数学试题卷
2023年高考全国乙卷文科数学试题(含答案详解)
2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。
人教版六年级上册期末数学复习综合试题测试卷(含答案)
人教版六年级上册期末数学复习综合试题测试卷(含答案)一、填空题1.4030毫升=( )升 720立方分米=( )立方米15立方分米=( )立方厘米 汽车的油箱大约能盛汽油50( )。
2.已知a 和b 互为倒数,则a×b =( ),4a ÷4b=( )。
3.一块菜地和一块麦地共30公顷,菜地面积的12和麦地面积的13共13公顷,麦地是( )公顷。
4.摩托车行驶12千米用了14升汽油,照这样计算,行驶1千米,大约需要汽油( )升,1升汽油大约可以行( )千米。
5.如图,已知O 是圆心,圆中三角形的面积是25平方米,那么圆的面积是( )平方米。
6.一种药水是把药粉和水按1∶25配成。
要配制这种药水624千克,需要水______千克;如果有80克水,配成这种药水需要加______克药粉。
7.2辆同样的玩具汽车和9只同样的玩具手枪的总价格是180元。
已知1辆玩具汽车和3只玩具手枪的价格相等。
每辆玩具汽车________元,每只玩具手枪________元。
8.一只茶杯单价是一把茶壶的14,李阿姨的钱正好可以买4把茶壶和20只茶杯,一把茶壶可以替换( )只茶杯,李阿姨的钱可以买( )把茶壶。
9.某班学生人数在40人到50人之间,男生和女生人数的比是5∶6,这个班有男生( )人,女生( )人。
10.如下图,继续摆下去,第50个图形有( )根小棒。
11.下图是3个相同的圆,半径都是2cm ,连接3个圆心,阴影面积是( )。
A.212.56cm B.26.28cm C.答案A、B都不对12.若3355a b⨯=÷(a、b都大于0),则()。
A.a b=B.a b<C.a b>D.无法判断13.下列说法正确的是()。
A.大于90︒角的是钝角B.125%4=,所以14米可以写成25%米C.圆锥的体积比与它等底等高的圆柱的体积小14.一个比的后项乘5,要使比值不变,前项应()。
A.加5 B.减5 C.乘5 D.除以515.A、B、C是非零自然数,且A×65=B×87=C×109,那么()。
2022年全国新高考II卷数学试题(解析版)
B. 128π
C. 144π
D. 192π
【答案】A 【解析】
【分析】根据题意可求出正三棱台上下底面所在圆面的半径 r1, r2 ,再根据球心距,圆面半径,以及球的半径之间的关系,
即可解出球的半径,从而得出球的表面积.
【详解】设正三棱台上下底面所在圆面的半径
r1,
r2
,所以
2r1
3 sin
3 60
2π 3
,
3π 2
,由正弦函数
y
sin u
图象知
y
f
(x)
在
0,
5π 12
上是单调递减;
对
B,当
x
π 12
, 11π 12
时,2x
2π 3
π 2
,
5π 2
,由正弦函数
y
(x)
只有
1
个极值点,由 2x
2π 3
3π 2
,
解得 x 5π ,即 x 5π 为函数的唯一极值点;
【详解】设 OD1 DC1 CB1 BA1 1,则 CC1 k1, BB1 k2, AA1 k3 ,
依题意,有 k3
0.2
k1, k3
0.1
k2
,且
DD1 OD1
CC1 DC1
BB1 CB1
AA1 BA1
0.725 ,
所以
0.5
3k3 4
0.3
0.725
,故
k3
0.9
,
故选:D
DD1 OD1
0.5,
CC1 DC1
k1,
BB1 CB1
k2 ,
AA1 BA1
k3 .已知 k1, k2, k3 成公差为 0.1 的等差数列,且直线 OA 的斜率为 0.725,则 k3
江苏卷数学试题及答案
江苏卷数学试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 2 > 3B. 3 < 4C. 5 = 5D. 1 ≠ 1答案:B2. 如果a + b = 10,a - b = 2,那么a和b的值分别是多少?A. a = 6, b = 4B. a = 5, b = 5C. a = 7, b = 3D. a = 8, b = 2答案:A3. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B4. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第五项是多少?A. 3B. 4C. 5D. 6答案:C二、填空题(每题3分,共15分)5. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是________。
答案:56. 一个数的平方根是4,这个数是________。
答案:167. 如果一个数的立方等于27,那么这个数是________。
答案:38. 一个等差数列的前三项为2, 5, 8,求第四项。
答案:119. 一个圆的直径是10,求这个圆的周长(用π表示)。
答案:10π三、解答题(每题10分,共40分)10. 解不等式:3x + 5 > 20。
答案:x > 511. 证明:对于任意实数a和b,(a + b)² = a² + b² + 2ab。
答案:证明略12. 一个长方体的长、宽、高分别为a, b, c,求该长方体的体积。
答案:体积V = a × b × c13. 已知点A(3, 4)和点B(6, 8),求AB线段的长度。
答案:AB = √((6-3)² + (8-4)²) = 5四、综合题(每题15分,共20分)14. 一个函数f(x) = 2x² - 3x + 1,求该函数的极值点。
答案:极小值点x = 3/4,极大值点x = 115. 一个圆心在原点,半径为r的圆,求该圆上任意一点到x轴的距离。
六年级数学试题卷及答案
六年级数学试题卷及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4或-4D. 16答案:C3. 一个长方体的长是5厘米,宽是3厘米,高是2厘米,它的体积是多少立方厘米?A. 10B. 15C. 30D. 60答案:C4. 一个圆的半径是4厘米,它的面积是多少平方厘米?A. 16πB. 32πC. 64πD. 100π答案:B5. 一个班级有40名学生,其中女生占60%,那么这个班级有多少名女生?A. 20B. 24C. 26D. 28答案:B二、填空题(每题1分,共10分)6. 一个数的绝对值是它到______的距离。
答案:原点7. 如果一个数的倒数是1/3,那么这个数是______。
答案:38. 一个数的平方根是4,那么这个数是______。
答案:169. 一个数的立方根是2,那么这个数是______。
