 10k 5% 1/10W VISHAY CRCW060310K0JNEA266R8, R13, R18, R21, R24, RL1RES, 0603 1.0k 5% 1/10W VISHAY CRCW06031K00JNEA274R7, R17, R20, R23RES, 0603 10M 5% 1/10W VISHAY CRCW060310M0JNEA284R6, R16, R19, R22RES, 0603 2M 5% 1/10W VISHAY CRCW0603910KJNEA293REP3-REP5RES, 0603 5.1k 5% 1/10W VISHAY CRCW06035K10JNEA3032RT1-RT32RES, 0603 75Ω 5% 1/10W VISHAY CRCW060375R0JNEA313R14, R15, R25RES, 1206 4.7k 5% 1/4W VISHAY CRCW12064K70JNEA324RS1-RS4RES, 2512, 0.25Ω 1% 2W STACKPOLE, CSRN2512FKR250334MH1-MH4STAND-OFF, NYLON 0.75"KEYSTONE, 8834(SNAP ON)341S1SWITCH, DIP 4-POSITION TYCO/ALCOSWITCH ADE04356S2-S7SWITCH, MOMENTARY WÜRTH 434 123 050 8163616E1-E16TESTPOINT, TURRET, 0.094" PBF MILL-MAX, 2501-2-00-80-00-00-07-0374T1-T4TRANSFORMER, POE++(OPTION)MIDCOM WÜRTH 749022016 COILCRAFT ETH1-460L384Q9-Q12XSTR, MOSFET P-CHANNEL 30V (D-S), SOT-23VISHAY Si2343DS394Q1-Q4XSTR, MOSFET, N-CHANNEL 100V FAIRCHILD FDMC86102401Q5XSTR, PNP, 100V, SOT223ZETEX ZXTP19100CG7dc1815afcDEMO MANUAL DC1815Aparts ListITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBER 413XJP4, XJP5SHUNT, 2mm SAMTEC 2SN-BK-G421FAB, PRINTED CIRCUIT BOARD DEMO CIRCUIT 1815A-2432STENCIL TOP & BOTTOM DC1815A-2DC1815A-A11DC1815A GENERAL BOM216FB1-FB16FERRITE BEAD, 1k, 0805TDK MPZ2012S102A31U1IC, L TC4274A-1, QUAD PORT 38.7W PSE CONTROLLER LINEAR L TC4274AIUHF-141FAB, PRINTED CIRCUIT BOARD DEMO CIRCUIT 1815ADC1815A-B11DC1815A GENERAL BOM216FB1-FB16FERRITE BEAD, 1k, 0805TDK MPZ2012S102A31U1IC, L TC4266A-2 QUAD PORT 52.7W PSE CONTROLLER LINEAR L TC4266AIUHF-241FAB, PRINTED CIRCUIT BOARD DEMO CIRCUIT 1815ADC1815A-C11DC1815A GENERAL BOM216FB1-FB16FERRITE BEAD, 1k, 0805TDK MPZ2012S102A31U1IC, L TC4266A-3, QUAD PORT 70W PSE CONTROLLER LINEAR L TC4266AIUHF-341FAB, PRINTED CIRCUIT BOARD DEMO CIRCUIT 1815ADC1815A-D11DC1815A GENERAL BOM216FB1-FB16FERRITE BEAD, 1300Ω, 1812TAIYO YUDEN FBMH4532HM132-T 31U1IC, L TC4266A-4, QUAD PORT 90W PSE CONTROLLER LINEAR L TC4266AIUHF-441FAB, PRINTED CIRCUIT BOARD DEMO CIRCUIT 1815A8dc1815afcDEMO MANUAL DC1815A schematic Diagram9DEMO MANUAL DC1815Aschematic Diagram10dc1815afcDEMO MANUAL DC1815A schematic Diagram1112dc1815afcDEMO MANUAL DC1815ALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX : (408) 434-0507 ● www.linear .comLINEAR TECHNOLOGY CORPORA TION 2011LT 0613 REV C • PRINTED IN USADEMONSTRATION BOARD IMPORTANT NOTICELinear Technology Corporation (L TC) provides the enclosed product(s) under the following AS IS conditions:This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONL Y and is not provided by L TC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT , SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.The user assumes all responsibility and liability for proper and safe handling of the goods. Further , the user releases L TC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).No License is granted under any patent right or other intellectual property whatsoever. L TC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.L TC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive .Please read the DEMO BOARD manual prior to handling the product . Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged .This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a L TC applica-tion engineer .Mailing Address:Linear Technology 1630 McCarthy pitas, CA 95035Copyright © 2004, Linear Technology CorporationDC1815A-A DC1815A-B DC1815A-C DC1815A-D。

8段2位数码管 驱动芯片

8段2位数码管 驱动芯片

8段2位数码管驱动芯片
常用的8段2位数码管驱动芯片有以下几种:
1. TM1637:该驱动芯片集成了4位电流调节器和键盘扫描功能,可直接控制4位共阳或共阴的8段数码管。

2. MAX7219:该驱动芯片是一个串行输入/并行输出的8位移位寄存器,可以驱动8位数码管的显示,并且还具有亮度调节和扫描方式调节等功能。

3. HT16K33:该驱动芯片是一个LED控制器,可以驱动直接共阳和直接共阴两种的8段数码管,并且具有亮度调节和显示模式调节等功能。

4. CD4511:该驱动芯片是一个BCD到7段译码器,可以将4位BCD码转换为8段数码管的输入信号,从而实现数码管的显示。

这些驱动芯片可以根据不同的需求和设计来选择使用,可以根据具体的电路设计手册和数据手册来了解其操作原理和使用方法。

#(原创技术资料)电动自行车智能三阶段充电器的工作原理和实用技术资料

#(原创技术资料)电动自行车智能三阶段充电器的工作原理和实用技术资料

电动自行车智能三阶段充电器的工作原理及实用技术资料王赟2010.12.28.我国电动自行车产业的飞速发展为电器维修行业提供了新的利润增长点。

充电器作为电动自行车的易损配套设备,其维修市场潜力巨大。

虽然目前的主流充电器都采用了开关电源式设计,但其控制过程与彩电、彩显等设备的开关电源有着明显的不同。

从电动自行车充电器的维修实际以及国内众多电子技术论坛的会员求助情况来看,很多维修人员对电动车充电器的工作过程和三阶段充电原理不明白,而且目前现有的技术资料对此鲜有论述,读者难以理解,因此在检修中缺少必要的理论指导,遇到简单的故障尚能排除,一旦遇到稍具难度的故障或者比较复杂的故障,检修便难以进行,而且存在很大的盲目性。

