实变函数与积分变换-程其襄(电子版)§1.集合的概念
实变函数知识归纳总结
定理 6 若A为无限集,B是至多可数集,则 A ∪ B ~ A 由证明归纳出两种证明对等的方法: (1)建立一一映射; 设 B = {b1 , b2 ,
} 为可数集, A ∩ B = ∅ ,由性质1知,A存在可数子集
A1 = {a1 , a 2 ,
} ,作映射 f : A ∪ B → A
⎫ ⎪ ⎬ ⎪ ⎭
α ∈Λ
∩ ζ α 是 X 上的环(或代数) 。
, 有 ∩ En ∈ ζ ; n =1
, 有 lim En ∈ζ , lim En ∈ζ ; n→∞
n→∞
∞
(α ∈ Λ ) 为 X 上 σ
环( σ 代数) ,则 ∩ ζα 是 X 上 σ 环( σ
α∈Λ
代数) 。
定理 8 设 A 是由 X 的某些子集构成的集类, 则存在唯一的环 (或代数,
−1
( ∩ B )= ∩T
α∈Λ α α∈Λ
−1 c
−1
( Bα )( Bα ⊂ Y,α ∈Λ) ;
c
−1
( B ) = (T ( B ) )
由此看出原像集的性质保持比像集的性质保持要好 注解:①、 (3)中如:一个映射 f 把 X 全部映射成一个值,就可以造成左边为
空集即可; ②、 一般T -1 (T ( A) ) ⊃ A,当T为单射时,有T -1 (T ( A) ) = A ③、 一般T T −1 ( B ) ⊂ B,当T为满射时,有T T −1 ( B ) = B 定义 2 复合映射概念(舍)见教材 P10 二、集合的势 定义 3 设 A 和 B 为两集合, 若存在从 A 到 B 的一一映射, 则称集合 A 与B对等, 记为 A~B 注解:①、对等关系是等价关系 ②、设 {
α∈Λ α∈Λ
实变函数(程其襄版)第一至四章课后习题答案
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为
实变函数--集合
第一章 集合由德国数学家Cantor 所创立的集合论,是现代数学中一个独立的分支。
按其本性而言,集合论是整个现代数学的逻辑基础;而就其发展历史而言,则与近代分析—包括实变函数论—的发展密切相关。
实变函数通常是第一门大量运用集合论知识的大学数学课程。
因此,在现代数学教育中,对集合论知识的较系统的介绍,通常构成实变函数教材的第一章。
不过,对于实变函数论来说,集合论毕竟只是一个辅助工具。
因此,本章仅介绍那些必不可少的集合论知识,并不深入它的专门课题,而且,我们始终采用朴素的观点,不涉及任何有关集论公理的讨论。
本章的主要内容有:集合概念、集合的运算、对等与基数、可数集合、不可数集合。
下面逐一介绍。
§1.集合概念集合也称作集,它是数学中的一个基本概念,要把这个概念加以严格的规定并不是一件容易的事情,正像几何学中的“点”、“直线”、“平面”一样,”集合“这个概念必须用若干公理组成的公理系统来规定,我们不准备在这里纠缠集合这个概念的严格规定,而是把集合看成是在一定场合所要考察和研究的某些对象的全体.构成集合的每一个对象称为这个集合的元素或元..eg 一个圆周上的点的全体构成一集合,这些点是此集合的元.以实数为系数的多项式全体成一集合,这些多项式是此集合的元.以集合作为成员(元素)的集合,也常称为集族或集类..eg 以闭区间[0,1]上的点为中心,以0.2为半径的开区间全体成一集族,这些开区间是此集族的元.以后常用大写字母 ,,,,,,Z Y X C B A 表示集合,用小写字母 ,,,,,,z y x c b a 表示集合中的元素.如果a 是集合A 的元素,就说a 属于A ,记作A a ∈;或者说A 含有a .如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉;或者说A 不含有a .有些集合可用列举其元素的办法来具体表示。
如:只含有一个元素a 的集合称为单元素集或独点集 ,可表示为{}a .由有限个元素12,,,n a a a 所组成的集合,可表示为{12,,,n a a a }.由全体正整数所组成的集合称为正整数集,可表示为{} ,,,2,1n .当集合A是具有某性质p的元素之全体时,我们往往用下面的形式表示}.:{:p x x A A 具有性质=.eg 方程012=-x 的解x 的全体组成的数集是}01:{2=-x x ,就是}1,1{-.有时我们也把集},:{p x E x x 具有性质∈改写成][p x E 具有性质..eg 设)(x f 是定义在集合E 上的一个实函数,a 是一个实数,我们把集})(,:{a x f E x x >∈可写成])([a x f E >或 ][a f E >或)(a f E >.不含任何元素的集合称为空集。
实变函数课程基本信息
感谢您的观看
THANKS
实变函数课程基本信息
目录
• 课程简介 • 实变函数的定义与性质 • 实变函数的积分与微分 • 实变函数的极限与连续性 • 实变函数的学习方法与建议
01
课程简介
课程背景
01
实变函数是数学专业的一门重要 课程,是进一步学习泛函分析、 概率论等课程的基础。
02
该课程主要介绍实变函数的定义 、性质、积分、微分等基本概念 和定理,以及其在数学分析中的 应用。
03
微分计算
实变函数的微分可以通过导数 的基本公式、链式法则、乘积 法则等计算方法进行计算。
04
微分应用
实变函数的微分在求函数极值 、优化问题、近似计算等领域 有着广泛的应用。
实变函数积分与微分的关系
微积分基本定理
实变函数的积分和微分之间存在密切的联系 ,微积分基本定理是它们之间的桥梁。
导数的积分
连续的性质
连续函数具有局部有界性、局部保序 性、介值定理和零点定理等性质。
实变函数极限与连续性的关系
1
极限与连续的关联
实变函数的极限和连续性是密切相关的 概念。函数的连续性可以由其极限性质 推导出来,而函数的极限性质也可以通 过连续性来研究。
2
连续不一定有极限
虽然连续函数在其定义域内每一点都存 在极限,但并不是所有函数都满足这一 性质。例如,狄利克雷函数在某些点处 不具有极限。
如果一个函数在某区间上可积,那么它的积 分函数在该区间上的导数等于原函数在该区
间上的值。
ቤተ መጻሕፍቲ ባይዱ
积分的导数
如果一个函数在某区间上可导,那么它的导 数在该区间上的积分等于原函数在该区间上 的增量。
微分与积分的关系
第一章 集合
§4 可数集合
1、可数集合(可列集合) 凡是和全体正整数所成之集合N对等的集合都称为可数 集合或可列集合。
一个集合A为可数集的充要条件是A的一切元素可以用自然
数加以编号,使之成为无穷序列的形式,即 A a1, a2,..., an,...
通常记为可列集的基数为 a或0 。
例如: 1n
,
cos nx 都是可数集,因为它们的元素可以排成如下的无限序列
按照基数的说法就是:A B, B A ,则 A B
该定理提供了判断两个集合对等的方法。
设A B C,且A ~ C,则A ~ B ~ C
说明:对有限集来讲,基数就是集合所含元素的个数。基数是一切彼此 对等的集合之间的某种共同属性,是有限集的元素个数概念的推广。
例如:自然数集与正偶数集对等,虽然正偶数集是自然数集的真子 集,但是它们的基数相等,认为他们的元素是“一样多“的。
(2) lim An UI Am
n
n1 mn
U
若
An
为增加集列,则
lim
n
An
An
n 1
I 若
An
为减少集列,则
lim
nAnAn源自n 1例题 3 设An如下一列点集:
A 2 m 1
0,
2
1 2m 1
,
m 0,1, 2,...
A2m
0, 1
1 2m
,
m 1, 2,...
试确定An的上极限和下极限。
遍可列集Z的那些元素所组成,所以An为可数集。让n分别取0,1,2,…, 得一列可数集A0,A1,…,于是整系数多项式的全体就是可列个可数集之 并,也为可数集。
4、逆映射
设 为A到B上的一一映射.作B到A的映射如下:如果 : x | y
(完整版)《实变函数》第一章集合.doc
第一章集合(总授课时数8学时)由德国数学家 Cantor 所创立的集合论,是现代数学中一个独立的分支,按其本性而言,集合论是整个现代数学的逻辑基础;而就其发展历史而言,则与近代分析(包括实变函数论)的发展密切相关,实变函数通常是第一门大量运用集合论知识的大学数学课程.因此,在现代数学教育中,对集合论知识的较系统的介绍,通常构成实变函数教材的第一章.不过,对于实变函数论来说,集合论毕竟只是一个辅助工具,因此,本章仅介绍那些必不可少的集论知识.§1、集合及其运算教学目的引入集的概念与集的运算,使学生掌握集和集的基本运算规律.本节重点De Morgan公式是常用的公式.证明两个集相等和包含关系是经常要遇到的论证,通过例子使学生掌握其基本方法. 集列的极限是一种新型的运算,学生应理解其概念.本节难点对集列极限的理解.授课时数2学时——————————————————————————————一、集合的概念及其表示集合也称作集,是数学中所谓原始概念之一,即不能用别的概念加以定义,它像几何学中的“点”、“直线”那样,只能用一组公理去刻画.就目前来说,我们只要求掌握以下朴素的说法:“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称为一个集合,其中每个个体事物叫做该集合的元素.”一个集合的元素必须彼此互异,而且哪些事物是给定集合的元素必须明确.以集合作为元素的集合,也常称为集族或集类.以后常用大写字母A, B,C , D , X , Y, Z L 表示集合,用小写字母a,b,c, x, yL 表示集合中的元素.如果 a 是集合 A的元素,则说 a 属于A,记作a A ,或说A含有a.如果 a 不是集A的元素,则说a 不属于A,记作a A ,或说A不含有a.有些集合可用列举其元素的办法来表示,如:只含有一个元素 a 的集合称为单元素集或独点集,可表示为{ a} .由n个元素 a1 , a2 L a n所组成的集合,可表示为{ a1 , a2 L a n }由全体自然数所组成的集合称为自然数集,可表示为{1,2,L , n,L } .当集 A是具有某性质P的元素之全体时,我们用下面的形式表示A:A { x | x具有性质 p}例如,方程x2 1 0 的解x的全体组成的数集是{ x | x210} ,实际上就是 { 1, 1} .有时我们也把集 { x | x E, x 具有性质 p} 改写成 E[ x 具有性质 p] .例如,设 f ( x) 是定义在集合 E 上的一实函数,a是一个实数,我们把集{ x | x E, f (x) a} 写成E[ f (x) a] 或 E[ f a] .不含任何元素的集合称为空集,记作.设 A , B 是两个集,若 A 和 B 的元素完全相同,就称 A 和 B 相等,记作 A = B (或B = A ).若集合 A 的元素都是集合 B 的元素,就称为 A 是 B 的子集,记作 A B (或 B A ),读作 A 包含于 B (或B包含A).若 A B 且 A B ,就称A是 B 的真子集,规定空集是任何集的子集.由集的“相等”与“包含”的定义可得如下定理:定理 1 对任何集合 A , B ,C,均有(1)A A ;(2)若A B, B C ,则A C;(3)A BA B 且 B A .二集合的运算设 A , B 是两个集合,集合 A 与 B 的并集或并 A U B { x : x A或 x B}集合 A 与 B 的交集或交 A I B { x : x A且 x B}特别地,若 A B,称A与B不相交;反之,则称 A 与 B 相交.集合 A 减 B 的差集或差:A B或 A B { x : x A但 x B}当 B A时,称差集A B 为 B 关于A的余集记作(C A B).当我们研究一个问题时,如果所讨论的集合都是某个固定集 A 的子集时,就称 A为基本集或全集,并把 A 的子集B关于 A 的余集C A B简称为B的余集,记为B C或 CB .并集与交集的概念可以推广到任意个集的情形,设为一非空集合,并且对每一个,指定了一个集合 A ,此时我们称 { A |} 是以为指标集的集族,集族{ A |} 的并与交分别定义为 :U A { x :, 使x A } IA { x :, 有xA }例 设 A n{ x : 11x 11}, n N , 则nnnA n [ 1,0],A n( 2,1)1n 1关于集合的并和交显然有下面的性质: ( 见课本 P9-P10)更一般地有 : De Morgan 公式(UA ) cIA c , ( I A )cUA c证明(略)注:通过取余集,使A 与 A C ,与 互相转换 .三、集列极限设 A 1 , A 2 ,L , A n ,L 是一个集合序列, ,其上限集和下限集分别定义为上极限集:lim A n (或 limsup A n ) { x : x 属于无限多个集合 A n } { x : 存在无限多个 A n ,使 x A n }nn{ x : N , n N , 使 x A n }I UAnN 1 n N下极限集:lim A n ( 或 liminf A n ) { x : 除去有限个集外, 有 x A n } { x : 当 n 充分大时,有 x A n }nn{ x : N , n N ,有 x A n }UIAnN 1 n N注:I A nlim A nlim A nU A nnnn 1 n 1例:设 A 2n [0,1], A 2 n 1 [1,2] ,则上极限集为 [0,2] ,下极限集为 {1} .极限集如果集列 { A n } 的上极限集与下极限集相等,即lim A n lim A n Ann则称集列 { A n}收敛,称其共同的极限为集列{ A n } 的极限集,记为: lim A n An单调增集列极限若集列 { A n } 满足 A nA n 1 ( n N ), 则称{ A n }为单调增加 ;若集列 { A n} 满足 A n A n 1 ( n N ),则称 { A n }为单调减少 ; 定理 2 :单调集列是收敛的1) 如果集列 { A n } 单调增加,则lim A n U A nn n 12) 如果集列 { A n } 单调减少,则lim A n I A nn n 1例1:设A2n 1 ( 1 1 1( n, n), n N, 则,1 ), A2 nn nlim A n ( , ) , lim A n ( 1,1] n n例 2:设A2n 1 [ 1,41], A2 n [1,11], n N, 则n n n nlim A n [0,4) , lim A n (0,1]n n小结本节介绍了集的基本概念, 集的运算和运算性质. 