答案:810. 一个三角形的底是6厘米,高是4厘米,它的面积是______平方厘米。
答案:12三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) 2^3 + 4 × 5 - 3(2) (-2)^2 - √4 + 1/2答案:(1) 2^3 + 4 × 5 - 3 = 8 + 20 - 3 = 25(2) (-2)^2 - √4 + 1/2 = 4 - 2 + 0.5 = 2.512. 解下列方程:(1) 3x - 7 = 26(2) 2y + 5 = 19答案:(1) 3x - 7 = 26 → 3x = 33 → x = 11(2) 2y + 5 = 19 → 2y = 14 → y = 713. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,计算它的表面积和体积。
答案:表面积= 2(10×8 + 10×5 + 8×5) = 2(80 + 50 + 40) = 2 × 170 = 340平方厘米体积= 10 × 8 × 5 = 400立方厘米四、解答题(每题10分,共20分)14. 一个农场有鸡和鸭共120只,鸡的数量是鸭的3倍。
高考数学试题2024新高考新题型考前必刷卷01(参考答案)
2024年高考考前信息必刷卷(新题型地区专用)01数学·答案及评分标准(考试时间:120分钟试卷满分:150分)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
12345678DDBDADAA二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
91011ADABCAC第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。
12.513.①④14.①③四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤。
15.(13分)【解析】(1)当1a =时,函数31()ln 222f x x x x x =--+的定义域为(0,)+∞,求导得21()ln 212f x x x '=+-,(2分)令21()ln ,0212g x x x x =+->,求导得233111()x g x x x x-'=-=,(4分)当01x <<时,()0g x '<,当1x >时,()0g x '>,则函数()g x 在(0,1)上递减,在(1,)+∞上递增,()(1)0g x g ≥=,即(0,)∀∈+∞x ,()0f x '≥,当且仅当1x =时取等号,所以函数()f x 在(0,)+∞上单调递增,即函数()f x 的递增区间为(0,)+∞.(6分)(2)依题意,5(2)2ln 204f a =->,则0a >,(7分)由(1)知,当1x ≥时,31ln 2022x x x x--+≥恒成立,当1a ≥时,[1,)x ∀∈+∞,ln 0x x ≥,则3131()ln 2ln 202222f x ax x x x x x x x=--+≥--+≥,因此1a ≥;(9分)当01a <<时,求导得231()(1ln )22f x a x x '=+-+,令231()(1ln )22h x a x x =+-+,(11分)求导得()23311a ax h x x x x -=-=',当1x <<时,()0h x '<,则函数()h x ,即()f x '在上单调递减,当x ∈时,()(1)10f x f a ''<=-<,因此函数()f x 在上单调递减,当x ∈时,()(1)0f x f <=,不符合题意,所以a 的取值范围是[1,)+∞.(13分)16.(15分)【解析】(1)由题意得584018x =-=,422220y =-=;(4分)(2)由22()()()()()n ad bc a b c d a c b d χ-=++++,得22100(40221820) 4.625 3.84158426040χ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%以上的把握认为“生育意愿与城市级别有关”.(8分)(3)抽取6名育龄妇女,来自一线城市的人数为20624020⨯=+,记为1,2,来自非一线城市的人数为40644020⨯=+,(10分)记为a ,b ,c ,d ,选设事件A 为“取两名参加育儿知识讲座,求至少有一名来自一线城市”,基本事件为:(1,2),(1,),(1,),(1,),(1,),(2,),(2,),(2,),(2,),(,),(,)a b c d a b c d a b a c ,(,),(,),(,),(,)a d b c b d c d ,事件(1,2),(1,),(1,),(1,),(1,),(2,),(2,)(2,),(2,)A a b c d a b c d 共有9个,(13分)93()155P A ==或63()1155P A ⎛⎫=-= ⎪⎝⎭(15分)17.(15分)【解析】(1)因为//AD BC ,且22BC AD AB AB BC ===⊥,可得AD AB ==2BD ==,(2分)又因为45DBC ADB ∠=∠=︒,可得2CD ==,所以222BD DC BC +=,则CD BD ⊥,(4分)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,且CD ⊂平面BCD ,所以CD ⊥平面ABD ,又因为AB ⊂平面ABD ,所以CD AB ⊥;(6分)(2)因为CD ⊥平面ABD ,且BD ⊂平面ABD ,所以CD BD ⊥,(7分)如图所示,以点D 为原点,建立空间直角坐标系,可得()1,0,1A ,()2,0,0B ,()0,2,0C ,()0,0,0D ,(9分)所以()0,2,0CD =- ,()1,0,1AD =--.设平面ACD 的法向量为(),,n x y z = ,则200n CD y n AD x z ⎧⋅=-=⎪⎨⋅=--=⎪⎩,令1x =,可得0,1y z ==-,所以()1,0,1n =-,(11分)假设存在点N ,使得AN 与平面ACD 所成角为60 ,(12分)设BN BC λ=uuu r uu u r,(其中01λ≤≤),则()22,2,0N λλ-,()12,2,1AN λλ=-- ,所以sin 60n ANn AN⋅︒==(13分)整理得28210λλ+-=,解得14λ=或12λ=-(舍去),所以在线段BC 上存在点N ,使得AN与平面ACD 所成角为60︒,此时14=BN BC .(15分)18.