本文从电动车充电器的维修实际出发,围绕目前电动车市场上的主流充电器电路,用浅显易懂的语言,详尽地剖析2种典型的智能式三阶段充电器的工作原理和检修方法,并提供8个有实用价值的维修实例和13张代表性图纸以及6种典型充电器的三阶段充电过程中的实测数据等相关技术资料,供维修中参考。

一、电动自行车智能三阶段充电器的工作原理当今的电动自行车充电器,大量地采用了以PWM脉宽调制集成电路TL494N或者KA3842(UC3842)为核心控制电路,组成智能式开关电源,分三个阶段为蓄电池提供充电电压和电流。

由于目前我国的电动自行车普遍采用了36V/12AH的铅酸蓄电池,所以这里以适合于这种蓄电池的36V充电器为例,对采用TL494N和KA3842的电动自行车三阶段充电器的工作原理进行介绍。

1、以TL494N为核心的充电器工作原理。

参照型号为天津“彪”牌电动自行车采用的SP2000三阶段充电器。

预备知识:首先说一下什么是三阶段充电器。

三阶段充电器属于智能控制的能自动转换充电模式的充电器,所谓三阶段是指恒流充电阶段、恒压充电阶段、涓流充电阶段(又叫浮充阶段)。

在恒流充电阶段,充电电流是不变的,但输出电压在变。

电路根据充电电流的情况自动调整输出电压才能使电流保持在恒定的状态,一方面表现在当充电电流增大时,电路能自动降低输出电压,使电流减小,维持恒定;另一方面,随着蓄电池充进电量的增多,蓄电池两端电压会不断上升,为了防止充电电流变小,因此开关电源的输出端电压必须随着充电过程而逐渐上升。

芯片替代方案

芯片替代方案

芯片替代方案特瑞仕以激光修整法及0.1V台的电压设定±1%的高精度技术为基础,提供优良的封装产品。

特瑞仕的产品不光能对应封装形式的小型化,轻量化和薄型化的要求,而且可使客户更加自由地进行电路设计。

这些小型封装产品因为可减少外接部品,所以应用领域正不断扩大。

同时输出电流达到数安培的DC/DC转换器及产业用的中高电压领域的产品也正不断得到充实。

特瑞仕一直以市场分析能力和智力预测市场的需求,专业生产对应时代要求的电源IC。

长年从事并精通数码机器必不可少的模拟设计的工程师,正在进行其他公司所没有的独特的企划,开发和设计。

深圳市泰德兰电子有限公司是日本TOREX(特瑞仕)半导体在中国的授权一级代理商。

品牌TOREX芯片XC6221直接替代MAX8510EXKTOREX-XC6221带ON/OFF开关兼容低ESR电容的高速电压调整器TOREX-XC6221详细说明:XC6221系列是具有高精度, 低噪音, 高速度, 兼容低ESR电容, 采用CMOS工艺生产的低压差LDO电压调整器,内部包括参考电压源电路,误差放大器电路,过流保护电路和相位补偿电路。

