第十九届“华杯赛”初赛初一组试题A与答案

合集下载

18~22届华杯赛初一组初赛试题及参考答案

18~22届华杯赛初一组初赛试题及参考答案

A. 4
B. 1
C. 1
3
2
3
D. 20 3
7.【第 18 届华杯赛初赛 B 卷第 3 题】
将乘积 0.2 43 0.325233 化为小数,小数点后第 2013 位数字是 ______ .
A.9
B.3
C.1
D.7
8.【第 18 届华杯赛初赛 B 卷第 4 题】
如果 a、b、c 都是大于 1 的负数,那么下列式子成立的是 ______ . 2
______ .A.1Fra bibliotekB.1007
C.2013
D.2014
16.【第 19 届华杯赛初赛 B 卷第 6 题】
x a 0 已知关于 x 的不等式组 5 2x 1 只有 5 个整数解,实数 a 的最大值是 ______ .
A. -4
B.1
C.0
D.-3
17.【第 20 届华杯赛初赛卷第 1 题】
D.16
12.【第 19 届华杯赛初赛 A 卷第 5 题】
已知:
a1 12 8, a2 102 98, a3 1002 998, a4 10002 9998,, a20 100 02 99 98
19 个 0
19 个 9
若 S a1 a2 a20 ,则 S 的各个数位上的数字总和是 ______ .
(2014)2 2 (2014) 2013 (2013)2 2 (2014) 4026 ______ .
A.1
B.0
C.-1
D.2
11.【第 19 届华杯赛初赛 A 卷第 2 题】
满足式子 x 5 4 y 2 10 的整数对 (x, y) 有 ______ 对.
A.4
B.8

第十九届华杯赛决赛试题选解

第十九届华杯赛决赛试题选解

第十九届华杯赛决赛试题选解(一)【1】(小中组第1题)用□和○表示两个自然数,若□×○=42,则(□×4)×(○÷3)= .解法一:联想乘法口诀:6×7=42,(□×4)×(○÷3)=(7×4)×(6÷3)=28×2=56.解法二:原式=(□×○)×4÷3=42÷3×4=14×4=56小满分教练评论:⑴题目告知“用□和○表示两个自然数”,这里没有明确说这是两个一位数,所以解答者的做法是缺乏依据的,从逻辑上讲,犯了“以偏概全”的错误。

如果一定要对□和○给出数值,再进行计算,那就应该考虑到它们所有可能的取值,然后逐一计算,最后加以综合再给出结论。

⑵解法一限于小中组学生尚未学习有余数的除法和分数,对□和○给出数值,就只限于用○表示两个自然数中那个能被3整除的数。

⑶解法二运用了结合律、交换律和添去括号的法则。

反映出选手对算律和法则的理解深刻,掌握得比较熟练。

运用解法二既简捷又深刻地从本质上解决了答案的唯一性。

此为本题考查的核心。

⑷由于本题是一道填空题,所以从卷面上无法看出选手解答是用的什么方法。

【2】(小中组第2题)计算:10×9×8+7×6×5+6×5×4+3×2×1-9×8×7-8×7×6-5×4×3-4×3×2=.解法一:原式=720+210+120+6-504-336-60-24=132解法二:原式=(10×9×8-9×8×7)+(6×5×4-5×4×3)-(8×7×6-7×6×5)-(4×3×2-3×2×1)=3×9×8+3×5×4-3×7×6-3×3×2=3×(72+20-42-6)=3×44=132小满分教练评论:⑴解法一是按照常规进行计算。

华杯赛初赛历年真题集(含答案)

华杯赛初赛历年真题集(含答案)

目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (30)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (32)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (38)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (40)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (46)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (48)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (53)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (60)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (70)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (72)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (79)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (81)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C 面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M和BC 的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.13.(3分)自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点,…、13点牌各一张).洗好后背面朝上放好.一次至少抽取_________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取_________张牌.。

第19届华杯赛初赛小高组卷及参考答案

第19届华杯赛初赛小高组卷及参考答案
第十九届华罗庚金杯少年数学邀请赛(A)卷
1、平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线相互平行。
(A)0
(B)2
(C)3
(D)4
2、某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分。小龙得 分 120 分,那么小龙最多答对了( )道试题。
总结:行程问题始终是围绕“路程=速度×时间”展开的,碰到行程问题,首先画出行程图, 明确题目的已知条件,可以通过其隐含的等量关系列方程求解。

6.解析:【知识点】平面几何,割补法
正方形 ABCD 被分成了四个三角形和一个不规则的四边形,我们设法将不规则阴影部分分割 成规则图形,如图过 E 点作 AB 的平行线,过 F 点作 BC 的平行线,过 G 点作 AB 的平行线,过 H 点作 BC 的平行线,四条辅助线的交点为 I、J、K、M ;
3.解析:【知识点】数独,平均数
题目要求的是 A, B, C, D 这四个方格中数的平均数,没必要求出 A, B, C, D 各自对 应的数是多少,求出它们的和即可;
如下图所示,将第四行的四个数字设为分别为 E,F,G,H,每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复,所以,我们可以得到:
行程问题中,有一个重要的公式“路程=速度×时间”,当路程一致时,速度与时间成反比, 我们假定两种情况下都是匀速运动,那么两种情况下,从甲地到丙地的速度比等于从丙地到 乙地的速度比;
从甲地到丙地, t原计划
: t实际
x : (x 5) ,则
v原计划 v实际
x5 x

