51单片机C语言开发与应用技术案例详解
51单片机高级应用实例
51单片机高级应用实例一、基于51单片机的温度控制系统温度控制系统是一种常见的自动控制系统,其主要功能是根据设定的温度范围来控制加热或制冷设备的启停。
基于51单片机的温度控制系统可以实现精确的温度控制,并且具有较高的稳定性和可靠性。
该系统通过传感器采集环境温度,并通过51单片机进行处理和控制,最后通过继电器控制加热或制冷设备的启停。
该系统可以广泛应用于温室、恒温实验室等需要精确控制温度的场合。
二、基于51单片机的智能家居控制系统智能家居控制系统是一种将家庭设备和网络连接起来,实现远程控制和自动化控制的系统。
基于51单片机的智能家居控制系统可以实现对家庭设备的远程控制和自动化控制。
例如,可以通过手机App远程控制灯光、空调、窗帘等设备的开关,也可以通过传感器实现自动化控制,如通过人体红外传感器实现进出房间时灯光的自动开关。
该系统可以提高家居的舒适性和安全性,方便用户的生活。
三、基于51单片机的智能交通信号控制系统智能交通信号控制系统是一种通过传感器和信号控制设备实现交通信号智能化控制的系统。
基于51单片机的智能交通信号控制系统可以实时监测交通流量和道路状况,并根据实际情况智能调整交通信号灯的时序。
例如,当某个方向的车辆较多时,系统可以自动延长该方向的绿灯时间,以提高交通效率。
该系统可以减少交通拥堵和事故发生率,提高交通运输的效率和安全性。
四、基于51单片机的工业自动化控制系统工业自动化控制系统是一种将工业设备和传感器通过网络连接起来,实现自动化控制和远程监控的系统。
基于51单片机的工业自动化控制系统可以实现对工业设备的自动化控制和远程监控。
例如,可以通过传感器实时监测生产过程中的温度、压力、湿度等参数,并通过51单片机进行处理和控制,实现工业设备的自动化控制。
该系统可以提高工业生产的效率和质量,降低人工成本和能源消耗。
总结:51单片机具有高性能、低功耗、易于编程的特点,可以实现各种复杂的功能。
基于51单片机的应用包括温度控制系统、智能家居控制系统、智能交通信号控制系统和工业自动化控制系统等。
单片机原理及应用教程(C语言版)-第6章 MCS-51单片机的定时器计数器
6.1.1 单片机定时器/计数器的结构
MCS-51单片机定时器/计数器的原理结构图
T0(P3.4) 定时器0 定时器1 T1(P3.5) 定时器2 T2EX(P1.1)
T2(P1.0)
TH0
溢 出 控 制
TL0
模 式 溢 出
TH1
控 制
TL1
模 式 溢 出
TH2
TL2
重装 捕获
RCAP 2H
RCAP 2L
6.2.2 T0、T1的工作模式
信号源 C/T设为1,为计数器,用P3.4引脚脉冲 C/T设为0,为定时器,用内部脉冲 运行控制 GATE=1,由外部信号控制运行 此时应该设置TR0=1 P3.2引脚为高电平,T0运行 GATE=0, 由内部控制运行 TR0设置为1,T0运行
6.2.2 T0、T1的工作模式
6.2.3 T0、T1的使用方法
例6-1 对89C52单片机编程,使用定时器/计 数器T0以模式1定时,以中断方式实现从P1.0引 脚产生周期为1000µ s的方波。设单片机的振荡频 率为12MHz。 分析与计算 (1)方波产生原理 将T0设为定时器,计算出合适的初值,定 时到了之后对P1.0引脚取反即可。 (2)选择工作模式 计算计数值N
6.2.1 T0、T1的特殊功能寄存器
TR1、TR0:T1、T0启停控制位。 置1,启动定时器; 清0,关闭定时器。
注意: GATE=1 ,TRx与P3.2(P3.3)的配合控制。
IE1、IE0:外部中断1、0请求标志位 IT1、IT0:外部中断1、0触发方式选择位
6.2.2 T0、T1的工作模式
6.2.1 T0、T1的特殊功能寄存器
GATE=0,禁止外部信号控制定时器/计数器。 C/T——定时或计数方式选择位 C/T=0,为定时器;C/T=1,为计数器 计数采样:CPU在每机器周期的S5P2期间,对 计数脉冲输入引脚进行采样。
51单片机技术应用教程(C语言版)项目八PC机远程控制花样霓虹灯设计与制作
8.1.2 51单片机串行通信基础知识
串行接口控制寄存器SCON
76 5 4 3 2 1 0 SCON(98H) SM0 SM1 SM2 REN TB8 RB8 TI RI
SM0、SSMM12::多串机行通接信口R控E4N种制:允工位许作,串方用行式于接选方收择式位位2和。。方由式软3件。置1或清
通信方式
并行通信:数据的各位同 时传输
串行通信:数据逐位顺序 传输
8.1.1串行通信的基本原理 串行通信制式
单工(simplex) :数据只能按照一 个固定的方向传输,如广播
设备A
设备B
半双工(half duplex) :2个方向上 的数据传输不能同时进行,只能一 端发送,一端接收,如对讲机
全双工(full duplex) : 2个方向可 以同时发送和接收,如电话机
76 5 4 3 2 1 0 SCON(98H) SM0 SM1 SM2 REN TB8 RB8 TI RI
TB8:发R送B数8:据接T的收I:第数发9据送R位I的中:。接第断在收9标方位中志式。断位2工标和。作志方在在位式方方。3式中式在0,2时方和由,式方发0式中送3,时完接,8位收数完8位数
1 0 为方0式还2 是为1,11位T帧I、格R式I都以正常fo方sc/6式4或被fosc激/32活。 1 1 在方方式3式1时,11如位果帧格S式M2=1,可则变只(由有定收时到器控有制效)的停止位后,RI置1。
在方式0时,SM2必须为0。
8.1.2 51单片机串行通信基础知识
串行接口控制寄存器SCON
SM0 SM1 工在作方方式式 2和方0。式功R3E能处N于=1接时收,时允,许如接波果收特S率;MR2=E1N,=0而时且,接收到的第9位数据RB8
51单片机C语言编程100例-单片机c语言编程
51单片机C语言编程100例-单片机c语言编程51单片机C语言编程100例在嵌入式系统领域,单片机是常用的硬件平台之一。
而C语言作为一种高级编程语言,能够为单片机编程提供更高的效率和便利性。
本文将介绍51单片机C语言编程的100个实例,帮助读者了解并掌握单片机的基本编程技巧和应用方法。
一、LED灯控制1. 实例介绍:通过控制51单片机的IO口输出,实现对LED灯的亮灭控制。
2. 实例代码:```#include <reg51.h>sbit LED = P1^0; // 定义P1口的第0位为LEDvoid main(){while(1){LED = 0; // LED灯亮delay(1000); //延时1秒LED = 1; // LED灯灭delay(1000); //延时1秒}}```二、数码管显示1. 实例介绍:使用数码管显示数字0-9,并实现数码管的动态显示效果。