XC6221系列可通过在使能端端子输入低电平信号使芯片工作于待机状态。

在该状态下,XC6221B/D系列可通过芯片内部电路实现输出端电容自动放电的功能,使得输出端电压VOUT迅速恢复到Vss。

XC6221系列的输出电压可在0.80~5.00V范围内,利用激光微调技术,可实现以0.05V为间隔自由选择。

XC6221系列内部的Fold Back 电路可提供过流和短路保护。

该系列还具有低功耗(TYP.25uA)和低压差的优点(80mV@100mA,VOUT(T)=3.0V),兼容低ESR的陶瓷电容。

当选用超小型的USP-4,USPN-4封装时,可进一步减少在电路板上面所需要的面积尺寸。

TOREX-XC6221特点:最大输出电流200mA 限流250mA TYP.输入输出电压差80mV@ IOUT=100mA VOUT=3.0V工作电压范围1.6V~6.0V输出电压范围0.80V~5.00V(0.05V间隔)精度±2% (VOUT≧1.50V)(标准),±30mV (VOUT≦1.45V)(标准),±1% (VOUT≧2.00V)(高精度),±20mV (VOUT≦1.95V)(高精度)低功耗25uA (TYP.)电源抑制比70db @ 1kHz封装SOT-25, SSOT-24, USP-4, USPN-4以下是TOREX型号可完全替代其他品牌的产品:TOREX品牌TOREX品牌XC9206 替代LT1616ES6 XC6204 替代TPS79318DBVRG4 XC9206 替代LTC1701 XC6210 替代TPS796XC9207 替代LTC1701 XC6221 替代TPS799XC9213B103VR 替代LT1776 XC6210 替代TVL1117XC9213B103VR 替代LT1976 XC6202 替代UA78L05AIPKXC9221 替代LTC1772 XC6202 替代UA78LXC9223B082AR 替代LTC1773 XC6202 替代UA78LXC9223B082AR 替代LTC3411 XC6202 替代UA78LXC9301A333MR 替代LTC3531 XC6202 替代UA78LXC9302 替代LTC3531 XB1117 替代TLV1117XC9236 替代MAX1733 XC6201 替代UA78LXC9237 替代MAX1733 XC6211 替代TPS731XC9103 替代MAX1722 XC62E 替代TPS799XC9105 替代MAX1722 XC6419 替代TPS71936XC9129 替代MAX1947 XC6406 替代TPS71936XC9201 替代MAX1652 XC6411 替代TPS71936XC9502 替代MAX1672 XC6412 替代TPS71936XC6367C503MR 替代MAX608 XC6415 替代TPS71936XC6368C 替代MAX608 XC6601 替代TPS721XC9104B095 替代MAX1722 XC6501 替代TPS732XC6365A303ER 替代MAX1920 XC6203 替代REG1117AXC6366C 替代MAX1920 XC6202 替代TL750LXC9213B103VR 替代MAX1684 XC6221 替代TPS721XC9301 替代MAX711 XC6215 替代TPS72118XC9302 替代MAX711 XC62KN 替代TPS723XC9128 替代MAX1947 XC6210 替代TPS731XC9235 替代MAX1733 XC6204 替代TPS760XC9221 替代MIC2193 XC6202 替代TK711XC9221A09AMR 替代MIC4690 XC6202 替代TK715XC9223B082AR 替代MIC3838 XC6501 替代TK637XC9220 替代MIC2193 XC6211 替代TK111XC9224 替代MIC3838 XC6206 替代TK116XC6368 替代TC110 XC6204 替代TK716XC9201 替代TC105 XC6221 替代SiP21110XC6372 替代TC115 XC6204 替代Si9183DTXC6366 替代TC105 XC6204 替代Si9184DTXC9235 替代LM3674 XC6202 替代ZMRXCM517 替代LM2717 XC6202 替代ZMRXC9208 替代LM3677 XC6202 替代ZMRXC9210 替代LM2650 XC6202 替代ZMRXC6371 替代LM2703 XC6204B 替代ZXCLXC9119D10AMR 替代LM2703 XC6202 替代S-813XC6365A303ER 替代LM3677 XC6209 替代S-814AXC9206A18MR 替代LM3677 XC6209 替代S-814AXC9207A18MR 替代LM3677 XC6209 替代S-814BXC9213B103VR 替代LM2594 XC6204B182MR 替代S-817B18AMC-CWH-T2 XC9213B103VR 替代LM2676 XC6215P152GR 替代S-817A15APFXC9213B103VR 替代LM2737 XC6206 替代S-817BXC9301 替代LM2716 XC6206 替代S-817BXC9302 替代LM2716 XC6209 替代S-818AXC9235 替代NCP1522 XC6221 替代S-1112BXC9236 替代NCP1522 XC6403 替代S-8750XC9237 替代NCP1522 XC6204 替代S-L2980AXC9103 替代NCP1406 XC6402 替代S-1701AXC9105 替代NCP1406 XC6402 替代S-1701AXC9106 替代NCP1403 XC6403/04 替代S-1701AXC9107 替代NCP1403 XC6403/04 替代S-1701AXC9201 替代NCP1550 XC6405 替代S-1701AXC9210 替代NCP1508 XC6405 替代S-1701AXC9111 替代NCP1400 XC6201 替代S-812CXC9104 替代NCP1406 XC6404 替代S-1701AXC911950AMR 替代NCP1402 XC6404 替代S-1701AXC9303 替代BD9300 XC6212 替代S-814AXC9103 替代R1210N XC6213 替代S-814AXC9105 替代R1210N XC6203/XC6206 替代S-1206XC9106 替代RH5RH XC6218 替代S-1206XC9107 替代RH5RH XC6203P332FR 替代SPX1129M3-3.3 XC9111 替代RN5RK XC6210 替代SP6205EM5XC9208 替代R5220 XC6202 替代LP2950XC9502 替代R1282D002A XC6204 替代TPS761XC9504 替代R1280D002X XC6204 替代TPS763XC9509 替代RP901 XC6204 替代TPS764XC9510 替代R5212D XC6204 替代TPS769XC9511 替代RP901 XC6221 替代TPS770XC6371 替代RH5RH XC6204 替代TPS789XC6371 替代RH5RH XC6209 替代TPS79118XC6373 替代RH5RH XC62EP 替代RN5RGXC9104 替代R1210N XC62H 替代RN5RGXC9110C501MR 替代RN5RK XC6419 替代R5325XC9236 替代RP500 XB1086 替代RN5RGXC9106 替代ST5R00 XC6411 替代R5325XC9107 替代ST5R00 XC6412 替代R5325XC6372 替代S-8324 XC6202 替代L78LXC6372 替代S-8328 XC6202 替代L78LXC6373 替代S-8324 XC6202 替代L78LXC9128 替代SP6648 XC6202 替代L78LXC9129 替代SP6648 XC6203 替代LD1117SXC9128 替代TPS61030 XC6204 替代LD2979MXC9128 替代TPS61010 XC6202 替代LD2979ZXC9236 替代TPS6220 XC6204 替代LD2980ABMXC9237 替代TPS6220 XC6201 替代LD2980ABUXC9103 替代TPS61040 XC6204 替代LD2980ACMXC9105 替代TPS61040 XC6201 替代LD2980ACUXC9129 替代TPS61010 XC6204 替代LD2981ABMXC9201 替代TL494 XC6201 替代LD2981ABUXC9208 替代TPS62202 XC6204 替代LD2981ACM XCM517 替代TPS62400 XC6201 替代LD2981ACUXC9224 替代TPS62040 XC6202 替代LEXC9104 替代TPS61040 XC6202 替代LM2931AZ/BZ XC9104 替代TPS61081DRCR XC6216 替代L4938XC6365B105MR 替代TPS62204 XE6216 替代L4938XC6365B105MR 替代TPS62202DBV XC6701B 替代L4938XC6365B105MR 替代TPS62203DBV XC6701D 替代L4938XC6366 替代TPS62203 XCM406 替代LDRXC9207A18MR 替代TPS62202 XC62KN 替代S-802XC9223B082AR 替代TPS62040 XC6202 替代S-812CXC9236 替代TL2575 XC6206 替代S-812CXC9206A18MR 替代TPS62202 XC6206 替代S-812CXC9122 替代TK11880 XC6206 替代S-812CXC9121 替代TK11880 XC6206 替代S-812CXC9120 替代TK11880 XC6202 替代S-813XC9210 替代SiP12201 XC6204 替代LP3985IM5XC9119 替代YB1508 XC62H 替代NCP584HSNXC6401 替代CAT6221 XC62E 替代NCP584HSNXC6206 替代S1F78100Y2H0 XC6404 替代NCP400FCT2G XC6217 替代FAN2502S XB1086 替代LM317MBDTRK XC6219 替代FAN2502S XC6202 替代LM2931CDXC62H 替代FAN2502S XC6202 替代LM2931ZXC62E 替代FAN2502S XC6202 替代LP2950XB1085 替代KA78 XC6202 替代LP2950CZXB1086 替代KA78 XB1086 替代MC33269DTRK XC6205 替代FAN2502S XC6203 替代MC33275STXC6212 替代FAN2500S XC6204 替代MC33761XC6213 替代FAN2500S XC6206 替代MC78FCXC6203 替代FAN1117AS XC6203 替代MC78LCXC6209 替代FAN2500S XC6202 替代MC78LXC6204 替代FAN2502S XC6204 替代MC78PCXC6204 替代FAN2504S25 XC6206 替代MC78RCXC6204 替代FAN2508S XC6217 替代NCP584HSNXC6206 替代ILC7062CM XC6203 替代SC5201-1GSTR3XC6206 替代ILC7062CP XC6402 替代NCP400FCT2G XC62HR 替代ILC7070HCM XC6403/04 替代NCP400FCT2G XC6204 替代ILC7080AIM5 XC6405 替代NCP400FCT2G XC6204 替代ILC7081AIM5 XC6401 替代NCP583XVXC6204 替代ILC7082AIM5 XC6214 替代MC78LCXC62KN 替代ILC7362CM XC6219 替代NCP584HSN XC62KN 替代ILC7362CM XC6219 替代BAXC62KN 替代ILC7362CP XC6219 替代BA0XC6202 替代KA78L XC6206 替代RE5REXC62KN 替代MC79 XC6206 替代RH5RLXC6203 替代RC1117S XC6206 替代RE5RLXC6207 替代FAN2502S XC6206 替代RE5RLXC6215 替代ILC7062CP XC6401CH 替代LP3988IMX XCM406 替代TLE4476 XC6403DH 替代LP3988IMFXC6212 替代IRU1205 XC6210B122DR 替代LP3990TLXC6213 替代IRU1205 XC6210B122DR 替代LP3990MFXC6209 替代IRU1205 XC6221A182MR 替代LP3990MFXC6210 替代IRU1205 XC6202 替代LM2931AZXC6211 替代IRU1205 XC6214 替代LM1117MPX XC6221 替代IRU1205 XC6419 替代LP5996XC6203 替代LT1117CST XC6411 替代LP5996XC6203 替代LT1117IST XC6412 替代LP5996XC6202 替代LT1118CST XC6415 替代LP5996XC6202 替代LT1118IST XB1086 替代LM1086CSXC6203 替代LT1121CST XB1117 替代LM1117SXC6203 替代LT1121IST XB1117 替代LM1117MPX XC6202 替代LT1129CST XC6203 替代LM1117MPX XC6202 替代LT1129IST XC6202 替代LM2936ZXC62KN 替代LT1175CS8 XB1117 替代LM340SXC6202 替代LT1461ACS8 XC6202 替代LM340LAZXC6202 替代LT1521CS8 XC6202 替代LM3480IM3XC6202 替代LT1521CST XC6203 替代LM3940IMP-3.3 XC6202 替代LT1521IST XC6202 替代LM78LXC6204 替代LT1761ES5 XC6404 替代LMS5258MF XC6204 替代LT1964ES5 XC6202 替代LP2950XC6204 替代LTC1844ES5 XC6204 替代LP2978XC6203 替代LT1117CST XC6204 替代LP2980AIM5 XC6207 替代LT1761ES5 XC6204 替代LP2980IM5XC6217 替代LT1761ES5 XC6204 替代LP2980IM5X XC6219 替代LT1761ES5 XC6204 替代LP2981AIM5 XC6205 替代MAX8877EUK XC6204 替代LP2981IM5XC6212 替代MAX1598EZK XC6204 替代LP2982AIM5 XC6213 替代MAX1598EZK XC6204 替代LP2982IM5XC6210 替代MAX8877EUK XC6204 替代LP2985AIM5XC6211 替代MAX8877EUK XC6204 替代LP2985IM5 XC6217 替代MAX8877EUK XC6204 替代LP3984IBP XC6219 替代MAX8877EUK XC6403 替代LP3982 XC62H 替代MAX8877EUK XC6204 替代LP3985IBL XC6209 替代MAX1598EZK XC6415 替代MIC5371 XC6210B252MR 替代MAX1792EUA25 XCM406 替代MIC5264 XC6210B332MR 替代MAX1792EUA33 XC8101 替代MIC94060 XC6402 替代MAX1818EUT XC6601 替代MCP1727 XC6210B33MR 替代MAX1818EUT33 XC6213 替代TC1014 XC6221 替代MAX8510EXK XC6212 替代TC1014 XC6401 替代MAX8559 XC62KN 替代TC59XC6209 替代MAX8863TEUK XC62KN 替代TC59XC6209 替代MAX8867EUK XC62EP 替代TC57XC6405 替代MAX8875EUK XC6206 替代TC55RP XC6204 替代MAX8877EUK XC6206 替代TC55RP XC6207 替代MAX8878EUK XC6206 替代TC55RP XC6401 替代MAX8882EUT XC6203 替代TC1264 XC6209 替代MAX8887EZK XC6207 替代TC1014 XC6207 替代MIC5203 XC6217 替代TC1014 XC6214 替代MIC39100 XC6206 替代MCP1700T XC6202 替代LP2950-02BZ XC6209 替代TC1014 XC6202 替代LP2950-03BZ XC6209 替代TC1015 XC6203 替代MIC2920A XC6209 替代TC1185 XC6202 替代MIC2950-05BZ XC6203 替代TC1262 XC6202 替代MIC2950-06BZ XC6204 替代LX8211 XC6202 替代MIC2954-02BZ XC6215 替代MC78LC00 XC6202 替代MIC2954-03BZ XC6210 替代MC78M00 XB1117 替代MIC37100 XC6204 替代MIC5245 XC6203 替代MIC39100 XC6204 替代MIC5247 XC6204 替代MIC5203 XC6221 替代MIC5253 XC6204 替代MIC5207 XC6221 替代MIC5255 XC6202 替代MIC5207 XC6221 替代MIC5259 XC6203 替代MIC5209 XC6204 替代MIC5305 XC6214 替代MIC5209 XC6419 替代MIC5371 XC6204 替代MIC5219 XB1086 替代MIC39100 XB1117 替代MIC5239 XC6205 替代MIC5203 XC6412 替代MIC5371 XC6411 替代MIC5371。