这些知识是本课程的基础 .证明两个集的相等是经常会遇到的, 应掌握其证明方法. De Morgan 公式很重要 , 以后会经常用到 . 集列的极限是一种与数列极限不同的极限, 应正确理解其概念 .——————————————————————————————作业: P30 5, 7, 8练习题1. 设{ A n}为一集列:n 1(1)作B1A1 , B n A n U A k (n1) ,证明{ B n}为一列互不相交的集列,且k 1n nU A k U B k ( n 1,2,L )k 1k 1(2)若{ A n}是单调减少的集列,证明A1( A1 A2 ) ( A2 A3 ) L( A n A n 1 ) L( I A k ),k 1并且其中各项互不相交.2. 证明 :(1) nUIA n,n IUA n lim A n lim A nN 1 n N N 1 n N(2) lim A n lim A nn n(3) { A n } 单调递增时,有 lim A n lim A n lim A n U A nn n n n 1(4) { A n } 单调递减时,有 lim A n lim A n lim A n I1 A nn n n n3. 已知A2n E, A2n 1 F ,( n 1,2,L ) ,求 lim A n和 lim A n ,并问 lim A n是否存在?n n n§2对等与基数教学目的介绍映射,基数,等概念和它们的属性.本节要点一一对应的思想与方法是贯穿本节的核心. 基数的概念,讨论都要用一一对应的方法 . 证明两个集对等或具有相同的基数 , 有时需要一定的技巧 , 因而具有一定难度 , 通过较多的例题和习题 , 使学生逐步掌握其中的技巧 .本节难点证明两个集对等或具有相同的基数.授课时数2学时——————————————————————————————1映射的定义在数学分析课程中我们对函数已经很熟悉. 其中函数的定义域通常是R n的子集,值域是实数集或者复数集. 若将函数的定义域和值域换成一般的集, 可得到映射的概念.定义:设 X ,Y 是两个非空集合,若依照对应法则 f ,对X中的每个 x ,均存在Y中唯一的 y 与之对应,则称这个对应法则 f 是从X到Y的一个映射,记作 f : X Y 或:设 X , Y 是两个非空集合, f 是X Y 的子集,且对任意 x X ,存在唯一的y Y 使 (x, y) f ,则 f 是从X到Y的一个映射.注:集合,元素,映射是一相对概念.略:像,原像,像集,原像集,映射的复合,单射,满射,一一映射(双射)在数学分析课程中研究的函数当然是一种映射. 除此之外 , 我们还经常会遇到许多其它的映射 . 例如 , 定积分可以看作是可积函数集到实数集的映射, 求导运算可以看作是可导函数集到函数集的映射, 线性代数中的线性变换就是线性空间到线性空间的映射等.2集合运算关于映射的性质(像集)定理 1 :设f : X Y, A, B, A () 是X的子集,称 { f ( x) : x A} 为A的像集,记作 f ( A) ,则有:1) A B f ( A) f (B);U A ) U f ( A );2) f ( A U B) f ( A) U f ( B), 一般地有 f (3) f ( A I B) f ( A) I f ( B), 一般地有 f ( I A )I f ( A );证明的过程略注: f (A I B) f ( A) I f ( B)一般不成立,如常值映射,等号成立当且仅当 f 为单射.集合运算关于映射的性质(原像集)定理 2:设f : X Y, A X ,C , D ,C () 是Y的子集,称{ x : f (x)C} 为C的原像集,记作 f 1(C )( f不一定有逆映射),则有:1)C D f 1 (C ) f 1 ( D );1 1 1一般地有:1 12) f (C U D ) f (C ) U f ( D ), f ( U C ) U f (C );3) f 1 (C I D ) f 1 (C ) I f 1 (D ), 一般地有: f 1 ( I C ) I f 1 (C );4) f 1 (C D) f 1 (C) f 1( D );5) f 1 (C c ) [ f 1 (C)] c ;6) A f 1 [ f ( A)];7) f [ f 1 (C)] C;证明略 .注: 6), 7)一般不能使等号成立,6)等号成立当且仅当 f 为单射,7)等号成立当且仅当 f 为满射.3对等与势1)定义设 A , B 是两非空集合,若存在着 A 到 B 的一一映射(既单又满),则称 A 与 B 对等,记作 A ~ B .约定 ~ .注:( 1)称与A对等的集合为与A 有相同的势(基数),记作A .(2)势是对有限集元素个数概念的推广.2)性质a) 自反性:b)对称性:c) 传递性:A ~ A;A ~B B ~ A;A ~ B,B ~C A ~ C;例: 1)N ~ N 奇数 ~ N 偶数 ~ Z2)( 1,1) ~ ( , )证明:令 f : x tg ( x) ,则 f 是 ( 1,1) 到 ( , ) 的一一映射.故2( 1,1) ~ ( , )注:有限集与无限集的本质区别:无限集可与其某个真子集合有相同多的元素个数(对等)且一定能做到,而有限集则不可能.3)基数的大小比较a) 若 A ~ B, 则称 A B;b) 1B, 则称A B; A到B有一个单射,也相当于B到A有一个满射 .若 A ~ B 相当于:c) 若A B,且 A B,则称 A B .注:不能用 A 与 B 的一个真子集对等描述. 如:( 1,1) ~ ( 1,1) ( , )4 Bernstein 定理引理:设 { A : }{ B : }是两个集族,是一个指标集,又,, A ~ B , 而且 { A : } 中的集合两两不交, { B : } 中的集合两两不交,那么:U A ~ U B证明略定理 3:( Bernstein 定理)若有A的子集A* ,使 B ~ A* , 及B的子集B* ,使 A ~ B* , 则A ~ B. 即:若 A B,B A, 则A B.证明:根据题设,存在 A 到 B*上的一一映射 f ,以及B到A*上的一一映射g .令A1 A A*, B1 f ( A1 ) , A2 g ( B1 ) , B2 f ( A2 ) , A3 g( B2 ) , B3 f ( A3 ) ,L L 由 g(B) A*知 A2 g( B1 ) A* , 而 A1 A A*,故 A1与 A2不交.从而 A1, A2在 f 的像B1 , B2不交, B1 , B2在g下的像 A2 , A3不交.由 A3A* , 知 A1与 A3不交,故 A1 , A2 , A3两两不交.从而 A1, A2 , A3在 f 的像 B1 , B2 , B3也两两不交, L Lf从而 A1 , A2 , A3 ,L两两不交,B1 , B2 , B3 ,L 也两两不交且A n ~B n (n 1,2,L ),fU A n~ U B nn 1n 1g另外由 B k ~ A k 1 (k 1,2,L ), 可知gU B k~ U A k 1k 1k 1g又 B ~ A* , 所以g U A k 1, A* U A k 1 ( A A1 )U A k 1 A U A kB U B k ~ A*k 1 k 1 k 1 k 1 k 1B U Bk ~ A U Akk 1k 1A ( A U A k ) U (U A k ) ~ (B U B k ) U (U B k )Bk 1k 1k 1k 1 证毕.注:要证 A B,需要在A与B间找一个既单又满的映射;而要证A B,,只需找一个单射即可;从而我们把找既单又满的映射转化成找两个单射.例: ( 1,1) ~ [ 1,1]证明:由 ( 1,1) [ 1,1] (,) ~ ( 1,1)可知, ( 1,1) ~ [1,1]——————————————————————————————作业: P30 9, 10练习题1.R1上以有理数为端点的区间的全体所成之集与自然数集之间能否建立一一对应?2.证明:若A B C , A : C , 则A : B : C.3. 证明:若A B , A : A C ,则有 B : B C .4.设F是[0,1]上的全体实函数所成的集合,而M 是[0,1]的全体子集所成的集合,则F : M .§3、可数集合教学目的介绍可数集概念及其运算它们的属性.本节要点可数集是具有最小基数的无限集. 可数集性质十分重要,不少对等问题可以与可数集联系起来 , 可数集证明技巧较强通过较多的例题和习题, 使学生逐步掌握 .本节难点证明集合可数 .授课时数2学时——————————————————————————————1可数集的定义与自然数集N 对等的集合称为可数集或可列集,其基数记为 a 或01,2,3,4,5,6 L La1 , a2 , a3 , a4 , a5 , a6 L L注: A 可数当且仅当 A 可以写成无穷序列的形式{ a1 , a2 , a3 , a4 , a5 , a6 L L } 例: 1)Z={0,1,-1,2,-2,3,-3 L }2)[0,1] 中的有理数全体 ={0,1,1/2,1/3,2/3,1/4,3/4,1/5,2/5, L }2可数集的性质(子集)定理 1 任何无限集合均含有可数子集 .证明:设M是一个无限集,取出其中的一个元素从M中任取一元素,记为则e1.M { e1} ,在M{ e1}中取一元素e2 ,显然e2e1 .设从M中已取出n个互异元素1, 2 n,由于M 是无限集,故 M { e1, e2 ,L e n } ,于是又可以从1, 2n 中e e ,L e M { e e ,L e }取出一元素 e n 1,它自然不同于 e1, e2 ,L e n.所以,由归纳法,我们就找到 M 的一个无限子集{ e1,e2,L , e n L } 它显然是一个可数集.证毕.这个定理说明可数集的一个特征:它在所有无限集中有最小的基数.可数集的性质(并集)有限集与可数集的并仍为可数集有限个可数集的并仍为可数集可数个可数集的并仍为可数集A a1 , a2 , a3 ,L,B b1 , b2 ,L , b n,C c1 , c2 , c3 ,L假设 A, B, C 两两不交,则A B b1 ,b2 ,L , b n , a1 ,a2 ,L(当集合有公共元素时,不重复排)第9页(共 14 页)A C a1 ,c1 , a2 ,c2 , a3 , c3 ,L关于可数个可数集的并仍可数集的明a11 , a12 , a13 , a14,La21 , a22 , a23 , a24,La31 , a32 , a33 , a34,La41 , a42 , a43 , a44,LL , L , L , L ,L当A i互不相交,按箭所示,我得到一个无序列;当A i有公共元,在排列的程中除去公共元素;因此U A n是可数集。
实变函数论讲义
第1章集合与点集实变函数论作为现代分析数学的基础,其知识结构是建立在集合论之上的.集合论产生于19世纪70年代,由德国数学家康托尔(Cantor)创立,它是整个现代数学的开端及逻辑基础.作为本科教材,本章只介绍必需的集合论知识,而不涉及有关集合论公理的讨论.1.1 集合及相关概念大家在中学就认识了集合这个概念.所谓集合,是指具有某种特定性质的对象的全体.集合中的对象称为该集合的元素.集合通常用大写英文字母A,B,C,…表示;元素通常用小写英文字母a,b,c,…表示.今后用一些特殊的记号表示特殊的集合:R表示全体实数形成的集合;C表示全体复数形成的集合;N,Z,Q分别表示自然数集、整数集和有理数集.另外,不含任何元素的集合称为空集,用记号表示.集合的具体表示方法一般有两种:一种是枚举法,如集合{1,2,3,4,5};一种是描述法,例如,大于20的自然数组成的集合,可写为{x|x>20,且x为自然数}.一般地,若A是具有某种性质P的元素组成的集合,通常记为A={x|x具有性质P}.对于给定的某集合A及某对象a,若a是A中的元素,就说a属于集合A,记为a∈A;否则,就说a不属于集合A,记为给定两个集合A和B,若A中的元素都属于B,则称A是B的子集,记为或进而,若同时有和,则A=B.对于任意的非空集合A,空集和A当然是A的子集,这两个子集称为平凡子集.除此之外的子集称为真子集.例1.1.1 写出{1,2,3}的所有子集,由此计算{1,2,…,n}的子集的个数,其中n∈N.{1,2,3}的所有子集是:,{1,2,3},{1},{2},{3},{1,2},{1,3},{2,3},第1章集合与点集1.1集合及相关概念共个.一般地,{1,2,…,n}的子集的个数是:C0n+C1n+…+C n n=2n,其中C k n=n!k!(n-k)! (k∈{0,1,…,n})为组合数公式.任给集合A,它的所有子集构成的集合称为它的幂集,记为1.1.1 集合的运算我们知道,数可以进行运算,并由此生成新的数.类似地,集合之间也可以进行运算,并由此生成新的集合.其中,最常用的运算有“并”、“交”、“差”三种.定义1.1.1任意给定集合A和B,集合{x|x∈A或x∈B}称为A与B的并集,并集也称为和集,记为A∪B,或A+B;集合{x|x∈A且x∈B}称为它们的交集,交集也称为积集,记为A∩B,或AB;推而广之,给定集合族∈Γ,其中Γ是指标集,则此集合族的并集与交集分别为∪α∈∈Γ,x∈Aα};(1.1)∩α∈∈Γ,x∈Aα}.(1.2)集合{x|x∈A且称为A与B的差集,又称补集,记为A\\B,或A-B.注意:一般来说(A-B)∪B未必等于A.如果已知则A-B称为B相对于A的余集,记为AB,特别地,如果我们在某一问题中所考虑的一切集合都是某一给定集合S的子集时,集合B相对于S的余集就简称为B的余集, SB简记为而集合(A-B)∪(B-A)称为A与B的对称差,记为A△B.例1.1.2 设-1+1i≤x≤1--1k<x<1k,k=1,2,…,则∪mi=1B i=x-1+1m≤x≤1-1m, -1p<x<1p. 