八年级下数学知识点总汇
八年级数学下册知识点总结(全)
八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
八年级下学期数学知识点总结
八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。
定义:满足a +b =c 的三个正整数,称为勾股数。
第二章实数定义:任何有限小数或无限循环小数都是有理数。
无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。
平移不会改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
八年级下册数学必知识点
八年级下册数学必知识点第一章统计1. 范围- 区分离散数据和连续数据- 定义范围的概念- 计算范围的方法2. 算术平均值- 了解算术平均数的概念- 计算算术平均数的方法- 通过算术平均数分析数据3. 中位数- 定义中位数的概念- 计算中位数的方法- 比较中位数与平均数4. 众数- 定义众数的概念- 计算众数的方法- 分析众数对数据的影响5. 频率分布表- 定义频率分布表的概念- 制作频率分布表的方法- 分析频率分布表的信息第二章几何1. 几何图形的基本概念- 点、线、线段、射线- 角度、三角形、四边形、圆形- 了解各种几何图形的定义和性质2. 相似三角形- 定义相似三角形的概念- 了解相似三角形的性质及证明方法- 利用相似三角形解决实际问题3. 三角形的面积- 定义三角形面积的概念- 了解计算三角形面积的方法- 利用三角形面积解决实际问题4. 圆的面积和周长- 了解圆的定义及性质- 计算圆的面积和周长的方法- 利用圆的面积和周长解决实际问题5. 体积和表面积- 了解正方体、长方体、圆柱、圆锥等几何体的定义及性质- 计算几何体的体积和表面积的方法- 利用几何体的体积和表面积解决实际问题第三章代数1. 代数式- 定义代数式的概念- 了解代数式的构成要素和运算方法- 利用代数式解决实际问题2. 方程- 定义方程的概念- 了解一元一次方程、二元一次方程及分式方程的解法- 利用方程解决实际问题3. 不等式- 定义不等式的概念- 了解一元一次不等式及二元一次不等式的解法- 利用不等式解决实际问题4. 函数- 定义函数的概念- 了解函数的表示方法和性质- 利用函数解决实际问题5. 图形的性质与函数- 了解各种图形的性质及函数与图形的关系- 利用图形的性质和函数解决实际问题第四章数据分析1. 统计图表- 了解各种统计图表的表示方法- 分析统计图表的信息2. 计算误差- 定义误差的概念- 了解算术平均误差和百分数误差的计算方法- 利用误差计算和分析数据3. 相关- 定义相对的概念- 了解相关系数的概念及计算方法- 利用相关系数分析数据4. 概率- 定义概率的概念- 了解概率的计算方法- 利用概率解决实际问题5. 实验与事件- 定义实验和事件的概念- 了解频率和概率的关系- 利用实验和事件计算概率。
八年级下册数学书的知识点
八年级下册数学书的知识点包括以下内容:
一、代数运算
1. 有理数的加减乘除运算及其性质
2. 一元一次方程和不等式的解法
3. 平方根、绝对值、分式、分式方程等的运算及应用
二、几何基础
1. 直角三角形及斜角三角形的性质
2. 平面图形的面积和周长的计算
3. 空间几何图形的面积和体积的计算
三、概率统计
1. 随机事件的概念和基本性质
2. 频率和概率的关系
3. 抽样调查和数据处理的方法
四、函数基础
1. 函数的概念和基本性质
2. 一次函数、二次函数的图像和性质
3. 反比例函数和指数函数的概念和应用
五、图形的变换
1. 平移、旋转、对称和放缩的概念和性质
2. 直线对称、中心对称和轴对称的应用
3. 图形变换对坐标的影响和应用
以上是八年级下册数学书的主要知识点,每个知识点都包含着多个子知识点,需要同学们认真理解和掌握。
同时,巩固前一年的数学基础也是十分重要的,只有掌握好基础才能更好地学习新
知识。
数学是一门需要不断练习和思考的学科,同学们需要勤奋用心,不断提高自己的数学能力。
八年级数学下册知识点总结(全)
八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
八年级下册数学重要知识点初二下册数学知识点
八年级下册数学重要知识点初二下册数学知识点以下是初二下册数学的重要知识点:
1. 平面直角坐标系:横坐标和纵坐标的设定和运用,点的坐标和图形的位置关系。
2. 勾股定理:直角三角形中,任意直角边的平方等于其余两边平方和。
3. 角的概念和性质:角的度量、补角、余角、同位角等概念和性质。
4. 三角形的性质和分类:三角形的内角和、三边关系、等边三角形、等腰三角形等。
5. 相似三角形:相似三角形的判定方法,相似三角形的性质和应用。
6. 四边形:四边形的分类、四边形的内角和、对角线、各类四边形的特性。
7. 圆的性质:圆的构造、圆心角、弧长和扇形面积的计算。
8. 三视图:正视图、俯视图和侧视图的画法和三视图的相互关系。
9. 平面图形的计算:矩形、平行四边形、梯形和菱形的面积计算。
10. 数据的收集和分析:统计图表的制作和分析、频数、频率、中位数等统计概念和运算。
这些都是初二下册数学中的重要知识点,对于学好数学非常关键,希望对你有帮助!。
八下数学知识点
八下数学知识点一、小数运算(1)小数的加、减、乘、除。
(2)补数法和借位法计算小数加减法。
(3)常见小数的分等大小比较。
(4)小数化百分数、百分数化小数。
