第二十四章圆课文练习及答案
九年级数学下册《第二十四章 圆》练习题及答案解析
九年级数学下册《第二十四章圆》练习题及答案解析一、单选题1.如图,O的半径为4,点A为O上一点,OA的垂直平分线分别交O于点B,C,则BC的长为()A.3B.4C.3D.32.下列条件中,不能确定一个圆的是()A.圆心与半径B.直径C.平面上的三个已知点D.三角形的三个顶点3.如图,在正方形网格中,点A,B,C,D,O都在格点上.下列说法正确的是()A.点O是ABC的内心B.点O是ABC的外心C.点O是ABD的内心D.点O是ABD的外心4.若⊙O的半径为5cm,点A到圆心O的距离为4cm,则点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定5.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.=AB AD D.∠BCA=∠DCA6.有下到结论:(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)三角形的外心到三角形各边的距离相等,其中正确的结论的个数有()A.0个B.1个C.2个D.3个7.一个点到圆的最大距离为11,最小距离为5,则圆的半径为().A.16或6 B.3或8 C.3 D.8 8.⊙O的面积是25π,点P到圆心O的距离为d,下列说法正确的是( ) A.当d≥5时,点在圆⊙O外B.当d<5时,点在圆⊙O上C.当d>5时,点在圆⊙O外D.当d≤5时,点在圆⊙O内9.如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=45,BD=5,则OH的长为()A.23B.56C.1 D.7610.如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.5 2B.3C.25 11D5二、填空题11.若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是. 12.如图,⊙O的直径为10,圆心O到弦AB的距离OM=3,则弦AB的长是13.如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB=.14.如图, AB 是圆 O 的直径, AD DC CB AC ==, 与 OD 交于点 E .如果 3AC = ,那么 DE 的长为 .三、计算题15.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB , AC 的度数为70°.求∠EOC 的度数.16.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB ,弧 CE 的度数为50°,求∠AOC 的度数.17.如图,A 、B 、C 、D 均为⊙O 上的点,其中A 、B 两点的连线经过圆心O ,线段AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数.四、解答题18.如图,AB 是 O 的直径,弦 CD AB ⊥ 于点E ,若 8AB = , 6CD = ,求 OE 的长.19.已知AB,AC为弦,OM⊥AB于M,ON⊥AC于N,求证:MN∥BC且MN=12BC.20.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.五、综合题21.如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC于点D,交AB于点E,连结DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.22.如图,在平面直角坐标系中,O(0,0),A(0,-6),B(8,0)三点在⊙P上.(1)求⊙P的半径及圆心P的坐标;(2)M为劣弧OB的中点,求证:AM是∠OAB的平分线.23.定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD中,∠A+∠B=12(∠C+∠D),求∠A与∠B的度数之和;(2)如图2,O为锐角△ABC的外心,过点O的直线交AC,BC于点D,E,∠OAB=30°,求证:四边形ABED是对半四边形;(3)如图3,在△ABC中,D,E分别是AC,BC上一点,CD=CE=3,CE=3EB,F为DE的中点,∠AFB=120°,当AB为对半四边形ABED的对半线时,求AC的长.参考答案与解析1.【答案】D【解析】【解答】解:设OA与BC相交于点D,连接OB,BC是OA的垂直平分线,2OD AD∴==,90BDO∠=︒,2BC BD∴=,在Rt BDO中,224223BD=-=22343BC∴=⨯=故答案为:D.【分析】设OA与BC相交于点D,连接OB,先利用勾股定理求出BD的长,再利用BC=2BD可得答案。
人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
【单元练】人教版初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)
一、选择题1.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .245C 解析:C【分析】 先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD 的长. 【详解】解:∵AB 为直径,∴∠ACB=90°,∴22221086BC AB AC =-=-=,∵OD ⊥AC , ∴CD=AD=12AC=4, 在Rt △CBD 中,222246213BD BC CD =+=+=.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104πB解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.如图,分别以AB,AC为直径的两个半圆,其中AC是半圆O的一条弦,E是弧AEC中点,D是半圆ADC中点.若DE=2,AB=12,且AC˃6,则AC长为()A.2B.2C.2D.2D解析:D【分析】连接OE,交AC于点F,由勾股定理结合垂径定理求出AF的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =+,222x =-∴2(2)822AC x =+=+或822-∵6AC >∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80πB解析:B【分析】 先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .πA解析:A【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式.6.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个D解析:D【分析】 ①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC ,根据作图过程可证得△AOC 为等边三角形,由等边三角形的性质即可判断; ③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.7.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102解析:C【分析】 根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .8.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A.8 B.6 C.4 D.2A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222=-=-=,BD OB OD.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠=︒,则B的度数是()A50A.50︒B.55︒C.60︒D.65︒D解析:D【分析】连接AC,根据圆心角、弧、弦的关系求出∠BAC,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.10.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题11.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解 解析:13,12⎛+ ⎝⎭332⎛ ⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M 的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH =、12CJ =,再根据勾股定理求得632JM =,再根据正六边形的性质、线段的和差即可求得32JF =,即可得解.【详解】解:经历六次旋转后点M 落在点6M 处,过M 作MH x ⊥于点H ,过6M 作6M J x ⊥于点J ,连接6IM ,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒∴1122FH AF == ∵已知点M 的纵坐标是312+,即312MH =+ ∴点M 的坐标是:13,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,226632JM CM CJ =-= ∵点I 是正六边形的中心∴1IC IF ==∴32JF IF IC CJ =+-=∴点6M 的坐标是:33,22⎛⎫ ⎪ ⎪⎝⎭. 故答案是:13,122⎛⎫+ ⎪ ⎪⎝⎭;33,22⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.12.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________. 【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,310【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵22(32)310MB =-+=∴⊙M 10.故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.13.如图,等腰直角△ABC中,∠BAC=90°,AB=AC=4.平面内的直线l经过点A,作CE⊥l 于点E,连接BE.则当直线l绕着点A转动时,线段BE长度的最大值是________.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E'>B E',∵OE=O E',∴BO+OE>B E',∴BE的长为最大值,∵AO=OC=OE,且AB=AC=4,∴122OE AC==又∵∠BAC=90°∴22222BO AO AB=+=+=4220∴25BO=∴BE=252+=+BO OE+故答案为:225【点睛】此题主要考查了求线段的最大值,构造出△ACE的外接贺是解答本题的关键.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE +=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键. 16.如图,已知点C 是半圆О上一点,将弧BC 沿弦BC 折叠后恰好经过点,O 若半圆O 的半径是2,则图中阴影部分的面积是________________________.【分析】过点O 作OD ⊥BC 于E 交半圆O 于D 点连接CD如图根据垂径定理由OD ⊥BC 得BE =CE 再根据折叠的性质得到ED =EO 则OE =OB 则可根据含30度的直角三角形三边的关系得∠OBC =30°即∠AB 解析:23π 【分析】过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,如图,根据垂径定理由OD ⊥BC 得BE =CE ,再根据折叠的性质得到ED =EO ,则OE =12OB ,则可根据含30度的直角三角形三边的关系得∠OBC =30°,即∠ABC =30°则∠AOC=60°,由于OC =OB ,则弓形OC 的面积=弓形OB 的面积,然后根据扇形的面积公式及S 阴影部分=S 扇形OAC 即可得到阴影部分的面积.【详解】如图:过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,∵OD ⊥BC ,∴BE =CE ,∵半圆O 沿BC 所在的直线折叠,圆弧BC 恰好过圆心O ,∴ED =EO ,∴OE =12OB , ∴∠OBC =30°,即∠ABC =30°,∴∠AOC=60°;∵OC =OB ,∴弓形OC 的面积=弓形OB 的面积,∴S 阴影部分=S 扇形OAC =260223603ππ⋅= . 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.BC=,若点P是矩形ABCD上一动点,要使得18.在矩形ABCD中,43AB=6∠=︒,则AP的长为__________.