2. 实例代码:```#include <reg51.h>unsigned char code DispTab[] ={0xC0,0XF9,0XA4,0XB0,0X99,0X92,0X82};sbit WeiDu = P1^2;sbit DUAN = P1^0;void delay(unsigned int t){unsigned int i;while(t--)for(i=0;i<125;i++);}void main(){unsigned int i;while(1){P0 = DispTab[i]; // 显示数字iDUAN = 1; //点亮段码DUAN = 0; //关闭段码P0 = ~(0x01 << i); // 选择数码管的位 WeiDu = 0; // 打开选通位WeiDu = 1; // 关闭选通位delay(100); // 延时100msi++;if(i > 9) i = 0;}}```三、外部中断1. 实例介绍:使用外部中断,当外部输入信号发生变化时,触发中断程序。
51单片机c语言应用100例
目录目录 (1)函数的使用和熟悉 (4)实例3:用单片机控制第一个灯亮 (4)实例4:用单片机控制一个灯闪烁:认识单片机的工作频率 (4)实例5:将P1口状态分别送入P0、P2、P3口:认识I/O口的引脚功能 (4)实例6:使用P3口流水点亮8位LED (5)实例7:通过对P3口地址的操作流水点亮8位LED (6)实例8:用不同数据类型控制灯闪烁时间 (7)实例9:用P0口、P1 口分别显示加法和减法运算结果 (8)实例10:用P0、P1口显示乘法运算结果 (8)实例11:用P1、P0口显示除法运算结果 (8)实例12:用自增运算控制P0口8位LED流水花样 (9)实例13:用P0口显示逻辑"与"运算结果 (9)实例14:用P0口显示条件运算结果 (10)实例15:用P0口显示按位"异或"运算结果 (10)实例16:用P0显示左移运算结果 (10)实例17:"万能逻辑电路"实验 (10)实例18:用右移运算流水点亮P1口8位LED (11)实例19:用if语句控制P0口8位LED的流水方向 (11)实例20:用swtich语句的控制P0口8位LED的点亮状态 (12)实例21:用for语句控制蜂鸣器鸣笛次数 (13)实例22:用while语句控制LED (14)实例23:用do-while语句控制P0口8位LED流水点亮 (15)实例24:用字符型数组控制P0口8位LED流水点亮 (16)实例25:用P0口显示字符串常量 (16)实例26:用P0 口显示指针运算结果 (17)实例27:用指针数组控制P0口8位LED流水点亮 (17)实例28:用数组的指针控制P0 口8 位LED流水点亮 (18)实例29:用P0 、P1口显示整型函数返回值 (19)实例30:用有参函数控制P0口8位LED流水速度 (20)实例31:用数组作函数参数控制流水花样 (20)实例32:用指针作函数参数控制P0口8位LED流水点亮 (21)实例33:用函数型指针控制P1口灯花样 (22)实例34:用指针数组作为函数的参数显示多个字符串 (23)实例35:字符函数ctype.h应用举例 (24)实例36:内部函数intrins.h应用举例 (25)实例37:标准函数stdlib.h应用举例 (25)实例38:字符串函数string.h应用举例 (26)实例39:宏定义应用举例2 (26)实例40:宏定义应用举例2 (27)实例41:宏定义应用举例3 (27)中断、定时器 (28)实例42:用定时器T0查询方式P2口8位控制LED闪烁 (28)实例43:用定时器T1查询方式控制单片机发出1KHz音频 (28)实例45:用定时器T0的中断控制1位LED闪烁 (30)实例46:用定时器T0的中断实现长时间定时 (30)实例47:用定时器T1中断控制两个LED以不同周期闪烁 (31)实例48:用计数器T1的中断控制蜂鸣器发出1KHz音频 (32)实例49:用定时器T0的中断实现"渴望"主题曲的播放 (33)实例50-1:输出50个矩形脉冲 (35)实例50-2:计数器T0统计外部脉冲数 (36)实例51-2:定时器T0的模式2测量正脉冲宽度 (36)实例52:用定时器T0控制输出高低宽度不同的矩形波 (37)实例53:用外中断0的中断方式进行数据采集 (38)实例54-1:输出负脉宽为200微秒的方波 (38)实例54-2:测量负脉冲宽度 (39)实例55:方式0控制流水灯循环点亮 (40)实例56-1:数据发送程序 (41)实例56-2:数据接收程序 (42)实例57-1:数据发送程序 (43)实例57-2:数据接收程序 (44)实例58:单片机向PC发送数据 (45)实例59:单片机接收PC发出的数据 (46)数码管显示 (46)实例60:用LED数码显示数字5 (46)实例61:用LED数码显示器循环显示数字0~9 (47)实例62:用数码管慢速动态扫描显示数字"1234" (47)实例63:用LED数码显示器伪静态显示数字1234 (48)实例64:用数码管显示动态检测结果 (49)实例65:数码秒表设计 (50)实例66:数码时钟设计 (52)实例67:用LED数码管显示计数器T0的计数值 (55)实例68:静态显示数字“59” (56)键盘控制 (57)实例69:无软件消抖的独立式键盘输入实验 (57)实例70:软件消抖的独立式键盘输入实验 (57)实例71:CPU控制的独立式键盘扫描实验 (58)实例72:定时器中断控制的独立式键盘扫描实验 (61)实例73:独立式键盘控制的4级变速流水灯 (64)实例74:独立式键盘的按键功能扩展:"以一当四" (66)实例75:独立式键盘调时的数码时钟实验 (67)实例76:独立式键盘控制步进电机实验 (71)实例77:矩阵式键盘按键值的数码管显示实验 (73)实例78:矩阵式键盘按键音 (76)实例79:简易电子琴 (77)实例80:矩阵式键盘实现的电子密码锁 (82)液晶显示LCD (85)实例81:用LCD显示字符'A' (85)实例82:用LCD循环右移显示"Welcome to China" (87)实例83:用LCD显示适时检测结果 (91)实例84:液晶时钟设计 (94)实例85:将数据"0x0f"写入AT24C02再读出送P1口显示 (99)实例86:将按键次数写入AT24C02,再读出并用1602LCD显示 (103)实例87:对I2C总线上挂接多个AT24C02的读写操作 (109)实例88:基于AT24C02的多机通信读取程序 (114)实例88:基于AT24C02的多机通信写入程序 (117)实例90:DS18B20温度检测及其液晶显示 (127)实例91:将数据"0xaa"写入X5045再读出送P1口显示 (134)实例92:将流水灯控制码写入X5045并读出送P1口显示 (137)实例93:对SPI总线上挂接多个X5045的读写操作 (141)实例94:基于ADC0832的数字电压表 (145)实例95:用DAC0832产生锯齿波电压 (150)实例96:用P1口显示红外遥控器的按键值 (150)实例97:用红外遥控器控制继电器 (153)实例98:基于DS1302的日历时钟 (155)实例99:单片机数据发送程序 (162)实例100:电机转速表设计 (164)模拟霍尔脉冲.............................................................................. 错误!未定义书签。