其中n,m,p∈N.由此知∪-1<x<1},集合的并、交、差(补)运算满足下面的运算律:定理1.1.1 (1) 交换律A∪B=B∪A, A∩B=B∩A;特别地A∩A=A,A∪A=A, A∪=A,(2) 结合律A∪(B∪C)=(A∪B)∪C, A∩(B∩C)=(A∩B)∩C.(3) 分配律A∩(B∪C)=(A∩B)∪(A∩C);一般地A∩∪α∈∪α∈(4) 大小关系∪B).(5) 若∈Γ,则∪α∈∪α∈∩α∈∈特别地,若或∈Γ,则∪α∈∈证明下面仅证A∩∪α∈∪α∈任取x∈A∩∪α∈则x∈A且α0∈Γ,使得x∈Bα0,于是x∈∪α∈由x 的任意性得A∩∪α∈∪α∈反过来,任取x∈∪α∈α),则α0∈Γ,使得x∈即x∈A且x∈Bα0,从而x∈A且x∈∪α∈故x∈A∩∪α∈由x的任意性得∪α∈∪α∈综合起来,等式成立.□以下给出关于余集计算的部分性质. 定理1.1.2 (1) A-(2) 若则SA SB,B\\A=B∩A c;(3) 对偶律(德摩根(De)律)若则(A∪B)c=A c∩B c,∪B c.一般地∩α∈∪α∈∪α∈∈证明下面仅证对偶律:若则(A∪B)c=A c∩B c,其余结合相关定义类似可得.事实上,由补集定义, (A∪B)c={x|x∈X且∪B}={x|x∈X,x A且={x|x∈X,x∈A c且x∈B c}=A c∩B c.□德摩根律使我们通过余集的运算把并集变为交集,把交集变为并集.这种转化在集合的运算及论证中是很有用的.1.2 集合列的上极限和下极限众所周知,数列可以讨论极限.类似地,集合列也可以讨论极限.以下我们给出集合列及其极限的定义.定义1.1.2 一列集合(n=1,2,…)称为集合列,也可记为属于上述集合列中无限多个集的元素的全体所形成的集称为该集合列的上极限,或称为上限集,记为lim n→∞或lim n→∞sup A n;对于上述集合列,那些除了有限个下标外,属于该集合列中每个集合的元素的全体形成的集称为这个集合列的下极限,或称为下限集,记为lim n→∞A n或lim n→∞inf等价地,lim n→∞sup A n={x|对于任意的自然数n,存在k≥n,使得x∈A k}, lim n→∞inf存在∈N,当时,x∈A n}. 由此知,lim n→∞inf n→∞sup A n.进而,对于给定集合列若其上、下极限相等,则称集合列收敛,其极限即为它的上(或下)极限,记为lim n→∞A n.集合列的上(下)极限可以用“并”与“交”运算来表达. 定理1.1.3 给定集合列n},则lim n→∞∪lim n→∞inf∪证明利用lim n→∞∈N,k≥n,使得x∈A k}(1.3)来证明关于上极限的等式,关于下极限的情况可类似证得.记∪事实上,设x∈A,则对任意取定的n,存在m>n,使得x∈A m,即对任意n,总有x∈∪故x∈B,继而反之,设x∈B,则对任意的n>0,总有x∈∪即总存在m(m≥n),使得x∈A m,故x∈A,继而从而A=B,另一等式可同样证明.□若集合列满足:∈N,则称是单调增加集合列;若∈N,则称之为单调减少集合列.统称为单调集合列.由定理1.1.3易知,单调集合列是收敛的.具体地,若为单调增加集合列,则lim n→∞A n=∪若为单调减少集合列,则lim n→∞A n=∩∞n=1A n.例1.1.3 设是如下一列点集:A2m+1=0,2-12m+1〗,m=0,1,2,…, 〗, 我们来确定的上、下极限.因为闭区间\中的点属于每个而对于开区间(1,2)中的每个点x,必存在自然数N(x),使得当n>N(x)时,有1+12n<x≤2-12n+1,即当n>N(x)时但x∈A2n+1.换言之,对于开区间(1,2)中的x,具有充分大的奇数指标的集合都含有x,即中有无限多个集合含有x,而充分大的偶数指标的集合都不含有x,即中不含有x的集合不会是有限个.又区间\n→∞sup\n→∞inf\例1.1.4 设为:当n=2k时,k∈N;当n=2k+1时,k∈N. 则lim n→∞sup∪{(0,y)|y≥0};lim n→∞inf定义1.1.3设A,B是两个集合,称一切有序“元素对”(x,y)(其中x∈A,y∈B)形成的集合为A与B的直积集或笛卡儿(Descartes)积,记为A×B,即A×B={(x,y)|x∈A,y∈B},其中(x,y) =(x′,y′)是指x=x′,y=y′,X×X也记为例1.1.5 设A={1,2,3},B={4,5},则A×B={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.例1.1.6 \×\为平面上单位闭正方形.例1.1.7 Q×Q=Q Q2为平面上有理点集.习题习题1.3 试证:(1) A∩(B∪C)=(A∩B)∪(A∩C);(2) (A\\B)∪B=(A∩B)\\B的充要条件是(3) A-(B-C)=(A-B)∪(A∩C).1.4 证明:(1) A△B=B△A;(2) (A△B)△C=A△(B△C);(3) A∩(B△C)=(A∩B)△(A∩C);(4) 对任意的A,B,存在C使得A△C=B.1.5 设是一集合列,作-∪n-1k=1A k,n=2,3,…,试证互不相交,且∪ni=1A i=∪nj=1B j,n=1,2,…,∞.1.6 设f(x),g(x)是点集E上定义的两个函数,a,k为任意实数,但k≠0.则(1) {x: f(x)≥a}=∩∞n=1x:f(x)>a-1n;(2) {x: |f(x)|>k}∪x: |g(x)|>ak.1.7 试证:(1) ∪∞i=1(A\\(2) ∩∞i=1(A\\∪i.1.8 设-求出集合列的上限集和下限集.1.9 设A n=E,n=2k-1,F,n=2k, 求集合列的上限集和下限集.1.10 设m为整数,n=1,2,…,试证lim n→∞sup n→∞inf1.11 设是\上的一列函数,且存在\使得lim n→∞f n(x)=1,x∈\\\E, 0, x∈E.令∈\: 求集合lim n→∞E n.1.12设以及f(x)是定义在R上的实值函数,则使不收敛于f(x)的一切点x所形成的集合为∪∞k=1∩∞N=1∪∞n=Nx:-11. 设(k=1,2,…)随着k→∞单调下降趋于(n=1,2,…)定义在E上∈E),试证:对任意的a有(1) E\=∪\;(2) E\\;(3) E\=∪\.注:E\={x∈E|f(x)>a}.1.1.2 映射、基数与可数集1.2 映射、基数与可数集我们都知道,实数是可以比较大小的,那么自然地联想一下,集合有没有大小的差别呢?直观地想,如果是有限集合,可能集合元素的个数多集合就大,那么对于含有无限个元素的集合,集合的大小该怎么比较呢?全体实数构成的集合就一定比全体正实数构成的集合大吗?在对集合的定义和基础运算有了一定的了解之后,我们接下来就介绍一下用以刻画集合大小的概念:基数.在此之前,我们要引入映射的概念,本节的最后,我们还将向大家介绍一种最常见的集合:可数集.1.2.1 映射大家都熟悉函数概念,下面要讲到的映射是函数概念的抽象化.定义1.2.1给定两个非空集合X,Y,若对于X中每个元素x在Y中都存在唯一的元素y与之对应,则称这个对应为映射.若用φ表示这种对应,则记为φ:并称φ是从X到Y的一个映射.此时,x∈X在Y中对应元y称为x在映射φ下的像, x称为y的一个原像,记为y=φ(x).进而,y的原像集为{x|y=φ(x),x∈X},记为-1(∈X}Y称为映射φ:X→Y的值域,而X为定义域.特别地,若φ(X)=Y,则称映射φ是满射,也称为到上的映射(X到Y上的映射);若对于每个y∈φ(X)其原像集-1(y)是单点集,等价地,若x1,x2∈X,当时必有则称该映射是单射,也称为一一映射.注1.2.1 一一映射存在逆映射,即-1:-1(y)=x,当φ(x)=y时.进而,到上的一一映射称为双射,也称为一一对应.给定映射φ:X→Y,及则A的像集为∈A},B的原像集为-1(B)={x|φ(x)∈B}.综上易得下面关于映射与集合的并和交运算的关系式:φ∪α∈∪α∈φ∩α∈∈φ-1∪α∈∪α∈--1∩α∈∈-例1.2.1给定非空集合X,定义其非空子集A上的特征函数为χA(x)=1,x∈A,于是是从X的幂集到{0,1}上的映射.而且可以利用特征函数来反馈集合本身的特征:1.2.2 基数给定一个集合,若它只含有限个元素则称为有限集;否则,就称为无限集.对于有限集来说,若不考虑元素的具体特性,则所含元素的个数是一个基本而重要的量,因与元素个数有关的问题一般会涉及元素个数的比较.两个有限集是否含有相同数量的元素可用能否建立一一对应来衡量.受此启发,尽管对于无限集来说谈论个数没有实际意义,但比较两个无限集所含元素的多少,仍然可以用能否建立一一对应来度量.定义1.2.2 给定集合A,B,若存在从A到B的一一对应,则称集合A与B对等,记为A~B.对等关系有下述性质. 定理1.2.1 任给集合A,B,C,有(1) (自反性)A~A;(2) (对称性)若A~B,则B~A;(3) (传递性)若A~B,且B~C,则A~C.符合上述三条的关系称为等价关系.因此,集合之间的对等是一种等价关系.下面,我们描述性地给出集合基数的概念.定义1.2.3设A,B为给定两个集合,如果A~B,那么就称集合A与集合B的基数或者势相同.记为=.因此,对等的集合具有相同的基数(势).特别地,当A是非空有限集时,则存在某自然数使得A与一一对应,而由唯一确定,于是可以认为=n 0.由此知,基数(势)的概念是通常元素个数的推广.以下给出一些常见的集合的例子.例1.2.2 (0,1)~R.事实上,令φ:-π2,则易知φ建立了(0,1)与R之间的一一对应.例1.2.3任意两个圆周上的点集具有相同的基数.事实上,不妨令任给的两个圆同圆心,于是让从圆心出发的同一条射线与两个圆的交点相互对应,则该对应是一一对应.有了集合大小的概念--基数,接下来,我们给出基数大小比较的法则.定义1.2.4给定两个集合A和B,若存在B的子集使得A~则称A的基数不大于B的基数, 记为≤;若≤,并且≠,此时称A的基数小于B的基数,记为<.自然数可以比较大小,类似地,基数也可以比较大小.即,对于任意给定的两个基数α,β,关系式α<β,α=β,α>β,这三者中有且仅有一式成立.证明要涉及集合论的公理系统,超出本教材范围,故略.对于自然数a,b,若a≤b且b≤a则a=b.对于基数也有类似的结论,也就是说集合的大小在某种意义下也是可以比较的. 定理1.2.2(伯恩斯坦(Bernstein)定理)给定集合A,B,若≤且≥,则=.证明由题设,存在双射φ:及双射ψ:下面用迭代法寻找及使得φ(A′)=B\\B′,同时ψ(B′)=A\\A′.为此,考虑下面的方程组:φ(A′)=B\\B′,ψ(B′)=A\\等价地A′=A\\ψ(B′),B′=B\\φ(A′).(1.4) 为了求解方程组(1.4),运用迭代法,逐次作A1=A\\ψ(B), \\\\\\\\-1),\\由上述构造知注意到ψ是一一映射,于是有再结合德摩根律,有∪∪∞i=1(A\\-1))=A∩∞-- 此处记类似地,可得\\∪从而,式(1.4)有解A′=∪定义映射Φ(x)=φ(x),x∈-1(x),x∈A\\A′. 由上述构造知,φ(A′)=B\\-1(A\\A′)=B′,于是Φ是满射.至于Φ的单射性由φ及ψ的单射性即得.因此,Φ是从A到B上的一一对应.从而,A~B.□推论1.2.1 设~C,则A~B,B~C.证明以A~B为例,设φ是A和C之间的一个一一对应,令x∈A,φ(x)∈B},则~B,取则自然有~A.于是由伯恩斯坦定理有A~B.1.13 可数集本小节我们给出最常见的一种无穷集合--可数集的定义,并研究其相关性质.定义1.2.5与自然数集对等的集合称为可数集,或称为可列集.于是任意的可数集A均可写成A={反之,这种形式的集合均为可数集.可数集的基数记为0.下面的定理表明,可数集的基数在无限集中是最小的. 定理1.2.3任意无限集均包含可数子集.证明设A是任意给定的无限集,任意取定∈A,因A\\仍然是无限集,再任意取定2∈A\\{a1},依次类推,在A\\中取出在A\\中取出照此继续,即得A的可数子集进一步,我们有下述定理.□定理1.2.4若X是一个无限集,Y是有限集或可数集,则X∪Y=.证明因X∪Y=X∪(Y\\X),故不妨设若Y是可数集,记由于X是无限集,由定理1.2.3知,X有可数子集于是有分解∪(X\\X1) .令φ:X∪Y→X,使得-1,n=1,2,…;φ(x)=x,x∈X\\X 1.由此构造知φ是X与X∪Y之间的一一对应;若Y为有限集,则对应的取为与Y有相同个数的X中的有限集,然后类似于上面的证明即得.□众所周知,有限集不可能和它的任意真子集建立一一对应关系.无限集与有限集的本质区别就在于此,即下面的定理. 定理1.2.5集合X是无限集的充要条件是,存在X的真子集Y有Y~X.证明因若X是有限集时,X不可能与它的任意真子集对等,由此得证充分性;下证必要性:任取X的一个有限子集A,因X是无限集,故X\\A亦是无限集,利用定理1.2.4得,X\\A=(X \\A)∪A=,记Y=X\\A,得证.□下面一系列定理关心的是集合及其子集的可数性问题. 定理1.2.6可数集的子集如果不是有限集,则一定是可数集.证明设A是可数集是A的一个无限子集.首先,因故其次,因是无限集,由定理1.2.3可知于是由伯恩斯坦定理得即是可数集.□定理1.2.7 设A为可数集,B为有限或可数集,则A∪B为可数集.证明设或(1)先设由于可数集总可排成无穷序列,当B有限时,A∪B={b1,b2,…,b n,a;当B可数时,A∪B={a1,b1,a2,b2,…,a n,b n,…},可见A∪B总可以排成无穷序列,从而是可数集.(2) 一般情况下,此时令-A,则A∩B*=,A∪B*=A∪B.由于B至多可数,故作为B的子集,也至多可数(有限集或可数集),由(1)的证明知,A∪B*可数,故A∪B也可数.□推论1.2.2设是有限集或可数集,则∪ni=1A i也是有限集或可数集,但如果至少有一个是可数集,则∪ni=1A i必为可数集. 定理1.2.8 可列个可数集的并集是可数集.证明设(n=1,2,…)是一列可数集.(1)先设因为都是可数集,于是可记A n={a n1,a n2,…,a nk,…},n,k=1,2,…,从而∪中元素可按下述方式排成一列:∪规则是:排第一位,当i+j>2时排在第j+∑i+j-2k=1k位因此∪是可数集(注:当部分是有限集时仍适用).