二、代数表达式(1)代数式的定义和基本形式(字母和数字的组合+运算符号)(2)代数式的分类(单项式、多项式、因式、展开式、系数等)(3)多项式加减法,多项式乘法(知识点:分配律、配方法、乘方规律)。
(4)一元二次方程的定义、解法及应用(知识点:方程的基本形式、变形、因式分解、开方等)。
(5)简单的函数概念(定义域、值域、映射、反函数)及简单函数图像的认识。
三、几何(1)数轴和平面直角坐标系。
(2)平面图形测试:根据定义、性质或给定条件来判断图形的名称或性质,并区分相似图形和全等图形。
(3)空间图形测试:根据定义、性质或给定条件来判断图形的名称或性质,如:棱长、面积、体积等。
(4)掌握平面图形的面积和周长的计算(主要是矩形、平行四边形、三角形和梯形)。
(5)掌握立体图形的表面积和体积的计算(主要是长方体、正方体、圆柱、圆锥、球等)。
四、单位换算与数据的处理(1)长度、重量、容积等常见的度量单位之间的换算,快速换算的方法;(2)含未知数的数量关系的建立、解答;应用问题中应掌握长度、重量、价值等常见量的换算,带单位数值间的运算。
(例如:油箱中有93升汽油,已用去25.6升,还剩多少升?)(3)统计与概率方面的加、减、乘、除和简单的组合运算。
掌握简单统计图的画法和解读方式。
(例如:直方图、饼图等)五、解决问题的步骤与方法学习数学,并不是简单地求出一串计算结果,也要掌握一些解决问题的步骤与方法,如:分析和转化实际问题,把问题转化为算式,选择适当的计算方法,解决问题,反思核验等。
数学八年级下册知识点
数学八年级下册知识点数学八年级下册知识点第一章一元一次不等式和一元一次不等式组一、一般地,用符号(或),(或)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集:一元一次不等式组各个不等式的解集的公共部分.等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab, 则a+cb+c;2、若ab, c0 则acbc若c0, 则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1. 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集. 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.六、常考题型:1、求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.第二章分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形.三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法.2、运用公式法.第三章分式注:1对于任意一个分式,分母都不能为零.2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3分式的值为零含两层意思:分母不等于零;分子等于零.( 中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.第四章相似图形一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成= ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段. 黄金分割的定义:在线段AB上,点C 把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.618. 引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形. 相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么.如果(b,d都不为0),那么ad=bc.2、合比性质:如果,那么.3、等比性质:如果== (b+d++n0),那么.4、更比性质:若那么.5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.第五章数据的收集与处理(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体.(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率.数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义.刻画平均水平用:平均数,众数,中位数. 刻画离散程度用:极差,方差,标准差.常考知识点:1、作频数分布表,作频数分布直方图.2、利用方差比较数据的稳定性.3、平均数,中位数,众数,极差,方差,标准差的求法.3、频率,样本的定义第六章证明一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子.一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成如果,那么的形式.其中如果引出的部分是条件,那么引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例.二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半.数学八年级学习方法掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。