51单片机汇编语言及C语言经典实例
51单片机汇编语言及C语言经典实例汇编语言是一种用来编写计算机指令的低级语言,它与机器语言十分接近,可以直接控制计算机硬件。
而C语言是一种高级程序设计语言,它具有结构化编程和模块化设计的特点。
本文将介绍51单片机汇编语言和C语言的经典实例,并进行详细解析。
一、LED指示灯的闪烁我们首先来看一个经典的51单片机汇编语言的实例——LED指示灯的闪烁。
我们可以通过控制单片机的IO口来实现LED的闪烁效果。
以下是汇编语言的代码:```assemblyORG 0 ; 程序起始地址MOV P1, #0; 将 P1 置为0,熄灭LEDLJMP $ ; 无限循环```以上代码使用了51单片机的MOV指令和LJMP指令。
MOV指令用来将一个立即数(这里是0)存储到寄存器P1中,控制对应的I/O口输出低电平,从而熄灭LED。
而LJMP指令则是无条件跳转指令,将程序跳转到当前地址处,实现了无限循环的效果。
对应的C语言代码如下:```c#include <reg51.h>void main() {P1 = 0; // 将 P1 置为0,熄灭LEDwhile(1); // 无限循环}```以上代码使用了reg51.h头文件,该头文件提供了对51单片机内部寄存器和外设的访问。
通过将P1赋值为0,控制IO口输出低电平,实现了熄灭LED的效果。
while(1)是一个无限循环,使得程序一直停留在这个循环中。
二、数码管的动态显示接下来我们介绍51单片机汇编语言和C语言实现数码管动态显示的经典实例。
数码管动态显示是通过控制多个IO口的高低电平来控制数码管显示不同的数字。
以下是汇编语言的代码:```assemblyORG 0 ; 程序起始地址MOV A, #0FH ; 设置数码管全亮,A存储数码管控制位MOV P2, A ; 将 A 的值存储到 P2,控制数码管的数码控制位DELAY: ; 延时循环MOV R7, #0FFH ; 设置延时计数值LOOP1: ; 内层循环MOV R6, #0FFH ; 设置延时计数值LOOP2: ; 内部延时循环DJNZ R6, LOOP2 ; 延时计数减1并判断是否为0,不为0则继续循环DJNZ R7, LOOP1 ; 延时计数减1并判断是否为0,不为0则继续循环DJNZ A, DELAY ; A减1并判断是否为0,不为0则继续循环JMP DELAY ; 无限循环,实现动态显示```以上代码中,我们通过MOV指令来将一个立即数(0x0F)存储到寄存器A中,控制数码管显示0-9的数字。
51单片机定时器c语言程序实例与详解
4 串行中断
实际上编译的时候就是把你这个函数的入口地址方到这个对应中断的跳转地址
using y 这个y是说这个中断函数使用的那个寄存器组,51里面一般有4组 r0 -- r7寄存器,一共有32个,如果你的终端函数和别的程序用的不是同一个寄存器组则进入中断的时候就不会将寄存器组压入堆栈返回时也不会谈出来节省代码和时间
unsigned int SystemTime;
void timer0(void) interrupt 1 using 3 //中断部分代码,见下文的释疑
{
TH0 = 0xdb;
TL0 = 0xff;
// TF0 = 0;
SystemTime++;
}
void main()
{
TMOD &= 0xF0;
TMOD |= 0x01; //TMOD的值表示定时器工作方式选择
TH0 = 0xdb; //写入初始值,初始值可以决定定时多久
TL0 = 0xff;
//根据下文的木桶比喻的话,如果TH0 = 0x00;TL0 = 0x00;则表示从桶底开始装水。
在定时器服务函数里,需要重新置入定时器的值,这样才能保证每次溢出时,都是你指定的时间。这里置入的是0x0006,还需要走 0x10000-0x0006个机器周期才溢出。换成10进制也就是每65530个机器周期中断一次。我们仿真的晶振是22118400HZ,每12个时钟一个机器周期。65530×12/22118400=0.036秒。也就是差不多28HZ的闪烁频率。
单片机的主程序是从0x0000开始运行的,单片机服务程序从哪里开始运行呢?在51里,有多个中断服务程序入口,0号入口是外中断0,地址在0x0003;1号入口是定时器0,在 0x000B;2号入口是外中断1;地址在0x0013,3号入口是定时器2;地址在0x001B,等等。当中断发生时,程序就记下当前运行的位置,跳到对应的中断入口去运行中断服务程序,运行完之后,又跳回到原来的位置继续运行。
51单片机C语言编程100例
51单片机C语言编程100例1. 引言51单片机是一款常用于嵌入式系统的微控制器,其强大的功能和广泛的应用使得掌握51单片机C语言编程成为许多电子工程师和学习者的首选。
本文将介绍并讲解51单片机C语言编程的100个例子,帮助读者逐步掌握编程技巧和开发经验。
2. 闪烁LED灯第一个例子是闪烁LED灯。
我们将通过C语言编写程序,控制51单片机上的一个LED灯以固定的频率闪烁,展示基本的输入输出操作。
通过学习这个例子,读者可以了解到C语言与单片机的交互方式。
3. 数码管计数器第二个例子是数码管计数器。
我们将使用C语言编写程序,通过按键操作控制数码管上的数字进行计数。
这个例子展示了如何使用中断和定时器来实现交互功能和多任务处理。
4. PWM波控制第三个例子是PWM波控制。
我们将使用C语言编程,通过调整占空比来控制51单片机上的PWM波输出。
这个例子展示了如何利用51单片机的定时器和中断模式来生成模拟信号。
5. 温度采集与显示第四个例子是温度采集与显示。
我们将利用51单片机内置的ADC模块,通过连接温度传感器来实现温度采集,并将采集到的数据在液晶屏上显示。
这个例子展示了如何使用模拟到数字转换和外部模块的接口技术。
6. 蓝牙通信控制第五个例子是蓝牙通信控制。
我们将利用51单片机的串口功能和蓝牙模块,实现与蓝牙设备之间的通信和控制。
通过学习这个例子,读者可以熟悉串口通信和外部设备的接口编程。
7. 距离测量与报警第六个例子是距离测量与报警。
我们将使用超声波传感器和蜂鸣器,通过C语言编程实现距离的测量和报警功能。
这个例子展示了如何使用外部传感器和控制器进行物理量的检测和反馈。
8. 数字音乐播放器第七个例子是数字音乐播放器。
我们将使用51单片机的PWM功能和SD卡模块,通过C语言编程实现音乐的播放和控制。
这个例子展示了如何使用定时器和外部存储设备进行数据的读取和解码。
9. 图形液晶显示第八个例子是图形液晶显示。
我们将利用51单片机的并行接口和图形液晶屏,通过C语言编程实现图形和字符的显示功能。