或4或8【分析】取CD中点P1连接60APBAP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B =60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:434或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=3△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米. 65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.解析:(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD -=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD =-=-=. ∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.解析:证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==解析:(1)证明见解析;(2)364π- 【分析】 (1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT 与⊙O 相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 13312AOT S ∴=⨯=. ∴阴影部分的面积2Δ 60133360464AOT AOTS S ππ⨯=-=-=-扇形. 【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.如图,已知AB 是O 的直径,四边形AODE 是平行四边形,请用无刻度直尺按下列要求作图.(1)如图1,当点D 在圆上时,作BAC ∠的平分线;(2)如图2,当点D 不在圆上时,作BAC ∠的平分线.解析:(1)见解析;(2)见解析.【分析】(1)由四边形AODE 是平行四边形,结合圆的 半径相等,可知四边形AODE 是菱形,利用菱形的性质即可做出BAC ∠的平分线;(2)延长OD 交于圆一点,连接该点与点A ,由此即可作出C BA ∠的平分线.【详解】解:(1)如图①:AD 即为所求.∵四边形AODE 是平行四边形点D 在圆上∴四边形AODE 是菱形∴AD 平分BAC ∠;(2)如图②:延长OD 交于圆一点P ,连接AP ,同理可证AP 即为所求.【点睛】此题考查尺规作图,关键是掌握圆的相关知识及角平分线的判定方法.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).解析:(1)3m π;(2)127()52m -. 【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.【详解】解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127(5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 解析:(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ. 【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 27.如图,ABC 内接于O ,60BAC ∠=︒,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.解析:(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.28.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.解析:(1)52︒;(2)19︒【分析】(1)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,可以求出AOB ∠的度数,再根据圆周角定理得到ACB ∠的度数;(2)连接CE ,根据(1)的结论,先求出BCE ∠的度数,再由圆周角定理得到BAE BCE ∠=∠,再等腰三角形ABD 中求出底角ADB ∠的度数,再由外角和定理就可以求出EAC ∠的度数.【详解】解:(1)如图,连接OA 、OB ,∵PA 、PB 是O 的切线,∴90OAP OBP ∠=∠=︒,∴360909076104AOB ∠=︒-︒-︒-︒=︒,根据圆周角定理,1522ACB AOB ∠=∠=︒;(2)如图,连接CE , ∵AE 是O 的直径, ∴90ACE ∠=︒, ∵52ACB ∠=︒, ∴905238BCE ∠=︒-︒=︒, ∴38BAE BCE ∠=∠=︒, ∵AB AD =, ∴71ABD ADB ∠=∠=︒, ∴19EAC ADB ACB ∠=∠-∠=︒.【点睛】本题考查圆周角定理和切线的性质,解题的关键是掌握这些性质定理进行求解.。
人教版九年级上册数学《第24章圆》练习题(含答案) .docx
24・1.1 圖01 基础题知识点1圆的有关概念1. 下列条件中,能确定唯一一个圆的是(C)A. 以点O 为圆心B. 以2 cm 长为半径C. 以点O 为圆心,5 cm 长为半径D. 经过点A2. 下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦:③直径是最长的弦:④弧是半圆,半圆是弧.A ・1个B ・2个 C. 3个 D ・4个3. 过圆上一点可以作出圆的最长眩的条数为(A)A ・1条B ・2条 C. 3条 D.无数条的半径K 为5・知识点2圆中的半径相等6. 如图,MN 为0O 的弦,ZN = 52%则ZMON 的度数为(C)A. 38°D. 104°4. 如图,在<30中,弦有AC, AB.直径是优弧rj ABC, CAB,劣弧有员阮 5.如图,在0O 中,点B 在OO±, 四边形AOCB 是矩形,对角线AC 的氏为5,则OOB. 52°C. 76°7. (朔州月考)如图,在AABC 中,ZACB = 90°, ZA=40°,以C 为圆心,CB 为半径的圆 交 AB T 点 D,连接 CD,则ZACD = (A)A. 10°C. 20°=40°. = ZC.求证:CE=BF.证明:TOB, OC 是。
O 的半径,・・・OB=OC.又・・・ZB=ZC, ZBOE=ZCOF, /. AEOB^AFOC(ASA).・・・OE=OF.・・・OE+OC=OF+OB,即 CE=BF.10. 如图,CE 是。
O 的直径,AD 的延长线与CE 的延长线交于点B,若BD = OD, ZAOC = 114。
,求ZAOD 的度数.B. 15° D. 25°8.如图,AB 为00的直径,点C,9.如图,AB, AC 为。
O 的弦,分别交弦AB, AC 于点E, F, ZB则 ZAOD解:设ZB = x.VBD=OD,:、ZDOB = ZB=x.・•・ ZADO= ZDOB+ ZB = 2x.VOA = OD,/. ZA= ZAD0=2x.VZAOC=ZA+ZB,・・・2x+x=114。
北京市西城区第二十四章圆课堂练习题及答案
北京市西城区第二十四章圆课堂练习题及答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第二十四章圆测试1 圆学习要求理解圆的有关概念,掌握圆和弧的表示方法,掌握同圆的半径相等这一性质.课堂学习检测一、基础知识填空1.在一个______内,线段OA绕它固定的一个端点O______,另一个端点A所形成的______叫做圆.这个固定的端点O叫做______,线段OA叫做______.以O点为圆心的圆记作______,读作______.2.战国时期的《墨经》中对圆的定义是________________.3.由圆的定义可知:(1)圆上的各点到圆心的距离都等于________;在一个平面内,到圆心的距离等于半径长的点都在________.因此,圆是在一个平面内,所有到一个________的距离等于________的________组成的图形.(2)要确定一个圆,需要两个基本条件,一个是________,另一个是________,其中,________确定圆的位置,______确定圆的大小.4.连结______________的__________叫做弦.经过________的________叫做直径.并且直径是同一圆中__________的弦.5.圆上__________的部分叫做圆弧,简称________,以A,B为端点的弧记作________,读作________或________.6.圆的________的两个端点把圆分成两条弧,每________都叫做半圆.7.在一个圆中_____________叫做优弧;_____________叫做劣弧.8.半径相等的两个圆叫做____________.二、填空题9.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.综合、运用、诊断10.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.11.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.拓广、探究、思考12.已知:如图,△ABC,试用直尺和圆规画出过A,B,C三点的⊙O.测试2 垂直于弦的直径学习要求1.理解圆是轴对称图形.2.掌握垂直于弦的直径的性质定理及其推论.课堂学习检测一、基础知识填空1.圆是______对称图形,它的对称轴是______________________;圆又是______对称图形,它的对称中心是____________________.2.垂直于弦的直径的性质定理是____________________________________________.3.平分________的直径________于弦,并且平分________________________________.二、填空题4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.5题图6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.6题图7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.7题图8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O 到CD的距离是______.8题图9.如图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______.9题图10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.10题图综合、运用、诊断11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.12.已知:如图,试用尺规将它四等分.13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).14.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.15.已知:⊙O 的半径为25cm ,弦AB =40cm ,弦CD =48cm ,AB ∥CD .求这两条平行弦AB ,CD 之间的距离.拓广、探究、思考16.已知:如图,A ,B 是半圆O 上的两点,CD 是⊙O 的直径,∠AOD =80°,B是的中点.(1)在CD 上求作一点P ,使得AP +PB 最短; (2)若CD =4cm ,求AP +PB 的最小值.17.如图,有一圆弧形的拱桥,桥下水面宽度为7.2m ,拱顶高出水面2.4m ,现有一竹排运送一货箱从桥下经过,已知货箱长10m ,宽3m ,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥测试3 弧、弦、圆心角学习要求1.理解圆心角的概念.2.掌握在同圆或等圆中,弧、弦、圆心角及弦心距之间的关系.课堂学习检测一、基础知识填空1.______________的______________叫做圆心角.2.如图,若长为⊙O 周长的nm,则∠AOB =____________.3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么______________________.4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.二、解答题5.已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.综合、运用、诊断6.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F 点,与OB相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.7.已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,求∠ACO的度数.拓广、探究、思考8.