八下数学重点内容总结
八下数学重点内容总结
1.有效数字:一个近似数,从左边第一个不为0的数开始,到精确的数位止,
所有的数字都是有效数字。
2.概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
3.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三
角形。
4.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,
这个角的顶点与交点之间的线段叫做三角形的角平分线。
5.三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这
个三角形的中线。
6.全等图形:两个能够重合的图形称为全等图形。
7.变量:变化的数量,就叫变量。
8.自变量:在变化的量中主动发生变化的,变叫自变量。
9.因变量:随着自变量变化而被动发生变化的量,叫因变量。
10.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相
重合,那么这个图形叫做轴对称图形。
八年级下册数学知识点归纳总结
八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。
初二下册数学知识点
初二下册数学知识1第一章三角形的证明1、等腰三角形①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)②全等三角形的对应边相等、对应角相等③定理:等腰三角形的两底角相等,即位等边对等角④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)⑦定理:三个角都相等的三角形是等边三角形⑧定理;有一个角等于60°的等腰三角形是等边三角形⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
2、直角三角形①定理:直角三角形的两个锐角互余②定理有两个角互余的三角形是直角三角形③勾股定理:直角三角形两条直角边的平方和等于斜边的平方④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题⑥一个命题是真命题,它的逆命题不一定是真命题。
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理⑦定理:斜边和一条直角边分别相等的两个直角三角形全等3、线段的垂直平分线①定理:线段垂直平分线上的点到这条线段两个端点的距离相等②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上4、角平分线①定理:角平分线上的点到这个角的两边的距离相等②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上初二下册数学知识2第二章一元一次不等式与一元一次不等式组1、不等关系2、不等式的基本性质①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变3、不等式的解集①能使不等式成立的未知数的值,叫做不等式的解②一个含有不等式所有的解,组成这个不等式的解集③求不等式解集的过程叫做解不等式4、一元一次不等式①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是15、一元一次不等式与一次函数6、一元一次不等式组①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组初二下册数学知识3第三章图形的平移和旋转1、图形的平移①在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小②一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等③一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的2、图形的旋转①在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小②一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等3、中心对称①如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心②成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分③把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心4、简单的图案设计初二下册数学知识4第四章因式分解1、因式分解①把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式2、提公因式法①多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b就是多项式ab+bc各项的公因式②如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。
八年级下册数学知识点
八年级下册数学知识点
一、数的概念
1. 定义数:数是用来表示数量的符号。