同理,从丙地到乙地, t原计划
: t实际
A B E F 16 C D G H 16

第十九届华杯赛决赛解答_初一

第十九届华杯赛决赛解答_初一

第十九届华罗庚金杯少年数学邀请赛决赛试题解答(初一组)(时间: 2014年4月12日)一、填空(每题10分, 共80分)1. 计算: =÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-]6)8()3[(12)3()]27(0[625.385|54|)2(16)5(3233 . 【答案】2-【解答】原式 =⎪⎭⎫ ⎝⎛-⨯+-÷+--÷+-⨯-31312)3(27920)8(16)5(27=2611225299202135-=-=--+--. 2. 如图,由单位正方形组成的网格中,每个小正方形的顶点称为格点, 以格点为顶点做了一个三角形, 记L 为三角形边上的格点数目, N 为三角形内部的格点数目, 三角形的面积可以用下面的式子求出来:顶点在格点的三角形的面积=121-+N L如果三角形的边上与内部共有20个格点, 则这个三角形的面积最大等于 , 最小等于 .【答案】17.5, 9【解答】(题目中的公式取自闵嗣鹤教授写的《格点与面积》一本小册子, 只用到顶点数目, 其说明也易于理解. 下面的说明也是取自该书),根据顶点在格点图形的面积=121-+N L ,因为L 为三角形边上的格点数目, N 为图形内部的格点数目, 要使三角形面积最大, 则要求L 最小. 当L 最小的时候, 三角形只有三个顶点在格点上,其它的点在三角形的内部. 此时面积为17.5.这种图形是存在的, 在相邻的3列格点中, 三角形的三个顶点分别在其中一列上, 使得只有3个顶点在三角形的边上, 见下图.考虑面积最小的情况, 当所有的格点都在三角形的边上时, 面积最小. 取相邻两行格点, 三角形的一个顶点在其中一行, 底边包含19个格点在另一行, 此时面积为9, 见下图.下面叙述这个公式的一步步的说明过程.(1)考虑1+m 行, 1+n 列的矩形, 则图形内的点数为))((11--n m , 边上的点数为)(2n m +, 图形的面积为mn . 而1))(2(21)1)(1(-++--=n m n m mn . 因此公式成立.(2)对于直角三角形, 设直角边的长度分别为m , n . 设斜边上的点数为K , 则三角形内部的格点数为2211+---K n m ))((, 三条边上的格点数为1-++K n m .因此,1211212211+=-++++---mn K n m K n m )())((. 而三角形的面积为mn 21, 故公式成立. (3)对于一般的三角形, 有下面的三种方式:对于每个上述情况, 可以把这个三角形记为T , 放入一个矩形中. 这样把矩形分割成一些直角三角形, 矩形与T . 对这些直角三角形与矩形进行编号 ,3,2,1. 记i 个图形的内部格点数目为i N , 边上的格点数目为i L , 每个图形面积满足121-+i i L N . 注意到:a) 每个图形的内部格点一定是外部矩形的内部格点.b) 每个公共边上内部的格点属于两个图形.c) 公共边的端点可能为多个图形的顶点. 如上左图中A , B 属于两个图形边的顶点, C 为3个图形顶点.把每个点对应一个数, 图形内部的格点对应1, 图形边上的格点对应21. 这样用外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式.T 之内的格点为对应的数1, T 边上内部的格点对应的数为21211=-, T 的三个顶点对应数的和是21212212123-=⨯---, 公式中常数1对应的值为1121=-⨯--)(, 其他格点对应的数为0. 这样外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式= T 的内部格点数+⨯21(边的内部格点数3-)+(121+-) = T 的内部格点数+⨯21(边的内部格点数)1-,因此公式对T 成立.对其他两个图形也进行类似的讨论. 3. 长为4的线段AB 上有一动点C , 等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧, DC AD =, EB CE =, 则线段DE 的长度最小为 .【答案】2.【解答】 分别从D , E 向AB 作垂线, 过D 或E 做与AB 的平行线, 可以得到一个矩形, 参见右图. 线段DE 最短等于该矩形平行于AB 的边的长度(由过一点D 或E 到另一直线的距离, 垂线最短的结论). 三角形ACD 和三角形BCD 是等腰三角形, DE 最短等于AB 的一半, 即为2.4. 正整数c b a ,,满足等式, c b a =3, 且9432=⎪⎪⎭⎫ ⎝⎛++c b a , 又6822=+b a , 则=c . 【答案】12.【解答】由 cb ac b a ++==33, 知 9439322222222=⎪⎭⎫ ⎝⎛++=++==c b a c b a c b a , 所以,153499222=+=+)(b a c . 得1442=c , 12=c .5. 如图, 直角三角形ABC 中, F 为AB 上的点, 且FB AF 2=, 四边形EBCD 为平行四边形, 那么【答案】2【解答】连接FC , BD , 设kEF FD =, S S BFE =∆, 那么kS S BDF =∆, S k S S FBC BCD )1(+==∆∆. 由FB AF 2=可知kS S AFD 2=∆, 进而S k S A B C )41(+=∆, 得又所以)1(341k k +=+.解得, 2=k . 因此, EF FD 2=.6. 方程023=+++C Bx Ax x 的系数C B A ,,为整数, 5||,5||,5||<<<C B A , 且1是方程的一个根, 那么这种方程总共有 个.【答案】60【解答】由已知,b x a b x a x b ax x x C Bx Ax x --+-+=++-=+++)()1())(1(23223,其中, a , b 为实数, 于是有b C a b B a A -=-=-=,,1,并且得到a , b 为整数. 由题目条件得5||,5||,5|1|<<-<-b a b a .因此555564<<-+<<-<<-b b a b a ,,.当0=b 时, 由55,64<<-<<-a a , 得54<<-a , 即a 能够取8个整数值. 类似地, 当b 为1, 2, 3, 4 时, a 分别可以取9, 8, 7, 6个整数值. 同样地, 当1-=b 时, 由46,64<<-<<-a a , 得44<<-a , 即a 能能够取7个整数值. 类似地, 当b 为4,3,2---时, a 分别可以取6, 5, 4个整数值.这样, ),(b a 的取法, 亦即),,(C B A 的取法有60)4567()67898(=++++++++(种)所以, 这种方程共有60个.7. 一辆公交快车和一辆公交慢车沿某环路顺时针运行, 它们的起点分别在A站和B 站, 快车每次回到A 站休息4分钟, 慢车每次回到B 站休息5分钟, 两车在其他车站停留的时间不计. 已知沿顺时针方向A 站到B 站的路程是环路全程的52, 两车环行一次各需45分钟和51分钟(不包括休息时间), 那么它们从早上6时同时出发, 连续运行到晚上10时, 两车同在B 站共 次.【答案】3【解答】记早上6时为第0分钟, 从6时到22时是 9606016=⨯分钟, 快车环行一周连同休息时间需49445=+分钟, 294919960+⨯=, 慢车环行一周连同休息时间需56551=+分钟, 85617960+⨯=. 即第960分钟时, 快车共环行了19次, 慢车环行了17次.设慢车第m 次(171≤≤m , 6点出发为第0次)到达B 站的时间为第 m T 分钟, 则有:556-=m T m .快车第1次到达B 站是在第185245=⨯ 分钟, 11491918960+⨯=-, 快车经过B 站共20次. 记第n 次(201≤≤n )经过B 站的时间为n t 分钟, 则3149)1(4918-=-+=n n t n .两车同在B 站时, m , n 必须满足:m n m 563149556≤-≤-. 26495631n m ≤-≤推出31564926≤-≤m n , 73187726≤-≤m n . 既然m n 87-是整数, 故有4874≤-≤m n , 即得到二元整数方程:487=-m n .由上面的方程得,51,4≤≤=k k n ,得到:,4847=-⨯m k 127=-m k .所以, k 为奇数. 当k 为1, 3, 5时, m 分别为3, 10, 17, n 分别为4, 12, 20.所以, 快车和慢车同在B 站3次.8. 如果a , b , c 为不同的正整数, 且 222c b a =+¸那么乘积abc 最接近2014的值是 .【答案】2040【解答】解答1. 设如若平方数c ²取3m 或13+m 的形式, 那么a , b 中必有3的倍数, 不然c ²为23+m , 而与原设矛盾.如若设平方数c ²取5m 或5m ±1的形式, 那么, 要是a , b 都不是5的倍数, 则c ²必为5m 或5m ±2, 而与原设矛盾; 要是a , b 都是5m , 则c 为5的倍数, 要是a , b 是5m ±2, 则c 不是5的倍数, 而与题设矛盾, 则a , b 中必有5的倍数.若设平方数c ²取4m 或14+m 的形式, 要是a , b 都不是4的倍数, 则c ²必为24+m 的形式, 与题设矛盾. 故, a , b 中必有4的倍数.因而可知abc 必为3, 4, 5的公倍数, 且4, 5, 6的最小公倍数为60. 又 19803360=⨯, 3419802014=-, 20403460=⨯, 2620142040=-, 并且当17,8,15===c b a 时, 22217815=+, 204017815=⨯⨯.所以abc 中最接近2014的值是2040.解答2. 根据a , b , c 为不同的正整数, 满足222c b a =+, 则存在正整数)(,n m n m >, 使得22n m a -=, mn b 2=, 22n m c +=.所以)()(22222n m mn n m abc +-=.根据2)(2)2()()2()(222222222n m mn n m mn n m +=+-≤⨯-, 知道2)()(2)(3222222n m n m mn n m abc +≤+-=. (*) 当3=m 时, 根据n m >, n 最大为2,221972492233222222=+≤+≤+-=)()()()(n m n m mn n m abc . 另外4222222222m n m mn n m n m n m mn n m abc ≥++-=+-=)())(()()(. (**) 所以当7≥m 时,48042224222222=≥++-=+-=m n m mn n m n m n m mn n m abc )())(()()(.考察6,5,4===m m m , 把n 的所有情况代人公式)(2)(2222n m mn n m abc +-=有下表:所以abc 中最接近2014的值是2040.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 有三个农场在一条公路边, 如图A 、B 和C 处. A 处农场年产小麦50吨, B处农场年产小麦10吨, C 处农场年产小麦60吨. 要在这条公路边修建一个仓库收买这些小麦.假设运费从A 到C 方向是1.5元/吨千米, 从C 到A 方向是1元/吨千米. 问仓库应该建在何处才能使运费最低?A【答案】A 处【解答】设仓库离B 处x 公里 (靠C 处), 则运费为:109503010950)120(6015)50(505.1≥+=-+++⨯x x x x 元.设仓库离B 处x 公里 (靠A 处), 则运费为:10700510950)120(601050505.1≥-=+++-⨯x x x x )(元.因此, 应该将仓库建在A 处.10. 如图, 在ABC Δ中, D 为BC 中点, FB AF 2=,AE CE 3=. 连接CF 交DE 于P 点, 求DPEP 的值. 【答案】3.【解答】如图所示, 连接EF , DF . 设x S BDF =Δ. 因为D 为BC 的中点, 所以x S FDC =∆, x S CFB 2=∆.因为BF AF 2=, 所以2==∆∆BFAF S S CFB CAF , 得x S CAF 4=∆. 因为31==∆∆CE AE S S EFC AFE , 所以x S EFC 3=∆. 因为DP PE S S S S CPD CEP DPF EFP ==∆∆∆∆, 所以3==∆∆FDC EFC S S DP PE . 11. 某地参加华杯赛决赛的104名小选手来自当地14所学校. 请你证明:其中一定存在两所学校选手的人数是相同的.【解答】如果结论不成立, 则这14所学校的选手数彼此互不相同. 也就是这14所学校的选手数是彼此不同的14个正整数. 而14个彼此不同的正整数之和最小为1051413121110987654321=+++++++++++++,104105>, 得出矛盾.所以这14所学校的选手数彼此不同不能成立. 因此, 一定存在两所学校选手的人数是相同的.12. 将一个四位数中的各数字和的两倍与这个四位数相加得2379. 求这个四位数.【答案】2353, 2347.【解答】设这个四位数为xyzw . 首先, 2=x . 因为 ,9,,0≤≤w z y 若1=x , 则有20552541999,54)(20=++≤++≤w z y ,与条件不符. 另一方面x 不能大于2. 于是, yzw xyzw 2=, 即有23792224101002000=+++++++w z y w z y .得到375312102=++w z y .容易验证, .2,1≠y 因此, .3=y 于是69312=+w z , 12369w z -=. 整数解: 4,7;5,3====z w z w . 所求四位数为:2353, 2347. 经验证, 都符合要求.三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 求质数c b,a,使得ab+bc=abc a+715.【答案】29,2,2===c b a ;11,5,11===c b a 或者13,3,13===c b a【解答】因为bc a |, 所以b a |或者c a |. 因为 a , b , c 都是质数, 所以b a =或者c a =.① 当b a =时,c a ac a a 2275=++,所以ac c a =++715,2112271⨯==--))((c a .若 ⎩⎨⎧=-=-27111c a , 得⎩⎨⎧==912c a , 与题意不符; 若⎩⎨⎧=-=-11721c a , 得⎩⎨⎧==1813c a , 也与题意不符; 若⎩⎨⎧=-=-17221c a , 得⎩⎨⎧==823c a , 也与题意不符. 若⎩⎨⎧=-=-22711c a , 得⎩⎨⎧==292c a , 与题意相符, 29,2,2===c b a 为一个答案. ②当c a =时,b a ac ab a 2715=++,所以b a ab a 2815=+, 由ab b =+815变化得到53151)8(×=×b=a -.若 ⎩⎨⎧==-1518b a , 得 ⎩⎨⎧==159b a , 与题意不符; 若 ⎩⎨⎧==-1158b a , 得 ⎩⎨⎧==123b a , 与题意不符; 若 ⎩⎨⎧==-538b a , 得 ⎩⎨⎧==511b a , 与题意相符, 11,5,11===c b a 为一个答案; 若 ⎩⎨⎧==-358b a , 得 ⎩⎨⎧==313b a , 与题意相符, 13,3,13===c b a 为一个答案.. 14. 如果正数10321,,,,a a a a 满足条件:,10,10,109432110321≤++++≤+≥≥≥≥a a a a a a a a a a那么210232221a a a a ++++ 的最大值是多少?【答案】100【解答】记⎪⎩⎪⎨⎧≤++++≤+≥≥≥≥)3(,10)2(,10)1(,109432110321a a a a a a a a a a 由 (2) 和 (3) 得2010321≤++++a a a a .根据 (1) 和 (2),,100)()()())((100)()()()(1002)(1022010)10(1021042432321221021024242323212221023222103212210232222210232222210232221≤-++-+-+-+=-++-+-+-+=++++++++-≤++++-=++++-≤++++a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a并且等号成立当且仅当乘积10210323212)(,,)(,)(a a a a a a a a a ---都等于0.取0,10104321======a a a a a ,或0,510654321========a a a a a a a ,则10321,,,,a a a a 都满足 (1), (2), (3), 并且100210232221=++++a a a a .综和上述讨论, 210232221a a a a ++++ 的最大值是100.。