⊙O中,M为的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AMC.AB<2AM D.AB与2AM的大小不能确定9.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.10.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值若是定值,请给出证明并求这个定值;若不是,请说明理由.测试4 圆周角学习要求1.理解圆周角的概念.2.掌握圆周角定理及其推论.3.理解圆内接四边形的性质,探究四点不共圆的性质.课堂学习检测一、基础知识填空1._________在圆上,并且角的两边都_________的角叫做圆周角.2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.在同圆或等圆中,____________所对的圆周角____________.4._________所对的圆周角是直角.90°的圆周角______是直径.5.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.5题图6.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.6题图7.如图,ΔABC是⊙O的内接正三角形,若P是上一点,则∠BPC=______;若M是上一点,则∠BMC=______.7题图二、选择题8.在⊙O中,若圆心角∠AOB=100°,C是上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°9.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.°D.101°10.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).10题图A.64°B.48°C.32°D.76°11.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°13.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于( ).A.70°B.90°C.110°D.120°综合、运用、诊断14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.16.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.17.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.拓广、探究、思考18.已知:如图,△ABC内接于⊙O,AM平分∠BAC交⊙O于点M,AD⊥BC于D.求证:∠MAO=∠MAD.19.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O于M.求证:∠AMD=∠FMC.测试5 点和圆的位置关系学习要求1.能根据点到圆心的距离与圆的半径大小关系,确定点与圆的位置关系.2.能过不在同一直线上的三点作圆,理解三角形的外心概念.3.初步了解反证法,学习如何用反证法进行证明.课堂学习检测一、基础知识填空1.平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r⇔点P在⊙O______;d=r⇔点P在⊙O______;d<r⇔点P在⊙O______.2.平面内,经过已知点A,且半径为R的圆的圆心P点在_________________________________________.3.平面内,经过已知两点A,B的圆的圆心P点在__________________________________________________________.4.______________________________________________确定一个圆.5.在⊙O上任取三点A,B,C,分别连结AB,BC,CA,则△ABC叫做⊙O的______;⊙O叫做△ABC的______;O点叫做△ABC的______,它是△ABC___________的交点.6.锐角三角形的外心在三角形的___________部,钝角三角形的外心在三角形的_____________部,直角三角形的外心在________________.7.若正△ABC外接圆的半径为R,则△ABC的面积为___________.8.若正△ABC的边长为a,则它的外接圆的面积为___________.9.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________.10.若△ABC内接于⊙O,BC=12cm,O点到BC的距离为8cm,则⊙O的周长为___________.二、解答题11.已知:如图,△ABC.作法:求件△ABC的外接圆O.综合、运用、诊断一、选择题12.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出( ).A.5个圆B.8个圆C.10个圆D.12个圆13.下列说法正确的是( ).A.三点确定一个圆B.三角形的外心是三角形的中心C.三角形的外心是它的三个角的角平分线的交点D.等腰三角形的外心在顶角的角平分线上14.下列说法不正确的是( ).A.任何一个三角形都有外接圆B.等边三角形的外心是这个三角形的中心C.直角三角形的外心是其斜边的中点D.一个三角形的外心不可能在三角形的外部15.正三角形的外接圆的半径和高的比为( ).A.1∶2 B.2∶3 C.3∶4 D.1∶316.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2-2x+d=0有实根,则点P( ).A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部二、解答题17.在平面直角坐标系中,作以原点O为圆心,半径为4的⊙O,试确定点A(-2,-3),B(4,-2),)2,3C与⊙O的位置关系.(218.在直线123-=x y 上是否存在一点P ,使得以P 点为圆心的圆经过已知两点A (-3,2),B (1,2).若存在,求出P 点的坐标,并作图.测试6 自我检测(一)一、选择题1.如图,△ABC 内接于⊙O ,若AC =BC ,弦CD 平分∠ACB ,则下列结论中,正确的个数是( ).1题图①CD 是⊙O 的直径 ②CD 平分弦AB ③CD ⊥AB④= ⑤= A .2个 B .3个 C .4个 D .5个2.如图,CD 是⊙O 的直径,AB ⊥CD 于E ,若AB =10cm ,CE ∶ED =1∶5,则⊙O 的半径是( ).2题图A .cm 25B .cm 34C .cm 53D .cm 623.如图,AB 是⊙O 的直径,AB =10cm ,若弦CD =8cm ,则点A 、B 到直线CD 的距离之和为( ).3题图A .12cmB .8cmC .6cm D.4cm4.△ABC 内接于⊙O ,OD ⊥BC 于D ,若∠A =50°,则∠BOD 等于( ).A .30°B .25°C .50°D .100°5.有四个命题,其中正确的命题是( ).①经过三点一定可以作一个圆②任意一个三角形有且只有一个外接圆③三角形的外心到三角形的三个顶点的距离相等④在圆中,平分弦的直径一定垂直于这条弦A .①、②、③、④B .①、②、③C .②、③、④D .②、③6.在圆内接四边形ABCD 中,若∠A ∶∠B ∶∠C =2∶3∶6,则∠D 等于( ).A .°B .135°C .° °二、填空题7.如图,AC 是⊙O 的直径,∠1=46°,∠2=28°,则∠BCD =______.7题图8.如图,AB 是⊙O 的直径,若∠C =58°,则∠D =______.8题图9.如图,AB 是⊙O 的直径,弦CD 平分∠ACB ,若BD =10cm ,则AB =______,∠BCD =______.9题图10.若△ABC 内接于⊙O ,OC =6cm ,cm 36 AC ,则∠B 等于______.三、解答题11.已知:如图,⊙O 中,AB =AC ,OD ⊥AB 于D ,OE ⊥AC 于E .求证:∠ODE =∠OED .12.已知:如图,AB是⊙O的直径,OD⊥BC于D,AC=8cm,求OD的长.13.已知:如图,点D的坐标为(0,6),过原点O,D点的圆交x轴的正半轴于A点.圆周角∠OCA=30°,求A点的坐标.14.已知:如图,试用尺规作图确定这个圆的圆心.15.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点.求∠CAD的度数及弦AC,AD和围成的图形(图中阴影部分)的面积S.测试7 直线和圆的位置关系(一)学习要求1.理解直线与圆的相交、相切、相离三种位置关系,掌握它们的判定方法.2.掌握切线的性质和切线的判定,能正确作圆的切线.课堂学习检测一、基础知识填空1.直线与圆在同一平面上做相对运动时,其位置关系有______种,它们分别是______________________________.2.直线和圆_________时,叫做直线和圆相交,这条直线叫做____________.直线和圆_________时,叫做直线和圆相切,这条直线叫做____________.这个公共点叫做_________.直线和圆____________时,叫做直线和圆相离.3.设⊙O的半径为r,圆心O到直线l的距离为d,_________⇔直线l和圆O相离;_________⇔直线l和圆O相切;_________⇔直线l和圆O相交.4.圆的切线的性质定理是__________________________________________.5.圆的切线的判定定理是__________________________________________.6.已知直线l及其上一点A,则与直线l相切于A点的圆的圆心P在____________________________________________________________________________________.二、解答题7.已知:Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,以C点为圆心,作半径为R的圆,求:(1)当R为何值时,⊙C和直线AB相离(2)当R为何值时,⊙C和直线AB相切(3)当R为何值时,⊙C和直线AB相交8.已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.9.已知:如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=∠C时,试确定直线DE与⊙O的位置关系,并证明你的结论.综合、运用、诊断10.已知:如图,割线ABC与⊙O相交于B,C两点,E是的中点,D是⊙O上一点,若∠EDA=∠AMD.求证:AD是⊙O的切线.11.已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.12.已知:如图,△ABC 中,AD ⊥BC 于D 点,.21BC AD 以△ABC 的中位线为直径作半圆O ,试确定BC 与半圆O 的位置关系,并证明你的结论.13.已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF⊥AC 于F .求证:EF 与⊙O 相切.14.已知:如图,以△ABC 的一边BC 为直径作半圆,交AB 于E ,过E 点作半圆O 的切线恰与AC 垂直,试确定边BC 与AC 的大小关系,并证明你的结论.15.已知:如图,PA切⊙O于A点,PO∥AC,BC是⊙O的直径.请问:直线PB 是否与⊙O相切说明你的理由.拓广、探究、思考16.已知:如图,PA切⊙O于A点,PO交⊙O于B点.PA=15cm,PB=9cm.求⊙O的半径长.测试8 直线和圆的位置关系(二)学习要求1.掌握圆的切线的性质及判定定理.2.理解切线长的概念,掌握由圆外一点引圆的切线的性质.3.理解三角形的内切圆及内心的概念,会作三角形的内切圆.课堂学习检测一、基础知识填空1.经过圆外一点作圆的切线,______________________________叫做这点到圆的切线长.2.从圆外一点可以引圆的______条切线,它们的____________相等.这一点和____________平分____________.3.三角形的三个内角的平分线交于一点,这个点到__________________相等.4.__________________的圆叫做三角形的内切圆,内切圆的圆心是____________,叫做三角形的____________.5.设等边三角形的内切圆半径为r,外接圆半径为R,边长为a,则r∶R∶a=______.6.设O为△ABC的内心,若∠A=52°,则∠BOC=____________.二、解答题7.已知:如图,从两个同心圆O的大圆上一点A,作大圆的弦AB切小圆于C 点,大圆的弦AD切小圆于E点.求证:(1)AB=AD;(2)DE=BC.8.已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.9.已知:如图,△AB C.求作:△ABC的内切圆⊙O.10.已知:如图,PA,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若PA=10cm,求△PCD的周长.