(2) 一般情况下,各可能相交,令-∪i-1j=1A j(i≥2),则且∪∪由可数易知都是有限集或可数集,如果只有有限个不为空集,则由推论1.2.2易知∪为可数集(因为至少为可数集);如果有无限多个(必为可数个)不为空集,则由(1)知∪∪也是可数集,故在任何场合∪都是可数集.□推论1.2.3 (1) 有限集与可数集的并是一可数集;(2) 有限个可数集的并是一可数集;(3) 可数个互不相交的非空有限集的并是一可数集;(4) 可数个可数集的并是一可数集. 例1.2.4 整数集,有理数集均为可数集.事实上,整数集Z=N∪(-N),其中-为负自然数全体的集合. 因映射f:N→-N,f(n)=-n,建立了N与-之间的一一对应,故-N是可数集.于是由定理1.2.7知Z是可数集.对于有理数集,记Q+为正有理数全体的集;Q-为负有理数全体的集,于是Q=Q+∪Q-∪{0}.令A n=1n,2n,3n,…则(n∈N)是一列可数集,而Q+=∪从而由定理1.2.8知Q+亦可数;又Q-与Q+通过映射f(x)=-x (x∈Q+)建立了一一对应,于是Q-也可数.再利用定理1.2.7即得Q是可数集.由例1.2.4易得下面一些今后很有用的结论:有理系数多项式全体所构成的集合是可数集;R中无限个互不相交的开区间所形成的集是可数集.事实上,在每一个开区间中任意取定一个有理数,由题设可知开区间与取定的有理数是一一对应的.因此这些有理数形成Q的一个无限子集,记为Q 1,由定理1.2.6得Q1可数,从而得证.注1.2.2若A中每个元素可由n个互相独立的记号一对一地加以决定,各记号跑遍一个可数集,即A={a x1,x2,…,x n|x k=x k(1),x k(2),x k(3),…;k=1,2,…,n},则A为可数集.例1.2.5元素是由k个正整数所组成的集合,其全体构成一可数集A={(n 1,n2,…,n k)|n i∈Z+}.例1.2.6 整系数多项式a0x n+a1x n- -的全体是一可数集.记a a0,a1,…,a n=a0x n+a1x n- -则整系数多项式的全体可记为∪,为可数集,其中代数数的全体是一个可数集(所谓代数数,就是整系数多项式的根).事实上,整系数多项式的全体可数,而每一个整系数多项式只有有限个根,故代数数的全体是一个可数集.例1.2.7 N与R不对等,即N≠R.若不然,存在N与R的一个一一对应,将与N中n对应的元素(n)记为则R上至少有一个单位长度的区间不含不妨设此区间为\,将\分为三等分,则0,13〗,23,1〗中至少有一个不含以表示这个区间,将三等分,其左、右两个区间中至少有一个区间不含记为依此类推,可得一串闭区间},满足:(1) 且的长度趋于0; (2)由闭区间套定理知但对任意的换言之不在R中,这是不可能的.这一矛盾说明与R不可能对等.例1.2.8R上任一单调函数的不连续点全体的集至多可数,即或为空集,或为有限集,或为可数集.不妨设f(x)是单调递增函数.若f(x)在R上连续,则其不连续点集为空集;若存在间断点由柯西(Cauchy)收敛原理可知-0)与均存在,于是f(x1-0)=lim x→x1-表明对应开区间-对于两个不同间断点和由函数f(x)的单调性可得,开区间-与-互不相交.进而,由上面的分析知,f(x)的不连续点集与上述开区间形成的集合之间存在一一对应,于是,或为有限集,或为可数集.1.14 不可数集与连续基数对于一个无限集,若不是可数集,则称之为不可数集. 定理1.2.9开区间(0,1)是不可数集.证明用反证法:假若(0,1)是可数集,则可记而每个(i=1,2,…)均可按下述方式唯一表示成十进制纯小数:a(1)=0.a(1)1a2(1)a3(1)…,(2)…,(3)…,规定,上述各数不能从某位起全为0.令满足:当当由上述构造知∈(0,1),但这与假设矛盾.□由前面的例1.2.2及定理1.2.9得,实数集R是不可数集.今后用c表示实数集R的基数,称之为连续基数(势).而且由定理1.2.9知例1.2.9 (a,b)=c,其中a,b∈R.事实上,令φ(x)=a+x(b-a),x∈(0,1),则φ建立了(0,1)与(a,b)之间的一一对应,于是(a,b)=(0,1)=c.类似地,可证(-∞,0)=(0,+∞)=\=(a,b\]=\=\=(0,1)=c.下面的定理关心的是连续基数的性质问题. 定理1.2.10设是一列互不相交的集合,它们均有连续基数,则并集∪n也有连续基数.证明注意到\及\故∪~∪∞n=1\即∪n有连续基数.□由定理1.2.10易知,平面R2有连续基数,即R2=c.类似地有R n=R∞=c,此处R∞是指可数个R的笛卡儿积.定理1.2.3告诉我们,可数集在无限集中间基数最小,那么有没有最大的基数呢?答案是否定的,即下面的结论. 定理1.2.11任给一个非空集合是其幂集,即由A的所有子集形成的集合.则证明假若A~则存在一一对应φ:于是对于每个a∈A,都唯一存在A的子集φ(a)与之对应.作A的子集∈A|xφ(x)}.根据假定,应有A中元素与对应.由此,若∈A0,则与的定义矛盾;若,则由的定义知又应该属于矛盾.于是A与不对等.进而,单点集全体形成的真子集,记为A ~,显然A~~A,因此例1.2.10其中记从自然数集N到两点集{0,1}的所有映射形成的集.事实上,对于任意的f∈{0,1}N,令φ:则φ是从到(0,1\]的一一映射,于是有0,1\];另一方面,每个x∈(0,1\]均可唯一表示(规定下面二进制表达式中必须出现无限多个1)为x=∑∞n=1x n2n,∈{0,1}.令∈N,则∈{0,1}N.进而,定义映射φ:∈(0,1\],则φ是从(0,1\]到的一一映射,于是有(0,1\再利用伯恩斯坦定理即得\]=c.注意到N=0,例1.2.10用记号表示,即既然没有最大的基数,那么限定在0与c之间情况又如何呢?集合论的奠基者康托尔于1878年提出下面的猜想:在0与c之间没有基数存在,即不存在集合X,使得0<<c.这个问题又被称为连续统假设问题.20世纪伟大的数学家希尔伯特(Hilbert)在1900年国际数学家大会上提出了23个重大数学问题,其中就包括连续统假设问题.而连续统假设问题直到1963年才由科恩(Korn)和哥德尔(Godel)解决:他们证明了,连续统假设与已有的集合论公理系统是相容的,既不能被证明也不能被否定. 习题习题1.15 设f: X→Y是一个满射,证明下列3个命题等价:(1) f是一一映射;(2) 对任意的有f(A∩B)=f(A)∩f(B);(3) 对任意的若则1.16 设f: X→Y,证明f是满射的充要条件是,对任意的有-1(A))=A.1.17 设映射f: ∈I(I为指标集),试证:(1) f∪α∈IAα=∪α∈If(Aα);(2) f∩α∈IAα∩α∈If(Aα);(3) 若则--∈I,i=1,2; (4) -1∪α∈IBα=∪α∈If-1(Bα);(5) -1∩α∈IBα=∩α∈If-1(Bα);(6) -1(Y--1(Y)--1.18 设E是X的子集,定义在X上的特征函数为χE(x)=1,x∈E, 0,x∈X-E.如果都是X的子集.证明:(1) ∪B(x)-(2) (3) --(4) n→∞sup sup(5) n→∞inf n→∞inf 5.设分别是到到的一一映射,问是否一定存在\\到\\的一一映射?1.1.3 试构造(0,1)与\7.试构造出一个从无理数集Q c到实数集R之间的一一映射.1.2.2 试证:若集合A中每个元素由n个独立的记号决定,各记号跑遍一可数集B,即A={a x∈B,k=1,2,…,n},则A为可数集.1.19平面点集A中任意两点之间的距离都大于某一固定常数d,且d>0,则A至多为可数集.1.20 设A=B∪C,=c,则B与C中至少有一个集合的势为c.1.21 如果A=∪则至少有一个的势为c.1.22 试证:若且A~A∪C,则有B~B∪C.1.23 证明:\上的全体无理数作成的集合其基数是c.1.24 证明:若E是可列集,则E中存在可列个互不相交的真子集. 15.若f(x)是R上的实值函数,则集合A1={x|x∈R,f(x)在x处不连续,但右极限f( x+0)存在是可数集.1.1.4 证明\上的连续函数全体C\的势为c.1.1.5 若对任意有限个x:使得∑ni=1f(x)≤M成立,试证,能使f(x)≠0的x的集合至多为可数集.1.1.6 证明(a,b)上的凸函数在除一个至多可数集的点外都是可微的.1.3R n中的点集1.3 中的点集1.3.1 n维欧氏空间R是实数集,其几何表示即数轴;R2={(x,y)|x,y∈R}是有序实数对全体形成的集合,其几何表示即坐标平面.对于任意的∈R2, 定义两种线性运算:(1) 加法(2)数乘∈R.则R2关于这两种运算构成线性空间,(0,1),(1,0)是R2的一组基,因个数为两个,故R2称为二维线性空间.因平面上的点与从原点出发以该点为终点的向量一一对应,故R2又称为向量空间,其中的元素又称为向量.平面几何(欧几里得(Euclid)几何)及平面解析几何就是建立在R2基础之上的.推而广之,有下面的定义.定义1.3.1 n维欧氏空间为集合{x=(x1,x2,…,x n)|x i∈R,i=1,2,…,n(n∈N)},记为R n,或记为R×R×…×R,共n个R.类似地关于上述加法及数乘运算构成一个线性空间为R n的一组基.沿用二维线性空间的称谓也称为n维向量空间,其中的元素称为点或向量.对于任意的∈R n,定义d(x,y)=∑ni= -则d(x,y)有下述3条性质:(1) 正定性,d(x,y)≥0,且d(x,y)=(2) 对称性,d(x,y)=d(y,x);(3) 三角不等式,d(x,z)≤d(x,y)+d(y,z).这3条性质是距离的本质刻画,因此,上面定义的d(·)是R n上的一种距离,于是称为距离空间.性质(1), (2)由定义立得;性质(3)的证明要用到下述柯西-施瓦茨(Cauchy- Schwarz)不等式.引理1.3.1(柯西-施瓦茨不等式)。
实变函数教材
目录1.数论的内容......... ... (3)2.实变函数论的特点......... (4)3.学习实变函数论的方法......... (5)4.本教材的特色处理之处......... (5)第一章集合论§1.1集合概念与运算......... (6)§1.2集合的势、可数集与不可数集 (13)习题...... (25)第二章点集§2.1R n空间...... ... (26)§2.2几类特殊点和集......... (30)§2.3有限覆盖定理与隔离性定理 (35)§2.4开集的构造及其体积... (38)习题......... (45)第三章测度论§3.1Lebesgue外测度定义及其性质 (46)§3.2可测集的定义及其性质...... ... (48)§3.3可测集的构造......... (55)习题......... (59)第四章可测函数§4.1可测函数定义及其性质... ...... (59)§4.2可测函数的结构......... (63)§4.3可测函数列的依测度收敛 (70)习题第五章Lebesgues积分理论§5.1Lebesgue积分的定义及其基本性质... (77)§5.2Lebesgue积分的极限定理 (84)§5.3(L)积分的计算... (88)§5.4Fubini定理......... (93)习题......... (98)第六章积分与微分§6.1单调函数与有界变差函数... (101)§6.2绝对连续函数......... (106)§6.3微分与积分......... (108)习题......... (112)附录1.不可测集......... (113)2.一般集合的抽象测度和抽象积分...... (115)3.单调函数的可微性绪 论1.实变函数论的内容顾名思义,实变函数论即讨论以实数为变量的函数,这样的内容早在中学都已学过,中学学的函数概念都是以实数为变量的函数,大学的数学分析,常微分方程都是研究的以实数为变量的函数,那么实函还有哪些可学呢?简单地说:实函只做一件事,那就是恰当的改造积分定义使得更多的函数可积。
集合的概念与运算总结
集合的概念与运算总结在数学中,集合是由一组特定对象组成的。
这些对象可以是数字、字母、词语、人物、事物等等。
集合的运算是指对集合进行交、并、差等操作的过程。
本文将对集合的概念及其运算进行总结。
一、集合的概念集合是数学中的基础概念之一,通常用大写字母表示,如A、B、C 等。
集合中的对象称为元素,用小写字母表示。
一个元素要么属于一个集合,要么不属于,不存在属于但不属于的情况。
表示元素属于某个集合的关系可以用符号∈表示,不属于则用∉表示。
例如,对于集合A={1,2,3},元素1∈A,元素4∉A。
集合还有一些常用的特殊表示方法,如空集∅表示不包含任何元素的集合,全集U表示某一给定条件下所有可能元素的集合。
二、集合的基本运算1. 交集运算(∩)交集运算是指将两个集合中共同拥有的元素合并成一个新的集合。
用符号∩表示。
例如,对于集合A={1,2,3}和集合B={2,3,4},它们的交集为A∩B={2,3}。
2. 并集运算 (∪)并集运算是指将两个集合中所有的元素合并成一个新的集合。
用符号∪表示。
例如,对于集合A={1,2,3}和集合B={2,3,4},它们的并集为A∪B={1,2,3,4}。
3. 差集运算(\)差集运算是指从一个集合中去除另一个集合的所有元素。
用符号\表示。
例如,对于集合A={1,2,3}和集合B={2,3,4},集合A减去集合B的差集为A\B={1}。
4. 补集运算补集运算是指对于给定的全集U,从全集中去除某个集合中的元素得到的集合。
用符号'表示。
例如,对于集合A={1,2,3}和全集U={1,2,3,4,5},A的补集为A'={4,5}。
三、集合运算的性质集合运算具有以下几个基本性质:1. 交换律交换律指的是对于任意两个集合A和B,A∩B = B∩A,A∪B =B∪A。
2. 结合律结合律指的是对于任意三个集合A、B和C,(A∩B)∩C = A∩(B∩C),(A∪B)∪C = A∪(B∪C)。
实变函数论课件24讲
04
实变函数的微分
实变函数的微分定义
实变函数的微分概念 微分的基本性质 微分与导数的关系 微分的应用
实变函数的微分性质
实变函数的微分定义 微分性质:可加性、可数性、可交换性 微分与导数的关系 微分在函数逼近中的应用