51单片机C语言编程100例单片机c语言编程
51单片机C语言编程100例单片机c语言编程单片机是一种常用于嵌入式系统的微型计算机,可以根据预设的程序来执行指令。
而C语言是一种高级编程语言,具有较强的可读性和可移植性。
在单片机编程中,C语言是常用的编程语言之一。
本文将介绍51单片机C语言编程中的100个实例,帮助读者了解单片机编程的基本概念和技巧。
1. LED灯闪烁这是一个简单的实例,用于让LED灯交替闪烁。
在C语言中,可以使用宏定义和循环语句来实现:```c#include <reg52.h>#define LED P1void delay(unsigned int t) //延时函数{unsigned int i, j;for (i = t; i > 0; i--)for (j = 110; j > 0; j--);}void main(){while (1) //循环执行{LED = 0xFF; //LED灯亮delay(1000); //延时1秒LED = 0x00; //LED灯灭delay(1000); //延时1秒}}```2. 数码管显示这个实例演示了如何使用数码管进行数字显示。
在C语言中,可以通过控制IO口状态来实现:```c#include <reg52.h>#define LED P0unsigned char code digit[] ={ //数码管显示值表0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; void delay(unsigned int t) //延时函数{unsigned int i, j;for (i = t; i > 0; i--)for (j = 110; j > 0; j--);}void main(){unsigned int i;while (1) //循环执行{for(i=0;i<10;i++){LED = digit[i]; //显示数字delay(1000); //延时1秒}}```3. 蜂鸣器发声这个实例展示了如何使用蜂鸣器进行声音发声。
51单片机汇编语言及C语言经典实例解析
51单片机汇编语言及C语言经典实例实验及课程设计一、闪烁灯如图1 所示为一简单单片机系统原理图:在P1.0 端口上接一个发光二极管L1,使L1 在不停地一亮一灭,一亮一灭的时间间隔为0.2 秒。
延时程序的设计方法,作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要求的闪烁时间间隔为0.2 秒,相对于微秒来说,相差太大,所以我们在执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程序是如何设计呢?下面具体介绍其原理:如图4.1.1 所示的石英晶体为12MHz,因此,1 个机器周期为 1 微秒,机器周期微秒如图 1 所示,当P1.0 端口输出高电平,即P1.0=1 时,根据发光二极管的单向导电性可知,这时发光二极管L1 熄灭;当P1.0 端口输出低电平,即P1.0=0 时,发光二极管L1 亮;我们可以使用SETB P1.0 指令使P1.0端口输出高电平,使用CLR P1.0 指令使P1.0 端口输出低电平。
C 语言源程序#include <AT89X51.H>sbit L1=P1^0;void delay02s(void) //延时0.2 秒子程序{unsigned char i,j,k;for(i=20;i>0;i--)for(j=20;j>0;j--)for(k=248;k>0;k--);}void main(void){while(1){L1=0;delay02s();L1=1;delay02s();}汇编源程序ORG 0START: CLR P1.0LCALL DELAYSETB P1.0LCALL DELAYLJMP START DELAY: MOV R5,#20 ;延时子程序,延时0.2 秒D1: MOV R6,#20D2: MOV R7,#248DJNZ R7,$DJNZ R6,D2DJNZ R5,D1RETEND图2 程序设计流程图图1 单片机原理图二、多路开关状态指示如图 3 所示,AT89S51 单片机的 P1.0-P1.3 接四个发光二极管 L1-L4,P1.4-P1.7 接了四个开关 K1-K4,编程将开关的状态反映到发光二极管上。
51单片机C语言应用与开发(第9章)
4. 具有将可变的选择与特殊操作组合在一起的 能力,改善了程序的可读性;
5. 提供的库包含许多标准子程序,具有较强的 数据处理能力; 6. 由于具有方便的模块化编程技术,使已编好 程序可容易地移植;
C51程序结构
预处理命令 全局变量说明; 函数1说明; …… …… 函数n说明;
main() { 局部变量说明; 执行语句; 函数调用(实际参数表); 函数1(形式参数说明) { 局部变量说明; 执行语句; 函数调用(实际参数表); } …… …… 函数n(形式参数说明) { 局部变量说明; 执行语句; 函数调用(实际参数表); }
8
片内RAM,间接寻址,共256字节。
片外RAM,分页间址,共256字节。(MOVX @Ri)
xdata
code
16
16
片外RAM,间接寻址,共64k字节。(MOVX @DPTR)
ROM区域,间接寻址,共64k字节。(MOVC @DPTR)
访问片内RAM比访问片外RAM的速度要快得 多,所以对于经常使用的变量应该置于片内 RAM中,即用bdata、data、idata来定义;对 于不经常使用的变量或规模较大的变量应该置于 片外RAM中,即用pdata、xdata来定义。例如:
/* IP */ sbit PS = 0xBC; sbit PT1 = 0xBB; sbit PX1 = 0xBA; sbit PT0 = 0xB9; sbit PX0 = 0xB8; /* P3 */ sbit RD = 0xB7; sbit WR = 0xB6; sbit T1 = 0xB5; sbit T0 = 0xB4; sbit INT1 = 0xB3; sbit INT0 = 0xB2; sbit TXD = 0xB1; sbit RXD = 0xB0; /* SCON */ sbit SM0 = 0x9F; sbit SM1 = 0x9E; sbit SM2 = 0x9D; sbit REN = 0x9C; sbit TB8 = 0x9B; sbit RB8 = 0x9A; sbit TI = 0x99; sbit RI = 0x98; #endif
51单片机应用举例
+12V J
+5V
300Ω
89C2051
0 1
7407
P1.2 1
+5V
P1.3
300Ω
7407
水塔水位控制程序流程
开始 延时10S 为检查水位状态作准备 启动电机 P1.2←0 Y P1.1=0?
N
报警P1.3←0 停机P1.2←1 等待
Y
P1.0=0? N
P1.1=1?