综合、运用、诊断11.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.12.已知:如图,△ABC的三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.13.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.测试9 自我检测(二)一、选择题1.已知:如图,PA ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB =65°,则∠APB 等于( ).1题图A .65°B .50°C .45°D .40° 2.如图,AB 是⊙O 的直径,直线EC 切⊙O 于B 点,若∠DBC =?,则( ).2题图 A .∠A =90°-?B .∠A =??C .∠ABD =?? D .∠α2190o -=ABD 3.如图,△ABC 中,∠A =60°,BC =6,它的周长为16.若⊙O 与BC ,AC ,AB三边分别切于E ,F ,D 点,则DF 的长为( ).3题图A .2B .3C .4D .64.下面图形中,一定有内切圆的是( ).A .矩形B .等腰梯形C .菱形D .平行四边形5.等边三角形的内切圆半径、外接圆半径和高的比是( ).A .3:2:1B .3:2:1C .2:3:1D .1∶2∶3二、解答题6.已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O 切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.7.已知:如图,AB是⊙O的直径,F,C是⊙O上两点,且=,过C点作DE ⊥AF的延长线于E点,交AB的延长线于D点.(1)试判断DE与⊙O的位置关系,并证明你的结论;(2)试判断∠BCD与∠BAC的大小关系,并证明你的结论.8.已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.9.已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.10.已知:如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状并说明理由;(2)设⊙O的半径为1,且213-=OF,求证△DCE≌△OCB.11.已知:如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.(1)求证:AT平分∠BAC;(2)若,3,2==TCAD求⊙O的半径.测试10 圆和圆的位置关系学习要求1.理解两个圆相离、相切(外切和内切)、相交、内含的概念,能利用两圆的圆心距d与两个圆的半径r1和r2之间的关系,讨论两圆的位置关系.2.对两圆相交或相切时的性质有所了解.课堂学习检测一、基础知识填空1.没有______的两个圆叫做这两个圆相离.当两个圆相离时,如果其中一个圆在另一个圆的______,叫做这两个圆外离;如果其中有一个圆在另一个圆的______,叫做这两个圆内含.2.____________的两个圆叫做这两个圆相切.这个公共点叫做______.当两个圆相切时,如果其中的一个圆(除切点外)在另一个圆的______,叫做这两个圆外切;如果其中有一个圆(除切点外)在另一个圆的______,叫做这两个圆内切.3.______的两个圆叫做这两个圆相交,这两个公共点叫做这两个圆的______以这两个公共点为端点的线段叫做两圆的______.4.设d是⊙O1与⊙O2的圆心距,r1,r2(r1>r2)分别是⊙O1和⊙O2的半径,则⊙O1与⊙O2外离⇔d________________________;⊙O1与⊙O2外切⇔d________________________;⊙O1与⊙O2相交⇔d________________________;⊙O1与⊙O2内切⇔d________________________;⊙O1与⊙O2内含⇔d________________________;⊙O1与⊙O2为同心圆⇔d____________________.二、选择题5.若两个圆相切于A点,它们的半径分别为10cm、4cm,则这两个圆的圆心距为( ).A.14cm B.6cmC.14cm或6cm D.8cm7-,则这两个圆的圆心距可取的整数6.若相交两圆的半径分别是17+和1值的个数是( ).B.2 C.3 D.4综合、运用、诊断一、填空题7.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移______个单位.7题图8.相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为______cm.二.解答题9.已知:如图,⊙O1与⊙O2相交于A,B两点.求证:直线O1O2垂直平分AB.9题图10.已知:如图,⊙O 1与⊙O 2外切于A 点,直线l 与⊙O 1、⊙O 2分别切于B ,C点,若⊙O 1的半径r 1=2cm ,⊙O 2的半径r 2=3cm .求BC 的长.11.已知:如图,两圆相交于A ,B 两点,过A 点的割线分别交两圆于D ,F点,过B 点的割线分别交两圆于H ,E 点.求证:HD ∥EF .12.已知:相交两圆的公共弦的长为6cm ,两圆的半径分别为cm 23,cm 5,求这两个圆的圆心距.拓广、探究、思考13.如图,工地放置的三根外径是1m 的水泥管两两外切,求其最高点到地平面的距离.14.已知:如图,⊙O 1与⊙O 2相交于A ,B 两点,圆心O 1在⊙O 2上,过B 点作两圆的割线CD ,射线DO 1交AC 于E 点.求证:DE ⊥AC .15.已知:如图,⊙O1与⊙O2相交于A,B两点,过A点的割线分别交两圆于C,D,弦CE∥DB,连结EB,试判断EB与⊙O的位置关系,并证明你的结2论.16.如图,点A,B在直线MN上,AB=11cm,⊙A,⊙B的半径均为1cm.⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发多少秒时两圆相切测试11 正多边形和圆学习要求1.能通过把一个圆n(n≥3)等分,得到圆的内接正n边形及外切正n边形.2.理解正多边形的中心、半径、中心角、边心距的概念,并能进行简单的计算.课堂学习检测一、基础知识填空1.各条边______,并且各个______也都相等的多边形叫做正多边形.2.把一个圆分成n(n≥3)等份,依次连结各等分点所得的多边形是这个圆的______.3.一个正多边形的______________叫做这个正多边形的中心;______________叫做正多边形的半径;正多边形每一边所对的______叫做正多边形的中心角;中心到正多边形的一边的__________叫做正多边形的边心距.4.正n边形的每一个内角等于__________,它的中心角等于__________,它的每一个外角等于______________.5.设正n边形的半径为R,边长为a n,边心距为r n,则它们之间的数量关系是______.这个正n边形的面积S n=________.6.正八边形的一个内角等于_______,它的中心角等于_______.7.正六边形的边长a,半径R,边心距r的比a∶R∶r=_______.8.同一圆的内接正方形和正六边形的周长比为_______.二、解答题9.在下图中,试分别按要求画出圆O的内接正多边形.(1)正三角形 (2)正方形 (3)正五边形(4)正六边形 (5)正八边形 (6)正十二边形综合、运用、诊断一、选择题10.等边三角形的外接圆面积是内切圆面积的( ).A .3倍B .5倍 倍 D .2倍11.已知正方形的周长为x ,它的外接圆半径为y ,则y 与x 的函数关系式是( ).A .x y 42=B .x y 82=C .x y 21= D .x y 22= 12.有一个长为12cm 的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是( ).A .10cmB .12cmC .14cmD .16cm二、解答题13.已知:如图,正八边形A 1A 2A 3A 4A 5A 6A 7A 8内接于半径为R 的⊙O .(1)求A 1A 3的长;(2)求四边形A 1A 2A 3O 的面积;(3)求此正八边形的面积S .14.已知:如图,⊙O 的半径为R ,正方形ABCD ,A ′B ′C ′D 分别是⊙O 的内接正方形和外切正方形.求二者的边长比AB ∶A ′B ′和面积比S 内∶S 外.拓广、探究、思考15.已知:如图,⊙O的半径为R,求⊙O的内接正六边形、⊙O的外切正六边形的边长比AB∶A′B′和面积比S内∶S外.测试12 弧长和扇形面积学习要求掌握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积.课堂学习检测一、基础知识填空1.在半径为R的圆中,n°的圆心角所对的弧长l=_______.2.____________和______所围成的图形叫做扇形.在半径为R的圆中,圆心角为n°的扇形面积S扇形=__________;若l为扇形的弧长,则S扇形=__________.3.如图,在半径为R的⊙O中,弦AB与所围成的图形叫做弓形.当为劣弧时,S弓形=S扇形-______;当为优弧时,S弓形=______+S△OAB.3题图4.半径为8cm 的圆中,72°的圆心角所对的弧长为______;弧长为8cm 的圆心角约为______(精确到1′).5.半径为5cm 的圆中,若扇形面积为2cm 3π25,则它的圆心角为______.若扇形面积为15?cm 2,则它的圆心角为______.6.若半径为6cm 的圆中,扇形面积为9?cm 2,则它的弧长为______.二、选择题7.如图,Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ).7题图A .π425 B .π825 C .π1625 D .π32258.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ).8题图A .2πcm 100B .2πcm 3400 C .2πcm 800 D .2πcm 3800 9.如图,△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则圆中阴影部分的面积是( ).A .9π4-B .9π84-C .94π8-D .98π8-综合、运用、诊断10.已知:如图,在边长为a 的正△ABC 中,分别以A ,B ,C 点为圆心,a 21长为半径作,,,求阴影部分的面积.11.已知:如图,Rt △ABC 中,∠C =90°,∠B =30°,,34=BC 以A 点为圆心,AC 长为半径作,求∠B 与围成的阴影部分的面积.拓广、探究、思考12.已知:如图,以线段AB 为直径作半圆O 1,以线段AO 1为直径作半圆O 2,半径O 1C 交半圆O 2于D 点.试比较与的长.13.已知:如图,扇形OAB 和扇形OA ′B ′的圆心角相同,设AA ′=BB ′=d .=l 1,=l 2.求证:图中阴影部分的面积.)(2121d l l S +=测试13 圆锥的侧面积和全面积学习要求掌握圆锥的侧面积和全面积的计算公式.课堂学习检测一、基础知识填空1.以直角三角形的一条______所在直线为旋转轴,其余各边旋转形成的曲面所围成的几何体叫做______.连结圆锥______和____________的线段叫做圆锥的母线,圆锥的顶点和底面圆心的距离是圆锥的______.2.沿一条母线将圆锥侧面剪开并展平,得到圆锥的侧面展开图是一个______.若设圆锥的母线长为l ,底面圆的半径为r ,那么这个扇形的半径为______,扇形的弧长为______,因此圆锥的侧面积为______,圆锥的全面积为______.3.Rt △ABC 中,∠C =90°,AB =5cm ,BC =3cm ,以直线BC 为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______,圆锥的侧面展开图的圆心角是______.4.若把一个半径为12cm ,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______,半径是______,圆锥的高是______,侧面积是______.二、选择题5.若圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面积为( ).A .2?cm 2B .3?cm 2C .6?cm 2D .12?cm 26.若圆锥的底面积为16?cm 2,母线长为12cm ,则它的侧面展开图的圆心角为( ).A .240°B .120°C .180°D .90°7.底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为( ).A .5cmB .3cmC .8cmD .4cm8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为( ).A .120°B .1 80°C .240°D . 300°综合、运用、诊断 一、选择题 9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则R 与r 之间的关系是( ).A .R =2rB .r R 3C .R =3rD .R =4r10.