2. 整数:正整数、负整数和零。
3. 分数:分子和分母构成的数。
4. 小数:由小数点和小数部分构成的数。
二、代数
1. 平方根:一个数的平方根是另一个数的平方,即a²=b,则a 为b的平方根。
2. 开方:求一个数的平方根的过程。
3. 立方根:一个数的立方根是另一个数的立方,即a³=b,则a 为b的立方根。
4. 开立方:求一个数的立方根的过程。
三、几何
1. 平面几何:研究平面内各种形状的几何学科。
2. 空间几何:研究空间中各种形状的几何学科。
3. 直角坐标系:由一条水平线和一条垂直线组成的坐标系。
4. 平面图形:在平面上的点、线、面等形状。
八年级下册数学知识点背诵
八年级下册数学知识点背诵
数学知识点的背诵是学习数学的重要环节。
在八年级下册数学
学习中,有多个重要的知识点需要掌握。
以下是这些知识点及其
重点内容:
一、平面几何
1.图形类别:凸、凹、正、反、全等、相似、等腰、等边、直角、锐角、钝角、变形、对称、轴对称、中心对称、平移、旋转、翻折、缩放、相交
2.图形的性质:面积、周长、对角线、夹角、垂线、高线、中线、角平分线、对边平行、内角和、外角和、三角形面积公式、
余弦定理、正弦定理、勾股定理
二、数学运算
1.分数的加减乘除:分数的相加、分数的相减、分数的相乘、
分数的相除、分数转化为小数、小数转化为分数、分数化简
2.百分数:百分数转化为小数、小数转化为百分数、百分数的加减乘除、百分数与分数的互化、百分数计算
三、代数
1.代数式的基本概念:代数式的组成、代数式的计算
2.一元一次方程:基本概念、解一元一次方程的方法
3.多项式与因式分解:多项式的概念、多项式的加减乘法、因式分解的方法
四、统计与概率
1.数据的分析:各种类型的数据、中位数、平均数、众数、极差、四分位数、百分位数、数据的描绘
2.概率的计算:事件、随机事件、概率的基本概念、概率的计算方法
以上是八年级下册数学知识点的主要内容和重点,每个知识点都需要经常理解和掌握,特别是图形类别和平面几何还需要多画图来帮助记忆和理解。
相信只要学生认真背诵并不断提高自己的数学水平,学习数学并不会很难。
八年级数学下册知识点归纳
八年级数学下册知识点归纳5篇分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用数据的分析1.算术平均数:2.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据5.撰写调查报告 6.交流7. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。
一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
初中八年级下册数学知识点
初中八年级下册数学知识点
1. 勾股定理:勾股定理是一个基本的几何定理,用于描述直角三角形中三条边的关系。
在八年级下册,学生将学习如何使用勾股定理解决实际问题。
2. 二次根式:二次根式是数学中的一种表达式,表示一个数的平方根。
学生需要掌握二次根式的性质、运算规则以及与实数的关系。
3. 一元二次方程:一元二次方程是包含一个未知数的二次方程。
学生需要掌握一元二次方程的解法、应用以及与现实生活的关系。
4. 平面直角坐标系:平面直角坐标系是一个基本的数学工具,用于描述平面上的点的位置。
学生需要掌握如何使用坐标系表示点的位置,以及如何通过坐标系解决实际问题。
5. 一次函数与反比例函数:一次函数和反比例函数是两种基本的函数形式。
学生需要掌握它们的性质、图像以及在实际生活中的应用。
6. 数据的收集与整理:学生需要掌握如何收集和整理数据,以及如何使用图表来表示数据。
这将帮助他们更好地理解和分析现实生活中的问题。
以上是初中八年级下册数学的主要知识点。
在学习过程中,学生需要注重理解和应用,通过大量的练习来巩固所学知识。
八年级下册数学知识点大纲
八年级下册数学知识点大纲一、分数
1. 什么是分数
2. 分数的分类
3. 分数的加减乘除
4. 分数化简
5. 分数的大小比较
6. 分数的应用
二、代数式
1. 什么是代数式
2. 代数式的分类
3. 代数式的加减乘除
4. 代数式的同类项合并
5. 代数式的化简
6. 代数式的应用
三、线性方程组
1. 什么是线性方程组
2. 线性方程组的解法
3. 线性方程组的应用
四、平面几何
1. 基本概念与性质
2. 垂线、角平分线、中线、高线与中垂线
3. 三角形的相似
4. 三角形的等角关系和全等关系
5. 三角形面积与勾股定理
五、正比例函数
1. 什么是正比例函数
2. 正比例函数的图像特征
3. 正比例函数的性质和应用
六、平方根与立方根
1. 平方根的计算及其性质
2. 立方根的计算及其性质
3. 平方根、立方根的化简与应用
七、统计与概率
1. 数据的收集、整理和表达
2. 统计量的计算及其意义
3. 概率的基本概念与性质
4. 事件的概率和互斥事件
八、三角函数
1. 什么是三角函数
2. 正弦函数、余弦函数、正切函数的性质
3. 三角函数的应用
以上为八年级下册数学知识点大纲。
在学习这些知识点时,需
要掌握概念、性质和公式等基础知识,加强练习、提高思维能力,将知识点应用于实际问题中,达到对数学知识的全面掌握和灵活
应用。
八年级下册数学全章知识点
八年级下册数学全章知识点八年级下册数学包括7个章节:利用数据统计、平面图形的认识、角的认识、三角形的认识、相似形的认识、比例和文字题及解方程。
下面将逐一介绍每个章节的知识点。
