相交线与平行线单元测试题
(完整word版)相交线与平行线单元测试卷(含答案)
12345678(第4题)ab cABCD (第7题)第五章《相交线与平行线》测试卷姓名 _______ 成绩 _______一、选择题(每小题4分,共 40 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图,在正方体中和AB 垂直的边有( )条。
A.1 B 。
2 C.3 D 。
43、如图AB ∥CD,∠ABE=120°,∠ECD=25°,则∠E=( )A.75°B.80°C.85° D 。
95°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④ 5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )A B CDE(第10题)水面入水点运动员(第14题)ABCDEF G H 第13题A BCD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
相交线与平行线单元测试题总集完整含答案
B E DA CF87654321DCBA第五章 相交线与平行线测试题一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138、;B . 都是10;C . 42138、或4210、;D . 以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错DB A C1ab1 2OABCD EF 2 1Oa b M P N 1 2 3A B C a b1 23 B E9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180B .270C .360D .540二、填空题(每题3分,共18分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.图7 图8 图9 图1012、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______14、如图11,已知a b ∥,170∠=,240∠=,则3∠ 图11 1315、如图12的一个条件 .16、如图13,已知AB CD //,∠α=____________ 三、解答题(共52分)17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则∥ ()②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. (8分)12 bac b ac d1 2 3 4 A BCDE 321DCBAABCDO123EF19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角; (3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角?(5)若有2008条直线相交于一点,则可形成 多少对对顶角?21、(6分)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30º,求∠EAD ,∠DAC ,∠C 的度数。
平行线与相交线单元测试题
平行线与相交线单元测试题一、选择题(每题2分,共10分)1. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点的直线C. 垂直于同一条直线的直线D. 相交于一个点但角度不同的直线2. 如果两条直线相交,它们的角度和是多少度?A. 90度B. 180度C. 360度D. 45度3. 以下哪项不是平行线的性质?A. 平行线在任何地方都不相交B. 平行线之间的距离处处相等C. 平行线可以相交D. 通过平行线之一可以画出无数条平行线4. 两条平行线被第三条直线所截,所形成的内错角的特点是?A. 内错角相等B. 内错角互补C. 内错角和为90度D. 内错角和为180度5. 同位角的定义是什么?A. 两条平行线被第三条直线所截,同侧的角B. 两条直线相交形成的角C. 两条平行线被第三条直线所截,异侧的角D. 两条直线相交形成的同侧角二、填空题(每题2分,共10分)6. 当两条直线相交时,它们形成的角中,____角相等。
7. 如果两条直线相交,且其中一个角是90度,则这两条直线是____。
8. 平行线之间的距离在任何地方都是____。
9. 两条平行线被第三条直线所截,同旁内角的和是____。
10. 如果两条直线相交,且其中一个角是锐角,则这个角的对顶角是____。
三、判断题(每题1分,共5分)11. 平行线永远不会相交。
()12. 垂直线是相交线的一种特殊形式。
()13. 两条平行线之间的夹角总是90度。
()14. 同旁内角互补,即它们的和为180度。
()15. 如果两条直线相交形成的角是钝角,那么这个角的对顶角是锐角。
()四、简答题(每题5分,共10分)16. 解释什么是“对应角”,并给出一个例子。
17. 描述如何使用三角板来测量两条直线是否平行。
五、计算题(每题5分,共10分)18. 如果两条平行线被一条直线所截,形成的内错角分别为40度和140度,请计算同旁内角的度数。
19. 在一个直角三角形中,如果一个锐角是30度,求另一个锐角的度数。
相交线与平行线单元测试题(含答案)
相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。
《相交线与平行线》单元测试题
《相交线与平行线》单元测试题一.选择题(共10小题)1.下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.下列句子中不是命题的是()A.明年是2020年B.延长线段EFC.三角形的内角和是360度D.对顶角相等3.在同一平面内,已知点P在直线l上,过点P画直线l的垂线,可以画出多少条()A.1条B.2条C.3条D.4条4.如图,下列判断正确的是()A.∠3与∠6是同旁内角B.∠2与∠4是同位角C.∠1与∠6是对顶角D.∠5与∠3是内错角5.如图,点P是直线l外一点,从点P向直线l引P A,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是()A.P A B.PB C.PC D.PD6.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c7.如图,在下列给出的条件中,不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE8.如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=7cm,EC =4cm,那么平移距离为()A.3cm B.5cm C.8cm D.13cm9.如图,AC∥BD,AE∥BF,下列结论错误的是()A.∠A=∠B B.∠A+∠B=180°C.∠B=∠DPE D.∠A=∠APB 10.某同学的作业如下框,其中横线处应填的依据是()如图所示,当∠1=∠2时,∠3=∠4吗?为什么?请完成下面的说理过程.解,∵∠1=∠2(已知).∴直线a∥b(______________).∴∠3=∠4(两直线平行,同位角相等)A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行二.填空题(共6小题)11.如图所示,△EFG是由△ABC沿水平方向平移得到的,如果∠ABC=90°,AB=3cm,BC=2cm,则EF=,FG=,EG=.12.将命题“互为补角的两个角都是锐角”改写成“如果……,那么……”的形式是.13.如图,在三角形ABC中,∠C=90°,AC=3,BC=4,AB=5,则点A到BC的距离等于.14.如图,在长方体中,与棱AB平行的棱有条.15.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.16.