TI公司单电源运放

TI公司单电源运放

OPA1013 精密单电源双路运算放大器
OPA2735 最大漂移 0.05uV/℃ 单电源 CMOS 运算放大器,零漂移系列
OPA2734 0.05uV/℃(最大)单电源 CMOS 运算放大器,零漂移系列
OPA4344 低功耗单电源轨至轨运算放大器 MicroAmplifier(TM) 系列
TLE2024B Excalibur 高速低功耗精密四路运算放大器
OPA2703 12V CMOS 轨至轨 I/O 运算放大器
OPA2704 12V CMOS 轨至轨 I/O 运算放大器
OPA2350 MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器
TLC2201AM 低噪声精密高级 LinCMOS(TM) 一路运算放大器
OPA333 1.8V 输入电压、17uA 偏移电流、2uV 偏移电压的微功耗 CMOS 零漂移系列运算放大器
TLE2022M 高速低功耗精密双路运算放大器
TLC074 四路宽带高输出驱动运算放大器
OPA365 2.2V、50MHz 低噪声单电源轨至轨运算放大器
OPA2364 1.8V、高 CMR、RRIO 运算放大器
TLV2455A 具有关断状态的四路微功耗轨至轨输入/输出运算放大器
TLC4501 高级 LinEPIC 自校准 (Self-Cal) 精密单路运算放大器
TLE2022AM 高速低功耗精密二路运算放大器
OPA704 12V CMOS 轨至轨 I/O 运算放大器
OPA2340 MicroAmplifier(TM) 系列单电源轨至轨运算放大器
OPA336 MicroAmplifier(TM) 系列单电源、微功耗 CMOS 运算放大器