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ).A .21B .22C .2D .22 二、解答题11.如图,矩形ABCD 中,AB =18cm ,AD =12cm ,以AB 上一点O 为圆心,OB 长为半径画恰与DC 边相切,交AD 于F 点,连结OF .若将这个扇形OBF 围成一个圆锥,求这个圆锥的底面积S .拓广、探究、思考12.如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.求在圆锥的侧面上从B 点到P 点的最短路线的长.答案与提示 第二十四章 圆 测试11.平面,旋转一周,图形,圆心,半径,⊙O ,圆O .2.圆,一中同长也.3.(1)半径长,同一个圆上,定点,定长,点.(2)圆心的位置,半径的长短,圆心,半径长.4.圆上的任意两点,线段,圆心,弦,最长.5.任意两点间,弧,圆弧AB ,弧AB .6.任意一条直径,一条弧.7.大于半圆的弧,小于半圆的弧.8.等圆.9.(1)OA ,OB ,OC ;AB ,AC ,BC ,AC ;;及(2)40°,50°,90°.10.(1)提示:在△OAB 中,∵OA =OB ,∴∠A =∠B .同理可证∠OCD =∠ODC .又 ∵ ∠AOC =∠OCD -∠A ,∠BOD =∠ODC -∠B ,∴ ∠AOC =∠BOD .(2)提示:AC =BD .可作OE ⊥CD 于E ,进行证明.11.提示:连结OD .不难得出∠C =36°,∠AOC =54°.12.提示:可分别作线段AB 、BC 的垂直平分线.测试21.轴,经过圆心的任何一条直线,中心,该圆的圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧.3.弦,不是直径,垂直于,弦所对的两条弧.4.6. 5.8; 6..120,36o 7.a 22,a 21 8.2. 9..13 10..13 11..2412.提示:先将二等分(设分点为C ),再分别二等分和. 13.提示:题目中的“问径几何”是求圆材的直径.答:材径二尺六寸. 14.75°或15°.15.22cm 或8cm .16.(1)作法:①作弦B B '⊥CD .②连结B A ',交CD 于P 点,连结PB .则P 点为所求,即使AP +PB 最短.(2)cm.3217.可以顺利通过.测试31.顶点在圆心,角.2.⋅⨯nm 360 3.它们所对应的其余各组量也分别相等4.相等,这两条弦也相等. 5.提示:先证=.6.EF =GH .提示:分别作PM ⊥EF 于M ,PN ⊥GH 于N .7.55°. 8.C .9.=3 .提示:设∠COD =α,则∠OPD =2α,∠AOD =3α=3∠BOC .10.(1)作OH ⊥CD 于H ,利用梯形中位线.(2)四边形CDEF 的面积是定值,96221)(21⨯=⋅⋅⋅=⋅+=CD CH CD DE CF S =54.测试41.顶点,与圆相交. 2.该弧所对的,一半. 3.同弧或等弧,相等.4.半圆(或直径),所对的弦. 5.72°,36°,72°,108°.6.90°,30°,60°,120°. 7.60°,120°.8.C . 9.B . 10.A . 11.B . 12.A . 13.C .14.提示:作⊙O 的直径A B ',连结C A '.不难得出A B '=cm.3815.cm.3416.提示:连结AH ,可证得∠H =∠C =∠AFH .17.提示:连结CE .不难得出cm .25=AC18.提示:延长AO 交⊙O 于N ,连结BN ,证∠BAN =∠DAC .19.提示:连结MB ,证∠DMB =∠CMB .测试51.外,上,内. 2.以A 点为圆心,半径为R 的圆A 上.3.连结A ,B 两点的线段垂直平分线上. 4.不在同一直线上的三个点.5.内接三角形,外接圆,外心,三边的垂直平分线.6.内,外,它的斜边中点处. 7..4332R 8..3π2a 9.26cm . 10.20πcm . 11.略. 12.C . 13.D . 14.D . 15.B . 16.D .17.A 点在⊙O 内,B 点在⊙O 外,C 点在⊙O 上. 18.)25,1(--,作图略. 测试61.D . 2.C . 3.C . 4.C . 5.D . 6.C . 7.72°.8.32°. 9.,cm 21045° 10.60°或120°. 11.提示:先证OD =OE . 12.4cm . 13.)0,32(A ,提示:连结AD . 14.略. 15.∠CAD =30°,.πcm 6)(π6122==AO S 提示:连结OC 、CD . 测试71.三,相离、相切、相交.2.有两个公共点,圆的割线;有一个公共点,圆的切线,切点;没有公共点.。
人教版九年级上册数学第二十四章 圆含答案
人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、已知:如图,在半径为4的⊙O中,AB为直径,以弦AC(非直径)为对称轴将弧AC折叠后与AB相交于点D,如果AD=3BD,那么AC的长为A. B. C. D.62、如图,AB是⊙O的直径,AC、BC是⊙O的弦,PC是⊙O的切线,切点为C,∠ACP =55°,∠BAC那么等于()A.35°B.45°C.55°D.65°3、如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A.140°B.70°C.80°D.60°4、如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB. πC.2πD. π5、如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )A.πB.C.D.6、与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界)B.圆的内部(不包括边界)C.圆D.圆的内部(包括边界)7、若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A. B. C. 或 D.a+b或a﹣b8、如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是()A.65°B.75°C.85°D.105°9、《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为 1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.13B.24C.26D.2810、如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A. B. C. D.11、如图,为半圆的直径,,是半圆弧上的点,平分,于点,,,则图中阴影部分的面积为()A. B. C. D.12、已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为()A.相离B.相交C.相切D.相交或相切13、《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何? ”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.6步B.7步C.8步D.9步14、已知圆锥的底面半径为3,侧面展开图的圆心角为180°,则圆锥的母线长是()A.6B.C.D.915、如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是A.AD=DCB.C.∠ADB=∠ACBD.∠DAB=∠CBA二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是________.17、如图,直线AB与CD分别与⊙O 相切于B、D两点,且AB⊥CD,垂足为P,连接BD.若BD=4,则阴影部分的面积为________.18、如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是________度.19、如图,Rt△ABC 中,∠ACB=90°,∠ABC=30°,AC=2,将△ABC绕点C顺时针旋转,点A、B的对应点分别为A1、B1,当点A1恰好落在AB上时,弧BB1与点A1构成的阴影部分的面积为________.20、如图,一块六边形绿化园地,六角都做有半径为R的圆形喷水池,则这六个喷水池占去的绿化园地的面积为________(结果保留)21、如图,在中,,,则图中阴影部分的面积为________.22、如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D.已知BC=8cm,DE=2cm,则AD的长为________cm.23、如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=________24、如图,A,B,C是上的三点,若是等边三角形,则________.25、如图,矩形ABCD中,AD=4,AB=2 ,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为________.三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N 分别是OA、OB的中点.求证:MC=NC.28、在直角三角形ABC中,∠B=90°,它的内切圆分别与边BC,CA,AB相切与点D,E,F,连接AD,与内切圆相交于另一点P,连接PC,PE,PF.已知PC⊥PF,求证:(1)PD平分∠FPC;(2)PE∥BC.29、如图,在△ABC中,AC=BC,以AB为直径的分别交AC,BC于点E,F,求证:.30、如图,直线AB与CD相交于O,EF⊥AB于F,GH⊥CD于H.求证:EF和GH 必相交.参考答案一、单选题(共15题,共计45分)1、A2、A3、A4、A5、B6、D7、C8、B9、C10、A11、D12、D13、A14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
人教版九年级上册数学第二十四章 圆 含答案
人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°2、如图,⊙O中,如果=2,那么()A.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC3、如图,在⊙O中,∠ACB=34°,则∠AOB的度数是().A.17°B.34°C.56°D.68°4、如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为()A.35°B.55°C.60°D.70°5、如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. B. C.2 D.26、在⊙O中,如果弦AB=2AC,那么().A.弧AB = 2弧ACB. 弧AB= 弧ACC. 弧AB < 2弧ACD.弧AB>2弧AC7、如图,直径AB为6的半圆O,绕A点逆时针旋转60°,此时点B 到了点,则图中阴影部分的面积为( )A.6πB.5πC.4πD.3π8、如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是A.115°B.l05°C.100°D.95°9、下列关于圆的说法,正确的是()A.相等的圆心角所对的弦相等B.过圆心且平分弦的直线一定垂直于该弦C.经过半径的端点且垂直于该半径的直线是圆的切线D.相交两圆的连心线一定垂直且平分公共弦10、如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个侧锥的底面半径为()A. B. C. D.211、如图,△ABC是⊙O的内接三角形,AB=AC,∠ABC=70°,D为⊙O上一点,连接BD,CD,则∠BDC=()A.30°B.35°C.40°D.45°12、如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于()A.36°B.44°C.46°D.54°13、在圆内接四边形ABCD中,若∠A:∠B:∠C=1:2:5,则∠B的度数是()A.30°B.45°C.60°D.120°14、下列六个结论:①垂直于弦的直径平分这条弦;②有理数和数轴上的点一一对应;③三角形的内切圆和外接圆是同心圆;④相等圆心角所对的弦相等.⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线;⑥一个圆锥的侧面积是一个面积为4π平方厘米的扇形,那么这个圆锥的母线长L和底面半径R之间的函数关系是正比例函数.其中正确的结论的个数是()A.0个B.1个C.2个D.3个15、如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°二、填空题(共10题,共计30分)16、如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是________.17、一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长是________ 。
人教版九年级上册数学第二十四章 圆 含答案