初一华罗庚杯第19届a卷试题及答案

初一华罗庚杯第19届a卷试题及答案

初一华罗庚杯第19届a卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2 + 2 = 5B. 3 + 3 = 5C. 4 + 4 = 7D. 5 + 5 = 10答案:D2. 如果一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 无法确定答案:C3. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是:A. 12cm³B. 24cm³C. 36cm³D. 48cm³答案:C4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/9D. 2/4答案:C5. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 无法确定答案:A6. 一个数的立方是27,那么这个数是:A. 3B. -3C. 3或-3D. 无法确定答案:A7. 一个三角形的三个内角之和是:A. 90度B. 180度C. 360度D. 无法确定答案:B8. 下列哪个选项是正确的?A. 2的平方根是2B. 4的平方根是2C. 5的平方根是5D. 3的平方根是3答案:B9. 如果一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 无法确定答案:C10. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. -2D. -1/2答案:A二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数是______。

答案:4或-412. 一个数的立方是-8,这个数是______。

答案:-213. 一个数的绝对值是3,这个数是______。

答案:3或-314. 一个数的倒数是2,这个数是______。

答案:1/215. 一个数的平方根是4,这个数是______。

答案:16或-16三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3 + 5) × 2 - 4答案:(3 + 5) × 2 - 4 = 16 - 4 = 1217. 一个长方体的长是5cm,宽是4cm,高是3cm,求它的体积。

第19届初赛答案.doc

第19届初赛答案.doc

第十九届初赛答案一、选择题:题答二、填空题:1.由高变低。

2. 一倍焦距。

红外线。

3.压强。

重心。

三、简答题:1.参考答案:豆腐中含有水,冰冻后,体积会变大,豆腐中的小冰块把整块豆腐掠夺挤压成蜂窝窝形状,待冰化成水后,就留下了许多孔洞。

2.参考答案:①⑴此插头允许通过的最大妥全电流为10A, 能够承受的最大妥全电压为250V;⑵地线;⑶火线;⑷零线。

②接地插脚比其他两脚稍长一些,这样当将插头插入插座的瞬间,用电器的金属外壳首先接地,然后用电器跟火线、零线连通;当拔下插头时,用电器先与火线、零线断开,最后金属外壳再与地线分开。

保证在插入和拔下插头的瞬间,即使用电器的外壳“漏电”,也不会使人触电。

3.参考答案:①因日常用水不是纯净水,含有杂质,会导电,湿手拔插头容易触电。

②若水箱中无水,通电后热水器的温度会快速持续上升,直至损坏热水器。

③在气温低T 0°C的寒冷季节,长时间停用热水器,热水器中的水会因结冰页体积变大,容易胀破热水器。

4.参考答案:①若秤碇磨损了,则称量时游碇须放在刻度偏大的位置,台秤才能平衡,所以称量结果与实际质量相比偏大。

②若调零螺母的位置比正确位置向右多旋进一些,则秤盘中需放一定质量的物体,才能在游碇指零的情况下使台秤平衡。

然后再把待测货物放入秤盘中,平衡时货物质量等于称量质量,此时称时质量小于秤盘中两物体质量之和,所以称量结果与实际质量相比偏小。

5.参考答案:C、E为同一导线的两端。

为了弄清另两根导线的两端,可连接A和C,测通器的一端必须与E相连,若另一端接F,小灯泡发光,则BD为同一根导线,AF为同一根导线;若小灯泡不发光,则AD为同一根导线,BF为同一根导线。

(也可以让另一端接D,若小灯泡发光,则BF为同一根导线,AD为同一根导线;若小灯泡不发光,则AF为现一根导线,BD为同一根导线。

)6.参考答案:①装修时墙壁内的电路是错误的,如答图1所示。

当卫生间“浴霸”灯的开关si断开,床头灯开关s2闭合,“浴霸”灯L1和床头灯L2是串联的。

第十九届华杯赛决赛答案_初一

第十九届华杯赛决赛答案_初一

第十九届华罗庚金杯少年数学邀请赛决赛试题参考答案(初一组)一、填空(每题 10分, 共80分)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 答案:A 处解答. 设仓库离B 处x 公里 (靠C 处), 则运费为:13010950)120(6015)50(505.1≥+=-+++⨯x x x x 元. 设仓库离B 处x 公里 (靠A 处), 则运费为:15109501206010505051≥-=+++-⨯x x x x )()(.元.因此, 应该将仓库建在A 处. 10. 答案:3解答. 如图所示, 连接EF , DF . 设x S BDF=Δ. 因为D 为BC 的中点, 所以x S FDC =∆, x S CFB2=∆. 因为BFAF 2=, 所以2==∆∆BFAFS S CFB CAF , 得x S CAF 4=∆. 因为31==∆∆CE AE S S EFC AFE , 所以x S EFC3=∆. 因为DPPE S S S S CPD CEP DPF EFP ==∆∆∆∆, 所以3==∆∆FDC EFC S S DP PE .x x P FECBA11. 证明. 如果结论不成立, 则这14所学校的选手数彼此互不相同. 也就是这14所学校的选手数是彼此不同的14个正整数. 而14个彼此不同的正整数之和最小为11413121110987654321=+++++++++++++, 104105>, 得出矛盾. 12. 答案:2353, 2347.解答. 设这个四位数为xyzw . 首先, 2=x . 因为 ,9,,0≤≤w z y 若1=x , 则有22541999,54)(20=++≤++≤w z y , 与条件不符. 另一方面x 不能大于2. 于是, yzwxyzw 2=, 即有 22224101002000=+++++++w z y w z y . 得到37312102=++w z y . 容易验证, .2,1≠y 因此, .3=y 于是69312=+w z , 12369wz -=. 整数解: 4,7;5,3====z w z w . 所求四位数为:2353, 2347. 经验证, 都符合要求.三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 答案: 29,2,2===c b a ; 11,5,11===c b a 或者13,3,13===c b a 解答. 因为bc a |, 所以b a |或者c a |. 因为 a , b , c 都是质数, 所以b a =或者c a =.① 当b a =时,ca ac a a 22715=++,所以acc a =++715, 2112271⨯==--))((c a .若 ⎩⎨⎧=-=-27111c a , 得⎩⎨⎧==912c a , 与题意不符;若⎩⎨⎧=-=-11721c a , 得⎩⎨⎧==183c a , 也与题意不符;若⎩⎨⎧=-=-17221c a , 得⎩⎨⎧==823c a , 也与题意不符.若⎩⎨⎧=-=-22711c a , 得⎩⎨⎧==292c a , 与题意相符, 29,2,2===c b a 为一个答案. ②当c a =时,ba ac ab a 2715=++, 所以ba ab a 2815=+, 由ab b =+815变化得到 53151)8(×=×b=a -. 若 ⎩⎨⎧==-1518b a , 得 ⎩⎨⎧==159b a , 与题意不符;若 ⎩⎨⎧==-1158b a , 得 ⎩⎨⎧==123b a , 与题意不符;若 ⎩⎨⎧==-538b a , 得 ⎩⎨⎧==511b a , 与题意相符, 11,5,11===c b a 为一个答案; 若 ⎩⎨⎧==-358b a , 得 ⎩⎨⎧==313b a , 与题意相符, 13,3,13===c b a 为一个答案.. 14. 答案:100 解答. 记⎪⎩⎪⎨⎧≤++++≤+≥≥≥≥)3(,10)2(,10)1(,109432110321a a a a a a a a a a 由 (2) 和 (3) 得2010321≤++++a a a a . 根据 (1) 和 (2),,100)()()())((100)()()()(1002)(1022010)10(1021042432321221021024242323212221023222103212210232222210232222210232221≤-++-+-+-+=-++-+-+-+=++++++++-≤++++-=++++-≤++++a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a并且等号成立当且仅当乘积1210323212)(,,)(,)(a a a a a a a a a --- 都等于0.取0,10104321======a a a a a , 或0,510654321========a a a a a a a , 则10321,,,,a a a a 都满足 (1), (2), (3), 并且 10210232221=++++a a a a . 综和上述讨论, 210232221a a a a ++++ 的最大值是100.。