LTC2470 16位差分D∑ ADC SPI接口示例电路1628A说明书

LTC2470 16位差分D∑ ADC SPI接口示例电路1628A说明书

1dc1628fD ESCRIPTION D ∑ ADC with SPI InterfaceDemonstration circuit 1628A features the L TC2470, a 16-bit high performance Δ∑ analog-to-digital converter (ADC) with an SPI interface. The input is unipolar with a range of 0-REF. The modulator’s proprietary sampling tech-nique reduces the average input current to less than 50nA– orders of magnitude lower than typical Δ∑ ADCs. DC1628A is a member of Linear Technology‘s QuikEval ™ family of demonstration boards. It is designed to allow easy evaluation of the L TC2470 and may be connected directly to the target application’s analog signals while using theL , L T , L TC, L TM, Linear Technology and the Linear logo are registered trademarks andQuikEval is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.DC590 USB Serial Controller board and supplied software to measure performance. The exposed ground planes allow proper grounding to prototype circuitry. After evaluating with Linear Technology’s software, the digital signals can be connected to the end application’s processor/controller for development of the serial interface.Design fi les for this c irc uit board are available at http://www.linear.com/demoRIBBON CABLETO DC590 CONTROLLERINPUTFigure 1. Proper Measurement Equipment Setup2dc1628fQUICK START PROCEDUREConnect DC1628A to a DC590 USB Serial Controller using the supplied 14 conductor ribbon cable. Connect DC590 to host PC with a standard USB A/B cable. Run the evalu-ation software supplied with DC590 or downloaded from http://www.linear .com/software. The correct program will be loaded automatically. Click the COLLECT button to startreading the input voltage. Details on software features are documented in the control panel’s help menu.Tools are available for logging data, changing reference voltage, changing the number of points in the strip chart and histogram, and changing the number of points aver-aged for the DVM display.Figure 2. Software ScreenshotHARDWARE SET-UPCONNECTION TO DC590 SERIAL CONTROLLER J1 is the power and digital interface connector . Connect to DC590 serial controller with supplied 14 conductor ribbon cable.ANALOG CONNECTIONSAnalog signal connections are made via the row of turret posts along the edge of the board. Also, when connecting the board to an existing circuit the exposed ground planes along the edges of the board may be used to form a solid connection between grounds.GND : This turret is connected directly to the internal ground planes.V CC : This is the supply and reference voltage for the ADC. Do not draw any power from this point. IN : This is the positive input to the ADCREFOUT : This turret is connected to the L TC2470 REFOUT pin. This pin may be used to provide a reference voltage to an external circuit and can source up to 100μA. Do NOT drive this pin.3dc1628fInformation furnished by Linear Technology Corporation is believed to be accurate and reliable. However , no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.SCHEMATIC DIAGRAM4dc1628fLinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear .com” LINEAR TECHNOLOGY CORPORA TION 2010LT 1010 • PRINTED IN USADEMONSTRATION BOARD IMPORTANT NOTICELinear Technology Corporation (L TC) provides the enclosed product(s) under the following AS IS conditions:This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONL Y and is not provided by L TC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT , SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.The user assumes all responsibility and liability for proper and safe handling of the goods. Further , the user releases L TC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).No License is granted under any patent right or other intellectual property whatsoever. L TC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.L TC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive .Please read the DEMO BOARD manual prior to handling the product . Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged .This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a L TC applica-tion engineer .Mailing Address:Linear Technology 1630 McCarthy pitas, CA 95035Copyright © 2004, Linear Technology Corporation。