Y
N
停机P1.2←1
单片机水塔水位控制程序设计
东西向
P1.0 P1.1 P1.2 AT89C51 P1.3 P1.4 P1.5 红 黄 绿 红 黄 绿
+5V
+5V
南北向
ORG
0000H
LJMP START
ORG
START:MOV
0030H
P1, #00H ;信号灯初始状态全灭 ;亮东西向绿灯,东西向放行 ;亮南北向红灯,南北向禁行 ;延时57s
51单片机原理及应用基于KeilC与Proteus教学设计 (2)
51单片机原理及应用基于KeilC与Proteus教学设计摘要本文主要介绍了基于KeilC与Proteus平台的51单片机原理及应用的教学设计,旨在帮助初学者更好的了解单片机编程的基本原理,以及如何使用KeilC和Proteus平台进行单片机的开发和调试。
本文包括了单片机的基本原理、汇编语言的基础知识、C语言编程基础、KeilC和Proteus平台的基本使用方法,以及基于这些知识实现的一些实例设计,可以帮助读者在实践中更好的理解单片机编程的基本原理。
1. 51单片机的基本原理51单片机是一种基于CISC架构的8位单片机,由Intel公司于1980年推出,具有高速、低功耗、易于编程等优点,被广泛应用于嵌入式系统中。
51单片机由CPU、存储器、IO口和时钟电路等组成,其中CPU采用Harvard结构,能够同时访问程序存储器和数据存储器,具有较好的执行效率。
2. 汇编语言的基础知识汇编语言是学习单片机编程最基本的知识之一,其主要作用是将人类能够理解的代码翻译成机器可以执行的指令。
汇编语言的学习包括了数据类型、指令集、寻址方式等内容,通过学习这些内容,能够更好的理解单片机编程的基本原理。
3. C语言编程基础C语言是一种高级编程语言,与汇编语言相比具有易学易用等优点。
在单片机编程中,C语言可以更好的实现程序设计的模块化,增强代码的可读性和可维护性。
C语言编程基础知识包括数据类型、语句控制结构、数组、指针等,通过学习这些内容,能够更好的进行单片机编程。
4. KeilC和Proteus平台的基本使用方法KeilC和Proteus是进行单片机编程、仿真和调试的常用工具,能够有效地辅助开发者进行单片机开发。
KeilC是一款集成开发环境,支持多种语言的编程,可用于单片机程序的开发和调试;Proteus是一款电子电路仿真软件,能够进行单片机程序的仿真和调试。
通过学习KeilC和Proteus平台的基本使用方法,能够更好的进行单片机编程。
51单片机C语言应用开发实例精讲8结构实例6:单片机的串口通信
8. 结构实例6:单片机串口通信虽然那个流水灯游戏的可玩性和按键手感问题还值得再好好提升一下,但小月更希望调剂一下,转而开始了对手头烧写板上关于RS-232转换部分的学习。
小月的做法并不难以理解,毕竟与RS-232转换的相关电路在原理图中还是相当显眼的,甚至于他手头编程器的别名就是RS-232转换器。
图8.1 单片机中负责RS-232通讯的电路在烧写器一端与电脑连接的两个接头中,9针的RS-232接口就是串口通信线,而另一个USB口仅接通了+5V和GND,只有给烧写器供电的作用。
这样就可以知道,电脑可以通过RS-232对单片机的内部程序进行改写。
那么,这就意味着单片机与电脑间必然可以进行数据的交换,这种交换,就叫做通信。
所谓串口通信,就是指这种基于RS-232串口的通信方式。
RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。
最早是为使电脑通过电话线系统相互通信的调制解调器上而是设计的。
后来发展到连接鼠标或打印机上,目前已经被支持设备的即插即用和热插拔功能的USB所替代,但仍广泛的用于工业仪器仪表中,同时也是单片机最基础和最常见的通信方式。
不过要把“最基础和最常见”这两个最拆开来说,就要在后面加上“之一”了。
虽然目前的通信技术日新月异,但这种说法在今后很长一段时期内都是成立的,也正因为这样的特点,STC的51系列单片机都是默认通过RS-232方式进行烧写的。
作为两台设备之间进行的通信,必然需要共同遵守某种规定或规则,包括交流什么、怎样交流及何时交流。
这个规则就是通信协议。
RS-232通信中通信协议的原则就是串口按位(bit)发送和接收数据。
线路上,RS-232通信使用3根线完成,分别是地线、发送、接收。
端口能够在一根线上发送数据的同时在另一根线上接收数据,即全双工传输。
全双工传输是传输制式的一种分类方式中的一类,除此还有单工传输和半双工传输。
单工传输,是指消息只能单方向传输的工作方式。
51单片机简单程序实例
51单片机简单程序实例
51单片机是一种常用的微控制器,下面我将给出一个简单的LED闪烁程序作为示例。
c.
#include <reg51.h>。
void delay() {。
int i, j;
for (i = 0; i < 500; i++)。
for (j = 0; j < 500; j++);
}。
void main() {。
while (1) {。
P1 = 0x00; // 关闭LED.
delay();
P1 = 0xFF; // 打开LED.