人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、下列命题中正确的是()A.三点确定一个圆B.圆的切线垂直于半径C.平分弦的直径垂直于弦D.圆中最长的弦是经过圆心的弦2、下列命题:①等弧所对的圆周角相等;②平分弦的直径垂直于弦;③等边三角形的外心也是它的内心;④正五边形既是轴对称图形,也是中心对称图形.其中正确的命题是( )A.①③B.②④C.①②③D.①②③④3、如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°4、如图,在⊙O中,弦AB⊥AC,OD⊥AB于点D,OE⊥AC于点E,若AB=8cm,AC=6cm,则⊙O的半径OA的长为()A.7cmB.6cmC.5cmD.4cm5、如图,以AB为直径的半圆圆心为O,AB=10,折叠半圆使点A,点B都与圆心O重合,折痕分别为CD,EF,连接DF,则图中阴影的面积为()A. B. C. D.6、如图,半圆O的直径为AB,E,F为AB的三等分点.EM∥FN交半圆于M,N,且∠NFB=60°,EM+FN=,则它的半径是()A.2B.3C.4D.37、如图,连接正五边形的两条对角线,得到的图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形不是中心对称图形 C.是中心对称图形但不是轴对称图形 D.既不是轴对称图形也不是中心对称图形8、如图,△OAC按顺时针方向旋转,点O在坐标原点上,OA边在x轴上,OA=8,AC=4,把△OAC绕点A按顺时针方向转到△O′AC′,使得点O′的坐标是(4,)则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为()A. B. C. D.9、如图,AB是⊙O直径,∠AOC=120°,则∠D=()A.60°B.45°C.30°D.20°10、如图,AB是⊙O直径,若∠AOC=130°,则∠D的度数是( )A.20°B.25°C.40°D.50°11、如图,正方形的边长为a,图中阴影部分的面积可以表示为()A. B. C. D.12、如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25mB.24mC.30mD.60m13、如图为5×5的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心14、如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.915、如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是________.(结果保留π)17、如图,在Rt△ABC中,∠ACB=90°,AC= ,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为________.18、如图,是的直径,点、在上,若,则________.19、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为________.20、如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m, -3)和点B(-1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是________.21、如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是________.22、一个圆锥的侧面展开图是半径为16,且圆心角为90°的扇形,则这个圆锥的底面半径为________.23、如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和是________.24、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2=________.,则阴影部分面积S阴影25、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为________.三、解答题(共5题,共计25分)26、如图,A、B、C、D均为⊙O上的点,其中A、B两点的连线经过圆心O,线段AB、CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.27、如图所示,有一个直径是1m的圆形铁皮,要从中剪出一个半径为且圆心角是120°的扇形ABC.求被剪掉后剩余阴影部分的面积.28、如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.29、如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点E,BE=CD=16,试求⊙O的半径.30、如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC =110°.连接AC,求∠A的度数.参考答案一、单选题(共15题,共计45分)1、D2、A3、B4、C5、C6、D7、B8、A9、C10、B11、D12、A13、B14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
人教版九年级上册数学第二十四章 圆 含答案
人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、下列关于圆的说法,正确的是()A.相等的圆心角所对的弦相等B.过圆心且平分弦的直线一定垂直于该弦C.经过半径的端点且垂直于该半径的直线是圆的切线D.相交两圆的连心线一定垂直且平分公共弦2、如图,已知是的外接圆,连接,若,则的度数为()A. B. C. D.3、如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=()A.35°B.45°C.55°D.70°4、如图,在半径1的圆形纸片中,剪一个圆心角为90°的扇形(图中阴影部分),则这个扇形的面积为()A. B. C. D.5、圆的内接正五边形ABCDE的边长为a,圆的半径为r.下列等式成立的是()A.a=2rsin36°B.a=2rcos36°C.a=rsin36°D.a=2rsin72°6、如图所示,AB是⊙O的直径,AB=4,AC是弦,AC=,则∠AOC为()A.120°B.130°C.140°D.150°7、如图所示,为的切线,切点为点A,交于点C,点D在上,若的度数是32°,则的度数是( )A.29°B.30°C.32°D.45°8、某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A.50cmB.50 cmC.100cmD.80cm9、如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°10、已知如图,圆锥的母线长6cm,底面半径是3cm,在B处有一只蚂蚁,在AC中点P处有一颗米粒,蚂蚁从B爬到P处的最短距离是()A.3 cmB.3 cmC.9cmD.6cm11、如图,是的直径,是的半径,切于点,与的延长线相交于点,. 已知,则的长为()A. B. C. D.12、如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:=4 .①△ADF∽△AED;②FG=2;③tan∠E= ;④S△DEF其中正确的是()A.①②④B.①②③C.②③④D.①③④13、如图,是的直径,点,在上.若,则的度数是()A. B. C. D.14、若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3 πB.4 πC.5 πD.6 π15、如图,⊙ 的弦,是的中点,且,则⊙ 的直径等于()A.8B.2C.10D.5二、填空题(共10题,共计30分)16、如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为________17、如图,在扇形AOB中,∠AOB=900,以点A为圆心, OA的长为半径作交于点C,若OA=2,则阴影部分的面积是________.18、如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为________.19、用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为 ________ 。
人教版九年级上册数学第二十四章 圆 含答案
人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,连接OA.若AB=4,CD=1,则⊙O的半径为()A.5B.C.3D.2、如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.23、如图,四边形是⊙的内接正方形,点是劣弧上任意一点(与点不重合),则的度数为()A.30°B.45°C.60°D.无法确定4、如图,四边形ABCD内接于⊙O,已知∠BCE=70°,则∠A的度数是()A.110°B.70°C.55°D.35°5、如图,⊙O与△ABC的边AB,AC相切于点B,D,若圆心O在BC边上,∠C=30°,OC=2,则图中阴影部分的面积是()A. B. C. D.6、已知扇形的半径为6cm,圆心角为120°,则这个扇形的面积是()A.36πcm 2B.12πcm 2C.9πcm 2D.6πcm 27、选择用反证法证明“已知:∠A,∠B,∠C是△ABC的三个内角,求证:∠A,∠B,∠C三个内角中至少有一个角大于或等于60°”时,应先假设()A.∠A>60°,∠B>60°,∠C>60°B.∠A≥60°,∠B≥60°,∠C≥60°C.∠A<60°,∠B<60°,∠C<60°D.∠A≤60°,∠B≤60°,∠C≤60°8、如图, AB是⊙O的直径,C、D是⊙O上的两点,若∠BAC=20°,AD=DC,则∠DAC的度数是()A.30°B.35°C.45°D.70°9、如图,平面直角坐标系中,与轴分别交于、两点,点的坐标为,.将沿着与轴平行的方向平移多少距离时与轴相切()A.1B.2C.3D.1或310、如图,已知ABCD,∠A=45°,AD=4,以AD为直径的半圆O与BC相切于点B,则图中阴影部分的面积为A.4B.π+2C.4D.211、如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则圆心O到弦CD的距离为( )A. cmB.3 cmC. cmD.6cm12、如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A.相离B.相切C.相交D.相切或相交13、如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A (0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()A.1个B.2个C.3个D.4个14、如图,⊙O经过△ABC的两个顶点A,B,与边AC,BC分别交于点D,E,点P从点A出发,沿A→D→E→C的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图大致是()A. B. C. D.15、已知AB是⊙O的直径,弧AC的度数是30°.如果⊙O的直径为4,那么AC2等于()A.2-B.4 -6C.8-4D.2二、填空题(共10题,共计30分)16、如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是________.17、已知扇形所在圆半径为4,弧长为6π,则扇形面积为________18、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于________.19、已知扇形的弧长为,圆心角为120°,则它的半径为________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章 圆 24.1 圆的有关性质第1课时 圆和垂直于弦的直径1.下列说法正确的是( ) A .直径是弦,弦是直径 B .半圆是弧C .无论过圆内哪一点,只能作一条直径D .长度相等两条弧是等弧 2.下列说法错误的有( )①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3 cm 且经过点P 的圆有无数个;④以点P 为圆心,以3 cm 为半径的圆有无数个.A .1个B .2个C .3个D .4个 3.如图24-1-8,将半径为2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB的长为( )A .2 cm B. 3 cm C .2 3 cm D .2 5 cm图24-1-8 图24-1-94.如图24-1-9,在⊙O 中,弦AB 垂直于直径CD 于点E ,则下列结论:①AE =BE ;②AC =BC ;③AD =BD ;④EO =ED .其中正确的有( )A .①②③④B .①②③C .②③④D .①④ 5.如图24-1-10,在⊙O 中,半径为5,∠AOB =60°,则弦长AB =________.