(17分)【解析】(1)由已知得()11,0F -,22220000313434x y x y +=⇒=-(2分)则10122PF x ==+.所以当012x =时,194PF =;(5分)(2)设(),0M m ,在12F PF △中,PM 是12F PF ∠的角平分线,所以1122PF MF PF MF =,(6分)由(1)知10122PF x =+,同理20122PF x =-,(8分)即0012121122x m m x ++=--,解得014m x =,所以01,04M x ⎛⎫ ⎪⎝⎭,过P 作PH x ⊥轴于H .所以34PM MH PNOH ==.(10分)(3)记1F N P 面积的面积为S ,由(1)可得,(100001114423612S F M y y x x =⋅+=+=+()()02,00,2x ∈-⋃,则)20022S xx =+'-,(12分)当()()02,00,1x ∈-⋃时,0,S S '>单调递增;当)01,2x ∈时,0,S S '<单调递减.(16分)所以当01x =-时,S 最大.(17分)19.(17分)【解析】(1)由题意得124n a a a +++= ,则1124++=或134+=,故所有4的1减数列有数列1,2,1和数列3,1.(4分)(2)因为对于1i j n ≤<≤,使得i j a a >的正整数对(),i j 有k 个,且存在m 的6减数列,所以2C 6n ≥,得4n ≥.(6分)①当4n =时,因为存在m 的6减数列,所以数列中各项均不相同,所以1234106m ≥+++=>.(7分)②当5n =时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m ≥.(8分)若6m =,满足要求的数列中有四项为1,一项为2,所以4k ≤,不符合题意,所以6m >.(9分)③当6n ≥时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m >.综上所述,若存在m 的6减数列,则6m >.(10分)(3)若数列中的每一项都相等,则0k =,若0k ≠,所以数列A 存在大于1的项,若末项1n a ≠,将n a 拆分成n a 个1后k 变大,所以此时k 不是最大值,所以1n a =.(12分)当1,2,,1i n =- 时,若1i i a a +<,交换1,i i a a +的顺序后k 变为1k +,所以此时k 不是最大值,所以1i i a a +≥.若{}10,1i i a a +-∉,所以12i i a a +≥+,所以将i a 改为1i a -,并在数列末尾添加一项1,所以k 变大,所以此时k 不是最大值,所以{}10,1i i a a +-∈.(14分)若数列A 中存在相邻的两项13,2i i a a +≥=,设此时A 中有x 项为2,将i a 改为2,并在数列末尾添加2i a -项1后,k 的值至少变为11k x x k ++-=+,所以此时k 不是最大值,所以数列A 的各项只能为2或1,所以数列A 为2,2,,2,1,1,,1 的形式.设其中有x 项为2,有y 项为1,因为存在2024的k 减数列,所以22024x y +=,所以()2220242220242(506)512072k xy x x x x x ==-=-+=--+,(16分)所以,当且仅当506,1012x y ==时,k 取最大值为512072.所以,若存在2024的k 减数列,k 的最大值为512072.(17分)。
2024年重庆市中考真题数学试卷(A卷)含答案解析
2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。
历年高考数学真题(全国卷整理版)完整版完整版
参考公式:如果事件 A、B互斥,那么球的表面积公式P( A B) P( A) P(B)S 4R2如果事件 A、B相互独立,那么其中 R表示球的半径P(A B) P( A) P(B)球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V3R3n 次独立重复试验中事件 A 恰好发生k次的概率4其中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k 0,1,2, n)普通高等学校招生全国统一考试一、选择题13i 1、复数i =1A 2+I B2-I C 1+2i D 1- 2i2、已知集合 A ={1.3.m },B={1,m} ,A B = A, 则 m=A0或3 B 0或3C1或3 D 1或33椭圆的中心在原点,焦距为 4 一条准线为 x=-4 ,则该椭圆的方程为A x2y2=1Bx2y2=1 16++12128C x2y2=1Dx2y28+12+=1 444已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1与平面 BED 的距离为A2B3C2D1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为10099(C)99101(A)(B)(D)100101101100(6)△ ABC 中, AB 边的高为 CD ,若a· b=0, |a|=1, |b|=2,则(A)(B)(C)(D)3(7)已知α为第二象限角,sinα+ sinβ =3,则 cos2α = 5555--(C) 9(D)3(A)3(B)9(8)已知 F1、 F2 为双曲线 C: x2-y2=2的左、右焦点,点P 在 C 上, |PF1|=|2PF2|,则 cos ∠F1PF2=1334(A) 4(B)5(C)4(D)51(9)已知 x=ln π, y=log52 ,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12 种( B)18 种( C)24 种( D)36 种7(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =3。
数学考试试卷(含答案)
数学考试试卷(含答案)
一、选择题
1. 以下哪个是质数?
A. 4
B. 11
C. 15
D. 20
正确答案:B
2. 若a = 5,b = 3,下列哪个式子是正确的?
A. a × b = 15
B. a ÷ b = 1.5
C. a + b = 8
D. a - b = 2
正确答案:C
3. 一辆汽车行驶了150公里,油箱容量为40升,若每升油可行驶12公里,则还剩下多少升油?
A. 4
B. 8
C. 12
D. 16
正确答案:A
二、填空题
1. 已知两个数的和为18,差为4,求这两个数分别是多少?
答案:11, 7
2. 若x = 3,求解方程2x + 5 = 17的解?