delay();
}。
}。
这是一个使用C语言编写的简单的51单片机程序。
程序的功能是让单片机控制开发板上的一个LED灯以一定的频率闪烁。
程序的主要部分是一个无限循环(`while(1)`),在循环中LED先被关闭然后延时一段时间,再被打开然后再延时一段时间,如此循环。
在这个示例中,我们使用了`P1`端口来控制LED的开关,
`0x00`表示关闭LED,`0xFF`表示打开LED。
`delay`函数用来产生时间延迟,以控制LED闪烁的频率。
这只是一个非常简单的示例,51单片机的功能远不止于此。
它可以用来控制各种外围设备,比如数码管、液晶显示屏、电机等,也可以用来实现各种功能,比如定时器、计数器、通信接口等。
希望这个简单的示例能够帮助你初步了解51单片机的编程。
51单片机技术应用教程(C语言版)项目四 花样霓红灯的设计与制作
函数 atoi atol atof strtod strtol strtoul
rand srand calloc free init_mempool
malloc realloc
功能 将字符串sl转换成整型数值并返回这个值 将字符串sl转换成长整型数值并返回这个值 将字符串sl转换成浮点数值并返回这个值 将字符串s转换成浮点型数据并返回这个值 将字符串s转换成long型数值并返回这个值 将字符串s转换成unsigned long型数值并返回这个值
5.请写出二维数组的格式,并举例说明。
51单片机技术应用活页式教程(C语言版)
项目四 花样霓虹灯的设计与制作
4.1 C51库函数
知识 链接
4.2 用户自定义函数 4.3 C51数组
【知识点4.1】 C51库函数
• 函数有库函数和自定义函数两类。 • C51的库函数由C51的编译器提供,每个库函数的原型放
使单片机程序产生延时 对字节中的一位进行测试
【知识点4.2】用户自定义函数
• 1.用户自定义函数的形式
• (1)无参数函数。此种函数被调用时,既无参数输入,也不返回结果给调用函数,它 是为完成某种操作过程而编写的。
• (2)有参数函数。在定义此类函数时,必须定义与实际参数一一对应的形式参数,并 在函数结束时返回结果给调用该函数的程序使用,函数的返回值是通过函数中的return 语句获得的。调用时必须提供实际的输入参数。
如果P1口接了8个LED灯,该程序的功能是:
51单片机技术应用活页式教程(C语言版)
项目四 花样霓虹灯的设计与制作
【引导学习】
2. 请接合第1题程序,请写出有参与无参、形参与实参的含义。
3.请用字符型数组定义LED,存放流水灯8种显示状态,存放在程 序存储器中。 4.请用一维数组定义LED数码管的0-9的显示编码。
51单片机C语言实验及实践教程1
51单片机C语言实验及实践教程第一章:硬件资源模块第二章:keil c 软件使用at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅1.闪烁灯at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅2.模拟开关灯at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅3.多路开关状态指示at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅4.广告灯的左移右移at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅5.广告灯(利用取表方式)at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅6.报警产生器at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅7.I/O并行口直接驱动LED显示at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅8.按键识别方法之一at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅9.一键多功能按键识别技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅10.00-99计数器at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅11.00-59秒计时器(利用软件延时)at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅12.可预置可逆4位计数器at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅13.动态数码显示技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅14.4×4矩阵式键盘识别技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅15.定时计数器T0作定时应用技术(一)at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅16.定时计数器T0作定时应用技术(二)at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅17.99秒马表设计at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅18.“嘀、嘀、……”报警声at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅19.“叮咚”门铃at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅20.数字钟(★)at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅21.拉幕式数码显示技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅22.电子琴at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅23.模拟计算器数字输入及显示at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅24.8×8LED点阵显示技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅25.点阵LED“0-9”数字显示技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅26.点阵式LED简单图形显示技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅27.ADC0809 A/D转换器基本应用技术at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅28.数字电压表at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅29.两点间温度控制at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅30.四位数数字温度计at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅31.6位数显频率计数器at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅32.电子密码锁设计at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅33.4×4键盘及8位数码管显示构成的电子密码锁at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅34.带有存储器功能的数字温度计-DS1624技术应用at89s51单片机实验及实践课题┅┅┅┅┅┅┅┅┅┅┅35DS18B20数字温度计使用第一章AT89S51单片机实验及实践系统板简介AT89S51单片机实验及实践系统板(以后简介系统板)集成多个硬件资源模块,每个模块各自可以成为独立的单元,也可以相互组合,因此,可以为不同阶层的单片机爱好者及单片机开发者提供不同的开发环境。