如图,已知∠1=∠2=32°,∠D=78°,则∠BCD=.三.解答题(共8小题)17.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.18.指出下列命题的题设和结论,并判断其真假,如果是假命题,请举出一个反例.(1)邻补角互补;(2)同旁内角互补.19.如图,△ABC,△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2,请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.20.如图,在直角三角形ABC中,∠C=90°,DE⊥AC交AC于点E,交AB于点D.(1)请分别写出当BC,DE被AB所截时,∠B的同位角、内错角和同旁内角.(2)试说明∠1=∠2=∠B的理由.21.如图,已知AB∥CD,射线AH交BC于点F,交CD于点D,从D点引一条射线DE,若∠B+∠CDE=180°,求证:∠AFC=∠EDH.证明:∵AB∥CD(已知)∴∠B=(两直线平行,内错角相等)∵∠B+∠CDE=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥(同旁内角互补,两直线平行)∴=∠EDH()∵=∠BFD(对顶角相等)∴∠AFC=∠EDH(等量代换)22.如图是两个重叠的直角三角形,将其中一个直角三角形沿着BC方向平移BE的长度就得到该图形,求阴影部分的面积(单位:厘米)23.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连结OF.(1)ED是否平行于AB,请说明理由;(2)若OD平分∠BOF,∠OFD=80°,求∠1的度数.24.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.。
(完整版)《相交线与平行线》单元测试卷含答案
第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°1 2 33.如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC. ∠B+∠ECB=180°D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为()A.向右平移1格再向下B.向右平移3格再向下C.向右平移2格再向下D.以上答案均可5.如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D.垂直于同一直线的两直线平行6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()A.a∥dB.a⊥cC.a⊥dD.b⊥d8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120 °B.130°C.140°D.150°9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°10.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()6 8 9 10二、填空题(每题3分,共21分)11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离为cm.11 14 1515.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.三、解答题(22~24题每题9分,其余每题8分,共59分)18.如图,在一条公路l的两侧有A,B两个村庄.(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.23.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射光线与平面镜的夹角等于反射光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么进入潜望镜的光线和离开潜望镜的光线是平行的.24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立?若不成立,请说明理由.参考答案一、1.【答案】B 2.【答案】C3.【答案】B解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B二、11.【答案】∠1=∠212.【答案】4解:a=3,b=1.13.【答案】垂直14.【答案】215.【答案】9016.【答案】14017.【答案】8062三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).相等),又因为∠E=∠EMC,所以∠BCD=∠ACD(等量代换).所以CD是∠ACB的平分线(角平分线定义).21.解:OD和OE互相垂直,即OD⊥OE.理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),所以∠ENM=∠E(等量代换),所以AE∥HM(内错角相等,两直线平行).所以∠EAM=∠AMH(两直线平行,内错角相等).又因为∠1=∠2,所以∠EAM+∠1=∠AMH+∠2(等式性质),即∠BAM=∠AMC.所以AB∥CD(内错角相等,两直线平行).所以∠AMD+∠BAP=180°(两直线平行,同旁内角互补).因为∠4=∠AMD(对顶角相等),所以∠4+∠BAP=180°(等量代换).23.解:根据题意,作出如图所示的几何图形,已知:AB∥CD,∠1=∠2,∠3=∠4.试说明:EF∥GH.说明过程:因为AB∥CD(已知),所以∠2=∠3(两直线平行,内错角相等).又因为∠1=∠2,∠3=∠4,所以∠1=∠2=∠3=∠4.因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),所以∠5=∠6,所以EF∥GH(内错角相等,两直线平行).即进入潜望镜的光线和离开潜望镜的光线是平行的.24.解:(1)如图①:过点P作MP∥AC,则MP∥BD,因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,①②(2)不成立.理由如下:如图②,过点P作MP∥AC,则MP∥BD, 因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,即:360°-∠APB=∠PAC+∠PBD.所以∠APB=∠PAC+∠PBD不成立.。
《相交线与平行线》单元测试题及答案
第二章相交线与平行线单元测试卷(含答案)(时间:45 分钟总分 100 分)一、选择题:(四个选项中只有一个是正确的,每题3 分,共30 分)1.下面各图中∠1 和∠2 是对顶角的是()2.下列说法正确的是()A.相等的角是对顶角B.两条直线的位置关系有相交和平行C.两直线平行,同旁内角相等D.同角的补角相等3.如图,CD⊥AB,垂足为D,则点A 到直线CD 的距离是()A.线段CA 的长B.线段CD 的长C.线段AD 的长D.线段AB 的长4.如图,下列说法正确的是()A.∠1 和∠B 是同旁内角B.∠1 和∠C 是内错角C.∠2 和∠B 是同位角D.∠3 和∠C 同旁内角5.如图,下列条件中不能判断直线a∥b 的是()A.∠1=∠2 B.∠3=∠4 C.∠2=∠3 D.∠5+∠6=180°6.如图,AB∥CD,CE⊥BD,则图中与∠1 互余的角有()A.1个B.2 个C.3 个D.4 个7.如图,下列判断错误的是()A.∵∠1=∠2,∴AE∥BD B.∵∠3=∠4,∴AB∥CDC.∵∠1=∠2,∴AB∥DE D.∵∠5=∠BDC,∴AE∥BD8.如图,AB∥CD∥EF,BC∥DE,则∠B 与∠E 的关系是()A.相等B.互余C.互补D.不能确定9.