答案:x = 6
3. 有一个长方形,长为12米,宽为8米,求其面积。
答案:96平方米
三、解答题
1. 求解方程3x + 7 = 22的解。
解答:首先将方程两边减去7,得到3x = 15,然后将15除以3,得到x = 5。
所以方程的解为x = 5。
2. 计算2的平方根。
解答:2的平方根为1.414。
3. 若a:b = 3:5,且b = 20,求a的值。
解答:由比例关系可知,a:b = 3:5,则a = (3/5) * b。
将b = 20代入,得到a = 12。
所以a的值为12。
以上是数学考试试卷及答案的内容。
注:答案仅供参考,请自行核对。
小学五年级上册期末数学试题测试卷(附答案)
小学五年级上册期末数学试题测试卷(附答案)一、填空题1.7.08×5.3的积是( )位小数,保留两位小数约是( )。
2.若把电影票上的“6排14座”记作(6,14),那么(21,17)表示( )排( )座。
3.把20千克红豆分装进保鲜桶,每个桶最多装4.5千克,需要( )个保鲜桶。
4.根据132×18=2376,在括号里填上合适的数。
1.32×18=( ) 13.2×0.18=( )5.盒中装有红、黄两种颜色的球,小军每次从中摸出一个球后再放回去摇匀,重复40次并记录了球的颜色。
小军的记录如下: 颜色 记录次数红31黄9盒中( )色的球可能比( )色的球多。
6.如果3m n =+,那么根据等式的性质:5m ÷=( )5÷;2m×d =(n +3)×( )。
7.一个三角形的面积是30cm 2,高是6cm ,与高对应的底是( )cm 。
8.已知一个平行四边形木框的底是8cm ,高是4cm ,另一条底是5cm ,另一条底边上的高是( )cm 。
如果把它拉成长方形,长方形的面积是( )平方厘米。
9.一个梯形的面积是4.5平方分米,高是5分米,上底与下底的和是( )分米。
10.在一条笔直的公路一侧每隔5m 种一棵树,一共种了50棵。
从第一棵到最后一棵的距离是( )米。
11.和2.6×0.48计算结果相等的算式是( )。
A .26 4.8⨯ B .0.26 4.8⨯ C .0.26480⨯ 12.0.98×101=0.98×100+0.98=98.98是根据( )使计算简便。
A .乘法交换律B .乘法结合律C .乘法分配律13.如图,如果点M 的位置表示为(8,6),则点N 的位置可以表示为( )。
A .(6,4)B .(5,3)C .(4,6)D .(6,3)14.如图,两条平行线间有三个图形,如果三角形的面积用字母a 表示,周长用字母b 表示,下列说法正确的是( )。
数学测试题卷
数学测试题卷一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个圆的半径是5厘米,那么它的周长是多少?A. 10π cmB. 15π cmC. 20π cmD. 25π cm3. 以下哪个表达式等价于 \(2x + 3\)?A. \(x + 2x + 3\)B. \(2(x + 2) + 1\)C. \(3x + 2\)D. \(x + 4\)4. 一个班级有30名学生,其中女生占60%,那么这个班级有多少名女生?A. 12B. 18C. 24D. 305. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 96. 以下哪个是奇数?A. 2B. 3C. 4D. 67. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 88. 以下哪个是分数的简化形式?A. \( \frac{4}{8} \)B. \( \frac{6}{12} \)C.\( \frac{8}{16} \) D. \( \frac{5}{10} \)9. 如果一个数的立方是-27,那么这个数是多少?A. -3B. 3C. -27D. 2710. 以下哪个是正确的数学不等式?A. \( 2 > 3 \)B. \( 5 \geq 5 \)C. \( 7 < 7 \)D. \( 9 \leq 9 \)二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是________。
12. 一个数的立方根是2,这个数是________。
13. 一个数的倒数是\( \frac{1}{3} \),这个数是________。
14. 如果\( a \)和\( b \)互为相反数,那么\( a + b = ________ \)。
15. 如果\( a \)和\( b \)互为倒数,那么\( ab = ________ \)。
高等数学上、下册考试试卷及答案6套[1]
高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。
六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。
2023年新高考(新课标)全国1卷数学试题真题(含答案解析)
2023年新高考全国Ⅰ卷数学试题本试卷共4页,22小题,满分150分.考试用时120分钟. 注意事项:1.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={−2,−1,0,1,2}和N ={x |x 2−x −6≥0},则M ∩N =( ) A. {−2,−1,0,1} B. {0,1,2}C. {−2}D. {2}2. 已知1i22iz -=+,则z z -=( ) A. i -B. iC. 0D. 13. 已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+,则( ) A. 1λμ+= B. 1λμ+=- C. 1λμ= D. 1λμ=-4. 设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. (]0,2D. [)2,+∞5. 设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ( )A.B.C.D.6. 过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.4C.4D.47. 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ). A.79 B.19C. 19-D. 79-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ). A. 12p p ≥ B. 2310p p > C. 30100p p =D. 12100p p ≤11. 已知函数()f x 的定义域为R 和()()()22f xy y f x x f y =+,则( ). A. ()00f = B. ()10f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点12. 下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有( ) A. 直径为0.99m 的球体 B. 所有棱长均为1.4m 的四面体C. 底面直径为0.01m ,高为1.8m 的圆柱体D. 底面直径为1.2m ,高为0.01m 的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14. 在正四棱台1111ABCD A B C D -中1112,1,AB A B AA ===________.15. 已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.16. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上11222,3F A F B F A F B ⊥=-,则C 的离心率为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.18. 如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P . 19. 已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时()32ln 2f x a >+.20. 设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求d .21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 22. 在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W . (1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于2023年新高考全国Ⅰ卷数学试题答案解析(2023·新高考Ⅰ卷·1·★)已知集合{2,1,0,1,2}M =--和2{|60}N x x x =--≥,则M N =( )(A ){2,1,0,1}-- (B ){0,1,2} (C ){2}- (D ){2} 答案:C解析:260(2)(3)02x x x x x --≥⇔+-≥⇔≤-或3x ≥,所以(,2][3,)N =-∞-+∞。