第十九届“华杯赛”初赛初一组试题B与答案

第十九届“华杯赛”初赛初一组试题B与答案

只有 5 个整数解,实数 a 的最大值是
(A) 4
(C) 0
(D) 3
二、填空题 (每小题 10 分, 满分 40 分)
7、沿着下图的实线走,从 A 点到 B 点的最短线路共有 种。
8、 用七块棱长为 1 cm 的小正方块堆成一立体, 其俯视图如右图所示, 则 共有 种不同的堆法(经旋转能重合的算一种堆法) .
(A) a b
(B) a b
(C) a ) 。
(D) b
2、在十进制记数法中,数 416 535 的位数是( (A)32 (B)33
2
(C)34
(D)35
3、已知 a 1 (ab2) 0 ,那么
1 1 1 1 的值是 ( a 2014 b 2014 ab a 1b 1 a 2b 2
9 、 已 知 有 理 数 m, n 满 足 m3 n3 99 mn 333 , 其 中 mn 0 。 m n 的 值 是 .
10、正方体的各个顶点上分别写着整数 1 至 8,各条棱上分别写着其两个顶点上 的数的差的绝对值,那么 12 条棱上至少可以出现 个互不相同的数。
第 2 页
共 2 页
第十九届华罗庚金杯少年数学邀请赛 初赛试题答案(初一 B 组)
一、选择题(每小题 10 分,满分 60 分)
题号 答案 1 D 2 D 3 B 4 D 5 A 6 D
二、填空题(每小题 10 分,满分 40 分)
题号 答案 7 35 8 5 9 -66 或 33 10 3
第 1 页
共 1 页
第十九届华罗庚金杯少年数学邀请赛
初赛试卷(初一 B 组)
一、 选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)

历届华杯赛初赛、复赛真题及答案

历届华杯赛初赛、复赛真题及答案

华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,由中国少年报社(现为中国少年儿童新闻出版社)、中国优选法、统筹法与经济数学研究会、中央电视台青少中心等单位联合发起主办的。

华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。

对一个对于学校课堂内容学有余力的学生来讲,适当学习小学奥数能够有以下方面的好处
1、促进在校成绩的全面提高,培养良好的思维习惯;
2、使学生获得心理上的优势,培养自信;
3、有利于学生智力的开发;
4、数学是理科的基础,学习奥数对于这个学生进入初中后的学习物理化学都非常有好处(很多重点中学就是因为这个原因招奥数好的学生)。