ltc3851工作原理

ltc3851工作原理

ltc3851工作原理
LTC3851是一款高效的同步降压转换器控制器,它采用了恒频
电流模式控制架构。

其工作原理如下:
1. 输入电压通过输入电感和MOSFET被转换成电流脉冲,这些
脉冲被传送到输出端。

2. 控制器监测输出电压并与内部参考电压进行比较,以确定输
出电压是否在设定范围内。

3. 如果输出电压低于设定值,控制器将增加MOSFET的占空比,以增加输出电压。

4. 反之,如果输出电压高于设定值,控制器将减小MOSFET的
占空比,以降低输出电压。

5. 控制器还会监测并响应于负载变化,以保持稳定的输出电压。

此外,LTC3851还具有多种保护功能,如过压保护、过流保护、短路保护等,以确保转换器和外部电路的安全运行。

总的来说,
LTC3851通过不断调整MOSFET的开关频率和占空比,以实现输入电压到输出电压的高效转换,同时保持稳定的输出电压和电流。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12451fgTYPICAL APPLICATIONFEATURESDESCRIPTIONwith I 2C InterfaceThe L TC ®2451 is an ultra-tiny, 16-bit, analog-to-digital converter . The L TC2451 uses a single 2.7V to 5.5V sup-ply, accepts a single-ended analog input voltage and communicates through an I 2C interface. The converter is available in an 8-pin, 3mm × 2mm DFN or TSOT-23 package. It includes an integrated oscillator that does not require any external components. It uses a delta-sigma modulator as a converter core and provides single-cycle settling time for multiplexed applications. The L TC2451 includes a proprietary input sampling scheme that re-duces the average input sampling current several orders of magnitude lower than conventional ∆∑ converters.The L TC2451 is capable of up to 60 conversions per second and, due to the very large oversampling ratio, has extremely relaxed antialiasing requirements. In the 30Hz mode, the L TC2451 includes continuous internal offset calibration algorithms which are transparent to the user , ensuring accur a cy over time and over the operating temperature range. The converter has external REF + and REF – pins and the input voltage can range from V REF – to V REF +. If V REF + = V CC and V REF – = GND, the input voltage can range from GND to V CC .Following a single conversion, the L TC2451 can auto-matically enter sleep mode and reduce its power to less than 0.2µA. If the user reads the ADC once per second, the L TC2451 consumes an average of less than 50µW from a 2.7V supply.nGND to V CC Single-Ended Input Range n 0.02LSB RMS Noisen 2LSB INL, No Missing Codes n 1LSB Offset Error n 4LSB Full-Scale Errorn Programmable 30/60 Conversions per Second nSingle Conversion Settling Time for Multiplexed ApplicationsnSingle-Cycle Operation with Auto Shutdown n 400µA Supply Current n 0.2µA Sleep Currentn Internal Oscillator—No External Components Required n Single Supply, 2.7V to 5.5V Operation n 2-Wire I 2C InterfacenUltra-Tiny 3mm × 2mm DFN or TSOT-23 PackageAPPLICATIONSnSystem Monitoringn Environmental Monitoringn Direct Temperature Measurements n Instrumentationn Industrial Process Control n Data Acquisitionn Embedded ADC UpgradesIntegral Nonlinearity, V CC = 3VINPUT VOL TAGE (V)–3I N L (L S B )–2–10130.52451 TA01b2L , L T , L TC, L TM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. No Latency ∆∑ and Easy Drive are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents, including 6208279, 6411242, 7088280, 7164378./22451fgPIN CONFIGURATIONABSOLUTE MAXIMUM RATINGSSupply Voltage (V CC ) ...................................–0.3V to 6V Analog Input Voltage (V IN ) ............–0.3V to (V CC + 0.3V)Reference Voltage (V REF +, V REF –) ...–0.3V to (V CC + 0.3V)Digital Voltage (V SDA , V SCL ) ..........–0.3V to (V CC + 0.3V)(Notes 1, 2)TOP VIEW9DDB PACKAGE8-LEAD (3mm × 2mm) PLASTIC DFN56784321GND REF –REF +V CCSDA SCL IN GNDC/I GRADE T JMAX = 125°C, θJA = 76°C/WEXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCBGND 1REF – 2REF + 3V CC 48 SDA 7 SCL 6 IN 5 GNDTOP VIEWTS8 PACKAGE8-LEAD PLASTIC TSOT-23C/I GRADE T JMAX = 125°C, θJA = 140°C/WORDER INFORMATIONELECTRICAL CHARACTERISTICS PARAMETERCONDITIONS MIN TYP MAX UNITS Resolution (No Missing Codes)(Note 3)l 16Bits Integral Nonlinearity (Note 4)l 210LSB Offset Error 30Hz Mode l 0.080.5mV Offset Error 60Hz Model 0.52mV Offset Error Drift 0.02LSB/°C Gain Error l0.010.02% of FS Gain Error Drift 0.02LSB/°C T ransition Noise1.4µV RMSPower Supply Rejection DC 30Hz Mode 80dB Power Supply Rejection DC60Hz Mode80dBThe l denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. (Note 2)Lead Free FinishTAPE AND REEL (MINI)TAPE AND REELPART MARKING*PACKAGE DESCRIPTIONTEMPERATURE RANGE L TC2451CDDB#TRMPBF L TC2451CDDB#TRPBF LDGQ 8-Lead Plastic (3mm × 2mm) DFN 0°C to 70°C L TC2451IDDB#TRMPBF L TC2451IDDB#TRPBF LDGQ 8-Lead Plastic (3mm × 2mm) DFN –40°C to 85°C L TC2451CTS8#TRMPBF L TC2451CTS8#TRPBF L TDNS 8-Lead Plastic TSOT-230°C to 70°C L TC2451ITS8#TRMPBF L TC2451ITS8#TRPBF L TDNS 8-Lead Plastic TSOT-23–40°C to 85°CTRM = 500 pieces. *Temperature grades are identified by a label on the shipping container .Consult L TC Marketing for parts specified with wider operating temperature ranges. Consult L TC Marketing for information on lead based finish parts.For more information on lead free part marking, go to: http://www.linear .com/leadfree/For more information on tape and reel specifications, go to: http://www.linear .com/tapeandreel/Storage Temperature Range ...................–65°C to 150°C Operating Temperature RangeL TC2451C ................................................0°C to 70°C L TC2451I..............................................–40°C to 85°C/32451fgThe l denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. V CC = 2.7V to 5.5V . (Notes 2, 7)SYMBOL PARAMETERCONDITIONS MIN TYP MAX UNITS t CONV Conversion Time 30Hz Mode l 2633.246ms t CONV Conversion Time 60Hz Model 1316.623ms f SCL SCL Clock Frequencyl 0400kHz t HD(SDA)Hold Time (Repeated) START Condition l 0.6µs t LOW LOW Period of the SCL Pin l 1.3µs t HIGH HIGH Period of the SCL Pinl 0.6µs t SU(STA)Set-Up Time for a Repeated START Condition l 0.6µs t HD(DAT)Data Hold Time l 00.9µs t SU(DAT)Data Set-Up Timel100ns t r Rise Time for SDA/SCL Signals (Note 6)l 20 + 0.1C B 300ns t fFall Time for SDA/SCL Signals (Note 6)l 20 + 0.1C B300ns t SU(STO)Set-Up Time for STOP Conditionl 0.6µs t BUFBus Free Time Between a STOP and START Conditionl1.3µsI 2C TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperaturerange, otherwise specifications are at T A = 25°C. V CC = 2.7V to 5.5V . (Note 2)ANALOG INPUT AND REFERENCES The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T A = 25°C. (Note 2)SYMBOL PARAMETERCONDITIONSMIN TYP MAX UNITSV CC Supply Voltage l 2.75.5V I CCSupply Current Conversion Sleepl l400 0.2 700 0.5 µA µAPOWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperaturerange, otherwise specifications are at T A = 25°C. (Note 2)SYMBOL PARAMETERCONDITIONSMIN TYP MAX UNITSV IH High Level Input Voltage l 0.7V CC V V IL Low Level Input Voltagel0.3V CC V V HYS Hysteresis of Schmidt T rigger Inputs (Note 3)l 0.05V CC V V OL Low Level Output Voltage (SDA)I = 3mAl 0.4V I IN Input Leakage0.1V CC ≤ V IN ≤ 0.9V CCl –11µA C I Capacitance for Each I/O Pinl 10pF C BCapacitance Load for Each Bus Linel400pFI 2C INPUTS AND OUTPUTS SYMBOL PARAMETERCONDITIONS