一、利用数据统计1. 数据的集中趋势数据的中位数、众数、平均数及其间的关系。
2. 数据的分散程度数据的极差、四分位数及其间的关系。
3. 经验概率试验次数较多时,事件发生的频率近似为一定值,即经验概率。
用频率估计概率的方法。
二、平面图形的认识1. 相似和全等的概念图形的相似、全等、对称及轴对称。
2. 平面直角坐标系平面直角坐标系的建立,坐标、向量的概念及其坐标表示法。
3. 平面图形的坐标表示法平面图形的坐标表示法,直线的方程及其应用。
三、角的认识1. 角的基本概念角的定义、度数、正弦、余弦、正切的概念及其应用。
2. 角的比较大小角度的比较,角度的加减、乘除及其应用。
四、三角形的认识1. 三角形的基本概念三角形的定义、分类、特殊角和特殊边。
2. 三角形的面积三角形面积公式及其应用。
五、相似形的认识1. 相似形的基本概念相似的概念及其性质。
2. 图形的相似变换由相似的概念引入“相似变换”的概念。
六、比例和文字题1. 比例的基本概念比例的定义,比例例题的求解方法。
2. 文字题的常见解法小学常见的问题以及解决方法。
七、解方程1. 解一次方程一元一次方程的定义及解题方法。
2. 解方程的应用应用题的分析和解答方法。
以上就是八年级下册数学全章的知识点。
当然,这只是一份简要的概述,各个知识点都有很多细节需要掌握,希望同学们能够认真学习,踏实练习,从基础打好数学的基础,为未来的发展打下坚实的基础。
初二下学期数学 八年级下学期数学知识点总结(精选8篇)
初二下学期数学八年级下学期数学知识点总结(精选8篇)初二下册数学知识点篇一1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析加权平均数、中位数、众数、极差、方差初二下册数学知识点归纳北师大版篇二第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
八年级下册数学各章节知识点总结
八年级下册数学各章节知识点总结第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c bc a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为a bx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b) 一元一次不等式解集 图示叙述语言表达⎩⎨⎧>>b x ax x>bba 两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找 ⎩⎨⎧><bx ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
初中八年级下册数学知识点
初中八年级下册数学知识点
以下是初中八年级下册数学的知识点:
1. 有理数运算:包括有理数的加减乘除运算、混合运算等。
2. 二次根式:包括二次根式的化简、相加相减、乘法运算等。
3. 平面图形的性质:包括多边形、圆、三角形等各种平面图形的性质。
4. 三角形的性质:包括等腰三角形、等边三角形等三角形的性质。
5. 平行四边形和其它四边形的性质:包括平行四边形的性质、矩形、菱形和正方形的性质等。
6. 直线与角:包括相邻角、对顶角等直线与角的性质。
7. 圆的性质:包括弦、弧、切线等圆的性质。
8. 平面坐标系:包括点的坐标、图形的坐标等平面坐标系的知识。
9. 数据的处理:包括统计图表的读取、数据的分析、概率等。
10. 线性方程组:包括两个变量的线性方程组、三个变量的线性方程组等。
以上是初中八年级下册数学主要的知识点,具体的内容可能还会根据不同教材的要求有所差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下数学知识点
一.分式
1、形如A/B(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算
1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.
2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,
4)分式运算的最后结果应化为最简分式或整式.
7、分式方程
1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.
2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
二.函数及图象
1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;
由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.
4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
5、第一、三象限角平分线上的点,横纵坐标相等;第二、四象限角平分线上的点,横纵坐标互为相反数。
6、在一个变化过程中,存在两个变量x、y,对于x的每一个取值,y都有唯一的一个值与之对应,我们就说y是x的函数。
x是自变量,y是因变量。
函数的表示方法有:解析式法、图象法、列表法。
7、函数自变量的取值范围:①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.④函数的解析式是负整指数和零指数时,底数≠0;⑤对于反映实际问题的函数关系,应使实际问题有意义.