8051单片机c语言程序设计与实例解析
8051单片机C语言程序设计与实例解析在现代电子技术领域,单片机是一种应用十分广泛的微处理器,而在单片机的应用中,8051单片机是一种非常经典的代表。
与此C语言作为一种高级编程语言,在单片机的程序开发中也有着广泛的应用。
本文将从8051单片机C语言程序设计的角度,对其进行深度和广度兼具的解析,通过实例来帮助读者更好地理解和掌握这一技术。
1. 8051单片机概述8051单片机是由Intel公司于上世纪80年代推出的一款经典单片机,至今仍然广泛应用于各种领域。
它的特点是体积小、功能强大、接口丰富,以及使用方便等。
在实际应用中,我们可以根据不同的需求选择不同型号的8051单片机,比如常见的AT89S52、AT89C52等。
2. C语言在8051单片机中的应用C语言作为一种高级编程语言,具有结构化、模块化和可移植性等优点,因此在单片机的程序设计中有着广泛的应用。
通过C语言编程,我们可以更轻松地实现对单片机的控制和管理,而且代码的可读性也更好,易于维护和修改。
3. 程序设计与实例解析接下来,我们将结合具体的实例来说明8051单片机C语言程序设计的方法和技巧。
我们可以以LED灯的控制、数码管的显示、蜂鸣器的驱动等为例,详细讲解如何使用C语言编写程序,通过8051单片机实现相应的功能。
我们也可以讲解一些常用的库函数和编程技巧,让读者能够更好地理解和应用这些知识。
4. 个人观点与理解在我看来,8051单片机C语言程序设计是一项非常有趣和有挑战性的工作。
通过编写程序,我们可以将自己的想法转化为现实,实现各种各样的功能,这种成就感是非常有价值的。
掌握了这项技能之后,我们也能够更好地应对各种实际问题,为自己的学习和职业发展打下良好的基础。
总结回顾通过本文的阐述,我们对8051单片机C语言程序设计进行了全面的评估和解析,从基本概念到具体实例,再到个人观点和理解,希望读者能够从中受益。
通过不断地实践和学习,我们相信大家一定能够掌握这一领域的知识,成为优秀的单片机程序设计工程师。
51单片机应用开发案例精选
1.发光二极管流水灯2.交通灯控制器3.单片机演奏音乐4.液晶显示复杂自制图形5.电子万年历6.实时时钟(年月日时分秒,含定时计时)7.液晶显示字符(PC计算发送)8.四路抢答器9.数字化语音存储与回放(低频)10.数字温度传感器11.宽带数控放大器12.超声波测距13.基于单片机的电压表设计14.基于单片机的称重显示仪表设计15.基于单片机的车轮测速系统16.步进电机控制17.控制微型打印机18.简易智能电动车19.多种模型发生器20.相位差测试仪21.简易红外遥控器或红外通信22.PC与单片机通信23.单片机间多机通信24.无线数据传输25.单片机实现PWM信号26.低频信号频谱分析仪27.单片机USB接口28.单片机实现TCP/IP29.单片机读写U盘30.高精度实时时钟芯片的应用31.SD卡读写32.LED数码管点阵显示(支持显示10个汉字)33.低频数字示波器34.频率计35.GPS系统设计(实现GPS模块接口,获取当前定位信息)36.I2C接口(实现串行EEPROM读写)37.键盘扩展(增加16个按键,实现队按键的控制)38.条形码应用51单片机应用开发案例精选第1章51单片机开发基础1.1单片机开发流程1.2开发工具1.3测试方法和工具第2章51单片机开发入门实例2.1点亮发光二极管实例2.2跑马灯实例2.3流水灯实例2.4查0~9平方表实例2.5受控输出实例2.6比较输入数大小实例2.7交通灯控制器实例2.8蜂鸣器发音实例2.9单片机演奏音乐实例2.10软件陷阱实例第3章输入和显示3.1独立式键盘输入实例3.2行列式键盘输入实例3.3扫描方式键盘输入实例3.4定时中断方式键盘输入实例3.5LED静态显示实例3.6LED动态显示实例3.7实时时钟实例3.8简单液晶显示实例3.9液晶显示复杂自制图形实例3.10电子万年历实例第4章数据采集第5章数据通信第6章全球定位系统的设计与开发51单片机应用开发范例大全第1章单片机C语言开发基础1.1 MCS-51单片机硬件基础1.1.1 8051引脚1.1.2 51单片机功能结构1.1.3 中央处理器(CPU)1.1.4 存储器结构1.1.5 定时/计数器1.1.6 并行端口1.1.7 串行端口1.1.8 中断系统1.1.9 总线1.2 Keil mVision21.2.1 Keil mVision2集成开发环境介绍1.2.2 使用Keil mVision2进行开发1.2.3 dScope for Windows的使用1.3 C51基础知识1.3.1 C51控制语句1.3.2 C51函数1.3.3 C51数组和指针1.4 【实例19】P1口控制直流电动机实例第2章单片机接口的扩展2.1 基本器件实现端口扩展实例2.1.1 【实例20】用74LS165实现串口扩展并行输入口2.1.2 【实例21】用74LS164实现串口扩展并行输出口2.1.3 【实例22】P0 I/O扩展并行输入口2.1.4 【实例23】P0 I/O扩展并行输出口2.2 扩展芯片实现端口扩展2.2.1 【实例24】用8243扩展I/O端口2.2.2 【实例25】用8255A扩展I/O口2.2.3 【实例26】用8155扩展I/O口2.3 CPLD实现端口扩展第3章存储器的扩展3.1 外部程序存储器的扩展3.1.1 【实例27】EPROM27xxx程序存储器的扩展3.1.2 【实例28】EEPROM28xxx程序存储器的扩展3.2 外部数据存储器的扩展3.2.1 【实例29】与AT24系列EEPROM接口及驱动程序3.2.2 【实例30】EEPROM(X5045)接口及驱动程序3.2.3 【实例31】铁电存储器接口及驱动程序3.2.4 【实例32】与双口RAM存储器接口及应用实例3.3 FLASH驱动程序第4章输入/输出及显示技术4.1 【实例34】独立键盘控制4.1.1 实例功能4.1.2 典型器件介绍4.1.3 硬件设计4.1.4 程序设计4.1.5 经验总结4.2 【实例35】矩阵式键盘控制4.2.1 实例功能4.2.2 典型器件介绍4.2.3 硬件设计4.2.4 程序设计4.2.5 经验总结4.3 【实例36】改进型I/O端口键盘4.3.1 实例功能4.3.2 硬件设计4.3.3 程序设计4.4 【实例37】PS/2键盘的控制4.4.1 实例功能4.4.2 典型器件介绍4.4.3 硬件设计4.4.4 程序设计4.4.5 经验总结4.5 【实例38】LED显示4.5.1 实例功能4.5.2 硬件设计4.5.3 程序设计4.5.4 经验总结4.6 【实例39】段数码管显示实例4.6.1 实例功能4.6.2 硬件设计4.6.3 程序设计4.6.4 经验总结4.7 【实例40】16×2字符型液晶显示实例4.7.1 实例功能4.7.2 典型器件介绍4.7.3 硬件设计4.7.4 程序设计4.7.5 经验总结4.8 【实例41】点阵型液晶显示实例4.8.1 实例功能4.8.2 典型器件介绍4.8.3 硬件设计4.8.4 程序设计4.8.5 经验总结4.9 【实例42】LCD显示图片实例4.9.1 实例功能4.9.2 典型器件介绍4.9.3 硬件设计4.9.4 程序设计4.9.5 经验总结第5章实用电子制作5.1 【实例43】简易电子琴的设计5.1.1 实例功能5.1.2 典型器件介绍5.1.3 硬件设计5.1.4 程序设计5.1.5 经验总结5.2 【实例44】基于MCS-51单片机的四路抢答器5.2.1 实例功能5.2.2 典型器件介绍5.2.3 硬件设计5.2.4 程序设计5.2.5 经验总结5.3 【实例45】电子调光灯的制作5.3.1 实例功能5.3.2 典型器件介绍5.3.3 硬件设计5.3.4 程序设计5.3.5 经验总结5.4 【实例46】数码管时钟的制作5.4.1 实例功能5.4.2 典型器件介绍5.4.3 硬件设计5.4.4 程序设计5.4.5 经验总结5.5 