【精选】人教版数学八年级上册 轴对称解答题易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精选】人教版数学八年级上册 轴对称解答题易错题(Word 版 含答案)
一、八年级数学 轴对称解答题压轴题(难)
1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).
(1)∠A=______度;
(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;
(3)当△APQ 为等边三角形时,直接写出t 的值.
【答案】(1)60;(2)
103或203;(3)5或20 【解析】
【分析】
(1)根据等边三角形的性质即可解答;
(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;
(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.
【详解】
解:(1)60°.
(2)∵∠A=60°,
当∠APQ=90°时,∠AQP=90°-60°=30°.
∴QA=2PA .
即2022 2.t t -=⨯
解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.
∴PA=2QA .
即2(202)2.t t -=
解得 20.3
t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为
102033或. (3)①由题意得:AP=2t ,AQ=20-2t
∴当AQ=AP时,△APQ为等边三角形
∴2t=20-2t,解得t=5
②当P于B重合,Q与C重合,则所用时间为:4÷2=20
综上,当△APQ为等边三角形时,t=5或20.
【点睛】
本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.
2.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.
(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.
【解析】
【分析】
(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;
(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到
∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明
△BAE≌△ACH,故BE=AH,故可证明BE=2AF.
(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.
【详解】
(1)∵△ADC≌△EDB,
∵AB=12,
∴12-8<AE<12+8,
即4<AE<20,
∵D为AE中点
∴2<AD<10;
(2)延长AF到H,使AF=HF,
由题意得△ADF≌△HCF,故AH=2AF,
∵AB⊥AC,AD⊥AE,
∴∠BAE+∠CAD=180°,
又∠ACH+∠CAH+∠AHC=180°,
∵∠D=∠FCH,∠DAF=∠CHF,
∴∠ACH+∠CAD=180°,
故∠BAE= ACH,
又AB=AC,AD=AE
∴△BAE≌△ACH(SAS),
故BE=AH,又AH=2AF
∴BE= 2AF.
(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,
由题意得△DBF≌△ADG,
∴FD=GD,BF=AG,
∵DE⊥DF,
∴DE垂直平分GF,
∴EF=EG,
∵∠C=90°,
∴∠B+∠CAB=90°,
又∠B=∠DAG,
∴∠DAG +∠CAB=90°
∴∠EAG=90°,
故EG2=AE2+AG2,
∵EF=EG, BF=AG
∴EF2=AE2+BF2,
则以线段AE 、BF 、EF 为边的三角形为直角三角形.
【点睛】
此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.
3.已知:AD 是ABC ∆的高,且BD CD =.
(1)如图1,求证:BAD CAD ∠=∠;
(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;
(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长. 图1. 图2. 图3.
【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .
【解析】
【分析】