山东卷数学试题及答案
山东卷数学试题及答案一、选择题(共10题,每题5分,满分50分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 16答案:C3. 已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(1) \)的值:A. 0B. 1C. 2D. 3答案:C4. 以下哪个是二次方程\( ax^2 + bx + c = 0 \)的根的条件?A. \( b^2 - 4ac > 0 \)B. \( b^2 - 4ac = 0 \)C. \( b^2 - 4ac < 0 \)D. 以上都是答案:B5. 圆的面积公式是:A. \( A = \pi r \)B. \( A = 2\pi r \)C. \( A = \pi r^2 \)D. \( A = 4\pi r \)答案:C6. 已知三角形的两边长分别为3和4,第三边长x满足:A. \( 1 < x < 7 \)B. \( 4 < x < 7 \)C. \( 1 < x < 4 \)D. \( 0 < x < 7 \)答案:A7. 以下哪个是等差数列的通项公式?A. \( a_n = a_1 + (n-1)d \)B. \( a_n = a_1 - (n-1)d \)C. \( a_n = a_1 + nd \)D. \( a_n = a_1 - nd \)答案:A8. 已知\( \sin(30^\circ) = \frac{1}{2} \),那么\( \cos(60^\circ) \)的值是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( \frac{\sqrt{2}}{2} \)D. \( \frac{\sqrt{6}}{2} \)答案:B9. 以下哪个是等比数列的求和公式?A. \( S_n = a_1 \frac{1 - r^n}{1 - r} \)B. \( S_n = a_1 \frac{1 - r^n}{1 + r} \)C. \( S_n = a_1 \frac{r^n - 1}{r - 1} \)D. \( S_n = a_1 \frac{r - 1}{r^n - 1} \)答案:C10. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 2答案:B二、填空题(共5题,每题4分,满分20分)11. 若\( a \)和\( b \)互为相反数,则\( a + b = ________ 。
七年级数学试题卷
七年级数学试题卷一、有理数运算相关题目1. 计算:(-2)+3-(-5)解析:去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
所以(-2)+3 (-5)= 2+3 + 5。
然后按照从左到右的顺序计算:-2 + 3=1,1+5 = 6。
2. 计算:-2^2-( 3)^3÷(-1)^2023解析:先计算指数运算。
根据幂的运算法则,a^n表示n个a相乘。
对于-2^2,这里要注意先计算指数,再取相反数,所以-2^2=-4;(-3)^3=-27,(-1)^2023=-1。
则原式变为:-4-(-27)÷(-1)。
接着进行除法运算,-27÷(-1) = 27。
最后进行减法运算,-4 27=-31。
二、整式加减相关题目1. 化简:3a + 2b 5a b解析:合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
对于3a和-5a是同类项,合并得(3a-5a)= 2a;2b和-b是同类项,合并得(2b b)=b。
所以化简结果为-2a + b。
2. 先化简,再求值:(2x^2 3xy + 4y^2)-3(x^2 xy+(5)/(3)y^2),其中x = 2,y = 1。
解析:先去括号:原式=2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。
再合并同类项:(2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2 y^2。
当x = 2,y = 1时,代入求值:把x=-2,y = 1代入-x^2-y^2,得到-(-2)^2-1^2=-4 1=-5。
三、一元一次方程相关题目1. 解方程:3x+5 = 2x 1解析:移项,把含有未知数的项移到等号一边,常数项移到等号另一边,移项要变号。
所以3x-2x=-1 5。
合并同类项得x=-6。
高中数学试题卷及答案
高中数学试题卷及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式x^2 - 4 > 0的解集?A. x < -2 或 x > 2B. x < 2 或 x > -2C. x < -2 或 x > 2D. x ≤ -2 或x ≥ 22. 函数f(x) = 2x + 3的反函数是:A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = (x - 3) / 23. 已知圆的方程为x^2 + y^2 - 6x - 8y + 24 = 0,圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)4. 直线x + 2y + 3 = 0与直线2x - y - 4 = 0的交点坐标是:A. (1, -1)B. (-1, 1)C. (-1, -1)D. (1, 1)5. 一个等差数列的前三项依次为2,5,8,那么第10项是:A. 17B. 19C. 21D. 236. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值:A. -1B. 1C. 3D. 5二、填空题(每题5分,共20分)7. 计算(3x - 2)(x + 1)的结果为______。
8. 已知等比数列的前三项为2,6,18,则第四项为______。
9. 函数y = 3x - 2的图像与x轴交点的横坐标为______。
10. 一个圆的半径为5,圆心在原点,该圆的面积为______。
三、解答题(每题10分,共50分)11. 解方程:2x^2 - 5x + 2 = 0。
12. 已知函数f(x) = x^3 - 3x^2 + 2,求导数f'(x)。
13. 证明:对于任意实数a和b,等式a^2 + b^2 ≥ 2ab成立。
14. 计算定积分:∫(0到1) (3x^2 - 2x + 1) dx。
2024年高考新课标Ⅰ卷数学真题卷和答案
启用前·机密2024年普通高等学校招生全国统一考试数 学 试 题姓名:准考证号:本试题卷分选择题和非选择题两部分,共4页, 满分150分, 考试时间120分钟。
考生注意:1.答题前, 请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时, 请按照答题纸上 “注意事项” 的要求, 在答题纸相应的位置上规范作答, 在本试题卷上的作答一律无效。
3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内, 作图时可先使用 2B 铅笔, 确定后必须使用黑色字迹的签字笔或钢笔描黑。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集体A=x-5<x3<5,B={-3,-1,0,2,3}, 则A∩B=A.{-1,0}B.{2,3}C.{-3,-1,0}D.{-1,0,2}2.若zz-1=1+i, , 则z=A.-1-iB.-1+iC.1-iD.1+i3.已知向量a=(0.1),b=(2.x), 若b⊥(b-4a)则x=A.-2B.-1C.1D.24.已知cos(a+β)=m,tan a tanβ=2, 则cos(a-β)=A.-3mB.-m3C.m3D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23πB.33πC.63πD.93π6.已知函数f(x)=-x2-2ax-a,x<0e x+ln(x+1),x≥0在R上单调递增,则a的取范围是A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)7.当x∈[0,2π]时,曲线y=sin x与y=2sin3x-π6的交点个数为A.3B.4C.6D.88.已知函数f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时,f (x )=x ,则下列结论中一定正确的是A.f (10)>100 B.f (20)>1000C.f (10)<1000D.f (20)<10000二、选择题:本大题共 3小题,每小题 6分,共 18分。
(完整版)幼小衔接数学试题
1、小明有5个苹果,他给了小红2个,现在小明手上还剩几个苹果?