MIN TYPMAX UNITSV IN Input Voltage Rangel V REF –V REF + V V REF +Positive Reference Voltage Range V REF + – V REF – ≥ 2.5V l V CC – 2.5V CC V V REF –Negative Reference Voltage Range V REF + – V REF – ≥ 2.5V l 0V CC – 2.5V C ININ Sampling Capacitance 0.35pF I DC_LEAK(VIN)IN DC Leakage CurrentV IN = GND (Note 8) V IN = V CC (Note 8)l l –10–10 1 110 10nA nA I DC_LEAK(REF +, REF –)REF +, REF – DC Leakage Current V REF = 5V (Note 8)l–10110nA I CONV Input Sampling Current (Note 5)50nA/42451fgIntegral Nonlinearity V CC = V REF + = 5VIntegral Nonlinearity V CC = 5V , V REF + = 3VIntegral Nonlinearity V CC = V REF + = 3VThe l denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. (Notes 2, 7)I 2C TIMING CHARACTERISTICS Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2. All voltage values are with respect to GND. V CC = 2.7V to 5.5V , unless otherwise specified. Specifications apply to both 30Hz and 60Hz modes unless otherwise specified.V REF = V REF + – V REF –, V REFCM = (V REF + + V REF –)/2, FS = V REF + – V REF –; V REF – ≤ V IN ≤ V REF +Note 3. Guaranteed by design, not subject to test.Note 4. Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band. Guaranteed by design, test correlation and 3-point transfer curve measurement.Note 5. Input sampling current is the average input current drawn from the input sampling network while the L TC2451 is actively sampling the input. C B = capacitance of one bus line in pF.Note 6. C B = capacitance of one bus line in pF.Note 7. All values refer to V IH(MIN ) and V IL(MAX) levels.Note 8. A positive current is flowing into the DUT pin.SYMBOL PARAMETERCONDITIONSMIN TYPMAX UNITSt OF Output Fall Time V IH(MIN) to V IL(MAX)Bus Load C B 10pF to 400pF (Note 6)l 20 + 0.1C B250nst SPInput Spike Suppressionl50nsTYPICAL PERFORMANCE CHARACTERISTICST A = 25°C; graphs apply to both 30Hz and 60Hz modes, unless otherwise noted.INPUT VOL TAGE (V)–3I N L (L S B )–2–10132451 G012INPUT VOL TAGE (V)–3I N L (L S B )–2–10132451 G022INPUT VOL TAGE (V)–3I N L (L S B )–2–10132451 G032/52451fgMaximum INL vs TemperatureOffset Error vs Temperature 30Hz ModeOffset Error vs Temperature 60Hz ModeGain Error vs TemperatureT ransition Noise vs TemperatureT ransition Noise vs Output CodeTEMPERATURE (°C)–500I N L (L S B )1.02.03.0–252550754.05.00.51.52.53.54.51002451 G04TEMPERATURE (°C)–500.00O F F S E T (m V )0.100.200.30–252550750.400.500.050.150.250.350.451002451 G05TEMPERATURE (°C)–500.00O F F S E T (m V )0.100.200.30–252550750.400.500.050.150.250.350.451002451 G06TEMPERATURE (°C)–500G A I N E R R O R (L S B )246–25255075810135791002451 G07TEMPERATURE (°C)0T R A N S I T I O N N O I S E R M S (µV )0.51.01.52.03.0–252451 G082.5OUTPUT CODET R A N S I T I O N N O I S E R M S (µV )0.51.01.52.02451 G092.53.0TYPICAL PERFORMANCE CHARACTERISTICST A = 25°C; graphs apply to both 30Hz and 60Hz modes, unless otherwise noted.Conversion Mode Power Supply Current vs TemperatureSleep Mode Power Supply Current vs TemperatureAverage Power Dissipation vs Temperature V CC = 3V , 30Hz ModeTEMPERATURE (°C)0C O N V E R S I O N C U R R E N T (µA)1002003004002451 G10500600TEMPERATURE (°C)–500S L E E P C U R R E N T (n A )50100150200250–25025502451 G1175100TEMPERATURE (°C)1A V E R A G E P O W E R D I S S I P A T I O N (µW )101001000100002451 G12/62451fgTEMPERATURE (°C)–4538404415552451 G153634–25–5357595323042C O N V E R S I O N T I M E (m s )TEMPERATURE (°C)–4519202215552451 G161817–25–5357595161521C O N V E R S I O N T I M E (m s)Conversion Period vs Temperature 30Hz ModeTYPICAL PERFORMANCE CHARACTERISTICST A = 25°C; graphs apply to both 30Hz and 60Hz modes, unless otherwise noted.Average Power Dissipation vs Temperature V CC = 3V , 60Hz ModePower Supply Rejection vs Frequency at V CCConversion Period vs Temperature 60Hz ModeTEMPERATURE (°C)–501A V E R A G E P O W E R D I S S I P A T I O N (µW )10100100010000–25025502451 G1375100FREQUENCY AT V CC (Hz)110–120R E J E C T I O I N (d B )–800100100k 2451 G14–100–40–20–601k 1M /PIN FUNCTIONSGND (Pin 1, 5): Ground. Connect to a ground plane through a low impedance connection.REF– (Pin 2), REF+ (Pin 3): Differential Reference Input. The voltage on these pins can have any value between GND and V CC as long as the reference positive input, REF+, remains more positive than the negative reference input, REF–, by at least 2.5V. The differential reference voltage (V REF = REF+ to REF–) sets the full-scale range.V CC (Pin 4): Positive Supply Voltage. Bypass to GND (Pin 1) with a 10µF capacitor in parallel with a low series inductance 0.1µF capacitor located as close to the part as possible.IN (Pin 6): Analog Input. IN’s single-ended input range is V REF– to V REF+.SCL (Pin 7): Serial Clock Input of the I2C Interface. The L TC2451 can only act as a slave and the SCL pin only accepts an external serial clock. Data is shifted into the SDA pin on the rising edges of SCL and output through the SDA pin on the falling edges of SCL.SDA (Pin 8): Bidirectional Serial Data Line of the I2C In-terface. The conversion result is output through the SDA pin. The pin is high impedance unless the L TC2451 is in the data output mode. While the L TC2451 is in the data output mode, SDA is an open-drain pull-down (which requires an external 1.7k pull-up resistor to V CC). Exposed Pad (Pin 9): Ground. Must be soldered to PCB ground.BLOCK DIAGRAM/72451fgAPPLICATIONS INFORMATIONCONVERTER OPERATIONConverter Operation CycleThe L TC2451 is a low power, delta-sigma analog-to- digital converter with an I2C interface. Its operation, as shown in Figure 1, is composed of three successive states: conversion, sleep, and data input/output.Initially, at power-up, the L TC2451 is set to its default 60Hz mode and performs a conversion. Once the conversion is complete, the device enters the sleep state. While in the sleep state, power consumption is reduced by several orders of magnitude. The part remains in the sleep state as long it is not addressed for a read or write operation. The conversion result is held indefinitely in a static shift register while the part is in the sleep state.The device will not acknowledge an external request dur-ing the conversion state. After a conversion is finished, the device is ready to accept a read/write request. The L TC2451’s address is hard wired at 0010100. Once the L TC2451 is addressed for a read operation, the device begins outputting the conversion result under the control of the serial clock (SCL). There is no latency in the conver-sion result. The data output is 16 bits long and outputs from MSB to LSB. Data is updated on the falling edges of SCL, allowing the user to reliably latch data on the rising edge of SCL. In write operation, the device accepts one configuration byte and the data is shifted in on the rising edges of SCL. A new conversion is initiated by a STOP