8、如果y=kx + b ( k、b是常数,k≠0),那么,y叫x的一次函数。
如果y=kx (k是常数,k 0),那么,y叫x的正比例函数。
9、点在函数的图象上的代数意义是:这一点的坐标满足函数的解析式。
两个函数有交点的代数意义是:两个函数的解析式组成的方程组的解就是交点的坐标。
10、一次函数y=kx+b的性质:
(1)一次函数图象是过两点的一条直线,|k|的值越大,图象越靠近于y轴。
(2)当k>0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);
(3)当k<0时,图象过二、四象限,y随x的增大而减小。
从左至右图象是下降的(左高右低);
(4)当b>0时,与y轴的交点(0,b)在正半轴;当b<0时,与y轴的交点(0,b)在负半轴。
当b=0时,一次函数就是正比例函数,图象是过原点的一条直线
(5)几条直线互相平行时,k值相等而b不相等。
11、如果y=kx ( k是常数,k≠0),那么,y叫x的反比例函数。
12、反比例函数y=kx的性质:
(1)反比例函数的图象是双曲线,图象无限的靠近于x、y轴。
(2)当k>0时,图象的两个分支位于一、三象限,在每个象限内,y随x的增大而减小,从左至右图象是下降的(左低右高);
(3)当k<0时,图象的两个分支位于二、四象限,在每个象限内,y随x的增大而增大,从左至右图象是上升的(左高右低)。
(4)反比例函数y=kx与正比例函数y=k x的交点关于原点对称。
三.平行四边形
1、四边形的内角和定理:四边形内角和等于360°;
2、多边形内角和定理:n边形的内角和等于(n-2)×180°;
3、多边形的外角和定理:任意多边形的外角和等于360°;
4、n边形对角线条数公式:n(n-3)2(n≥3);
5、平行四边形的性质和判定
类别性质判定
边角对角线对称性边角对角线
(1)平行四边形的性质边①对边平行②对边相等
角①对角相等②邻角互补
线对角线互相平分中心对称
(2)平行四边形判定边①两组对边分别分别平行的四边形是平行四边形
②两组对边分别分别相等的四边形是平行四边形③一组对边平行且相等的四边形是平行四边形
角两组对角分别相等的四边形是平行四边形
对角线对角线互相平分的四边形是平行四边形
(3)矩形
性质边①对边平行②对边相等
角四个角都是直角
线①对角线互相平分②对角线相等
对称中心对称,轴对称
判定①有一个角是直角的平行四边形是矩形
②有三个角是直角的四边形
③对角线相等的平行四边形是矩形
(4)菱形
性质边①对边平行②四边相等
角①对角相等②邻角互补
线①对角线互相垂直平分②对角线平分每一组对角
对称中心对称,轴对称
判定边①有一组邻边相等的平行四边形是菱形
②四条边都相等的四边形是菱形
线对角线互相垂直的平行四边形是菱形
(5)正方形
性质边①对边平行②四边相等
角四个角都是直角
线①对角线互相垂直平分②对角线平分每一组对角
对称中心对称,轴对称
判定①一组邻边相等的矩形是正方形②有一个角是直角的菱形是正方形
③对角线互相垂直且相等的平行四边形是正方形
四.数据的整理与初步处理
1、平均数=总量÷总份数。
数据的平均数只有一个。
一般说来,n个数、、…、的平均数为=1n(x1+x2+…xn)
一般说来,如果n个数据中,x1出现f1次,x2出现f2次,xk出现fk次,且f1+f2+… +fk=n则这n个数的平均数可表示为x=x1f1+x2f2+…xkfkn。
其中fin是xi的权重(i=1,2…k)。
加权平均数是分析数据的又一工具。
当考虑不同权重时,决策者的结论就有可能随之改变。
2、中位数将一组数据按由小到大(或由大到小)的顺序排列(即使有相等的数据也要全部参加排列),如果数据的个数是奇数,那么中位数就是中间的那个数据。
如果数据的个数是偶数,那么中位数就是中间的两个数据的平均数。
一组数据的中位数只有一个,它可能是这组数据中的一个数据,也可能不是这组数据中的数据.
3、众数一组数据中出现的次数最多的数据就是众数。
一组数据可以有不止一个众数,也可以没有众数(当某一组数据中所有数据出现的次数都相同时,这组数据就没有众数).
4、一组数据中的最大值减去最小值就是极差:极差=最大值-最小值
5、我们通常用表示一组数据的方差,用表示一组数据的平均数,、、…、表示各个原始数据.则
( 平方单位)
求方差的方法:先求平均数,再求偏差,然后求偏差的平方和,最后再平均数
6、求出的方差再开平方,这就是标准差。
7、平均数、极差、方差、标准差的变化规律
一组数据同时加上或减去一个数,极差不变,平均数加上或减去这个数,方差不变,标准差不变
一组数据同时乘以或除以一个数,极差和平均数都乘以或除以这个数,方差乘以或除以该
数的平方,标准差乘以或除以这个数。
一组数据同时乘以一个数a,然后在加上一个数b,极差乘以或除以这个数a,平均数乘以或除以这个数a,再加上b,方差乘以a的平方,标准差乘以|a|. (加减的数都不为0)。