如图,AB∥CD,∠1=58°,FG 平分∠EFD,则∠FGB 的度数等于()A.122°B.151°C.116°D.97°10.如图,直线a∥b,直角三角形ABC 的顶点B 在直线a 上,∠C=90°,∠β=55°,则∠α的度数为()A.15°B.25°C.35°D.55°二.填空题:(将答案填在题目的横线上,每空3 分,共18 分)11.如图,∠1=∠2,∠4=58°,则∠3= 度;12.如图,AB∥CD,EF⊥CD 于点F,射线FN 交AB 于点M,∠NMB=57°,则∠EFN=;13.若一个角的余角是它的3 倍,则这个角的度数为;14.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD= ;15.如图,把矩形(长方形)ABCD 沿EF 对折,若∠1=40°,则∠AEF= ;16.老师在黑板上随便画了两条直线AB,CD 相交于点0,还作了∠BOC 的平分线OE 和CD 的垂线OF(如图),若∠DOE 被OB 分成2:3 两部分,则∠AOF 等于度;三、解答题:(写出必要的说明过程、解答步骤,共52 分)17.尺规作图:已知∠ABC,求作一个角等于∠ABC;(保留作图痕迹)(6 分)18.已知:如图,BE∥DF,∠B=∠D;试说明AD∥BC;(8 分)19.如图,直线EF,CD 相交于点O,OA⊥OB,且OC 平分∠AOF;若∠AOE=40°,求∠BOD 的度数;(9 分)20.推理填空:(9 分)如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD 与AB 的位置关系;解:∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠=90°()∴DG∥,∴∠2=∠,∵∠1=∠2(已知)∴∠1=∠()∴EF∥,∴∠AEF=∠()∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.21.如图,BE 平分∠ABD,DE 平分∠BDC,DG 平分∠CDF,且∠1+∠2=90°,试说明BE∥DG;(9 分)22.已知一个角的两边与另一个角的两边分别平行,请结合图①②探索这两个角之间的关系;(11 分)(1)如图①,AB∥CD,BE∥DF,则∠1 与∠2 的关系是;(2)如图②,AB∥CD,BE∥DF,则∠1 与∠2 的关系是;并说明理由;(3)由此得出结论,如果两个角的两边分别平行,那么这两个角;(4)若两个角的两边分别平行,且一个角比另一个角的3 倍少60°,则这两个角分别为多少度?参考答案:1~10 CDCDB ACBBA 11.58;12.33°;13.22.5°;14.40°;15.110°;16.45°或90度;717.略;(参考课本P56 步骤5 的图)18.方法一:(利用同旁内角互补,两直线平行)∵BE∥DF(已知),∴∠B+∠BCD=180°(两直线平行,同旁内角互补)∵∠B=∠D(已知)∴∠D+∠BCD=180°(等量代换)∴AD∥BC (同旁内角互补,两直线平行)方法二:(利用三角形内角和等于180°)(略)19.∵OA⊥OB(已知)∴∠AOB=90°(垂直的定义)∵∠AOE=40°(已知)∴∠BOE=∠AOB-∠AOE=90°-40°=50°∵OC 平分∠AOF(已知)∴∠AOC = 1 ∠AOF =1 (∠EOF -∠AOE) =1 (1800- 400 ) = 7002 2 2∴∠BOD = ∠COD -∠AOC -∠AOB = 1800- 700- 900= 200∴∠BOD=20°20.按顺序分别填:BCA,垂直的定义,AC,ACD,ACD,等量代换,CD,ADC,两直线平行,同位角相等;21.方法一:通过证明∠E=∠EDG 得到;∵∠1+∠2=90°(已知)∴△BDE 中,∠E=180°-(∠1+∠2)=90°∵DE 平分∠BDC,DG 平分∠CDF(已知)∴∠EDG=∠EDC+∠CDG= 1 ∠BDC+ 1 ∠CDF =1 ∠BDF =1 ⨯1800= 9002 2 2 2∴∠E=∠EDG(等量代换)∴BE∥DG (内错角相等,两直线平行)方法二:通过证明∠1=∠3 得到;(略)22.(1)相等;(2)互补;∵AB∥CD(已知)∴∠1=∠3(两直线平行,内错角相等)∵BE∥DF(已知)∴∠2+∠3=180°(两直线平行,同旁内角互补)∴∠1+∠2=180°(等量代换)(3)相等或互补;(4)30°,30°;或60°,120°;解:设一个角为x,则另一个角为3x-60°,①由x=3x-60°得:x=30°,3x-60°=30°②由x+3x-60°=180°得:x=60°,3x-60°=120°∴这两个角分别30°,30°或60°,120°;。
相交线与平行线单元测试题含答案
相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。
人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)
第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
相交线与平行线 单元测试题(含答案)
相交线与平行线 单元测试题一、选择题(每小题3分,共30分)1. 如图,直线AB 、CD 相交于O 点,若︒=∠301,则∠2、∠3的度数分别为( )第3题图A. 120°、60°B. 130°、50°C. 140°、40°D. 150°、30°2. 已知同一平面内的直线l 1、l 2、l 3,如果l 1⊥l 2,l 2∥l 3,那么l 1与l 3的位置关系是( ).A.平行B.相交C.垂直D.以上均不对3.如图,AB ∥CD ,若∠1=45°,则∠2的度数是( ) A. 45° B. 90° C. 30° D. 135°4. 下列说法中,正确的是 ( )A .同一平面内,两条直线的位置关系只有相交、平行两种;B .同一平面内,不相交的两条线段互相平行;C .不相交的两条直线是平行线;D .同一平面内,不相交的两条射线互相平行.5.如图,AOC ∠和BOD ∠都是直角,且︒=∠30DOC ,则=∠AOB ( ). A .︒30 B .︒60C .︒120D .︒1506. 以下判定中,正确的个数有( ) (1)若a ∥b ,b ∥c ,则a ∥c (2)若a ⊥b ,b ⊥c ,则a ⊥cA B CD12 123A BCD O 第1题图AODCBDC B A 1(3)若同旁内角相等,则两直线平行(4)若同位角相等,则两直线平行 A .1个 B .2个 C .3个 D .4个7.将含300角的三角板ABC 如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=900,当∠1=600时,图中等于300的角的个数是( )A.6个B.5个C.4个D.3个 8. 如图,若∠1=70°,∠2=110°,∠3=70°,则有( ) A.a ∥b B.c ∥dC.a ⊥d D.任两条都无法判定是否平行bcda3217题图 8题图 9题图9. 如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ) A .30° B.40° C .60° D.70°10. Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( )A .35°B .45°C .55°D .65° 二、填空题(每小题3分,共30分)1. 如图,AB ∥CD ,则与∠1相等的角(∠1除外)共有 个.2.如图,直线l 1与l 2相交于点O ,1OM l ⊥,若44α∠=︒,则β∠等于 .A B CD EACBDEFEDCB A12N MG F EDC BA GF EDCB A 12第2题图 第3题图3.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α= 度.4. 如图,如果DE ∥AB ,那么∠A + =180°,或∠B + =180°,根据是 ;如果∠CED =∠FDE ,那么 ∥ .