物理学:实变函数论在物理学中也有着重要的应用,例如在量子力学、热力学等领域 中,实变函数论可以用来描述一些物理现象。
工程学:实变函数论在工程学中也有着广泛的应用,例如在电气工程、机械工程等领 域中,实变函数论可以用来解决一些实际问题。
经济学:实变函数论在经济学中也有着重要的应用,例如在金融工程、计量经济 学等领域中,实变函数论可以用来描述一些经济现象和解决一些实际问题。
投资组合优化:实变函数论可以用于优化投资组合,提高投资收益并降低风险。
信用评级:实变函数论可以用于评估借款人的信用等级,帮助金融机构做出更明智的贷款 决策。
金融衍生品定价:实变函数论可以用于定价金融衍生品,如期权、期货等,为金融机构提 供更准确的定价模型。
在其他领域的应用
数学分析:实变函数论是数学分析的重要分支,在数学分析中有着广泛的应用。
实变函数在复分析中的应用
添加标题
添加标题
实变函数在概率论中的应用
添加标题
添加标题
实变函数在微分方程中的应用
在工程中的应用
实变函数在工程力学中的应用
实变函数在流体力学中的应用
实变函数在电气工程中的应用
实变函数在计算机科学中的应 用
在金融中的应用
风险度量和管理:实变函数论提供了一种量化风险的方法,帮助金融机构更好地管理风险。
大学数学《实变函数》电子教案
《实变函数》电子教案(重庆邮电大学数理学院邓志颖)课程名称:实变函数学时/学分:48/3.0教材名称:实变函数与泛函分析基础(第三版)出版社:高等教育出版社编著者:程其襄等适用专业:数学与应用数学专业(大三上学期)序言: 实变函数简介微积分发展的三个阶段:•创立(17世纪):Newton (力学)Leibniz (几何)(无穷小)•严格化(19世纪): Cauchy, Riemann, Weierstrass(极限理论(ε-N, ε-δ语言),实数理论)•外微分形式(20世纪初):Grassmann, Poincare, Cartan (微积分基本定理如何在高维空间得到体现)微积分继续发展的三个方向:•外微分形式 (整体微分几何)(微积分基本定理如何在高维空间得到体现)•复数域上的微积分(复变函数)•微积分的深化和拓展(实变函数)1.Riemann 积分回顾:(1) Riemann 积分的定义||||01()()lim()nbiiaT i R f x dx f x ξ→==∆∑⎰ 其中11,ii i i i i xx x x x ξ--∆=-≤≤积分与分割、介点集的取法无关.几何意义(非负函数):函数图象下方图形的面积。
(2) Riemann 可积的充要条件()f x 在[,]a b 上Riemann 可积||||01()limnbiiaT i f x dx M x →=⇔=∆∑⎰||||01lim ()nbiiaT i m x f x dx →==∆=∑⎰其中:11sup{():}inf{():}i i i i i i M f x x x x m f x x x x --=≤≤=≤≤0,ε⇔∀>∃分划T ,使得1ni i i x ωε=∆≤∑0,εη⇔∀>∃,分划T ,使得所有振幅i ωη≥的小区间i ∆的总长度不超过ε.例:Dirichlet 函数不Riemann 可积.1[0,1]()0[0,1]x QD x x Q∈⋂⎧=⎨∈-⎩ 因为上积分为||||01()lim1nbiiaT i f x dx M x→==∆=∑⎰下积分为||||01()lim0nbiiaT i f x dx m x→==∆=∑⎰所以对于∀分划T ,有11niii xω=∆=∑所以Dirichlet 函数不Riemann 可积. (3)Riemann 积分的局限性)a 微积分基本定理定理:若'()F x 在[,]a b 上连续,则()'()()()xaR F t dt F x F a =-⎰1881年Volterra 作出一可微函数,导函数有界但不Riemann 可积;)b 积分与极限交换次序(一般要求一致收敛)例:设{}n r 为[0,1]中全体有理数(因为其为可数集,故可把它排成序列),作[0,1]上的函数列1231231{,,,,}()1,2,3,0[0,1]{,,,,}n n n x r r r r f x n x r r r r ∈⎧==⎨∈-⎩则{()}n f x 在[,]a b 上Riemann 可积,但1[0,1]lim ()()0[0,1]n n x Qf x D x x Q →∞∈⋂⎧==⎨∈-⎩不Riemann 可积. 故对一般收敛函数列,在Riemann 积分意义下极限运算与积分运算不一定可交换次序,即:lim ()lim ()bbn n aan n f x dx f x dx →∞→∞=⎰⎰不一定成立.2.Lebesgue 积分思想简介:为使()f x 在[,]a b 上Riemann 可积,按Riemann 积分思想,必须使得分划后在多数小区间上的振幅足够小,这迫使在较多地方振动的函数不可积.Lebesgue 提出,不从分割定义域入手,而从分割值域入手;即采取对值域作分划,相应得到对定义域的分划(每一块不一定是区间),使得在每一块上的振幅都很小,即按函数值的大小对定义域的点加以归类对此Lebesgue 自己曾经作过一个比喻,他说:● 假如我欠人家一笔钱,现在要还,此时按钞票的面值的大小分类,然后计算每一类的面额总值,再相加,这就是Lebesgue 积分思想;● 如不按面额大小分类,而是按从钱袋取出的先后次序来计算总数,那就是Riemann积分思想 即:0,δ∀> 作分划012n m y y y y M =<<<<=其中1,()i i y y m f x M δ--<≤<作点集1{:()}i i i E x y f x y -=≤<()f x 在i E 上的振幅不会大于δ. 作和:1ni ii s mEξ==∑i mE 表示i E 的“长度,1i i i y y ξ-≤<取极限:[,]1()()lim ni i a b i L f x dx mE δξ→==∑⎰3.Lebesgue 积分构思产生的问题:● (1) 先介绍集合i E (第一章集合,第二章点集) ● (2) 集合i E 的“长度”如何定义(第三章 测度论); ● (3) 怎样的函数可使i E 都有“长度”(第四章 可测函数);● (4) 定义Lebesgue 积分并研究其性质(第五章 积分论);● (5) 将牛顿—莱布尼兹公式加以推广(第六章 微分与不定积分)● 教材:实变函数论与泛函分析基础(第三版),程其襄等编, 高等教育出版社,2010年6月.参考文献:● 实变函数论(第二版),江泽坚,吴智泉编, 高等教育出版社,2003年7月. ● 周民强,实变函数(论),北京大学出版社,1995.6(2001) ● 周性伟,实变函数,科学出版社,1998.9 ● 胡适耕,实变函数,高等教育出版社,1999.7● 徐森林,实变函数论,中国科学技术大学出版社,2002● 郑维行等,实变函数论与泛函分析概要,高等教育出版社,1987 ● 夏道行等,实变函数论与泛函分析,高等教育出版社,1983.2 ● Halmos ,测度论(Measure theory)● Rudin , 实分析与复分析(Real and complex analysis).教时安排:第一章 集合 6学时,第二章 点集 6学时,第三章 测度论 8学时,第四章 可测函数 10学时,第四章 积分论 12学时,第六章 微分与不定积分 6学时,共六章 48学时。
《实变函数与泛函分析基础》第二版 程其襄 泛函知识点期末总结
泛函知识点期末总结一、关于有界线性算子,算子范数等1、设 [,]x X C a b ∈=,定义X 上的线性算子T :若[,],()()()(),[,]f C a b Tf t x t f t t a b ∈=∈。
求证:T 有界,并求||||T 。
2、设 0[,],[,]X C a b t a b =∈。
定义X 上的线性泛函f :若0,()()x X f x x t ∈=。
求证:f 有界,并求||||f 。
3、设 12123[,],,,,[,],,,,n X C a b t t t a b C λλλ=∈∈(全体复数集),定义X 上的线性泛函f : 若1,()()n i i i x X f x x t λ=∈=∑,f 有界,并求||||f 。
二、关于共轭空间的定义及其求解三、内积空间的定义及内积空间与赋范空间的关系,常见的内积空间四、变分引理 极小化向量定理P245定理1及推论,P247引理1,P251引理1五、投影定理,投影算子及其性质,六、Hilbert 空间的连续线性泛函,共轭算子,自伴算子,正常算子,酉算子七、完全规范正交基及其判定定理八、Banach 空间的基本定理及其应用九、Banach 共轭算子的定义及其求法十、逆算子定理与闭图像定理之间的关系与证明十一、强收敛,弱收敛,弱星收敛,一致收敛及其关系十二、完备度量空间的定义及其应用十三、压缩映射原理及其应用十四、h ölder 不等式,Minkowski 不等式,Schwarz 不等式十五、稠密,可分,完备,柯西序列十六、度量空间定义及其常见度量空间,赋范线性空间的定义及其常见赋范线性空间。
实变函数复习要点
实变函数复习要点(共6页) -本页仅作为预览文档封面,使用时请删除本页-2011实变函数复习要点第一章 集合(一)考核知识点1. 集合的定义、简单性质及集合的并、交、补和极限运算。
2. 对等和基数及其性质。
3. 可数集合的概念及其性质。
4. 不可数集合的概念及例子。
(二)考核要求1. 集合概念识记:集合的概念、表示方法、子集、真子集和包含关系。
2. 集合的运算(1)识记:集合的并、交、补概念。
De Morgan 公式ΓααΓαα∈∈=c c A A )( ΓααΓαα∈∈=c c A A )( (2)综合应用:集合的并、交、补运算。
例 利用集合的并、交、补运算证明集合相等。
例 Nn x x A n n n ∈-≤<--=},11:{11设 ]0,1[1-=⋂∞=n n A ,)1,2(1-=⋃∞=n n A 3. 对等与基数(1)识记:集合的对等与基数的概念。
(2)综合应用:集合的对等的证明例 利用定义直接构造两集合间的1-1对应。
4. 可数集合(1)识记:可数集合的概念和可数集合的性质,可数集合类。
(2)综合应用:可数集合的性质。
5. 不可数集合识记:不可数集合的概念、例子。
第二章 点集(一)考核知识点1. n 维欧氏空间邻域、集合的距离、有界点集和区间体积概念以及邻域的性质。
2. 聚点、内点、界点、开核、边界、导集和闭包及其性质。
3. 开集、闭集及其性质。
4. 直线上的开集的构造,构成区间,康托集。
(二)考核要求1. 度量空间,n 维欧氏空间识记:邻域的概念、有界点集概念。
2. 聚点、内点和界点识记:聚点、内点、外点、界点、孤立点、接触点、开核、边界、导集和闭包。
如 聚点与内点的关系,界点与聚点、孤立点的关系如聚点的等价定义:设E P '∈0,存在E 中的互异的点列{}n P 使0lim P P n n =∞→ 如0P 为E 的接触点的充要条件为存在E 中点列{}n P , 使得0lim P P n n =∞→ 3. 开集,闭集(1)识记:开集、闭集的概念。
实变函数第一章
limA (或lim supA )
n →∞ n n n
= {x : x属于无限多个集合An } = {x : 存在无限多个An,使x ∈ An }
= {x : ∀N , ∃n ≥ N , 使x ∈ An }
= ∩ ∪ An
N =1 n = N ∞ ∞
BN
下极限集
limA (或liminf A )
n n n →∞ n
则上极限集为02下极限集为1limlim上极限集上极限集如果集列如果集列的上极限集与下极限集相等即的上极限集与下极限集相等即limlim极限集极限集收敛称其共同的极限为集收敛称其共同的极限为集的极限集记为
第一章 集合
第一节 集合与运算
1. 集合的基本概念及运算
差:A − B或A \ B = {x : x ∈ A但x ∉ B}
∞
E[ f ≥ a ] = ∩ E[ f > a − 1 ]
n =1
∞
n
(= ∩ E[ f ≥ a − 1 ] )
n =1
n
∞
[ a,+∞ ) = ∩ ( a − 1 ,+∞ ) n
n =1
( ∩ [ a − 1 , +∞ )) n
n =1
∞
( a-1/n (
a-1/n-1
[ a [ ( [ [ a-1/n a-1/n+1 a
∞
n
=
∩A
N =1
N
例
1 1 设A2 n −1 = (−1 + ,1 + ), A2 n = (−n,+ n), n ∈ N , 则 n n
( -n
n→∞ n
( -1
n
( 0
实变函数知识点总结(杂)
lim
k →∞
Ak
⊂
∪
k =1
Ak
{ } 定理 4 设集列
Ak
,则(1)
l
k
im
→∞
A
k
=
∞∞
∩∪
n =1 k = n
Ak
;(2)lim Ak k→∞
=
∞∞
∪
n =1
∩
k=n
Ak
。
注解:① E
\
l
k
im
→∞
Ak
=
lim (E
k→∞
\
Ak )
②E
\ lim
k→∞
Ak
=
lim ( E
k→∞
\
Ak )
∞
部元素构成的集合;
(2) 称集合 A ∩ B = {x | x ∈ A且x ∈ B} 为 A 与 B 的交集,即由 A 与 B 的公
共元素构成的集合;
定理 1(1)交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A;
(2)结合律 ( A ∩ B) ∩ C = A ∩ (B ∩ C) , ( A ∩ B) ∩ C = A ∩ (B ∩ C) ;
( ) ( ) 积集,简称 X 与 Y 的直积,其中 x1, y1 = x2, y2 是指 x1 = x2 且 y1 = y2 。
三、集合列的极限集
定义 6 设{Ak } 是一列集合,分别称集合
lim
k→∞
Ak
= {x | 存 在 无 穷 多 个 k, 使 x ∈ Ak}
lim Ak = {x | 只 有 有 限 个 k, 使 x ∉ A k }
(1)当A1 ⊂ A2 ⊂ X时,有T ( A1 ) ⊂ T ( A2 );
实变函数程其襄版
定理 9 :单调集列是收敛的
1)若{An}单调增加,则lim An An;
n
n1
2)若{An}单调减少,则 lim An An.