5、很多重点中学招生要看学生的奥数成绩是否优秀。

您可能还感兴趣的有:。

第十九届华杯赛决赛解答_初一

第十九届华杯赛决赛解答_初一

第十九届华罗庚金杯少年数学邀请赛决赛试题解答(初一组)(时间: 2014年4月12日)一、填空(每题10分, 共80分)1. 计算: =÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-]6)8()3[(12)3()]27(0[625.385|54|)2(16)5(3233 . 【答案】2-【解答】原式 =⎪⎭⎫ ⎝⎛-⨯+-÷+--÷+-⨯-31312)3(27920)8(16)5(27=2611225299202135-=-=--+--. 2. 如图,由单位正方形组成的网格中,每个小正方形的顶点称为格点, 以格点为顶点做了一个三角形, 记L 为三角形边上的格点数目, N 为三角形内部的格点数目, 三角形的面积可以用下面的式子求出来:顶点在格点的三角形的面积=121-+N L如果三角形的边上与内部共有20个格点, 则这个三角形的面积最大等于 , 最小等于 .【答案】17.5, 9【解答】(题目中的公式取自闵嗣鹤教授写的《格点与面积》一本小册子, 只用到顶点数目, 其说明也易于理解. 下面的说明也是取自该书),根据顶点在格点图形的面积=121-+N L ,因为L 为三角形边上的格点数目, N 为图形内部的格点数目, 要使三角形面积最大, 则要求L 最小. 当L 最小的时候, 三角形只有三个顶点在格点上,其它的点在三角形的内部. 此时面积为17.5.这种图形是存在的, 在相邻的3列格点中, 三角形的三个顶点分别在其中一列上, 使得只有3个顶点在三角形的边上, 见下图.考虑面积最小的情况, 当所有的格点都在三角形的边上时, 面积最小. 取相邻两行格点, 三角形的一个顶点在其中一行, 底边包含19个格点在另一行, 此时面积为9, 见下图.下面叙述这个公式的一步步的说明过程.(1)考虑1+m 行, 1+n 列的矩形, 则图形内的点数为))((11--n m , 边上的点数为)(2n m +, 图形的面积为mn . 而1))(2(21)1)(1(-++--=n m n m mn . 因此公式成立.(2)对于直角三角形, 设直角边的长度分别为m , n . 设斜边上的点数为K , 则三角形内部的格点数为2211+---K n m ))((, 三条边上的格点数为1-++K n m .因此,1211212211+=-++++---mn K n m K n m )())((. 而三角形的面积为mn 21, 故公式成立. (3)对于一般的三角形, 有下面的三种方式:对于每个上述情况, 可以把这个三角形记为T , 放入一个矩形中. 这样把矩形分割成一些直角三角形, 矩形与T . 对这些直角三角形与矩形进行编号 ,3,2,1. 记i 个图形的内部格点数目为i N , 边上的格点数目为i L , 每个图形面积满足121-+i i L N . 注意到:a) 每个图形的内部格点一定是外部矩形的内部格点.b) 每个公共边上内部的格点属于两个图形.c) 公共边的端点可能为多个图形的顶点. 如上左图中A , B 属于两个图形边的顶点, C 为3个图形顶点.把每个点对应一个数, 图形内部的格点对应1, 图形边上的格点对应21. 这样用外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式.T 之内的格点为对应的数1, T 边上内部的格点对应的数为21211=-, T 的三个顶点对应数的和是21212212123-=⨯---, 公式中常数1对应的值为1121=-⨯--)(, 其他格点对应的数为0. 这样外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式= T 的内部格点数+⨯21(边的内部格点数3-)+(121+-) = T 的内部格点数+⨯21(边的内部格点数)1-,因此公式对T 成立.对其他两个图形也进行类似的讨论. 3. 长为4的线段AB 上有一动点C , 等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧, DC AD =, EB CE =, 则线段DE 的长度最小为 .【答案】2.【解答】 分别从D , E 向AB 作垂线, 过D 或E 做与AB 的平行线, 可以得到一个矩形, 参见右图. 线段DE 最短等于该矩形平行于AB 的边的长度(由过一点D 或E 到另一直线的距离, 垂线最短的结论). 三角形ACD 和三角形BCD 是等腰三角形, DE 最短等于AB 的一半, 即为2.4. 正整数c b a ,,满足等式, c b a =3, 且9432=⎪⎪⎭⎫ ⎝⎛++c b a , 又6822=+b a , 则=c . 【答案】12.【解答】由 cb ac b a ++==33, 知 9439322222222=⎪⎭⎫ ⎝⎛++=++==c b a c b a c b a , 所以,153499222=+=+)(b a c . 得1442=c , 12=c .5. 如图, 直角三角形ABC 中, F 为AB 上的点, 且FB AF 2=, 四边形EBCD 为平行四边形, 那么【答案】2【解答】连接FC , BD , 设kEF FD =, S S BFE =∆, 那么kS S BDF =∆, S k S S FBC BCD )1(+==∆∆. 由FB AF 2=可知kS S AFD 2=∆, 进而S k S A B C )41(+=∆, 得又所以)1(341k k +=+.解得, 2=k . 因此, EF FD 2=.6. 方程023=+++C Bx Ax x 的系数C B A ,,为整数, 5||,5||,5||<<<C B A , 且1是方程的一个根, 那么这种方程总共有 个.【答案】60【解答】由已知,b x a b x a x b ax x x C Bx Ax x --+-+=++-=+++)()1())(1(23223,其中, a , b 为实数, 于是有b C a b B a A -=-=-=,,1,并且得到a , b 为整数. 由题目条件得5||,5||,5|1|<<-<-b a b a .因此555564<<-+<<-<<-b b a b a ,,.当0=b 时, 由55,64<<-<<-a a , 得54<<-a , 即a 能够取8个整数值. 类似地, 当b 为1, 2, 3, 4 时, a 分别可以取9, 8, 7, 6个整数值. 同样地, 当1-=b 时, 由46,64<<-<<-a a , 得44<<-a , 即a 能能够取7个整数值. 类似地, 当b 为4,3,2---时, a 分别可以取6, 5, 4个整数值.这样, ),(b a 的取法, 亦即),,(C B A 的取法有60)4567()67898(=++++++++(种)所以, 这种方程共有60个.7. 一辆公交快车和一辆公交慢车沿某环路顺时针运行, 它们的起点分别在A站和B 站, 快车每次回到A 站休息4分钟, 慢车每次回到B 站休息5分钟, 两车在其他车站停留的时间不计. 已知沿顺时针方向A 站到B 站的路程是环路全程的52, 两车环行一次各需45分钟和51分钟(不包括休息时间), 那么它们从早上6时同时出发, 连续运行到晚上10时, 两车同在B 站共 次.【答案】3【解答】记早上6时为第0分钟, 从6时到22时是 9606016=⨯分钟, 快车环行一周连同休息时间需49445=+分钟, 294919960+⨯=, 慢车环行一周连同休息时间需56551=+分钟, 85617960+⨯=. 即第960分钟时, 快车共环行了19次, 慢车环行了17次.设慢车第m 次(171≤≤m , 6点出发为第0次)到达B 站的时间为第 m T 分钟, 则有:556-=m T m .快车第1次到达B 站是在第185245=⨯ 分钟, 11491918960+⨯=-, 快车经过B 站共20次. 记第n 次(201≤≤n )经过B 站的时间为n t 分钟, 则3149)1(4918-=-+=n n t n .两车同在B 站时, m , n 必须满足:m n m 563149556≤-≤-. 26495631n m ≤-≤推出31564926≤-≤m n , 73187726≤-≤m n . 既然m n 87-是整数, 故有4874≤-≤m n , 即得到二元整数方程:487=-m n .由上面的方程得,51,4≤≤=k k n ,得到:,4847=-⨯m k 127=-m k .所以, k 为奇数. 当k 为1, 3, 5时, m 分别为3, 10, 17, n 分别为4, 12, 20.所以, 快车和慢车同在B 站3次.8. 