根据是内错角相等,两直线平行.F E DCBA第4题图 第5题图 第6题图 第7题图 5. 如图,已知AB ∥CD ,∠1=65°,∠2=45°,则∠ADC =________. 6.如图,若AB ∥EF ,BC ∥DE ,则∠B +∠E =________.7.如图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°,则∠BAC 的度数是 .8.如图,已知直线AB ,CD 被直线EF 所截,若∠1=∠2,•则∠AEF+∠CFE =________.第8题图 第9题图 第10题图9.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于E ,F ,EG •平分∠BEF ,若∠1=72°,则∠2=_______.10. 如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG =50°,则∠DEG 的度数为 .三、解答题55DαAC BlmO l 2l 1βα1. 读句画图:如图,直线CD 与直线AB 相交于C ,根据下列语句画图: (1)过点P 作PQ ∥CD ,交AB 于点Q ; (2)过点P 作PR ⊥CD ,垂足为R .2.已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行; (1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有 (填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”. 已知:如图,_____________________. 求证:_____ ______.cb a123.如图,AB 与CD 相交于点O ,OE ⊥CD ,∠BOE =54°,求∠AOC 的度数.4. 如图,在网格图中,平移三角形ABC 使点A 平移到点D .FE21DCBA(1)画出平移后的三角形DEF ;(2)三角形DEF 与三角形ABC 有什么关系?5.如图,已知B 、E 分别是AC 、DF 上的点,∠1=∠2,∠C =∠D . (1)∠ABD 与∠C 相等吗?为什么? (2)∠A 与∠F 相等吗?请说明理由.6. 如图,MN 、EF 是两面互相平行的镜面,根据镜面反射规律,若一束光线AB 照射到镜面MN 上,反射光线为BC ,则一定有∠1=∠2.试根据这一规律:(1)利用直尺和量角器作出光线BC 经镜面EF 反射后的反射光线CD ; (2)试判断AB 与CD 的位置关系,并说明理由.7.有一天李小虎同学用《几何画板》画图,他先画了两条平行线线AB 、CD ,然后在平行线间画了一点E ,连结BE 、CE 后(如图①),它用鼠标左键点住点E ,拖动后,分别得到如图②、③、④等图形,这时它突然一想,∠B 、∠D 与∠BED 之间的度数有没有某种联系呢?接着小虎同学通过利用《几何画板》的“度量角度”和“计算”的功能,找到了这三个角之间的关系。
相交线与平行线单元测试题
相交线与平行线单元测试题一、选择题(每题2分,共20分)1. 下列说法中,正确的是:A. 经过直线外一点,有且只有一条直线与已知直线平行B. 经过直线外一点,有且只有一条直线与已知直线相交C. 经过直线外一点,可以画无数条直线与已知直线平行D. 经过直线外一点,可以画无数条直线与已知直线相交2. 如果两直线相交,那么它们相交所成的角是:A. 锐角B. 直角C. 钝角D. 任意角3. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线:A. 平行B. 相交C. 垂直D. 无法判断4. 平行线的性质中,下列说法不正确的是:A. 平行线之间的距离处处相等B. 平行线永不相交C. 两条平行线可以确定一个平面D. 平行线之间的夹角是锐角5. 对于两条平行线,下列说法正确的是:A. 它们之间的距离在任何地方都是相同的B. 它们可以相交C. 它们之间的夹角可以是任意角D. 它们可以确定一个平面二、填空题(每题2分,共10分)6. 如果两条直线相交成直角,则称这两条直线互相______。
7. 两条直线相交,如果其中一个角是锐角,则其他三个角分别是______。
8. 平行线之间的距离是指______。
9. 两条直线相交所成的角中,最大的角是______。
10. 如果两条直线被第三条直线所截,那么内错角相等的条件是这两条直线______。
三、判断题(每题1分,共10分)11. 两条直线相交所成的角都是锐角。
()12. 平行线在任何地方的距离都是相等的。
()13. 两条直线相交,形成的对顶角相等。
()14. 两条平行线之间的夹角是直角。
()15. 如果两条直线被第三条直线所截,同位角相等,则这两条直线平行。
()四、简答题(每题5分,共20分)16. 解释什么是“同位角”、“内错角”和“同旁内角”,并说明它们在判断两条直线是否平行时的作用。
17. 描述如何使用直角三角板来检验两条直线是否平行。
18. 给出两条直线相交的几何图形,并说明如何确定它们相交所成的角的大小。
第五章《相交线与平行线》单元测试卷(含答案)
第五章 相交线与平行线单元测试班级: 姓名: 考生得分:一、选择题(每小题3分,共30分) 1.已知∠α=35°,则∠α的补角的度数是( ) A.55° B.65° C.145° D.165° 2.将图中所示的图案平移后得到的图案是( )A. B. C. D.3.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数 是( )A.60°B.50°C.40°D.30°4.如图,a ∥b ,∠1=∠2,∠3=40°,则∠4等于( ) A.40° B.50° C.60° D.70° 5.如图所示,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为( ) A .30° B .35° C .40° D .45°6.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( ) A .1个 B .2个 C .3个 D .4个7.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( ) A .∠1=∠2 B .∠3=∠4 C .∠5=∠B D .∠B +∠BDC =180°8.如图,DH ∥EG ∥BC ,DC ∥EF ,那么与∠DCB 相等的角的个数为( ) A .2个 B .3个 C .4个 D .5个 9. 下列条件中能得到平行线的是( )①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线. A .①② B .②③ C .② D .③10. 两平行直线被第三条直线所截,同位角的平分线( ) A .互相重合 B .互相平行 C .互相垂直 D .相交二、填空题(每小题3分,满分24分) 11.图中是对顶角量角器,用它测量角的原理是 .12.如图,l ∥m ,∠1=120°,∠A =55°,则∠ACB 的大小是 . 13.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠, 能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB ,CD ,EF 相交于点O ,且AB ⊥CD ,∠1与∠2的关系是 .15.如图,在△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .16.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,则∠2= .1718第2题图第6题图 第7题图 第8题图第11题图第13题图 第14题图 第15题图 第16题图 第17题图第18题图第3题图三、解答题(共46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)21.