n
n1
单调增集列极限分析
limAn(liminf An)
n
n
{x : N,n N,有x An}
An
N 1nN
当An为单调增加集列时
An AN
nN
An AN
{x : 存在无限多个An,使x An}
例:设A2n=[0,1] A2n+1=[1,2]; 则上极限集为[0,2]
{x : N , n N ,使x An}
An
N 1n N
BN
下极限集
limAn(或liminf An)
n
n
{x :除去有限个集外,有x An}
{x :当n充分大时,有x An}
{x : lim n
fn (x)
f
(x)}
{x :|
fn (x)
f (x) |
1 k
}
k 1 N 1n N
lim
n
fn (x)
f
(x)
:
1 k
1, N
1,n
N,有|
fn (x)
f
(x) |
1 k
A {x : ,有x A }
A {x : ,使x A }
例
设 lim n
1
1 n
x
1
1 n
},
n
N,
(
(
-2 -1-1/n -1
]
)
0 1-1/n 1
n1
An
[1,0]
n1
实变函数论之集合与点集
实变函数论之集合与点集集合与点集实变函数论作为现代分析数学的基础,其知识结构是建立在集合论之上的.集合论产生于19世纪70年代,由德国数学家康托尔(Cantor)创立,它是整个现代数学的开端及逻辑基础.作为本科教材,本章只介绍必需的集合论知识,而不涉及有关集合论公理的讨论.1.1 集合及相关概念大家在中学就认识了集合这个概念.所谓集合,是指具有某种特定性质的对象的全体.集合中的对象称为该集合的元素.集合通常用大写英文字母A,B,C,…表示;元素通常用小写英文字母a,b,c,…表示.今后用一些特殊的记号表示特殊的集合:R表示全体实数形成的集合;C 表示全体复数形成的集合;N,Z,Q分别表示自然数集、整数集和有理数集.另外,不含任何元素的集合称为空集,用记号表示.集合的具体表示方法一般有两种:一种是枚举法,如集合{1,2,3,4,5}; 一种是描述法,例如,大于20的自然数组成的集合,可写为{x|x>20,且x为自然数}.一般地,若A是具有某种性质P的元素组成的集合,通常记为A={x|x具有性质P}.对于给定的某集合A及某对象a,若a 是A中的元素,就说a属于集合A,记为a∈A;否则,就说a不属于集合A,记为a A.给定两个集合A和B,若A中的元素都属于B,则称A是B的子集,记为A B 或B A;进而,若同时有A B和B A,则A=B.对于任意的非空集合A,空集和A当然是A的子集,这两个子集称为平凡子集.除此之外的子集称为真子集.例1.1.1 写出{1,2,3}的所有子集,由此计算{1,2,…,n}的子集的个数,其中n∈N.{1,2,3}的所有子集是:,{1,2,3},{1},{2},{3},{1,2},{1,3},{2,3},第1章集合与点集1.1 集合及相关概念共23=8个.一般地,{1,2,…,n}的子集的个数是:C0n+C1n+…+C n n=2n,其中C k n=n!k!(n-k)! (k∈{0,1,…,n})为组合数公式.任给集合A,它的所有子集构成的集合称为它的幂集,记为2 A.1.1.1 集合的运算我们知道,数可以进行运算,并由此生成新的数.类似地,集合之间也可以进行运算, 并由此生成新的集合.其中,最常用的运算有“并”、“交”、“差”三种.定义1.1.1 任意给定集合A和B,集合{x|x∈A或x∈B}称为A与B 的并集,并集也称为和集,记为A∪B,或A+B;集合{x|x∈A且x∈B}称为它们的交集,交集也称为积集,记为A∩B,或AB; 推而广之,给定集合族{Aα}α∈Γ,其中Γ是指标集,则此集合族的并集与交集分别为∪α∈ΓAα={x|α∈Γ,x∈Aα}; (1.1)∩α∈ΓAα={x|α∈Γ,x∈Aα}. (1.2) 集合{x|x∈A且x B}称为A与B的差集,又称补集,记为A\\B,或A-B.注意:一般来说(A-B)∪B未必等于A.如果已知A B,则A-B称为B相对于A的余集,记为AB,特别地,如果我们在某一问题中所考虑的一切集合都是某一给定集合S的子集时,集合B相对于S的余集就简称为B的余集, SB 简记为B c.而集合(A-B)∪(B-A)称为A与B的对称差,记为A△B.例 1.1.2 设A j=x0≤x≤1+1j,j=1,2,…,B i=x-1+1i≤x≤1-1i,i=1,2,…,C k=x-1k<x∩nj=1A j=x0≤x≤1+1n, ∪mi=1B i=x-1+1m≤x≤1-1m,∩pk=1C k=x-1p<x<1p.其中n,m,p∈N.由此知∩∞j=1A j={x|0≤x≤1}, ∪∞i=1B i={x|-1<x集合的并、交、差(补)运算满足下面的运算律:定理1.1.1 (1) 交换律A∪B=B∪A, A∩B=B∩A;特别地A∩A=A, A∪A=A, A∪=A, A∩=.(2) 结合律A∪(B∪C)=(A∪B)∪C, A∩(B∩C)=(A∩B)∩C.(3) 分配律A∩(B∪C)=(A∩B)∪(A∩C);一般地A∩∪α∈ΓBα=∪α∈Γ(A∩Bα).(4) 大小关系(A∩B)A(A∪B).(5) 若AαBα,α∈Γ,则∪α∈ΓAα∪α∈ΓBα, ∩α∈ΓAα∩α∈ΓBα;特别地,若AαC或C Bα,α∈Γ,则∪α∈ΓAαC, C∩α∈ΓBα.证明下面仅证A∩∪α∈ΓBα=∪α∈Γ(A∩Bα).任取x∈A∩∪α∈ΓBα,则x∈A且α0∈Γ,使得x∈Bα0,于是x∈∪α∈Γ(A∩Bα),由x的任意性得A∩∪α∈ΓBα∪α∈Γ(A∩Bα).反过来,任取x∈∪α∈Γ(A∩Bα),则α0∈Γ,使得x∈A∩Bα0,即x∈A且x∈Bα0,从而x∈A 且x∈∪α∈ΓBα,故x∈A∩∪α∈ΓBα,由x的任意性得∪α∈Γ(A∩Bα)A∩∪α∈ΓBα.综合起来,等式成立.□以下给出关于余集计算的部分性质. 定理1.1.2 (1) A-B=A∩SB;(2) 若A B,则SA SB,B\\A=B∩A c;(3) 对偶律(德摩根(De Morgan)律)若A,B X,则(A∪B)c=A c∩B c, (A∩B)c=A c∪B c.一般地∩α∈ΓAαc=∪α∈ΓA cα,∪α∈ΓAαc=∩α∈ΓA cα.证明下面仅证对偶律:若A,B X,则(A∪B)c=A c∩B c,其余结合相关定义类似可得.事实上,由补集定义,(A∪B)c={x|x∈X且x A∪B}={x|x∈X,x A且x B}={x|x∈X,x∈A c且x∈B c}=A c∩B c.□德摩根律使我们通过余集的运算把并集变为交集,把交集变为并集.这种转化在集合的运算及论证中是很有用的.1.1.2 集合列的上极限和下极限众所周知,数列可以讨论极限.类似地,集合列也可以讨论极限.以下我们给出集合列及其极限的定义.定义1.1.2 一列集合{A n} (n=1,2,…)称为集合列,也可记为{A n}∞n=1.属于上述集合列中无限多个集的元素的全体所形成的集称为该集合列的上极限,或称为上限集,记为lim n→∞A n,或lim n→∞ sup A n;对于上述集合列,那些除了有限个下标外,属于该集合列中每个集合的元素的全体形成的集称为这个集合列的下极限,或称为下限集,记为</x</x<1p.</xlim n→∞A n或lim n→∞ inf A n.等价地,lim n→∞ sup A n={x|对于任意的自然数n,存在k≥n,使得x∈A k},lim n→∞ inf A n={x|存在n0∈N,当n≥n0时,x∈A n}.由此知,lim n→∞ inf A n lim n→∞ sup A n.进而,对于给定集合列{A n},若其上、下极限相等,则称集合列{A n}收敛,其极限即为它的上(或下)极限,记为lim n→∞A n.集合列的上(下)极限可以用“并”与“交”运算来表达. 定理1.1.3 给定集合列{A n},则lim n→∞sup A n=∩∞n=1∪∞k=nA k, lim n→∞ inf A n=∪∞n=1∩∞k=nA k.证明利用lim n→∞sup A n={x|n∈N,k≥n,使得x∈A k} (1.3)来证明关于上极限的等式,关于下极限的情况可类似证得.记A=lim n→∞sup A n,B=∩∞n=1∪∞m=nA m.事实上,设x∈A,则对任意取定的n,存在m>n,使得x∈A m,即对任意n,总有x∈∪∞m=nA m,故x∈B,继而A B.反之,设x∈B,则对任意的n>0,总有x∈∪∞m=nA m,即总存在m(m≥n),使得x∈A m,故x∈A,继而B A,从而A=B,另一等式可同样证明.□若集合列{A n}满足:A n A n+1,n∈N,则称{A n}是单调增加集合列;若A n A n+1,n∈N,则称之为单调减少集合列.统称为单调集合列.由定理1.1.3易知,单调集合列是收敛的.具体地,若{A n}为单调增加集合列,则lim n→∞A n=∪∞n=1A n;若{A n}为单调减少集合列,则lim n→∞A n=∩∞n=1A n.例 1.1.3 设{A n}是如下一列点集:A2m+1=0,2-12m+1〗, m=0,1,2,…,A2m=0,1+12m〗, m=1,2,….我们来确定{A n}的上、下极限.因为闭区间\中的点属于每个A n,n=1,2,…,而对于开区间(1,2)中的每个点x,必存在自然数N(x),使得当n>N(x)时,有1+12nN(x)时,x A2n,但x∈A2n+1.换言之,对于开区间(1,2)中的x,具有充分大的奇数指标的集合都含有x,即{A n}中有无限多个集合含有x,而充分大的偶数指标的集合都不含有x,即{A n}中不含有x的集合不会是有限个.又区间\lim n→∞ sup A n=\n→∞ inf A n=\.例1.1.4 设{A n}为:当n=2k时,A2k=(x,y)0≤x≤2k,0≤y≤12k, k∈N;当n=2k+1时,A2k+1=(x,y)0≤x≤12k+1,0≤y≤2k+1, k∈N.则lim n→∞ sup A n={(x,0)|x≥0}∪{(0,y)|y≥0}; lim n→∞ inf A n={(0,0)}.定义1.1.3 设A,B是两个集合,称一切有序“元素对”(x,y)(其中x∈A,y∈B)形成的集合为A与B的直积集或笛卡儿(Descartes)积,记为A×B,即A×B={(x,y)|x∈A,y∈B},其中(x,y)=(x′,y′)是指x=x′,y=y′,X×X也记为X 2.例 1.1.5 设A={1,2,3},B={4,5},则A×B={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.例1.1.6 \×\为平面上单位闭正方形.例1.1.7 Q×Q=Q Q2为平面上有理点集.习题习题1. 试证:(1) A∩(B∪C)=(A∩B)∪(A∩C);(2) (A\\B)∪B=(A∩B)\\B的充要条件是B=;(3) A-(B-C)=(A-B)∪(A∩C).2. 证明:(1) A△B=B△A;(2) (A△B)△C=A△(B△C);(3) A∩(B△C)=(A∩B)△(A∩C);(4) 对任意的A,B,存在C使得A△C=B.3. 设{A n}是一集合列,作B1=A1,B n=A n-∪n-1k=1A k,n=2,3,…,试证{B n}互不相交,且∪ni=1A i=∪nj=1B j,n=1,2,…,∞.4. 设f(x),g(x)是点集E上定义的两个函数,a,k为任意实数,但k≠0.则(1) {x: f(x)≥a}=∩∞n=1x: f(x)>a-1n;(2) {x: |f(x)g(x)|>a}{x: |f(x)|>k}∪x: |g(x)|>ak.5. 试证:(1) ∪∞i=1(A\\B i)=A∩∞i=1B i; (2) ∩∞i=1(A\\B i)=A∪∞i=1B i.6. 设A2n-1=0,1n,A2n=(0,n),n=1,2,….求出集合列{A n}的上限集和下限集.7. 设A n=E,n=2k-1,F,n=2k, k=1,2,…,求集合列A n的上限集和下限集.8. 设A n=mn: m为整数,n=1,2,…,试证lim n→∞ supA n=Q,lim n→∞ inf A n=Z.9. 设{f n(x)}是\上的一列函数,且存在E\使得lim n→∞f n(x)=1, x∈\\\E,0, x∈E.令E n=x∈\: f n(x)≥12,求集合lim n→∞E n.10. 设{f n(x)}以及f(x)是定义在R上的实值函数,则使{f n(x)}不收敛于f(x)的一切点x所形成的集合为∪∞k=1∩∞N=1∪∞n=Nx: |f n(x)-f(x)|≥1k. 11. 设εk>0 (k=1,2,…) ,εk随着k→∞单调下降趋于0.f(x),f n(x) (n=1,2,…)定义在E上,lim n→∞f n(x)=f(x)(x∈E),试证:对任意的a有(1) E\=∪∞k=1lim n→∞E\;(2) E\=∩∞k=1lim n→∞E\;(3) E\=∪∞k=1lim n→∞E\.注: E\={x∈E|f(x)>a}.1.2 映射、基数与可数集1.2 映射、基数与可数集我们都知道,实数是可以比较大小的,那么自然地联想一下,集合有没有大小的差别呢?直观地想,如果是有限集合,可能集合元素的个数多集合就大,那么对于含有无限个元素的集合,集合的大小该怎么比较呢?