如果a , b , c 为不同的正整数, 且 222c b a =+¸那么乘积abc 最接近2014的值是 .【答案】2040【解答】解答1. 设如若平方数c ²取3m 或13+m 的形式, 那么a , b 中必有3的倍数, 不然c ²为23+m , 而与原设矛盾.如若设平方数c ²取5m 或5m ±1的形式, 那么, 要是a , b 都不是5的倍数, 则c ²必为5m 或5m ±2, 而与原设矛盾; 要是a , b 都是5m , 则c 为5的倍数, 要是a , b 是5m ±2, 则c 不是5的倍数, 而与题设矛盾, 则a , b 中必有5的倍数.若设平方数c ²取4m 或14+m 的形式, 要是a , b 都不是4的倍数, 则c ²必为24+m 的形式, 与题设矛盾. 故, a , b 中必有4的倍数.因而可知abc 必为3, 4, 5的公倍数, 且4, 5, 6的最小公倍数为60. 又 19803360=⨯, 3419802014=-, 20403460=⨯, 2620142040=-, 并且当17,8,15===c b a 时, 22217815=+, 204017815=⨯⨯.所以abc 中最接近2014的值是2040.解答2. 根据a , b , c 为不同的正整数, 满足222c b a =+, 则存在正整数)(,n m n m >, 使得22n m a -=, mn b 2=, 22n m c +=.所以)()(22222n m mn n m abc +-=.根据2)(2)2()()2()(222222222n m mn n m mn n m +=+-≤⨯-, 知道2)()(2)(3222222n m n m mn n m abc +≤+-=. (*) 当3=m 时, 根据n m >, n 最大为2,221972492233222222=+≤+≤+-=)()()()(n m n m mn n m abc . 另外4222222222m n m mn n m n m n m mn n m abc ≥++-=+-=)())(()()(. (**) 所以当7≥m 时,48042224222222=≥++-=+-=m n m mn n m n m n m mn n m abc )())(()()(.考察6,5,4===m m m , 把n 的所有情况代人公式)(2)(2222n m mn n m abc +-=有下表:所以abc 中最接近2014的值是2040.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 有三个农场在一条公路边, 如图A 、B 和C 处. A 处农场年产小麦50吨, B处农场年产小麦10吨, C 处农场年产小麦60吨. 要在这条公路边修建一个仓库收买这些小麦.假设运费从A 到C 方向是1.5元/吨千米, 从C 到A 方向是1元/吨千米. 问仓库应该建在何处才能使运费最低?A【答案】A 处【解答】设仓库离B 处x 公里 (靠C 处), 则运费为:109503010950)120(6015)50(505.1≥+=-+++⨯x x x x 元.设仓库离B 处x 公里 (靠A 处), 则运费为:10700510950)120(601050505.1≥-=+++-⨯x x x x )(元.因此, 应该将仓库建在A 处.10. 如图, 在ABC Δ中, D 为BC 中点, FB AF 2=,AE CE 3=. 连接CF 交DE 于P 点, 求DPEP 的值. 【答案】3.【解答】如图所示, 连接EF , DF . 设x S BDF =Δ. 因为D 为BC 的中点, 所以x S FDC =∆, x S CFB 2=∆.因为BF AF 2=, 所以2==∆∆BFAF S S CFB CAF , 得x S CAF 4=∆. 因为31==∆∆CE AE S S EFC AFE , 所以x S EFC 3=∆. 因为DP PE S S S S CPD CEP DPF EFP ==∆∆∆∆, 所以3==∆∆FDC EFC S S DP PE . 11. 某地参加华杯赛决赛的104名小选手来自当地14所学校. 请你证明:其中一定存在两所学校选手的人数是相同的.【解答】如果结论不成立, 则这14所学校的选手数彼此互不相同. 也就是这14所学校的选手数是彼此不同的14个正整数. 而14个彼此不同的正整数之和最小为1051413121110987654321=+++++++++++++,104105>, 得出矛盾.所以这14所学校的选手数彼此不同不能成立. 因此, 一定存在两所学校选手的人数是相同的.12. 将一个四位数中的各数字和的两倍与这个四位数相加得2379. 求这个四位数.【答案】2353, 2347.【解答】设这个四位数为xyzw . 首先, 2=x . 因为 ,9,,0≤≤w z y 若1=x , 则有20552541999,54)(20=++≤++≤w z y ,与条件不符. 另一方面x 不能大于2. 于是, yzw xyzw 2=, 即有23792224101002000=+++++++w z y w z y .得到375312102=++w z y .容易验证, .2,1≠y 因此, .3=y 于是69312=+w z , 12369w z -=. 整数解: 4,7;5,3====z w z w . 所求四位数为:2353, 2347. 经验证, 都符合要求.三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 求质数c b,a,使得ab+bc=abc a+715.【答案】29,2,2===c b a ;11,5,11===c b a 或者13,3,13===c b a【解答】因为bc a |, 所以b a |或者c a |. 因为 a , b , c 都是质数, 所以b a =或者c a =.① 当b a =时,c a ac a a 2275=++,所以ac c a =++715,2112271⨯==--))((c a .若 ⎩⎨⎧=-=-27111c a , 得⎩⎨⎧==912c a , 与题意不符; 若⎩⎨⎧=-=-11721c a , 得⎩⎨⎧==1813c a , 也与题意不符; 若⎩⎨⎧=-=-17221c a , 得⎩⎨⎧==823c a , 也与题意不符. 若⎩⎨⎧=-=-22711c a , 得⎩⎨⎧==292c a , 与题意相符, 29,2,2===c b a 为一个答案. ②当c a =时,b a ac ab a 2715=++,所以b a ab a 2815=+, 由ab b =+815变化得到53151)8(×=×b=a -.若 ⎩⎨⎧==-1518b a , 得 ⎩⎨⎧==159b a , 与题意不符; 若 ⎩⎨⎧==-1158b a , 得 ⎩⎨⎧==123b a , 与题意不符; 若 ⎩⎨⎧==-538b a , 得 ⎩⎨⎧==511b a , 与题意相符, 11,5,11===c b a 为一个答案; 若 ⎩⎨⎧==-358b a , 得 ⎩⎨⎧==313b a , 与题意相符, 13,3,13===c b a 为一个答案.. 14. 如果正数10321,,,,a a a a 满足条件:,10,10,109432110321≤++++≤+≥≥≥≥a a a a a a a a a a那么210232221a a a a ++++ 的最大值是多少?【答案】100【解答】记⎪⎩⎪⎨⎧≤++++≤+≥≥≥≥)3(,10)2(,10)1(,109432110321a a a a a a a a a a 由 (2) 和 (3) 得2010321≤++++a a a a .根据 (1) 和 (2),,100)()()())((100)()()()(1002)(1022010)10(1021042432321221021024242323212221023222103212210232222210232222210232221≤-++-+-+-+=-++-+-+-+=++++++++-≤++++-=++++-≤++++a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a并且等号成立当且仅当乘积10210323212)(,,)(,)(a a a a a a a a a ---都等于0.取0,10104321======a a a a a ,或0,510654321========a a a a a a a ,则10321,,,,a a a a 都满足 (1), (2), (3), 并且100210232221=++++a a a a .综和上述讨论, 210232221a a a a ++++ 的最大值是100.。