(8分)已知:如图,∠BAP+∠APD =180°,∠1 =∠2.求证:∠E =∠F.22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.24.(9分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.25.(10分)如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?第19题图第五章相交线与平行线检测题参考答案1.C 解析:∵∠α=35°,∴∠α的补角的度数为180°35°=145°,故选C.2. C 解析:根据平移的性质可知C正确.3. C 解析:因为FE⊥DB,所以∠FED=90°,由∠1=50°可得∠FDE=90°-50°=40°.因为AB∥CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.4. D 解析:因为a∥b,所以∠2=∠4.又∠2=∠1,所以∠1=∠4.因为∠3=40°,所以∠1=∠4==70°.5. C 解析:由AB∥CD可得,∠FEB=∠C=70°,∵∠F=30°,又∵∠FEB=∠F+∠A,∴∠A=∠FEB∠F=70°30°=40°.故选项C是正确的.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11.对顶角相等解析:根据图形可知量角器测量角的原理是:对顶角相等.12. 65°解析:∵l∥m,∴∠ABC=180°-∠1=180°-120°=60°.在△ABC中,∠ACB=180°-∠ABC-∠A=180°-60°-55°=65°.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与直线a相交于点D,∵a∥b,∴∠ADC=∠DBE=50°. ∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 120 解析:∵AB∥CD,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°.理由:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621×5×621×2×521×4×221××121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD .∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF .∴ AE ∥FP .∴ ∠E =∠F .22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°,∴ ∠EDC =∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.25、解:(1)∵∠AOE +∠AOF =180°(互为补角),∠AOE =40°,∴∠AOF =140°; 又∵OC 平分∠AOF ,∴∠FOC =∠AOF =70°,∴∠EOD =∠FOC =70°(对顶角相等);而∠BOE =∠AOB ﹣∠AOE =50°,∴∠BOD =∠EOD ﹣∠BOE =20°; (2)(3)略。
相交线与平行线单元测试题
相交线与平行线单元测试题一、选择题(每题2分,共10分)1. 两条直线在同一平面内,且不相交,这两条直线叫做平行线。
以下哪项描述不正确?A. 平行线在任何情况下都不会相交B. 平行线之间的距离处处相等C. 平行线可以无限延伸D. 平行线可以相交2. 根据平行线的性质,以下哪个命题是正确的?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上都是3. 如果两条直线相交成30度角,那么这两条直线的对顶角是:A. 30度B. 60度C. 90度D. 120度4. 已知直线AB与CD相交于点O,那么OA与OB的关系是:A. OA=OBB. OA垂直于OBC. OA平行于OBD. 无法确定5. 在平面几何中,以下哪个条件不能判定两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线没有交点二、填空题(每题2分,共10分)6. 如果两条直线相交所构成的同位角不相等,则这两条直线_________。
7. 平行于同一条直线的两条直线_________。
8. 两条直线相交,如果其中一个角是直角,则这两条直线_________。
9. 如果直线a与直线b相交,且a垂直于直线b,则直线a与直线b所成的角是_________度。
10. 两条平行线被第三条直线所截,同旁内角的度数之和为_________。
三、判断题(每题1分,共5分)11. 两条直线相交所形成的角中,对顶角相等。
()12. 平行线的性质可以推出同位角相等,内错角相等,同旁内角互补。
()13. 如果两条直线相交,那么它们一定在某一点相交。
()14. 两条直线相交所形成的角中,邻角互补。
()15. 平行线之间的距离处处相等,这是平行线的一个性质。
()四、简答题(每题5分,共10分)16. 解释什么是“相交线”,并给出相交线的基本性质。
17. 解释什么是“平行线”,并说明平行线的性质有哪些。
五、解答题(每题15分,共15分)18. 在平面直角坐标系中,已知直线L1: y = 2x + 3 和直线L2: y = -x + 5,请判断这两条直线是否平行或相交,并给出证明。
(完整版)相交线与平行线单元测试题
相交线与平行线单元测试题一、填空题(每小题3分,共30分)1、如图,AB⊥CD,垂足为B,EF是过点B的一条直线,已知∠EBD=135°,则∠CBE=_____, ∠ABF=______.(1) (5) (6)2、把命题“锐角的补角是钝角”改写成“如果……,那么……”的形式是__________.3、平移线段AB,使点A移动到点C的位置,若AB=3cm,AC=4cm,则点B移动的距离是______.4、过钝角的顶点向它的一边作垂线,将此钝角分成两个度数之比为1:6的角,则此钝角的度数为______.5、如图,两条直线a、b被第三条直线c所截,如果a∥b,∠1=70°,则∠2=______.6、如图,直线l1、l2分别和l3、l4相交,若∠1与∠3互余,∠2与∠3的余角互补,∠4 =110°,那么∠3=______.7、如图,把一张平行四边形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______.(7) (8) (9)8、如图,已知∠ABC+∠ACB=110°,BO、CO分别是∠ABC和∠ACB的平分线,EF 过点O与BC平行,则∠BOC=______.9、如图,AB∥CD,直线EF分别交AB、CD分于点E、F,FH平分∠EFD,若∠1=110°,则∠2=______.10、在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,那么10个圆把平面最多分成_____________个部分.二、选择题(每小题3分,共18分)11、如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC =70°,则∠BOD 的度数等于()A.30°B.35 C.20°D.40°(11) (13) (14)12、如图,将四个完全相同的矩形分别等分成四个相同的小矩形,其中阴影部分面积相等的是()A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等13、如图,直线a、b被直线c所截,若a∥b,∠1=130°,则∠2等于()A.30°B.40°C.50°D.60°14、如图,直线l1∥l2,l3⊥l4,有三个命题:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是()A.只有①正确B.只有②正确C.①和③正确D.