全体实数构成的集合就一定比全体正实数构成的集合大吗?在对集合的定义和基础运算有了一定的了解之后,我们接下来就介绍一下用以刻画集合大小的概念:基数.在此之前,我们要引入映射的概念,本节的最后,我们还将向大家介绍一种最常见的集合:可数集.1.2.1 映射大家都熟悉函数概念,下面要讲到的映射是函数概念的抽象化.定义1.2.1 给定两个非空集合X,Y,若对于X中每个元素x在Y中都存在唯一的元素y与之对应,则称这个对应为映射.若用φ表示这种对应,则记为φ: X→Y并称φ是从X到Y的一个映射.此时,x∈X在Y 中对应元y称为x在映射φ下的像,x称为y的一个原像,记为y=φ(x).进而,y的原像集为{x|y=φ(x),x∈X},记为φ-1(y).φ(X)={y|y=φ(x),x∈X}Y称为映射φ: X→Y的值域,而X为定义域.特别地,若φ(X)=Y,则称映射φ是满射,也称为到上的映射(X到Y 上的映射);若对于每个y∈φ(X)其原像集φ-1(y)是单点集,等价地,若x1,x2∈X,当φ(x1)=φ(x2)时必有x1=x2,则称该映射是单射,也称为一一映射.注1.2.1 一一映射存在逆映射,即φ-1: φ(X)→X,φ-1(y)=x,当φ(x)=y 时.进而,到上的一一映射称为双射,也称为一一对应.给定映射φ: X→Y,及A X,Bφ(X),则A的像集为φ(A)={y|y=φ(x),x∈A},B的原像集为φ-1(B)={x|φ(x)∈B}.综上易得下面关于映射与集合的并和交运算的关系式:φ∪α∈ΓAα=∪α∈Γφ(Aα), φ∩α∈ΓAα∩α∈Γφ(Aα);φ-1∪α∈ΓAα=∪α∈Γφ-1(Aα), φ-1∩α∈ΓAα=∩α∈Γφ-1(Aα).例1.2.1 给定非空集合X,定义其非空子集A上的特征函数为χA(x)=1,x∈A,0,x A.于是A→χA是从X的幂集2X到{0,1}上的映射.而且可以利用特征函数来反馈集合本身的特征:χA(x)≤χB(x)A B,χA(x)χB(x)=0A∩B=.1.2.2 基数给定一个集合,若它只含有限个元素则称为有限集;否则,就称为无限集.对于有限集来说,若不考虑元素的具体特性,则所含元素的个数是一个基本而重要的量,因与元素个数有关的问题一般会涉及元素个数的比较.两个有限集是否含有相同数量的元素可用能否建立一一对应来衡量.受此启发,尽管对于无限集来说谈论个数没有实际意义,但比较两个无限集所含元素的多少,仍然可以用能否建立一一对应来度量.定义1.2.2 给定集合A,B,若存在从A到B的一一对应,则称集合A 与B对等,记为A~B.对等关系有下述性质. 定理1.2.1 任给集合A,B,C,有(1) (自反性)A~A;(2) (对称性)若A~B,则B~A;(3) (传递性)若A~B,且B~C,则A~C.符合上述三条的关系称为等价关系.因此,集合之间的对等是一种等价关系.下面,我们描述性地给出集合基数的概念.定义1.2.3 设A,B为给定两个集合,如果A~B,那么就称集合A与集合B的基数或者势相同.记为=.因此,对等的集合具有相同的基数(势).特别地,当A是非空有限集时,则存在某自然数n0使得A与{1,2,…,n0}一一对应,而{1,2,…,n0}由n0唯一确定,于是可以认为=n0.由此知,基数(势)的概念是通常元素个数的推广.以下给出一些常见的集合的例子.例1.2.2 (0,1)~R.事实上,令φ:x→tanπx-π2,则易知φ建立了(0,1)与R之间的一一对应.例1.2.3 任意两个圆周上的点集具有相同的基数.事实上,不妨令任给的两个圆同圆心,于是让从圆心出发的同一条射线与两个圆的交点相互对应,则该对应是一一对应.有了集合大小的概念--基数,接下来,我们给出基数大小比较的法则.定义1.2.4 给定两个集合A和B,若存在B的子集B1使得A~B1,则称A的基数不大于B的基数,记为≤;若≤,并且≠,此时称A的基数小于B的基数,记为<.自然数可以比较大小,类似地,基数也可以比较大小.即,对于任意给定的两个基数α,β,关系式α<β,α=β,α>β,这三者中有且仅有一式成立.证明要涉及集合论的公理系统,超出本教材范围,故略.对于自然数a,b,若a≤b且b≤a则a=b.对于基数也有类似的结论,也就是说集合的大小在某种意义下也是可以比较的. 定理1.2.2(伯恩斯坦(Bernstein)定理)给定集合A,B,若≤且≥,则=.证明由题设,存在双射φ: A→φ(A)B,及双射ψ: B→ψ(B) A.下面用迭代法寻找A′A及B′B,使得φ(A′)=B\\B′,同时ψ(B′)=A\\A′.为此,考虑下面的方程组:φ(A′)=B\\B′, ψ(B′)=A\\A′,等价地A′=A\\ψ(B′), B′=B\\φ(A′). (1.4) 为了求解方程组(1.4),运用迭代法,逐次作A1=A\\ψ(B), B1=B\\φ(A1),A2=A\\ψ(B1), B2=B\\φ(A2),A n=A\\ψ(B n-1), B n=B\\φ(A n),由上述构造知,A i A,B i B,i=1,2,….注意到ψ是一一映射,于是有ψ∩∞i=1B i=∩∞i=1ψ(B i),再结合德摩根律,有∪∞i=1A i=∪∞i=1(A\\ψ(B i-1))=A∩∞i=1ψ(B i-1)=Aψ∩∞i=1B i-1=Aψ∩∞i=1B i,此处记B0=B.类似地,可得∩∞i=1B i=∩∞i=1(B\\φ(A i))=Bφ∪∞i=1A i.从而,式(1.4)有解A′=∪∞i=1A i, B′=∩∞i=1B i.定义映射Φ(x)=φ(x),x∈A′,ψ-1(x),x∈A\\A′.由上述构造知,φ(A′)=B\\B′,ψ-1(A\\A′)=B′,于是Φ是满射.至于Φ的单射性由φ及ψ的单射性即得.因此,Φ是从A到B上的一一对应.从而,A~B.□推论1.2.1 设A B C,A~C,则A~B,B~C.证明以A~B为例,设φ是A和C之间的一个一一对应,令A*={x: x∈A,φ(x)∈B},则A*A,A*~B,取B*=A,则自然有B*~A.于是由伯恩斯坦定理有A~B.1.2.3 可数集本小节我们给出最常见的一种无穷集合--可数集的定义,并研究其相关性质.定义1.2.5 与自然数集对等的集合称为可数集,或称为可列集.于是任意的可数集A均可写成A={a1,a2,…,a n,…},反之,这种形式的集合均为可数集.可数集的基数记为0.下面的定理表明,可数集的基数在无限集中是最小的. 定理1.2.3 任意无限集均包含可数子集.证明设A是任意给定的无限集,任意取定a1∈A,因A\\{a1}仍然是无限集,再任意取定a2∈A\\{a1},依次类推,在A\\{a1,a2}中取出a3,…,在A\\{a1,a2,…,a n}中取出a n+1,照此继续,即得A的可数子集{a1,a2,…,a n,…}.进一步,我们有下述定理.□ 定理1.2.4 若X是一个无限集,Y是有限集或可数集,则X∪Y=.证明因X∪Y=X∪(Y\\X),故不妨设X∩Y=.若Y是可数集,记Y={y1,y2,…}.由于X是无限集,由定理1.2.3知,X有可数子集X1={x1,x2,…},于是有分解X=X1∪(X\\X1).令φ: X∪Y→X,使得φ(x n)=x2n,φ(y n)=x2n-1,n=1,2,…;φ(x)=x,x∈X\\X 1.由此构造知φ是X与X∪Y之间的一一对应;若Y为有限集,则对应的X1取为与Y有相同个数的X中的有限集,然后类似于上面的证明即得.□众所周知,有限集不可能和它的任意真子集建立一一对应关系.无限集与有限集的本质区别就在于此,即下面的定理. 定理1.2.5 集合X是无限集的充要条件是,存在X的真子集Y有Y~X.证明因若X是有限集时,X不可能与它的任意真子集对等,由此得证充分性;下证必要性:任取X的一个有限子集A,因X是无限集,故X\\A 亦是无限集,利用定理1.2.4得,X\\A=(X\\A)∪A=,记Y=X\\A,得证.□下面一系列定理关心的是集合及其子集的可数性问题. 定理1.2.6 可数集的子集如果不是有限集,则一定是可数集.证明设A是可数集,A1是A的一个无限子集.首先,因A1A,故A1≤;其次,因A1是无限集,由定理1.2.3可知,≤A 1.于是由伯恩斯坦定理得,A1=,即A1是可数集.□ 定理1.2.7 设A为可数集,B为有限或可数集,则A∪B为可数集.证明设A={a1,a2,…},B={b1,b2,…,b n}或B={b1,b2,…,b n,…}.(1) 先设A∩B=,由于可数集总可排成无穷序列,当B有限时,A∪B={b1,b2,…,b n,a1,a2,…};当B可数时,A∪B={a1,b1,a2,b2,…,a n,b n,…},可见A∪B总可以排成无穷序列,从而是可数集.(2) 一般情况下,此时令B*=B-A,则A∩B*=, A∪B*=A∪B.由于B至多可数,故B*作为B的子集,也至多可数(有限集或可数集),由(1)的证明知,A∪B*可数,故A∪B也可数.□推论1.2.2 设A i(i=1,2,…,n)是有限集或可数集,则∪ni=1A i也是有限集或可数集,但如果至少有一个A i是可数集,则∪ni=1A i必为可数集. 定理1.2.8 可列个可数集的并集是可数集.证明设{A n} (n=1,2,…)是一列可数集.(1) 先设A i∩A j=(i≠j),因为A i都是可数集,于是可记A n={a n1,a n2,…,a nk,…}, n,k=1,2,…, 从而∪∞n=1A n中元素可按下述方式排成一列:∪∞n=1A n={a11,a21,a12,a31,a22,a13,a41,…,a ij,…},规则是:a11排第一位,当i+j>2时,a ij排在第j+∑i+j-2k=1k位.因此∪∞n=1A n是可数集(注:当部分A i是有限集时仍适用).(2) 一般情况下,各A i可能相交,令A*1=A1,A*i=A i-∪i-1j=1A j (i≥2),则A*i∩A*j=(i≠j)且∪∞i=1A i=∪∞i=1A*i.由A i可数易知A*i都是有限集或可数集,如果只有有限个A*i不为空集,则由推论1.2.2 易知∪∞i=1A*i为可数集(因为至少A*1=A1为可数集);如果有无限多个(必为可数个)A*i不为空集,则由(1)知∪∞i=1A i=∪∞i=1A*i也是可数集,故在任何场合∪∞n=1A n都是可数集.□推论1.2.3 (1) 有限集与可数集的并是一可数集;(2) 有限个可数集的并是一可数集;(3) 可数个互不相交的非空有限集的并是一可数集;(4) 可数个可数集的并是一可数集.例1.2.4 整数集,有理数集均为可数集.事实上,整数集Z=N∪(-N),其中-N为负自然数全体的集合. 因映射f: N→-N,f(n)=-n,建立了N与-N 之间的一一对应,故-N是可数集.于是由定理1.2.7知Z是可数集.对于有理数集,记Q+为正有理数全体的集;Q-为负有理数全体的集,于是Q=Q+∪Q-∪{0}.令A n=1n,2n,3n,… (n=1,2,…),则A n (n∈N)是一列可数集,而Q+=∪∞n=1A n,从而由定理1.2.8知Q+亦可数;又Q-与Q+通过映射f(x)=-x (x∈Q+)建立了一一对应,于是Q-也可数.再利用定理1.2.7即得Q是可数集.由例1.2.4易得下面一些今后很有用的结论:有理系数多项式全体所构成的集合是可数集;R中无限个互不相交的开区间所形成的集是可数集.事实上,在每一个开区间中任意取定一个有理数,由题设可知开区间与取定的有理数是一一对应的.因此这些有理数形成Q的一个无限子集,记为Q1,由定理1.2.6得Q1可数,从而得证.注1.2.2 若A中每个元素可由n个互相独立的记号一对一地加以决定,各记号跑遍一个可数集,即A={a x1,x2,…,x n|x k=x k(1),x k(2),x k(3),…;k=1,2,…,n},则A为可数集.例1.2.5 元素(n1,n2,…,n k)是由k个正整数所组成的集合,其全体构成一可数集A={(n1,n2,…,n k)|n i∈Z+}.例 1.2.6 整系数多项式a0x n+a1x n-1+…+a n-1x+a n的全体是一可数集.记a a0,a1,…,a n=a0x n+a1x n-1+…+a n-1x+a n,则整系数多项式的全体可记为∪∞n=1A n,为可数集,其中A n={a a0,a1,…,a n}.代数数的全体是一个可数集(所谓代数数,就是整系数多项式的根).事实上,整系数多项式的全体可数,而每一个整系数多项式只有有限个根,故代数数的全体是一个可数集.例1.2.7 N与R不对等,即N≠R.若不然,存在N与R的一个一一对应,将与N中n对应的元素(n)记为r n,则R上至少有一个单位长度的区间不含r1,不妨设此区间为I1=\,将\分为三等分,则0,13〗,23,1〗中至少有一个不含r2,以I2表示这个区间,将I2三等分,其左、右两个区间中至少有一个区间不含r3,记为I3,依此类推,可得一串闭区间{I n},满足:(1) I1I2I3…,且I n的长度趋于0;(2) r n I n,n=1,2,….由闭区间套定理知∩∞i=1I n≠,但对任意的m,r m∩∞i=1I n,换言之,∩∞i=1I n不在R中,这是不可能的.这一矛盾说明,N与R不可能对等.例1.2.8 R上任一单调函数的不连续点全体的集至多可数,即或为空集,或为有限集,或为可数集.不妨设f(x)是单调递增函数.