华杯赛初一初赛试题及答案

华杯赛初一初赛试题及答案

华杯赛初一初赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 计算下列表达式的值:\( 3^2 - 2 \times 3 + 1 \)A. 1B. 4C. 7D. 9答案:A3. 如果 \( a \) 和 \( b \) 是两个连续的自然数,且 \( a > b \),那么 \( a - b \) 的值是:A. 1B. 2C. 3D. 4答案:A4. 下列哪个分数是最接近1的?A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( \frac{4}{3} \)D. \( \frac{5}{6} \)答案:B5. 如果一个圆的半径是 \( r \),那么它的面积是:A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi r \)D. \( \pi \)答案:A6. 一个长方体的长、宽、高分别是 \( l \)、\( w \) 和 \( h \),那么它的体积是:A. \( l \times w \)B. \( w \times h \)C. \( l \times w \times h \)D. \( l + w + h \)答案:C7. 如果一个数的平方根是 \( x \),那么这个数是:A. \( x^2 \)B. \( 2x \)C. \( x + x \)D. \( x - x \)答案:A8. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 零C. 负数D. 所有选项答案:D10. 如果一个数的立方是 \( -27 \),那么这个数是:A. 3B. -3C. 9D. -9答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是 \( -a \),那么这个数是 ______ 。

华杯赛初一组决赛试题

华杯赛初一组决赛试题

华杯赛初一组决赛试题参考答案第一届华杯赛初赛试题答案:1.【求解】就是这五个数的平均数,所以和=×5=。

2.【解】方框的面积是。

每个重叠部分占的面积是一个边长为1厘米的正方形。

重叠部分共有8个()×5一l×8=(100―64)×5―8=36×5―8=172(平方厘米)。

故被遮住的面积就是172平方厘米。

3.【解】105=3×5×7,共有(1+1)×(1+1)×(1+1)=8个约数,即1,3,5,7,15,21,35,105。

4.【求解】在这道题里,最合理的精心安排必须最省时间。

先洗开水壶,接着烧开水,烧上水以后,小明须要等15分钟,在这段时间里,他可以洗脸茶壶,洗脸茶杯,拎茶叶,水上开了就泡茶,这样就用16分钟。

5.【解】149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。

于是,四个数字的总和是14+9=23。

6.【求解】松鼠改采了:112÷14=8(天)假设这8天都是晴天,可以采到的松籽是:20×8=160(个)实际只挖掘出112个,共少采松籽:160-112=48(个)每个下雨天就要少采:20-12=8(个)所以存有48÷8=(6)个雨天。