A. 7个
B. 5个
C. 3个
D. 2个
(答案:C)
2、下列哪个数字比4大但比7小?
A. 9
B. 2
C. 5
D. 10
(答案:C)
3、小华家有3只猫,每只猫有4只脚,小华家一共有多少只猫脚?
A. 6只
B. 7只
C. 12只
D. 9只
(答案:C)
4、下列哪一组数字是按照从小到大的顺序排列的?
A. 8, 5, 3, 1
B. 2, 4, 6, 8
C. 9, 7, 5, 3
D. 10, 6, 4, 2
(答案:B)
5、小丽有6本书,她又买了4本新书,现在她一共有多少本书?
A. 8本
B. 10本
C. 12本
D. 14本
(答案:B)
6、下列哪个形状有4条边和4个角?
A. 圆形
B. 三角形
C. 正方形
D. 长方形和圆形都不是四边形
(答案:C)
7、小杰在数数,他数到10后接着数,下一个数字应该是多少?
A. 8
B. 9
C. 11
D. 12
(答案:C)
8、小芳有10元钱,她买了一支铅笔花了2元,还剩多少钱?
A. 6元
B. 7元
C. 8元
D. 9元
(答案:C)。
数学归纳法试题
数学归纳法试题一、使用数学归纳法证明某个命题时,首先需要验证的是?A. 命题对第一个自然数成立B. 命题对所有自然数都成立的一个特殊情况C. 命题的递推关系式D. 命题对无穷大的自然数成立(答案:A)二、在数学归纳法中,假设命题对某个自然数k成立,接下来需要做的是?A. 证明命题对k+1也成立B. 证明命题对k-1也成立C. 重新验证命题对k的成立性D. 直接得出命题对所有自然数都成立的结论(答案:A)三、以下哪个步骤不是数学归纳法证明中的必要步骤?A. 验证基础情况B. 假设归纳步骤C. 证明递推关系D. 验证特殊情况(答案:D)四、设有一个关于自然数的命题P(n),若要用数学归纳法证明P(n)对所有自然数n都成立,首先需要验证的是?A. P(0)成立(假设0为自然数的起点)B. P(1)成立(假设1为自然数的起点)C. P(2)成立D. P(n)的递推关系式成立(答案:A或B,根据自然数的定义起点而定,通常选B)五、在数学归纳法的归纳步骤中,我们通常做的是?A. 验证命题对第一个自然数的成立性B. 假设命题对某个自然数k成立,然后证明它对k+1也成立C. 验证命题对所有负整数的成立性D. 无需做任何假设,直接证明命题对所有自然数都成立(答案:B)六、关于数学归纳法,以下哪个说法是不正确的?A. 数学归纳法是证明自然数命题的一种有效方法B. 在使用数学归纳法时,必须验证基础情况C. 只要证明了递推关系式,就可以直接使用数学归纳法得出结论D. 数学归纳法包括基础步骤和归纳步骤(答案:C)七、设P(n)是一个关于自然数n的命题,若P(n)对n=1成立,且当P(k)成立时,P(k+2)也成立,则能得出什么结论?A. P(n)对所有自然数n都成立B. P(n)对所有正奇数n都成立C. P(n)对所有正偶数n都成立D. 无法得出P(n)对任何特定自然数集合成立的结论(答案:B,考虑到递推间隔为2)八、在数学归纳法的应用中,以下哪个情况是不需要的?A. 明确命题P(n)的形式B. 验证命题P(n)对第一个自然数的成立性C. 假设命题P(k)成立,然后证明P(k+1)也成立D. 验证命题P(n)对某个特定大数N的成立性(答案:D)。
2024年高考数学(新课标II卷)考试试题(附详细答案解析)
2024年高考数学试题(新课标II卷)一、选择题:本题共8小题,每小题5分,满分40分.每小题给出的四个选项中,只有一个是符合题意的.1.已知z=-1-i,则z =A.0B.1C.2D.22.已知命题p:∀x∈R,x+1>1;命题q:∃x>0,x3=x,则A.p和q都是真命题B.¬p和q都是真命题C.p和¬q都是真命题D.¬p和¬q都是真命题3.已知向量a,b满足:a =1,a+2b=2,且b-2a⊥b,则b =A.12 B.22 C.32 D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理如下表所示.亩产[900,950)[950,1000)[1000,1050)[1050,1150)[1150,1200)频数612182410根据表中数据,下列结论正确的是A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过40%C.100块稻田亩产量的极差介于200kg到300kg之间D.100块稻田亩产量的平均值介于900kg到1000kg之间5.已知曲线C:x2+y2=16y>0,从C上任意一点P向x轴作垂线段PP ,P 为垂足,则线段PP 的中点M的轨迹方程为A.x216+y24=1y>0B.x216+y28=1y>0C.y216+x24=1y>0D.y216+x28=1y>06.设函数f x =a x+12-1,g x =cos x+2ax(a为常数),当x∈-1,1时,曲线y=f x 和y=g x 恰有一个交点,则a=A.-1B.12 C.1 D.27.已知正三棱台ABC-A B C 的体积为523,AB=6,A1B1=2,则AA 与平面ABC所成角的正切值为A.12 B.1 C.2 D.38.设函数f x =x+aln x+b,若f x ≥0,则a2+b2的最小值为A.18 B.14 C.12 D.1二、选择题:本题共3小题,每小题6分,满分18分.每小题给出的备选答案中,有多个选项是符合题意的.全部选对得6分,部分选对得3分,选错或不选得0分.9.对于函数f x =sin2x和g x =sin(2x-π4),下列正确的有A.f x 与g x 有相同零点B.f x 与g x 有相同最大值C.f x 与g x 有相同的最小正周期D.f x 与g x 的图象有相同对称轴10.抛物线C:y2=4x的准线为l,P为C上动点,过P作⊙A:x2+y-42=1的一条切线,Q为切点.过P作C的垂线,垂足为B,则A.l与⊙A相切B.当P、A、B三点共线时,PQ=15C.当PB=2时,P A⊥AB D.满足P A=PB的点A有且仅有2个11.设函数f x =2x3-3ax2+1,则A.当a>1时,f x 的三个零点B.当a<0时,x=0是f x 的极大值点C.存在a,b,使得x=b为曲线f x 的对称轴D.存在a,使得点1,f1为曲线y=f x 的对称中心三、填空题:本题共3小题,每小题5分,满分15分.12.记S n为等差数列a n的前n项和,若a3+a4=7,3a2+a5=5,则S10=.13.已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sinα+β=.14.在下图的4*4方格表中有4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法;在符合上述要求的选法中,选中方格中的四个数之和的最大值是.12345678910111213141516四、解答题:本题共5小题,满分87分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本题满分13分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin A+3cos A=2.(1)求A;(2)若a=2,2b sin C=c sin2B,求△ABC的周长.16.(本题满分15分)已知函数f x =e x -ax -a 3.(1)当a =1时,求曲线y =f x 在点1,f 1 处的切线方程;(2)若f x 有极小值,且极小值小于0,求a 的取值范围.17.(本题满分15分)如图,平面四边形ABCD 中,AB =8,CD =3,AD =53,∠ADC =90°,∠BAD =30°,点E ,F 满足AE =75AD ,AF =12AB ,将△AEF 沿EF 对折至△PEF ,使得PC =43.(1)证明:EF ⊥PD ;(2)求面PCD 与面PBF 所成的二面角的正弦值.AB CDE F P18.