若f(x)在R上连续,则其不连续点集为空集;若存在间断点x1,由柯西(Cauchy)收敛原理可知,f(x1-0)与f(x1+0)均存在,于是f(x1-0)=lim x→x1-f(x)<lim x→x1+f(x)=f(x1+0).表明x1对应开区间(f(x1-0),f(x1+0)).对于两个不同间断点x1和x2,由函数f(x)的单调性可得,开区间(f(x1-0),f(x1+0))与(f(x2-0),f(x2+0))互不相交.进而,由上面的分析知,f(x)的不连续点集与上述开区间形成的集合之间存在一一对应,于是,或为有限集,或为可数集.1.2.4 不可数集与连续基数对于一个无限集,若不是可数集,则称之为不可数集. 定理1.2.9 开区间(0,1)是不可数集.证明用反证法:假若(0,1)是可数集,则可记(0,1)={a(1),a(2),a(3),…}.而每个a(i) (i=1,2,…)均可按下述方式唯一表示成十进制纯小数:a(1)=0.a(1)1a2(1)a3(1)…,a(2)=0.a(2)1a(2)2a3(2)…,a(3)=0.a1(3)a(3)2a3(3)…,规定,上述各数不能从某位起全为0.令0.b1b2b3…满足:b n=1,当a(n)n≠1;b n=2,当a(n)n=1. 由上述构造知,0.b1b2b3…∈(0,1),但0.b1b2b3…{a(1),a(2),a(3),…}这与假设(0,1)={a(1),a(2),a(3),…}矛盾.□由前面的例1.2.2及定理1.2.9得,实数集R是不可数集.今后用c表示实数集R的基数,称之为连续基数(势).而且由定理1.2.9知c>0.例1.2.9 (a,b)=c,其中a,b∈R.事实上,令φ(x)=a+x(b-a),x∈(0,1),则φ建立了(0,1)与(a,b)之间的一一对应,于是(a,b)=(0,1)=c.类似地,可证(-∞,0)=(0,+∞)=\=(a,b\]=\=\=(0,1)=c.下面的定理关心的是连续基数的性质问题. 定理 1.2.10 设A1,A2,…,A n,…是一列互不相交的集合,它们均有连续基数,则并集∪∞n=1A n也有连续基数.证明注意到\N及\N,故∪∞n=1A n~∪∞n=1\即∪∞n=1A n有连续基数.□由定理1.2.10易知,平面R2有连续基数,即R2=c. 类似地有R n=R∞=c,此处R∞是指可数个R的笛卡儿积.定理1.2.3告诉我们,可数集在无限集中间基数最小,那么有没有最大的基数呢?答案是否定的,即下面的结论. 定理1.2.11 任给一个非空集合A,2A是其幂集,即由A的所有子集形成的集合.则2A>.证明假若A~2A,则存在一一对应φ: A→2 A.于是对于每个a∈A,都唯一存在A的子集φ(a)与之对应.作A的子集A0={x∈A|xφ(x)}.根据假定,应有A中元素a0与A0对应.由此,若a0∈A0,则与A0的定义矛盾;若a0A0,则由A0的定义知a0又应该属于A0,矛盾.于是A与2A不对等.进而,单点集全体形成2A的真子集,记为A ~,显然A ~~A,因此2A>.□例1.2.10 {0,1}N=c,其中{0,1}N记从自然数集N 到两点集{0,1}的所有映射形成的集.事实上,对于任意的f∈{0,1}N,令φ: f→∑∞n=1f(n)2n,则φ是从{0,1}N到(0,1\]的一一映射,于是有{0,1}N≤(0,1\];另一方面,每个x∈(0,1\]均可唯一表示(规定下面二进制表达式中必须出现无限多个1)为x=∑∞n=1x n2n, x n∈{0,1}.令f x(n)=x n,n∈N,则f x∈{0,1}N.进而,定义映射φ: x→f x,x∈(0,1\],则φ是从(0,1\]到{0,1}N的一一映射,于是有(0,1\]≤{0,1}N,再利用伯恩斯坦定理即得{0,1}N=(0,1\]=c.注意到N=0,例1.2.10用记号表示,即20=c.既然没有最大的基数,那么限定在0与c之间情况又如何呢?集合论的奠基者康托尔于1878年提出下面的猜想:在0与c之间没有基数存在,即不存在集合X,使得0<习题习题1. 设f: X→Y是一个满射,证明下列3个命题等价:(1) f是一一映射;(2) 对任意的A,B X,有f(A∩B)=f(A)∩f(B);(3) 对任意的A,B X,若A∩B=,则f(A)∩f(B)=.2. 设f: X→Y,证明f是满射的充要条件是,对任意的A Y,有f(f-1(A))=A.3. 设映射f: X→Y,AαX,BαY,α∈I(I为指标集),试证:(1) f∪α∈IAα=∪α∈If(Aα);(2) f∩α∈IAα∩α∈If(Aα);(3) 若Bα1Bα2,则f-1(Bα1)f-1(Bα2),αi∈I,i=1,2;(4) f-1∪α∈IBα=∪α∈If-1(Bα);(5) f-1∩α∈IBα=∩α∈If-1(Bα);(6) f-1(Y-Bα)=f-1(Y)-f-1(Bα).4. 设E是X的子集,定义在X上的特征函数为χE(x)=1,x∈E,0,x∈X-E.如果A,B,A n(n=1,2,…)都是X的子集.证明:(1) χA∪B(x)=χA(x)+χB(x)-χA(x)·χB(x);(2) χA∩B(x)=χA(x)·χB(x);(3) χA-B(x)=χA(x)(1-χB(x));(4) χlim n→∞ sup A n(x)=lim n→∞ sup χA n(x);(5) χlim n→∞ inf A n(x)=lim n→∞ inf χA n(x).5. 设A1A2,B1B2,φ1,φ2分别是A1到B1,A2到B2的一一映射,问是否一定存在A2\\A1到B2\\B1的一一映射?6. 试构造(0,1)与\7. 试构造出一个从无理数集Q c到实数集R之间的一一映射.8. 试证:若集合A中每个元素由n个独立的记号决定,各记号跑遍一可数集B,即A={a x1x2…x n|x k∈B,k=1,2,…,n},则A为可数集.9. 平面点集A中任意两点之间的距离都大于某一固定常数d,且d>0,则A至多为可数集.10. 设A=B∪C,=c,则B与C中至少有一个集合的势为c.11. 如果A=∪∞n=1A n,=c,则至少有一个A n的势为c.12. 试证:若A B,且A~A∪C,则有B~B∪C.13. 证明: \上的全体无理数作成的集合其基数是c.14. 证明:若E是可列集,则E中存在可列个互不相交的真子集.15. 若f(x)是R上的实值函数,则集合A1={x|x∈R,f(x)在x处不连续,但右极限f(x+0)存在}是可数集.16. 证明\上的连续函数全体C\的势为c.17. 若对任意有限个x: x1,x2,…,x n,M>0,使得∑ni=1f(x)≤M成立,试证,能使f(x)≠0的x的集合至多为可数集.18. 证明(a,b)上的凸函数在除一个至多可数集的点外都是可微的.1.3 R n中的点集1.3 R n中的点集1.3.1 n维欧氏空间R n R是实数集,其几何表示即数轴;R2={(x,y)|x,y∈R}是有序实数对全体形成的集合,其几何表示即坐标平面.对于任意的x=(x1,x2),y=(y1,y2)∈R2,定义两种线性运算:(1) 加法,x+y=(x1+y1,x2+y2);(2) 数乘,αx=(αx1,αx2),α∈R.则R2关于这两种运算构成线性空间,(0,1),(1,0)是R2的一组基,因个数为两个,故R2称为二维线性空间.因平面上的点与从原点出发以该点为终点的向量一一对应,故R2又称为向量空间,其中的元素又称为向量.平面几何(欧几里得(Euclid)几何)及平面解析几何就是建立在R2基础之上的.推而广之,有下面的定义.定义 1.3.1 n维欧氏空间为集合{x=(x1,x2,…,x n)|x i∈R, i=1,2,…,n(n∈N)},记为R n,或记为R×R×…×R,共n个R.类似地,R n关于上述加法及数乘运算构成一个线性空间,e1=(1,0,…,0),e2=(0,1,0,…,0),…,e n=(0,0,…,0,1)为R n 的一组基.沿用二维线性空间的称谓,R n也称为n维向量空间,其中的元素称为点或向量.对于任意的x=(x1,x2,…,x n),y=(y1,y2,…,y n)∈R n,定义d(x,y)=∑ni=1(x i-yi)212, 则d(x,y)有下述3条性质:(1) 正定性,d(x,y)≥0,且d(x,y)=0x=y;(2) 对称性,d(x,y)=d(y,x);(3) 三角不等式,d(x,z)≤d(x,y)+d(y,z).这3条性质是距离的本质刻画,因此,上面定义的d(·)是R n上的一种距离,于是(R n,d(·))称为距离空间.性质(1), (2)由定义立得;性质(3)的证明要用到下述柯西-施瓦茨(Cauchy-Schwarz)不等式.引理1.3.1(柯西-施瓦茨不等式)。
实变函数第一章,第二节
* P42:16. 设A是一个无限集,则存在 A A, 使得
A ~ A, 而A A 是可数集。
* *
假设这是集合A
A\M
从中可以取出可数子集M
M={a1, a2, a3, a4, a5, a6, …} M1 ={a1, a3, a5, …} 很容易将M一分为二M ,M ,
1 2
使得两个都是可数集
第一章 集合
第二节 集合的势、可数集与不可数集
1 映射的定义
定义1:设X,Y是两个非空集合,若依照对应法则 f, 对X中的每个x,均存在Y中唯一的y与之对应,则称 这个对应法则 f 是从 X 到 Y 的一个映射, 记作 f: X→Y
[ ]
注:集合,元素,映射是一相对概念 略:像,原像,像集,原像集,映射的复合,单射,满射, 一一映射(双射)
例
1、 定积分运算 a 为从[a,b]上的可积函数集 到实数集的映射 (函数,泛函,算子)
2、 集合的特征函数 : X {0,1} A (集合A与特征函数互相决定) 称 A ( x)
b
1 xA 0 xA
为集A的特征函数,
对等与势
1)设A,B是两非空集合,若存在着A到B的 一一映射(既单又满),则称A与B对等, 记作 A ~ B 约定 ~
3){去掉一个点的圆周 } ~ (,)
有限集与无限集的本质区别: 无限集可与其某个真子集合有相同多的元素个数(对等) 且一定能做到,而有限集则不可能。
基数的大小比较
1)若A ~ B, 则称A B;
2)若A ~ B0 B, 则称 A B;
若存在单射f : A B, 则A B 特别地: 若A B, 则A B
证明:平面上的圆由其圆心 (x,y) 和半径 r 唯一决定,从而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集 合
§ 1 集 合 的 概 念
实变函数论建立在实数理论和集合论的基础之上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识.
集合这个概念是数学中所谓原始概念之一,即不能用别的概念加以定义.它像几何学中的“点”,“直线”那样,只能用一组公理去刻画.就目前来说,我们只要求掌握以下元素的说法:
“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称为一个集合,其中每个个体事物叫做该集合的元素.”
顺便说明以下,一个集合的各个元素必须是彼此互异的:哪些事物是给定集合的元素必须是明确的.下面举出几个集合的例子.
例1 4,7,8,3四个自然数构成的集。
例2 全体自然数。
例3 0与1之间的实数全体。
例4 平面上的向量全体。
例5 [0,1]上的所有实函数全体。
例6 A 、B 、C 三个字母构成的集。
“全体大个子”并不构成一个集合.因为一个人究竟算不算“大个子”并没有明确的界限,有时难以判断他是否属于这个集合.
一个具体集合A 可以通过列举其元素a,b,c,…来定义,可记为A={a,b,c,…},也可以通过该集合中的各元素必须且只须满足的条件p 来定义,并记为A={x/x 满足条件p}.如例1可表示为{4,7,8,3}.例3可表示为)}1,0({∈x x .
设A 是一个集合,x 是A 的元素,我们称x 属于A,记为A x ∈.x 不是A 的元素,称x 不属于A,记为A x ∉.
一个集合由且只由其全部元素所确定.因此,两个集合A 与B 当且只当它们有完全一致的元素时称为相等,记为A=B.例如A={2,3,5,7},B={3,7,5,2},C=}10{的素数为小于x x ,我们有A=B=C.
为了形式上的方便,我们引进不含任何元素的集合,称之为空集,记为φ.例如
}1{}{2-==≠=x x x x x x 为实数且φ
两个集合A 与B 如果具有关系:A 的每一个元素都是B 的元素,则称A 是B 的子集,记为B A ⊂(读作A 包含于B);或称B 包含A,记为A B ⊃.空集可以看成任何集合的子集.若A 是B 的子集但不等于B,则称A 为B 的真子集.例如全体有理数是全体实数的真子集. 必须注意⊂∈和的区别.∈表示集合和它的元素之间的关系.⊂表示集合与集合之
间的关系.故当A a ∈时,不能写成A a ⊂,但可以写成A a ⊂}{,这里}{a 表示只含一个元素a 的集合.
包含关系显然具有下面的性质:
定理1 对于任何集合A 、B 、C ,均有
(1)A A ⊂;
(2)B A A B B A =⊂⊂,则,;
(3) C A C B B A ⊂⊂⊂,则,.
我们在做题的时候经常会证明两个集合相等,这时,我们经常用性质(2)来证明.。