7.【解】因为正方体的边长是1米,个正方体堆成实心长方体的体积就是立方米。

已经晓得,低为10米,于是短×阔=210平方米把210分解为质因数:210=2×3×5×7由于短和阔必须大于低(10米),短和阔就可以就是:3×5和2×7。

也就是15米和14米。

14米+15米=29米。

答:长与宽的和是29米。

8.【求解】39-32=7。

这7分钟每辆高速行驶的距离恰好等同于第二辆车在8点32支行过的距离的1(=3-2)倍。

因此第一辆车在8点32分已行及7×3=21(分后),它就是8点11分后返回化肥厂的(32-21=11)。

第十九届华罗庚初赛试卷 A(小学中年级组)附答案

第十九届华罗庚初赛试卷 A(小学中年级组)附答案

第十九届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)一、选择题(每小题10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个正整数的和小于100, 其中一个是另一个的两倍, 则这两个正整数的和的最大值是().(A)83(B)99(C)96(D)982.现有一个正方形和一个长方形, 长方形的周长比正方形的周长多4厘米, 宽比正方形的边长少2厘米, 那么长比正方形的边长多()厘米.(A)2(B)8(C)12(D)43.用8个3和1个0组成的九位数有若干个, 其中除以4余1的有()个.(A)5(B)6(C)7(D)84.甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克, 甲有自己的固定座位. 如果乙和丁的座位不能相邻, 那么共有()种不同的围坐方法.(A)10(B)8(C)12(D)165.新生开学后去远郊步行拉练, 到达A地时比原计划时间10点10分晚了6分钟,到达C地时比原计划时间13点10分早了6分钟, A, C之间恰有一点B是按照原计划时间到达的, 那么到达B点的时间是().(A)11点35分(B)12点5分(C)11点40分(D)12点20分6.右图中的正方形的边长为10, 则阴影部分的面积为().(A)56(B)44(C)32(D)78二、填空题(每小题10 分, 满分40分)7.爷爷的年龄的个位数字和十位数字交换后正好是爸爸的年龄, 爷爷与爸爸的年龄差是小林年龄的5倍. 那么小林的年龄是岁.8.五个小朋友A, B, C, D和E参加“快乐读拼音”比赛, 上场时五个人站成一排.他们胸前有每人的选手编号牌, 5个编号之和等于35. 已知站在E, D, A, C右边的选手的编号的和分别为13, 31, 21和7. 那么A, C, E三名选手编号之和是________.9.用左下图的四张含有4个方格的纸板拼成了右下图所示的图形. 若在右下图的16个方格分别填入1, 3, 5, 7(每个方格填一个数), 使得每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复, 那么A, B, C, D四个方格中数的平均数是________.10.在一个平面上, 用若干个单位长度的木棍可以摆出由多个正方形相邻的图形, 右图是一示例. 现在用20根单位长的小木棍摆出一个图形, 要求除第一行的方格外, 下面几行方格构成一个长方形, 那么这样的图形中最多有________个单位边长的正方形.第十九届华罗庚金杯少年数学邀请赛初赛试题答案(小学中年级组)一、选择题(每小题10 分,满分60分)二、填空题(每小题10 分,满分40分)。

第十九届“华杯赛”决赛初一组试题A与答案

第十九届“华杯赛”决赛初一组试题A与答案

顶点在格点的三角形的面积= 1 L N 1.
2
如果三角形的边上与内部共有 20 个格点, 则这个三角形的面积最大等

, 最小等于
.
3. 长为 4 的线段 AB 上有一动点 C , 等腰三角形 ACD和等腰三角形 BEC 在过
AB的直线同侧, AD DC , CE EB, 则线段 DE 的长度最小为
第1页 共1页
.
EF
A
E FD
B
C
6. 方程 x3 Ax2 Bx C 0 的系数 A,B,C 为整数, | A | 5, | B | 5, | C | 5, 且 1
是方程的一个根, 那么这种方程总共有
个.
7. 一辆公交快车和一辆公交慢车沿某环路顺时针运行, 它们的起点分别在 A 站
和 B 站, 快车每次回到 A 站休息 4 分钟, 慢车每次回到 B 站休息 5 分钟, 两 车在其他车站停留的时间不计. 已知沿顺时针方向 A 站到 B 站的路程是环路 全程的 2 , 两车环行一次各需 45 分钟和 51 分钟(不包括休息时间), 那么
三、解答下列各题(每小题 15 分, 共 30 分, 要求写出详细过程)
13. 求质数 a,b,c使得15a 7ab bc abc.
14. 如果有理数 a1, a2, a3, , a10 满足条件: a1 a2 a3 a10 0, a1 a2 10, a3 a4 a9 a10 10,
第十九届华罗庚金杯少年数学邀请赛
决赛试题(初一组)
一、填空题(每小题 10 分, 共 80 分)
1.
计算:

33
(5)
16
(2)3 | 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 2 页
共 2 页
第十九届华罗庚金杯少年数学邀请赛 初赛试题答案(初一 A 组)
一、选择题(每小题 10 分,满分 60 分)
题号 答案 1 C 2 C 3 D 4 A 5 B 6 B
二、填空题(每小题 10 分,满分 40 分)
题号 答案 7 5 8 12 9 17 10 4030
第 1 页
共 1 页
第十九届华罗庚金杯少年数学邀请赛
初赛试卷(初一 A 组)
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅有一个是正 确的, 请将表示正确答案的英文字母写在每题的圆括号内.)
2 2 1. (2014 ) 2 (2014 ) 2013 (2013 ) 2 (2014 ) 4026 (
).
(A)1
Байду номын сангаас(B)0
(C) 1
(D)2 )对.
2. 满足式子 | x 5 | 4 | y 2 | 10 的整数对 ( x, y ) 有( (A)4 (B)8 (C)10 (D)16
3. 甲乙同时出发, 他们的速度如下图所示 , 经过 30 分钟后 , 乙比甲多行走了 ( )米.
米 /分 100 80 60 40 20 5 10 15 20 25 30 甲 分 100 80 60 40 20 5 10 15 20 25 30 乙 分 米 /分
x x 5x x 3 4 12
的解的个数为________. 10. 将 k 个整数中的每一个整数替换成其余各数的和, 并减去 2014, 得到新的 k 个数. 若新的 k 个数与原来的 k 个数相同, 则 k 的最大值为________.
第 1 页
共 2 页
5. 已知
a1 12 8 , a2 102 98 , a3 1002 998 , a 4 10002 9998 , , a20 100 02 99 98
19个0 19个9
若 S a1 a2 a20 , 则 S 的各个数位上的数字总和是( (A)22 (B)21 (C)20 (D)19
(A)20
(B)40
(C)200
(D)300
4. 回文数是指一个像“16461”这样“对称”的数, 即:将这个数的数字按相反 的顺序重新排列后, 所得到的数和原来的数一样. 已知五位回文数 A 是某个 三位回文数的平方, 则 A 的最大值是( (A)44944 (B)43934 (C)35853 ). (D)53835
) .
6. 在△ABC 中, BAC 90 , AB 12 cm, AC 6 cm; D, E 分别为 AB, AC 上的点, 且 AD 8 cm, AE 5 cm. 连 接 BE, CD 相交于 G, 则四边形 ADGE 的面积是 ( cm . (A)21.5 (B)22.5 (C)23.5 (D)24.5
2

二、填空题 (每小题 10 分, 满分 40 分)
7. 用七块棱长为 1 cm 的小正方块堆成一立体, 其俯视图如右图所示, 则共有________种不同的堆法(经旋转能重合的算一种堆法) . 8. 如右图所示, AF 7 cm, DH 4 cm, BG 5 cm, AE 1 cm. 若 正方形 ABCD 内的四边形 EFGH 的面积为 78cm2, 则正方形的边 长为________cm. 9. 用 [x] 表示不超过 x 的最大整数, 若 | x | 100 , 则方程
相关文档
最新文档