(本题满分17分)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中1次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若p =0.4,q =0.5,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率;(2)假设0<p <q .(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.(本题满分17分)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1,按照如下公式依次构造点P n n =2,3,⋯ :过点P n -1作斜率为k 的直线与C 的左支点交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k 1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对于任意正整数n ,S n =S n +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 试 题 卷考生须知:1.本试卷分为试题卷和答题卷两部分.2.试题卷共4页,满分150分.考试时间120分钟.3.答题卷共4页,所有答案必须写在答题卷上............,写在试题卷上的无效..........4.答题前,考生应先在答题卷密封区内认真填写准考证号、姓名、考场号、 座位号、地(州、市、师)、县(市、区、团场)和学校.5.答题时可以使用科学计算器.......... 一、精心选择(本大题共8小题,每小题5分,共40分.每小题所给四个选项中,只有一个是正确的.) 1.8-的相反数是A.8B.8-C.18D.18- 2.计算23()a -的结果是A.5a -B.6aC.6a -D.5a3.如右图,小明课间把老师的三角板的直角顶点放在黑板的两 条平行线a b 、上,已知155∠=°,则2∠的度数为 A.45° B.35° C.55° D.125°4.今年我区约有202 000名应届初中毕业生参加学业水平考试, 202 000用科学记数法表示为 A.60.20210⨯ B.320210⨯ C.420.210⨯ D.52.0210⨯5.如果从小军等10名大学生中任选1名作为“世博会”志愿者,那么小军被选中的概率是 A.1 B.111 C. 110 D. 19新疆维吾尔自治区 新疆生产建设兵团2010年初中学业水平考试第3题图AB C6.如图(1)是一张Rt ABC △纸片,如果用两张相同 的这种纸片恰好能拼成一个正三角形,如图(2),那 么在Rt ABC △中,sin B ∠的值是 A.12C.1D.32 7.若点1122()()A x y B x y ,、,在反比例函数3y x=-的图象上,且120x x <<,则12y y 、和0的大小关系是 A.120y y >> B.120y y << C.120y y >> D.120y y << 8.如右图,王大爷家屋后有一块长12m ,宽8m 的矩形空地, 他在以BC 为直径的半圆内种菜,他家养的一只羊平时拴在 A 处,为了不让羊吃到菜,拴羊的绳长可以选用 A.3m B.5m C.7m D.9m二、合理填空(本大题共6个小题,每小题5分,共30分) 9.=___________.10.写出右图中所表示的不等式组的解集:____________. 11.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下图,则产量较稳定的是棉农_________.(填甲或乙)12.利用1个a a ⨯的正方形,1个b b ⨯的正方形和2个a b ⨯的矩形可拼成一个正方形(如图所示),从而可ABC8m12mDPO (第11题图)(第12题图)得到因式分解的公式__________.13.长方体的主视图和左视图如下图所示(单位:cm ),则其俯视图的面积是_________cm 2.14.抛物线2y x bx c =-++的部分图象如图所示,若0y >,则x 的取值范围是__________. 三、准确解答(本大题共有10题,共80分) 15.(6分)解方程:22760x x -+=16.(6分)先化简,再求值22111x x xx x x ⎛⎫-÷ ⎪---⎝⎭,其中1x 17.(6分)用四块如下图(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形)18.(6分)小王将一黑一白两双相同号码的袜子一只一只地扔进抽屉里,当他随意从抽屉里拿出两只袜子时,恰好成双与不成双的机会是多少?请你用树形图求解.19.(8分)2010年4月14日我国青海玉树地区发生强烈地震,急需大量赈灾帐篷.某帐篷生产企业接到任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,现在生产3 000顶帐篷所用的时(第13题图)(第14题图) O x y 1-1 3 (2) (3) (4)(1)间与原计划生产2 000顶的时间相同.现在该企业每天能生产多少顶帐篷?20.(8分)某瓜果销售公司去年3月至8月销售库尔勒香梨、哈密瓜的情况见下表:3月 4月 5月 6月 7月 8月库尔勒香梨(吨)4 85 8 10 13 哈密瓜(吨)8 7 9 7 10 7 (1)请你根据以上数据填写下表:平均数 方差库尔勒香梨8 9 哈密瓜(2)补全右面折线统计图;(3)请你根据下面两个要求对这两种瓜果在去年3月份至8月份的销售情况进行分析: ①根据平均数和方差分析;②根据折线图上两种瓜果销售量的趋势分析.21.(8分)圆心角都是90°的扇形AOB 与扇形COD 如图所示那样叠放在一起,连结AC BD 、. (1)求证:AOC BOD △≌△;(2)若3AO cm ,OC =1cm ,求阴影部分的面积.22.(10分)如图(1),某灌溉设备的喷头B 高出地面1.25m ,喷出的抛物线形水流在与喷头底部A 的距离为1m 处达到距地面最大高度2.25m ,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.学生小龙在解答图(1)所示的问题时,具体解答如下:(第20题图)A B C D O (第21题图)①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图(2)所示的平面直角坐标系;②设抛物线水流对应的二次函数关系式为2y ax =;③根据题意可得B 点与x 轴的距离为1m ,故B 点的坐标为(1-,1);④代入2y ax =得11a-=·,所以1a =-; ⑤所以抛物线水流对应的二次函数关系式为2y x =-.数学老师看了小龙的解题过程说:“小龙的解答是错误的”.(1)请指出小龙的解答从第_________步开始出现错误,错误的原因是什么? (2)请你写出完整的正确解答过程.23.(10分)如图是一个量角器和一个含30°角的直角三角形放置在一起的示意图,其中点B 在半圆O 的直径DE 的延长线上,AB 切半圆O 于点F ,且.BC OE = (1)求证:DE CF ∥;(2)当2OE =时,若以O B F 、、为顶点的三角形与ABC △相似,求OB 的长.(3)若2OE =,移动三角板ABC 且使AB 边始终与半圆O 相切,直角顶点B 在直径DE 的延长线上移动,求出点B 移动的最大距离.图(1)图(2) A B C O (第23题图)DF E24.(12分)张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图(1).