①②③都正确15、如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为()A.120°B.100°C.140°D.90°(15) (17) (19)三、解答题(共72分)17、(7分)如图,已知∠BAP与∠APD互补,∠1=∠2,在括号中填上理由.因为∠BAP与∠APD互补() 所以AB∥CD()从而∠BAP=∠APC() 又∠1=∠2()所以∠BAP-∠1=∠APC-∠2 () 即∠3=∠4从而AE∥PF() 所以∠E=∠F()18、作图题(9分)(1)如图,小刚准备在C处牵牛到河边AB饮水:①请用三角板作出小刚行走的最短路线(不考虑其他因素);②如图,若小刚在C处牵牛到河边AB饮水,并且必须到河边D处观察河水的水质情况,请指出小刚行走的最短路线.19、(8分)如图,已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF =25°.求:∠AOC与∠EOD的度数.20、(6分)如图,依据图形,找出能使AD∥BC成立的条件(至少6个).(20) (21) (22)21、(8分)已知:如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC 的位置关系,并说明理由.22、(8分)如图所示,已知直线a∥b,直线c和直线a、b交于C、D两点,在C、D之间有一点M,如果点M在C、D之间运动,问∠1、∠2、∠3之间有怎样的关系?这种关系是否发生变化?23、(12分)已知AD与AB、CD交于A、D两点,EC、BF与AB、CD交于E、C、B、F,且∠1=∠2,∠B=∠C(如图).(1)你能得出CE∥BF这一结论吗?(2)你能得出∠B=∠3和∠A=∠D这两个结论吗?若能,写出你得出结论的过程.24、(14分)如图a),已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点,其中A、B、C为三个定点,点P在m上移动,我们知道,无论P点移动到任何位置总有△ABP与△ABC的面积相等,其理由是:______________________________________。
相交线与平行线单元测试卷(含答案)
12345678(第4题)ab cABCD (第7题)第五章《相交线与平行线》测试卷姓名 _______ 成绩 _______一、选择题(每小题4分,共 40 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图,在正方体中和AB 垂直的边有( )条.A.1B.2C.3D.4 3、如图AB ∥CD,∠ABE=120°,∠ECD=25°,则∠E=( )A.75°B.80°C.85°D.95°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BDA BCDE(第10题)水面入水点运动员(第14题)ABC D EFG H第13题7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
相交线与平行线单元测试卷(附答案)
相交线和平行线单元检测卷时间:90分钟满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.如图,直线a,b被直线c所截,∠1和∠2的位置关系是( )A.同位角B.内错角C.同旁内角D.对顶角2.下列图形中,不能通过其中一个四边形平移得到的是( )3.如图,直线a,b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b4.O为直线l外一点,A,B,C三点在直线l上,OA=4cm,OB=5cm,OC=1.5cm.则点O到直线l的距离( )A.大于1.5cm B.等于1.5cmC.小于1.5cm D.不大于1.5cm5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A.30° B.35°C.40° D.45°6.如图,AB∥CD,DA⊥AC,垂足为A.若∠ADC=35°,则∠1的度数为( )A.65° B.55° C.45° D.35°7.如图,下列说法正确的个数有( )①过点A有且只有一条直线AC垂直于直线l;②线段AC的长是点A到直线l的距离;③线段AB,AC,AD中,线段AC最短,根据是两点之间线段最短;④线段AB,AC,AD中,线段AC最短,根据是垂线段最短.A.1个 B.2个C.3个 D.4个8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是( )A.∠2=60° B.∠3=60°C.∠4=120° D.∠5=40°第8题图第9题图9.如图,在甲、乙两城市之间要修建一条笔直的城际铁路,从甲地测得公路的走向是北偏东42°,现在甲、乙两城市同时开工,为使若干天后铁路能准确在途中接通,则乙城市所修铁路的走向应是( )A.南偏西42° B.北偏西42° C.南偏西48° D.北偏西48°10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是BA.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A-∠C+∠D+∠E=180°D.∠E-∠C+∠D-∠A=90°二、填空题(每小题3分,共24分)11.如图,若剪刀中的∠AOB=30°时,则∠COD=________.12.如图,直线AB,CD被直线AE所截,AB∥CD,∠A=110°,则∠1=________度.第11题图第12题图第13题图13.如图,把河水引入试验田P灌溉,沿过P作河岸l的垂线开沟引水的理由是:.14.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=________.第14题图第15题图第16题图15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.16.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .17.对于同一平面内的三条直线a,b,c,给出下列五个结论:①a∥b;②b∥c;③a ⊥b;④a∥c;⑤a⊥c.请以其中两个作为已知条件,一个作为结论,组成一个正确的语句 (用数学语言作答).18.如图,a∥b,c⊥a,∠1=130°,则∠2等于________.三、解答题(共66分)19.(8分)如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.20.(10分)推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,试说明∠B+∠F=180°.解:∵∠B=__ __(已知),∴AB∥CD( ).∵∠DGF=____________(已知),∴CD∥EF( ).∴AB∥EF(___________________).∴∠B+______=180°(____ ).21.(10分)如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=60°,求∠DOG的度数.22.(12分)如图,AD∥BC,∠1=60°,∠B=∠C,DF为∠ADC的平分线.(1)求∠ADC的度数;(2)试说明DF∥AB.23.(12分)如图,BD⊥AC,ED∥BC,∠1=∠2,AC=9cm,且点D为AF的中点,点F为DC 的中点.(1)试说明BD∥GF;(2)求BD与GF之间的距离.24.(14分)已知BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,试说明OB∥AC;(2)如图②,若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于________(在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB∶∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,在平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA的度数等于________(在横线上填上答案即可).