condition following a valid read or write operation, or by the conclusion of a complete read cycle (all 16 bits read out of the device).Power-Up SequenceWhen the power supply voltage, V CC, applied to the con-verter is below approximately 2.1V, the ADC performs a power-on reset. This feature guarantees the integrity of the conversion result.When V CC rises above this threshold, the converter generates an internal power-on reset (POR) signal for approximately 0.5ms. The POR signal clears all internal registers. Following the POR signal, the L TC2451 starts a conversion cycle and follows the succession of states described in Figure 1. The first conversion result follow-ing POR is accurate within the specifications of the device if the power supply voltage, V CC, is restored within the operating range (2.7V to 5.5V) before the end of the POR time interval.Ease of UseThe L TC2451 data output has no latency, filter settling delay, or redundant results associated with the conversion cycle. There is a one-to-one correspondence between the conversion and the output data. Therefore, multiplexing multiple analog input voltages requires no special actions. In the 30Hz mode, the L TC2451 performs offset calibrations during every conversion. This calibration is transparent to the user and has no effect upon the cyclic operation previ-ously described. The advantage of continuous calibration is stability of the ADC performance with respect to time and temperature.The L TC2451 includes a proprietary input sampling scheme that reduces the average input current by several orders of magnitude when compared to traditional delta-sigma architectures. This allows external filter networks to interface directly to the L TC2451. Since the average input sampling current is 50nA, an external RC lowpass filter using a 1kΩ and 0.1µF results in less than 1LSB additional error.Figure 1. State Diagram/82451fg92451fgAPPLICATIONS INFORMATIONV CC power should not be removed from the device when the I 2C bus is active to avoid loading the I 2C bus lines through the internal ESD protection diodes.E ach device on the I 2C bus is recognized by a unique address stored in that device and can operate either as a transmitter or receiver , depending on the function of the device. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. Devices addressed by the master are considered a slave. The address of the L TC2451 is 0010100.The L TC2451 can only be addressed as a slave. It can only transmit the last conversion result. The serial clock line, SCL, is always an input to the L TC2451 and the serial data line, SDA, is bidirectional. Figure 2 shows the definition of the I 2C timing.The START and STOP ConditionsA START (S) condition is generated by transitioning SDA from HIGH to LOW while SCL is HIGH. The bus is consid-ered to be busy after the START condition. When the data transfer is finished, a STOP (P) condition is generated by transitioning SDA from LOW to HIGH while SCL is pulled HIGH. The bus is free after a STOP is generated. START and STOP conditions are always generated by the master.When the bus is in use, it stays busy if a repeated START (Sr) is generated instead of a STOP condition. The re-peated START (Sr) conditions are functionally identical to the START (S).Reference Voltage RangeThis converter accepts a truly differential external reference voltage. The voltage range for the REF + and REF – pins covers the entire operating range of the device (GND to V CC ). For correct converter operation, V REF + – V REF – ≥ 2.5V .The L TC2451 differential reference input range is 2.5V to V CC . For the simplest operation, REF + can be shorted to V CC and REF – can be shorted to GND.Input Voltage RangeIgnoring offset and full-scale errors, the converter will theoretically output an “all zero” digital result when the input is at V REF – (a zero scale input) and an “all one” digital result when the input is at V REF + (a full-scale input). In an underrange condition, for all input voltages less than the voltage corresponding to output code 0, the converter will generate the output code 0. In an overrange condition, for all input voltages greater than the voltage correspond-ing to output code 65535, the converter will generate the output code 65535.I 2C INTERFACEThe L TC2451 communicates through an I 2C interface. The I 2C interface is a 2-wire open-drain interface supporting multiple devices and masters on a single bus. The con-nected devices can only pull the data line (SDA) LOW and never drive it HIGH. SDA is externally connected to the supply through a pull-up resistor . When the data line is free, it is pulled HIGH through this resistor . Data on the I 2C bus can be transferred at rates up to 100k/s in the standard mode and up to 400k/s in the fast mode. TheFigure 2. Definition of Timing for Fast/Standard Mode Devices on the I 2C BusSDASCLt /102451fgData T ransferringAfter the START condition, the I 2C bus is busy and data transfer can begin between the master and the addressed slave. Data is transferred over the bus in groups of nine bits, one byte followed by one acknowledge (ACK) bit. The master releases the SDA line during the ninth SCL clock cycle. The slave device can issue an ACK by pulling SDA LOW or issue a not-acknowledge (NACK) by leaving the SDA line high impedance (the external pull-up resistor will hold the line high). Change of data only occurs while the clock line (SCL) is low.Data FormatAfter a START condition, the master sends a 7-bit address (factory set at 0010100), followed by a read request (R) or write request (W) bit. The bit R is 1 for a read requestand 0 for a write request. If the 7-bit address agrees with the L TC2451’s address, the device is selected. When the device is addressed during the conversion state, it does not accept the request and issues a NACK by leaving the SDA line high. If the conversion is complete, the L TC2451 issues an ACK by pulling the SDA line LOW .The user can send one byte of data into the L TC2451 fol-lowing a write request and an ACK. The sequence is shown in Figure 3. The write sequence is used solely to set the conversion speed. The default conversion speed is 60Hz. The user can specify a 30Hz conversion speed by setting the eighth bit (S30) = 1, or specify a 60Hz conversion speed by setting the eighth bit (S30) = 0.After a read request and an ACK, the L TC2451 can output data, as shown in Figure 4. The data output stream is 16 bits long and is shifted out on the falling edges of SCL.APPLICATIONS INFORMATIONFigure 3. Timing Diagram for Write SequenceFigure 4. Timing Diagram for Read Sequence2451 F04/分销商库存信息:LINEAR-TECHNOLOGYLTC2451CTS8#TRMPBF LTC2451CDDB#TRMPBF LTC2451ITS8#TRMPBF LTC2451IDDB#TRMPBF LTC2451CDDB#TRPBF LTC2451CTS8#TRPBF LTC2451IDDB#TRPBF LTC2451ITS8#TRPBF DC1383A-A。

相关文档
最新文档