然后,他用这8块瓷砖又拼出一个正方形,如图(2),中间恰好空出一个边长为1的小正方形(阴影部分),假设长方形的长为y ,宽为x ,且.y x(1)请你求出图(1)中y 与x 的函数关系式; (2)求出图(2)中y 与x 的函数关系式;(3)在图(3)中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;(4)根据以上讨论完成下表,观察x 与y 的关系,回答:如果给你任意8个相同的长方形,你能否拼出类似图(1)和图(2)的图形?说出你的理由.图(2)中小正方形边长1 2 3 4 … x 6 y10…图(1) 图(2) 图(3)数学试卷参考答案及评分标准(满分150分)说明:本参考答案供阅卷教师评卷时使用.阅卷中,考生如有其它解法,只要正确、合理,均可得相应分值.一、精心选择(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8 选项A CB DC B C A 二、合理填空(本大题共6小题,每小题5分,共30分)新疆维吾尔自治区 新疆生产建设兵团2010年初中学业水平考试10.32x -<≤ 11.乙 12.2222()a ab b a b ++=+ 13.12 14.31x -<<三、准确解答(本大题共10小题,共80分) 15.(6分)解法不唯一. 例解:27302x x -+= 274949321616x x -+=-+ ····································································2′271()416x -= ··················································································4′7144x -=± ····················································································5′12x = 232x = ·········································································6′ 16.(6分)解:2222111111x x x x x x x x x x x x ⎛⎫⎛⎫--÷=+ ⎪ ⎪-----⎝⎭⎝⎭· =2211x x x x x +--· ················································2′ =(2)11x x x x x+--· ················································3′ =2x + ····························································4′当1x =时,原式123+= ·················································6′ 17.(6分)解法不唯一,例解如下:每个图形2′,共6′(1) (2) (3)18.(6分)··············································································································3′()13P =成双 ································································································5′ ()23P =不成双 ·····························································································6′ 19.(8)分例解:设现在该企业每天生产x 顶帐篷,则原计划每天生产(200)x -顶帐篷 ·········1′由题意得:3 000 2 000200x x =- ·······································································4′ 解得600x = ····························································································6′ 经检验600x =是原方程的解 ·······································································7′即该企业现在每天生产600顶帐篷 ································································8′ 20.(8分) 解:(1)平均数 方差库尔勒香梨8 9 哈密瓜843··············································································································3′ (2)如图··············································································································6′24.(12分)解法不唯一解:(1)由图(1)得:35y x = 53y x =··················································2′ (2)由图(2)得281(2)xy x y +=+ ····························································3′ 整理得:2(2)1x y -=21x y -=±53y x = 5213x x ∴-=- 30x =-<21x y ∴-=-不成立 ·················································································4′即21y x =- ·····························································································5′ (3)··············································································································7′ 交点坐标(3,5)······················································································8′ 实际意义解答不唯一例①:瓷砖的长为5,宽为3时,能围成图(1),图(2)的图形 ························9′例②:当瓷砖长为5,宽为3时,围成图(2)的正方形中的小正方形边长为1.(4)图(2)中小正方形边长 1 2 3 4 …x 3 6 9 12 …y 5 10 15 20 …············································································································ 11′情况①:不能,长方形的长与宽若不能满足53y x=,则不能情况②:能,长方形的长与宽只要满足53y x=即可情况③:综合上述两种说法只要符合其中一种情况均给分 ···································································· 12′。