参考答案与解析1.B 2.D 3.D 4.D 5.D 6.B 7.C 8.D 9.A 10.C 解析:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,则∠A =∠ACG ,∠EDH =180°-∠E .∵AB ∥EF ,∴CG ∥DH ,∴∠CDH =∠DCG ,∴∠ACD =∠ACG +∠DCG =∠A +∠CDH =∠A +∠CDE -(180°-∠E ),∴∠A -∠ACD +∠CDE +∠E =180°.故选C.11.30° 12.70 13.垂线段最短 14.65° 15.80 16.63°30′17.若a ∥b ,b ∥c ,则a ∥c (答案不唯一) 18.40° 19.解:平移后的小船如图所示.(8分)20.解:∠CGF 同位角相等,两直线平行(2分) ∠F 内错角相等,两直线平行(6分) 平行于同一直线的两直线平行(8分) ∠F 两直线平行,同旁内角互补(10分)21.解:∵∠AOE =60°,∴∠BOF =∠AOE =60°(2分).∵OG 平分∠BOF ,∴∠BOG =12∠BOF =30°.(4分)∵CD ⊥EF ,∴∠COE =90°,∴∠AOC =90°-60°=30°,∴∠BOD =30°,(8分)∴∠DOG =∠BOD +∠BOG =60°.(10分)22.解:(1)∵AD ∥BC ,∴∠B =∠1=60°,∠C +∠ADC =180°.(3分)∵∠B =∠C ,∴∠C =60°,∴∠ADC =180°-60°=120°.(6分)(2)∵DF 平分∠ADC ,∴∠ADF =12∠ADC =12×120°=60°.(8分)又∵∠1=60°,∴∠1=∠ADF ,∴AB ∥DF .(12分)23.解:(1)∵ED ∥BC ,∴∠1=∠DBC .(2分)∵∠1=∠2,∴∠DBC =∠2,(4分)∴BD ∥GF .(6分)(2)∵AC =9cm ,D 为AF 的中点,F 为DC 的中点,∴AD =DF =FC =9÷3=3(cm).(9分)∵DF ⊥BD ,BD ∥GF ,∴BD 与GF 之间的距离为3cm.(12分)24.解:(1)∵BC ∥OA ,∴∠B +∠O =180°.∵∠A =∠B ,∴∠A +∠O =180°,∴OB ∥AC .(3分)(2)40°(6分) 解析:∵∠A =∠B =100°,由(1)得∠BOA =180°-∠B =80°.∵∠FOC =∠AOC ,OE 平分∠BOF ,∴∠EOF =12∠BOF ,∠FOC =12∠FOA ,∴∠EOC =∠EOF +∠FOC=12(∠BOF +∠FOA )=12∠BOA =40°. (3)∠OCB ∶∠OFB 的值不发生变化.(8分)理由如下:∵BC ∥OA ,∴∠OFB =∠FOA ,∠OCB =∠AOC .又∵∠FOC =∠AOC ,∴∠FOC =∠OCB ,∴∠OFB =∠FOA =∠FOC +∠AOC =2∠OCB,(10分)∴∠OCB∶∠OFB=1∶2.(11分)(4)60°(14分) 解析:由(1)知OB∥AC,∴∠OCA=∠BOC,由(2)可设∠BOE=∠EOF =α,∠FOC=∠AOC=β,∴∠OCA=∠BOC=2α+β.∵BC∥OA,∴∠OEB=∠EOA=α+2β.∵∠OEB=∠OCA,∴2α+β=α+2β,∴α=β.∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.。
《相交线与平行线》单元测试卷含答案
第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1、如图,直线a,b被直线c所截,∠1与∠2得位置关系就是()A、同位角ﻩB、内错角ﻩC、同旁内角D。
对顶角2、如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD得度数为() A.40°B、35°ﻩC。
50°ﻩD。
45°12 33.如图,AB∥EC,下列说法不正确得就是()A。
∠B=∠ECD B.∠A=∠ECDC、∠B+∠ECB=180°ﻩ D. ∠A+∠B+∠ACB=180°4。
如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整得图案,最终所有图案消失,则对小方块进行得操作为( )A.向右平移1格再向下ﻩB、向右平移3格再向下C。
向右平移2格再向下ﻩD。
以上答案均可5。
如图所示,3块相同得三角尺拼成一个图形,图中有很多对平行线,其中不能由下面得根据得出两直线平行得就是()A、同位角相等,两直线平行ﻩB。
内错角相等,两直线平行C.平行于同一直线得两直线平行ﻩD、垂直于同一直线得两直线平行6。
如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE得度数就是( )A、40°B。
70°C。
80°D、140°7。
同一平面内得四条互不重合得直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立得就是( )A。
a∥d B。
a⊥cﻩC、a⊥d D.b⊥d8。
如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B。
130°ﻩC.140° D.150°9。
如图,AD就是∠EAC得平分线,AD∥BC,∠B=30°,则∠C为( )A。
30°B。
60°ﻩ C.80°ﻩD、120°10、如图,把一块含有45°角得直角三角尺得两个顶点放在直尺得对边上。
(完整版)《相交线与平行线》单元测试卷含答案
第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1。
如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D。
对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为( )A.40°B.35° C。
50°D。
45°31 2 3。
如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC。
∠B+∠ECB=180° D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为( )A。
向右平移1格再向下 B。
向右平移3格再向下C.向右平移2格再向下D.以上答案均可5。
如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D。
垂直于同一直线的两直线平行6。
如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是( )A.40°B.70°C.80° D。
140°7。
同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是( )A。
a∥d B。
a⊥c C。
a⊥d D。
b⊥d8。
如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120 ° B。
130° C.140° D。
150°9。
如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )A。
30° B.60° C。
80° D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、(12分)已知AD与AB、CD交于A、D两点,EC、BF与AB、CD交于E、C、B、
且∠1=∠2,∠B=∠C(如图).