图24-1-10 图24-1-116.如图24-1-11,是两个同心圆,其中两条直径互相垂直,其大圆的半径是2,则其阴影部分的面积之和________(结果保留π).7.如图24-1-12,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于点E ,交BC 于点D .(1)请写出五个不同类型的正确结论; (2)若BC =8,ED =2,求⊙O 的半径.图24-1-128.平面内的点P到⊙O上点的最近距离是3,最远距离是7,则⊙O的面积为__________.9.如图24-1-13,已知在⊙O中,AB,CD两弦互相垂直于点E,AB被分成4 cm和10 cm两段.(1)求圆心O到CD的距离;(2)若⊙O半径为8 cm,求CD的长是多少?图24-1-1310.如图24-1-14,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于点E,已知AB=2DE.(1)若∠E=20°,求∠AOC的度数;(2)若∠E=α,求∠AOC的度数.图24-1-14第2课时弧、弦、圆心角和圆周角1.下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图24-1-24,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数为()A.50°B.40°C.30°D.25°图24-1-24 图24-1-25 3.如图24-1-25,已知AB是⊙O的直径,BC=CD=DE,∠BOC=40°,那么∠AOE =()A.40°B.50°C.60°D.120°4.如图24-1-26所示,A,B,C,D是圆上的点,∠1=68°,∠A=40°.则∠D=______.图24-1-26 图24-1-275.在半径为5 cm的⊙O中,60°的圆心角所对的弦长为________cm.6.如图24-1-27,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是________.7.如图24-1-28,在⊙O中,AB=AC,∠B=50°.求∠A的度数.图24-1-288.一个圆形人工湖如图24-1-29所示,弦AB 是湖上的一座桥,已知桥AB 长100 m ,测得圆周角∠ACB =45°,则这个人工湖的直径AD 为( )图24-1-29A .50 2 mB .100 2 mC .150 2 mD .200 2 m 9.如图24-1-30,已知AB 是⊙O 的直径,AC 是弦,过点O 作OD ⊥AC 于点D ,连接BC .(1)求证:OD =12BC ;(2)若∠BAC =40°,求∠AOC 的度数.图24-1-3010.如图24-1-31,AB 是⊙O 的直径,点C 是BD 的中点,CE ⊥AB 于点E ,BD 交CE于点F .(1)求证:CF =BF ;(2)若CD =6, AC =8,求⊙O 的半径及CE 的长.图24-1-3124.2点和圆、直线和圆的位置关系第1课时点和圆的位置关系1.已知⊙O的半径为5,点A为线段OP的中点,当OP=10时,点A与⊙O的位置关系是()A.在圆内B.在圆上C.在圆外D.不能确定2.如图24-2-2,Rt△ABC,∠C=90°,AC=3 cm,BC=4 cm,则它的外心与顶点C的距离为()图24-2-2A.2.5 B.2.5 cmC.3 cm D.4cm3.下列四个命题中,正确的个数是()①经过三点一定可以画圆;②任意一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离都相等.A.4个B.3个C.2个D.1个4.如图24-2-3,⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为()图24-2-3A. 3B. 5 C.2 3 D.2 55.经过一点P可以作______个圆;经过两点P,Q可以作________ 个圆,圆心在__________上;经过不在同一直线上的三个点可以作________个圆,圆心是__________的交点.6.如图24-2-4,在△ABC中,已知AB=AC,点O是其外心,BC=8 cm,点O到BC 的距离OD=3 cm,求△ABC外接圆的半径.图24-2-47.如图24-2-5,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的班车速度为60千米/时.(1)当班车从A城出发开往C城时,某人立即打开无线电收音机,班车行驶了0.5小时的时候,接收信号最强.此时,班车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)班车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.图24-2-58.如图24-2-6,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD=__________.图24-2-6 图24-2-79.在矩形ABCD中,AB=3 cm,BC=4 cm,现以点A为圆心作圆,使B,C,D三点至少有一个在圆内,至少有一个在圆外,则⊙A的半径r的取值范围是__________.10.如图24-2-7,AD是△ABC的外角∠EAC的平分线,AD与三角形的外接圆交于点D,连接BD,交AC于点P,求证:DB=DC.11.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.图24-2-8(1)中的三角形被一个圆所覆盖,图24-2-8(2)中的四边形被两个圆所覆盖.图24-2-8回答下列问题:(1)边长为1 cm的正方形被一个半径为r的圆所覆盖,r的最小值是________cm;(2)边长为1 cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是________cm;(3)边长为2 cm,1 cm的矩形被两个半径都为r的圆所覆盖,r的最小值是________cm,这两个圆的圆心距是________cm.第2课时直线和圆的位置关系1.已知圆的直径为13 cm,设直线和圆心的距离为d,(1)若d=4.5 cm,则直线与圆________,直线与圆有______个公共点;(2)若d=6.5 cm,则直线与圆________,直线与圆有______个公共点;(3)若d=8 cm,则直线与圆________,直线与圆有______个公共点.2.直线l和⊙O有公共点,则直线l与⊙O()A.相离B.相切C.相交D.相切或相交3.如图24-2-18,P A,PB是⊙O的两条切线,切点是A,B.如果OA=4,PO=8,那么∠AOB=()A.90°B.100°C.110°D.120°图24-2-18 图24-2-19 4.如图24-2-19,已知AD为⊙O的切线,⊙O的直径AB=2,弦AC=1,则∠CAD=________.5.⊙A的直径为6,点A的坐标为(-3,-4),则⊙A与x轴、y轴的位置关系分别是______________.6.如图24-2-20,正三角形的内切圆半径为1 cm,正三角形的边长是________.图24-2-20 图24-2-217.如图24-2-21,在△ABC中,AB=AC,∠BAC=120°,⊙A与BC相切于点D,与AB相交于点E,则∠ADE=______.8.如图24-2-22,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.求证:直线BD与⊙O相切.图24-2-229.如图24-2-23,在平面直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()图24-2-23A.(4,5) B.(-5,4)C.(-4,6) D.(-4,5)10.如图24-2-24,在Rt△ABC中,∠ACB=90°,内切圆⊙I与BC相切于点D,∠BIC =105°,AB=8 cm,求:(1)∠IBA和∠A的度数;(2)BC和AC的长.图24-2-2411.如图24-2-25,直线AB ,CD 相交于点O ,∠AOC =30°,半径为1 cm 的⊙P 的圆心在射线OA 上,开始时,PO =6 cm ,如果⊙P 以1 cm/秒的速度沿由A 向B 的方向移动,那么当⊙P 的运动时间t (单位:秒)满足什么条件时,⊙P 与直线CD 相交?图24-2-2524.3 正多边形和圆1.下列命题中,是假命题的是( ) A .各边相等的圆内接多边形是正多边形B .正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心C .正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心D .一个外角小于一个内角的正多边形一定是正五边形 2.如图24-3-3,正六边形螺帽的边长是2 cm ,这个扳手的开口a 的值应是( )图24-3-3A .2 3 cm B. 3 cm C.2 33cm D .1 cm3.已知正六边形的边长为10 cm ,则它的边心距为( )A.32cm B .5 cm C .5 3 cm D .10 cm 4.正六边形的两条平行边之间的距离为1,则它的边长为( )A.36 B.34 C.2 33 D.335.正多边形的一个中心角为36°,那么这个正多边形的一个内角等于________.6.某工人师傅需要把一个半径为6 cm的圆形铁片加工成边长最大的正六边形铁片,求此正六边形的边长.7.如图24-3-4,在圆内接正五边形ABCDE中,对角线AC,BD相交于点P,求∠APB 的度数.图24-3-48.圆的半径为8,那么它的外切正方形的周长为____,内接正方形的周长为________.9.将一块正五边形纸片[图24-3-5(1)]做成一个底面仍为正五边形且高相等的无盖纸盒[侧面均垂直于底面,见图24-3-5(2)],需在每一个顶点处剪去一个四边形,例如图中的四边形ABCD,则∠BAD的大小是________.图24-3-510.如图24-3-6,施工工地的水平地面上,有三根外径都是1 m的水泥管,两两相切地堆放在一起,求其最高点到地面的距离?图24-3-611.(1)如图24-3-7(1),在圆内接△ABC 中,AB =BC =CA ,OD ,OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G ,求证:阴影部分四边形OFCG 的面积是△ABC 面积的13;(2)如图24-3-7(2),若∠DOE 保持120°不变,求证:当∠DOE 绕着点O 旋转时,由两条半径和△ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 面积的13.(1) (2)图24-3-724.4 弧长和扇形面积 第1课时 弧长和扇形面积1.如图24-4-6,已知⊙O 的半径OA =6,∠AOB =90°,则∠AOB 所对的弧AB 的长为( )A .2πB .3πC .6πD .12π图24-4-6 图24-4-72.如图24-4-7,AB 切⊙O 于点B ,OA =2 3,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为( )A.33πB.32π C .π D.32π 3.挂钟分针的长是10 cm ,经过45分钟,它的针尖转过的弧长是( ) A.15π2 cm B .15π cm C.75π2cm D .75π cm 4.如图24-4-8,在以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,且AB =4,OP =2,连接OA 交小圆于点E ,则PE 的长为( )图24-4-8A.π4B.π3C.π2D.π85.已知扇形的圆心角为150°,它所对应的弧长为20πcm ,则此扇形的半径是__________cm ,面积是________cm(结果保留π).6.如图24-4-9,点A ,B ,C 在直径为2 3的⊙O 上,∠BAC =45°,则图中阴影的面积等于__________(结果中保留π).图24-4-9 图24-4-107.如图24-4-10,以O 为圆心的同心圆,大圆的半径OC ,OD 分别交小圆于A ,B . AB 长为8π,CD 长为12π,AC =12.则小圆半径为________.8.如图24-4-11,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC =60°,OC =2.(1)求OE 和CD 的长;(2)求图中阴影部分的面积.图24-4-119.如图24-4-12,直径AB 为6的半圆,绕点A 逆时针旋转60°,此时点B 到了点B ′,则图中阴影部分的面积是( )A .3πB .6πC .5πD .4π图24-4-12 图24-4-1310.如图24-4-13,在Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形的面积之和为( )A.254πB.258πC.2516πD.2532π11.如图24-4-14,在⊙O 中,弦BC 垂直于半径OA ,垂足为点E ,点D 是优弧BC 上一点,连接BD ,AD ,OC ,∠ADB =30°.(1)求∠AOC 的度数;(2)若弦BC =6 cm ,求图中阴影部分的面积.图24-4-14第2课时圆锥的侧面积和全面积1. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π2.如图24-4-18,圆锥形烟囱帽的底面直径为80 cm,母线长为50 cm,则此烟囱帽的侧面积是()A.4000π cm2B.3600π cm2C.2000π cm2D.1000π cm2图24-4-18 图24-4-193.如图24-4-19,小红同学要用纸板制作一个高4 cm,底面周长是6πcm的圆锥形漏斗模型.若不计接缝和损耗,则她所需纸板的面积是()A.12π cm2B.15π cm2C.18π cm2D.24π cm24.已知点O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从点P 出发,绕圆锥侧面爬行,回到点P时所爬过的最短路线的痕迹如图24-4-20所示,若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是()图24-4-205.已知圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°6.如图24-4-21,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为________.图24-4-217.已知圆锥的侧面展开图的圆心角为180°,底面积为15 cm2,求圆锥的侧面积.8.如图24-4-22是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10 cm,母线OE(OF)长为10 cm,在母线OF上的点A处有一块爆米花残渣,且F A=2 cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为________cm.图24-4-229.如图24-4-23,有一半径为1 m的圆形铁片,要从中剪出一个最大的圆心角为90°的扇形ABC.求:(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁片围成一个圆锥,该圆锥底面圆的半径是多少?图24-4-2310.如图24-4-24,已知点B的坐标为(0,-2),点A在x轴的正半轴上,将Rt△AOB 绕y轴旋转一周,得到一个圆锥,当圆锥的侧面积等于5π时,求AB所在直线的解析式.图24-4-24第二十四章 圆24.1 圆的有关性质第1课时 圆和垂直于弦的直径 【课后巩固提升】 1.B2.A 解析:①②③正确;③虽然已知半径,但点P 不是圆心,能作无数个圆;④满足两个条件,只能作一个圆,故④错误.3.C 4.B 5.5 6.2π7.解:(1)不同类型的正确结论有: ①BE =CE ;②BD =CD ;③∠BED =90°;④∠BOD =∠A ;⑤AC ∥OD ;⑥AC ⊥BC ;⑦OE 2+BE 2=OB 2;⑧S △ABC =BC ·OE ;⑨△BOD 是等腰三角形等.(2)∵OD ⊥BC ,∴BE =CE =12BC =4.设⊙O 的半径为R ,则OE =OD -DE =R -2. 在Rt △OEB 中,由勾股定理,得OE 2+BE 2=OB 2,即(R -2)2+42=R 2.解得R =5. ∴ ⊙ O 的半径为5.8.4π或25π 解析:当点P 在⊙O 的外部时,⊙O 的半径r =12×(7-3)=2,∴S ⊙O =πr 2=4π.当点P 在⊙O 的内部时,⊙O 的半径r =12×(7+3)=5,∴S ⊙O =πr 2=25π.9.解:(1)如图30,作OG ⊥CD 于点G ,OF ⊥AB 于点F .图30∵∠OGE =∠GEF =∠OFE =90°, ∴四边形OGEF 是矩形.∴OG =EF .∵OF ⊥AB ,∴AF =12AB =12×(4+10)=7(cm).∴OG =EF =AF -AE =3(cm). ∴点O 到CD 的距离为3 cm. (2)连接OD ,在Rt △ODG 中, OD =8 cm ,OG =3 cm , 由勾股定理,得GD =OD 2-OG 2=55 (cm).∵OG ⊥CD ,∴CD =2GD =2 55 cm. 10.解:(1)∵AB =2DE , 又OA =OB =OC =OD , ∴OD =OC =DE . ∴∠DOE =∠E =20°.∴∠CDO =∠DOE +∠E =40°=∠C .∴∠AOC =∠C +∠E =60°.(2)由(1)可知:∠DOE =∠E =α, ∠C =∠ODC =2∠E , ∴∠AOC =∠C +∠E =3α.第2课时 弧、弦、圆心角和圆周角 【课后巩固提升】 1.B 2.D 3.C 4.28° 5.5 6.105°7.解:∵AB =CD ,∴AB =AC .∴∠B =∠C . 又∵∠B =50°,∴∠C =50°. ∵∠A +∠B +∠C =180°, ∴∠A =180°-(∠B +∠C )=80°. 8.B9.(1)证明:∵OD ⊥AC ,∴AD =CD . ∵AB 是⊙O 的直径,∴OA =OB .∴OD 是△ABC 的中位线.∴OD =12BC .(2)解:连接OC ,∵OA =OC ,∠BAC =40°,∴∠OCA =40°.∴∠AOC =180°-(40°+40°)=100°.10.(1)证明:如图D32,∵AB 是⊙O 的直径,图D32∴∠ACB =90°.又∵CE ⊥AB ,∴∠CEB =90°. ∴∠A +∠B =90°,∠2+∠B =90°. ∴∠A =∠2.又∵C 是弧BD 的中点, ∴∠1=∠A . ∴∠1=∠2. ∴ CF =BF .(2)解:由(1)可知:CD =BC ,∴CD =BC =6.又∵在Rt △ACB 中,AC =8,∴AB =10,即⊙O 的半径为5.S △ACB =AC ·BC 2=CE ·AB 2,∴CE =245.24.2 点和圆、直线和圆的位置关系 第1课时 点和圆的位置关系 【课后巩固提升】 1.B 2.B 3.C 4.C5.无数 无数 线段PQ 的垂直平分线上 一 三条线段垂直平分线6.解:连接OB .∵OD ⊥BC ,BC =8 cm ,∴BD =12BC =4(cm).又∵OD =3 cm ,在Rt △OBD 中,由勾股定理,得OB =5 cm.∴△ABC 外接圆的半径为5 cm.7.解:(1)如图D33,过点B 作BM ⊥AC 于点M ,图D33设班车行驶了0.5小时的时候到达M点.根据此时接受信号最强,则BM⊥AC,又AM =30,AB=50.所以BM=40千米.答:所以,此时,班车到发射塔的距离是40千米.(2)AB=50,AC=60×2=120,则MC=90.在Rt△BMC中,BM=40,MC=90,则BC=BM2+MC2=9 700<10 000,所以班车到车城C后还能接收到信号.8.8解析:∵AB=AC,∠BAC=120°,∴∠ACB=∠ABC=30°.∴∠D=30°.又∠BAD =90°,故BD=2AB=8.9.3 cm<r<5 cm10.证明:∵∠BAD+∠BCD=180°,∠BAD+∠DAE=180°,∴∠BCD=∠DAE.∵∠DAC=∠DBC,∠DAE=∠DAC,∴∠DBC=∠DAE.∴∠DBC=∠BCD.∴DB=DC.11.(1)22(2)33(3)22 1第2课时直线和圆的位置关系【课后巩固提升】1.(1)相交2(2)相切1(3)相离02.D 3.D4.30° 5.相离、相切 6.2 3 cm7.60°8.证明:连接OD,∵OA=OD,∴∠A=∠ADO.又∵∠A+∠CDB=90°,∴∠ADO+∠CDB=90°.∴∠ODB=180°-(∠ADO+∠CDB)=90°.∴BD⊥OD.∴BD是⊙O切线.9.D10.解:(1)∵∠ACB=90°,I为内心,∴∠ICB=45°.∵∠BIC=105°,∴∠IBA=∠IBC=30°,∠ABC=60°.∴∠A=30°.(2)∵AB=8 cm,∴BC=4 cm.∴AC=AB2-BC2=82-42=4 3(cm).11.解:如图D34,当⊙P运动到⊙P′时,⊙P′与CD相切.作P′E⊥CD于点E.∵⊙P′半径为1 cm.∴P′E=1.又∠AOC=30°,P′E⊥CD,∴P′O=2.∴t=4.同理,当点P在OB上时,也存在一圆与CD相切,即圆中的⊙P,此时,t=8. 综上所述,4<t<8.图D3424.3正多边形和圆【课后巩固提升】 1.D 2.A 3.C 4.D 5.144°6.解:如图D35,只有当正六边形是圆的内接正六边形时,此正六边形的边长最大,最大边长为6 cm.图D35 图D367.解:如图D36,连接OA ,OB . ∵五边形ABCDE 是正五边形,∴∠AOB =360°5=72°.∵AB =CD ,∴AB =CD .∴∠2=∠1=12∠AOB =36°.∴∠APB =∠1+∠2=72°. 8.64 32 2 9.72°10.解:由于三个圆两两外切,所以圆心距等于半径之和. 所以以三个圆心为顶点的三角形是边长为1 m 的等边三角形,最高点到地面距离是等边三角形的高加上一个直径.因为等边三角形的高是32,故最高点到地面的距离是⎝⎛⎭⎫1+32 m.11.证明:(1)连接OA ,OC .∵点O 是等边三角形ABC 的外心, ∴Rt △OFC ≌Rt △OGC ≌Rt △OGA . ∴S 四边形OFCG =2S △OFC =S △OAC .∵S △OAC =13S △ABC ,∴S 四边形OFCG =13S △ABC .(2)如图D37,连接OA ,OB 和OC .图D37则△AOC ≌△COB ≌△BOA ,∠1=∠2. 不妨设OD 交BC 于点F ,OE 交AC 于点G . ∵∠AOC =∠3+∠4=120°, ∠DOE =∠5+∠4=120°, ∴∠3=∠5.在△OAG 和△OCF 中,⎩⎪⎨⎪⎧∠1=∠2,OA =OC ,∠3=∠5,∴△OAG ≌△OCF .∴S 四边形OFCG =S △AOC =13S △ABC .24.4 弧长和扇形面积 第1课时 弧长和扇形面积 【课后巩固提升】 1.B 2.A 3.B4.C 解析:因为AB 是小圆的切线,所以OP ⊥AP ,AP =2.所以∠AOP =45°,因此PE 的长为45π×2180=π2.5.24 240π 6.3π4-327.24 解析:设小圆的半径为r ,∠COD =n °,由题意知R =r +12.则⎩⎨⎧12π=n πR 180=n π(r +12)180,8π=n πr 180.解得r =24.8.解:(1)在△OCE 中,∵∠CEO =90°,∠EOC =60°,OC =2,∴OE =12OC =1.∴CE=32OC = 3. ∵OA ⊥CD ,∴CE =DE .∴CD =2 3.(2)∵S △ABC =12AB ·CE =12×4×3=2 3,∴S 阴影=12π×22-2 3=2π-2 3.9.B10.A 解析: 设两个扇形的圆心角分别为n 1°,n 2°.在Rt △ABC 中,AB =62+82=10,n 1+n 2=90.∴两个等圆的半径为5.∴S 阴影=n 1πR 2360+n 2πR 2360=πR 2360(n 1+n 2)=90×25π360=25π4.11.解:(1)∵弦BC 垂直于半径OA ,∴BE =CE ,AB =AC . 又∵∠ADB =30°,∴∠AOC =60°.(2)∵BC =6,∴CE =12BC =3.在Rt △OCE 中,CE =3,∠EAC =60°,∴OC =2 3. ∴OE =OC 2-CE 2=4×3-9= 3. 连接OB .∵AB =AC , ∴∠BOC =2∠AOC =120°. ∴S 阴影=S 扇形OBC -S △OBC =120360×π×(2 3)2-12×6×3=4π-3 3. 第2课时 圆锥的侧面积和全面积 【课后巩固提升】 1.C 2.C 3.B 4.D数学试卷5.D 解析:S 侧=πrl ,S 底=πr 2,由题意知:l =2r .而侧面展开图扇形的弧长为底面圆的周长.有n π(2r )180=2πr ,解得n =180°. 6.27.解:设圆锥底面半径为r ,侧面展开图的扇形的半径为R ,则πr 2=15,2πr =πR ,∴R=2r =215π, ∴S 侧=180πR 2360=12πR 2=12π×4×15π=30(cm 2). 8.2 41 解析:底圆周长为2πr =10π.设圆锥侧面展开图的扇形所对圆心角为n °.则2πr=n πR 180.即10π=n π×10180,n =180,如图D40,连接EA ,则EA 长即为所求的最短距离.在Rt △OEA 中,F A =2,OA =8,∴EA =OE 2+OA 2=102+82=2 41.图D40 9.解:(1)连接BC .∵∠BAC =90°,∴BC 为⊙O 的直径.∴AB 2+AC 2=BC 2=22.∵AB =AC ,∴AB =2,∴S 扇形ABC =90360π(2)2=12π. ∴S 阴影=S ⊙O -S 扇形ABC =π×12-12π=12π(m 2). (2)设圆锥的底面半径为r ,依题意,得90π×2180=2πr .∴r =24m. ∴被剪掉的阴影部分的面积为12π m 2,该圆锥底面圆的半径为24m.10.解:设点A 的坐标为(r,0),则OA =r .∵B (0,-2),∴OB =2.在Rt △AOB 中,由勾股定理,得AB =OA 2+OB 2=r 2+4.∴圆锥的侧面积为πr ·AB =πr r 2+4=5π.∴r =1.∴点A 的坐标为(1,0).设直线AB 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧ k +b =0,b =-2.∴⎩⎪⎨⎪⎧k =2,b =-2. ∴直线AB 的解析式为y =2x -2.。