你能得出CE∥BF这一结论吗?
你能得出∠B=∠3和∠A=∠D这两个结论吗?若能,写出你得出结论的过程.
、平移线段AB,使点A移动到点C的位置,若AB=3cm,AC=4cm,则点B移动的
______.
、过钝角的顶点向它的一边作垂线,将此钝角分成两个度数之比为1:6的角,则此钝
______.
、如图,两条直线a、b被第三条直线c所截,如果a∥b,∠1=70°,则∠2=______.
、如图,直线l
、l2分别和l3、l4相交,若∠1与∠3互余,∠2与∠3的余角互补,∠4 =110°,
BAP与∠APD互补( ) 所以AB∥CD( )
BAP=∠APC( ) 又∠1=∠2( )
BAP-∠1=∠APC-∠2 ( ) 即∠3=∠4
AE∥PF( ) 所以∠E=∠F( )
、(14分)如图a),已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两
A、B、C为三个定点,点P在m上移动,我们知道,无论P点移动到任何位
ABP与△ABC的面积相等,其理由是:
。
解决问题:
如图b),五边形ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦
(图中折线CDE)还
(每小题3分,共30分)
、如图,AB⊥CD,垂足为B,EF是过点B的一条直线,已知∠EBD=135°,则∠CBE=_____,
ABF=______. 源自 (1) (5) (6)
、把命题“锐角的补角是钝角”改写成“如果……,那么……”的形式是__________.
3=______.
、如图,把一张平行四边形纸片ABCD沿BD对折,使C点落在E处,BE与AD相
O,若∠DBC=15°,则∠BOD=______.
(7) (8) (9)
、如图,已知∠ABC+∠ACB=110°,BO、CO分别是∠ABC和∠ACB的平分线,EF
O与BC平行,则∠BOC=______.
、如图,AB∥CD,直线EF分别交AB、CD分于点E、F,FH平分∠EFD,若∠1=110°,
2=______.
、在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+
个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14
、作图题(9分)
如图,小刚准备在C处牵牛到河边AB饮水:
①请用三角板作出小刚行走的最短路线(不考虑其他因素);
②如图,若小刚在C处牵牛到河边AB饮水,并且必须到河边D处观察河水的水
、(8分)如图,已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,
BOF =25°.
AOC与∠EOD的度数.
、如图,直线l
∥l2,l3⊥l4,有三个命题:①∠1+∠3=90°;②∠2+∠3=90°;③∠
∠4.下列说法中,正确的是( )
.只有①正确 B.只有②正确 C.①和③正确 D.①②③都正确
、如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度
10个圆把平面最多分成_____________个部分.
(每小题3分,共18分)
、如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC =70°,则∠BOD
( )A.30° B.35 C.20° D.40°
(11) (13) (14)
ABC同底等高,因此,它们的面积总相等.
解决问题:(1)画法如图.
联结EC,过点D作DF∥EC,交CM于点F,联结EF,EF即为所求直路的位置;
(2)设EF交CD于点H,由上面得到的结论,可知:
S
ECF=S△ECD,S△HCF=S△EDH.
∴S
ABCDE= S五边形ABCFE,S五边形EDCMN= S四边形EFMN.
同位角相等:∠GAD=∠ABC;…
、BF⊥AC,理由如下:
∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3.
∵∠1+∠2=180°,∴∠2+∠3=180°.
∴BF∥DE. ∴∠BFC=∠DEC.
∵DE⊥AC,∴∠DEC=90°.
∴∠BFC=90°. ∴BF⊥AC.
、因为平行线间的距离相等,所以无论点P在m上移动到任何位置,总有△ABP与
、(6分)如图,依据图形,找出能使AD∥BC成立的条件(至少6个).
(20) (21) (22)
、(8分)已知:如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC
、(8分)如图所示,已知直线a∥b,直线c和直线a、b交于C、D两点,在C、D之
( )A.120° B.100° C.140° D.90°
(15) (17) (19)
(共72分)
、(7分)如图,已知∠BAP与∠APD互补,∠1=∠2,在括号中填上理由.
D C A B C
、已知;
同旁内角互补,两直线平行;两直线平行,内错角相等;
已知;
等式的性质;
内错角相等,两直线平行;两直线平行,内错角相等.
、∵OF⊥CD,∴∠COF=90°.
∵∠BOF=25°,∴∠BOC=90°-∠BOF=65°
∴∠AOC=180°-∠BOC=115°.
张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包
(不计分界小
).
(1)写出设计方案,并在图中画出相应的图形; (2)说明方案设计理由.
1、45°;135° 2、如果一个角是锐角,那么它的补角是钝角
3、4cm 4、105° 5、110° 6、70°
7、150° 8、125°9、35° 10、92
∵OE⊥AB,∴∠AOE=90°.
∵∠AOD=∠BOC,
∴∠EOD=90°-∠AOD=25°
(∠EOD与∠BOF都是∠EOF的余角)
、内错角相等:∠ADB=∠CBD,∠ADC=∠DCH等
同旁内角互补:∠BAD+∠ABC=180°,
∠ADC+∠BCD=180°等
AD∥EF,且BC∥EF;…
、如图,将四个完全相同的矩形分别等分成四个相同的小矩形,其中阴影部分面积相
( )
.只有①和②相等 B.只有③和④相等
.只有①和④相等 D.①和②,③和④分别相等
、如图,直线a、b被直线c所截,若a∥b,∠1=130°,则∠2等于( )
.30° B.40° C.50° D.60°