【实例47】LCD时钟的制作5.5.1实例功能5.5.2典型器件介绍5.5.3硬件设计5.5.4程序设计5.5.5经验总结5.6 【实例48】数字化语音存储与回放5.6.1 实例功能5.6.2 典型器件介绍5.6.3 硬件设计5.6.4 程序设计5.6.5 经验总结5.7 【实例49】电子标签设计5.7.1 实例功能5.7.2 典型器件介绍5.7.3 硬件设计5.7.4 程序设计5.7.5 经验总结第6章传感控制技术6.1 【实例50】指纹识别模块6.1.1 指纹识别传感器原理6.1.2 硬件设计6.1.3 程序设计6.1.4 实例实现过程6.1.5 经验总结6.2 【实例51】数字温度传感器6.2.1 数字温度传感器原理6.2.2 硬件设计6.2.3 程序设计6.2.4 实例实现过程6.2.5 经验总结6.3 【实例52】宽带数控放大器6.3.1 宽带数控放大器设计原理6.3.2 硬件设计6.3.3 程序设计6.3.4 实例实现过程6.3.5 经验总结第7章智能仪表与测试技术7.1 【实例53】超声波测距7.1.1 实例功能7.1.2 典型器件介绍7.1.3 硬件设计7.1.4 程序设计7.1.5 经验总结7.2 【实例54】数字气压计7.2.1 实例功能7.2.2 典型器件介绍7.2.3 硬件设计7.2.4 程序设计7.2.5 经验总结7.3 【实例55】基于单片机的电压表设计7.3.1 实例功能7.3.2 电压表设计原理7.3.3 硬件设计7.3.4 程序设计7.3.5 经验总结7.4 【实例56】基于单片机的称重显示仪表设计7.4.1 实例功能7.4.2 典型器件介绍7.4.3 硬件设计7.4.4 程序设计7.4.5 经验总结7.5 【实例57】基于单片机的车轮测速系统7.5.1 实例功能7.5.2 典型器件介绍7.5.3 硬件设计7.5.4 程序设计7.5.5 经验总结第8章电气传动及控制技术8.1 【实例58】电源切换控制8.1.1 实例功能8.1.2 典型器件介绍8.1.3 硬件设计8.1.4 程序设计8.1.5 经验总结8.2 【实例59】步进电机控制8.2.1 实例功能8.2.2 典型器件介绍8.2.3 硬件设计8.2.4 程序设计8.2.5 经验总结8.3 【实例60】单片机控制自动门系统8.3.1 实例功能8.3.2 典型器件介绍8.3.3 硬件设计8.3.4 程序设计8.3.5 经验总结8.4 【实例61】控制微型打印机8.4.1 实例功能8.4.2 典型器件介绍8.4.3 硬件设计8.4.4 程序设计8.4.5 经验总结8.5 【实例62】单片机控制的EPSON微型打印头8.5.1 实例功能8.5.2 典型器件介绍8.5.3 硬件设计8.5.4 程序设计8.5.5 经验总结8.6 【实例63】简易智能电动车8.6.1 实例功能8.6.2 典型器件介绍8.6.3 硬件设计8.6.4 程序设计8.6.5 经验总结8.7 【实例64】洗衣机控制器8.7.1 实例功能8.7.2 典型器件介绍8.7.3 硬件设计8.7.4 程序设计8.7.5 经验总结第9章单片机数据处理9.1 【实例65】串行A/D转换9.1.1 实例功能9.1.2 典型器件介绍9.1.3 硬件设计9.1.4 程序设计9.1.5 经验总结9.2 【实例66】并行A/D转换9.2.1 实例功能9.2.2 典型器件介绍9.2.3 硬件设计9.2.4 程序设计9.2.5 经验总结9.3 【实例67】模拟比较器实现A/D转换9.3.1 实例功能9.3.2 典型器件介绍9.3.3 硬件设计9.3.4 程序设计9.3.5 经验总结9.4 【实例68】串行D/A转换9.4.1 实例功能9.4.2 典型器件介绍9.4.3 硬件设计9.4.4 程序设计9.4.5 经验总结9.5 【实例69】并行电压型D/A转换9.5.1 实例功能9.5.2 典型器件介绍9.5.3 硬件设计9.5.4 程序设计9.5.5 经验总结9.6 【实例70】并行电流型D/A转换9.6.1 实例功能9.6.2 典型器件介绍9.6.3 硬件设计9.6.4 程序设计9.6.5 经验总结9.7 【实例71】I2C接口的A/D转换9.7.1 实例功能9.7.2 典型器件介绍9.7.3 硬件设计9.7.4 程序设计9.7.5 经验总结9.8 【实例72】I2C接口的D/A转换9.8.1 实例功能9.8.2 典型器件介绍9.8.3 硬件设计9.8.4 程序设计9.8.5 经验总结第10章单片机通信技术10.1 【实例73】单片机间通信10.1.1 实例功能10.1.2 典型器件介绍10.1.3 硬件设计10.1.4 程序设计10.1.5 经验总结10.2 【实例74】单片机间多机通信方法之一10.2.1 主从通信介绍10.2.2 实例功能10.2.3 硬件设计10.2.4 程序设计10.2.5 经验总结10.3 【实例75】单片机间多机通信方法之二10.3.1 实例功能10.3.2 程序设计10.3.3 经验总结10.4 【实例76】PC与单片机通信10.4.1 实例功能10.4.2 典型器件介绍10.4.3 硬件设计10.4.4 程序设计10.4.5 经验总结10.5 【实例77】红外通信接口10.5.1 实例功能10.5.2 典型器件介绍10.5.3 硬件设计10.5.4 程序设计10.5.5 经验总结10.6 【实例78】无线数据传输模块10.6.1 实例功能10.6.2 典型器件介绍10.6.3 硬件设计10.6.4 程序设计10.6.5 经验总结第11章单片机实现信号与算法11.1 【实例79】单片机实现PWM信号输出11.1.1 实例功能11.1.2 典型器件介绍11.1.3 硬件设计11.1.4 程序设计11.1.5 经验总结11.2 【实例80】实现基于单片机的低频信号发生器11.2.1 实例功能11.2.2 典型器件介绍11.2.3 硬件设计11.2.4 程序代码11.2.5 经验总结11.3 【实例81】软件滤波方法11.3.1 实例功能11.3.2 软件滤波方法介绍11.3.3 程序设计11.3.4 经验总结11.4 【实例82】FSK信号解码接收11.4.1 实例功能11.4.2 FSK原理11.4.3 程序设计11.4.4 经验总结11.5 【实例83】单片机浮点数运算实现11.5.1 实例功能11.5.2 单片机浮点数运算实现原理11.5.3 程序设计11.5.4 经验总结11.6 【实例84】神经网络在单片机中的实现11.6.1 实例功能11.6.2 神经网络简介11.6.3 程序设计11.6.4 经验总结11.7 【实例85】信号数据的FFT变换11.7.1 实例功能11.7.2 FFT变换介绍11.7.3 程序设计11.7.4 经验总结第12章单片机的总线与网络技术12.1 【实例86】I2C总线接口的软件实现12.1.1 实例功能12.1.2 典型器件介绍12.1.3 程序设计12.1.4 经验总结12.2 【实例87】SPI总线接口的软件实现12.2.1 实例功能12.2.2 典型器件介绍12.2.3 硬件设计12.2.4 经验总结12.3 【实例88】1-WIRE总线接口的软件实现12.3.1 1-WIRE总线通信原理12.3.2 硬件设计12.3.3 程序设计12.3.4 经验总结12.4 【实例89】单片机外挂CAN总线接口12.4.1 CAN总线介绍12.4.2 CAN总线接口12.4.3 程序设计12.4.4 经验总结12.5 【实例90】单片机外挂USB总线接口12.5.1 USB总线原理12.5.2 与单片机的硬件接口12.5.3 程序设计12.5.4 经验总结12.6 【实例91】单片机实现以太网接口12.6.1 以太网接口芯片12.6.2 程序设计12.6.3 经验总结12.7 【实例92】单片机控制GPRS传输12.7.1 典型器件介绍12.7.2 硬件设计12.7.3 程序设计12.7.4 经验总结12.8 【实例93】单片机实现TCP/IP协议12.8.1 TCP/IP原理12.8.2 程序设计12.8.3 经验总结第13章典型器件及应用技术13.1 【实例94】读写U盘13.1.1 实例功能13.1.2 典型器件介绍13.1.3 硬件设计13.1.4 程序设计13.1.5 经验总结13.2 【实例95】非接触IC卡读写13.2.1 实例功能13.2.2 典型器件介绍13.2.3 硬件设计13.2.4 程序设计13.2.5 经验总结13.3 【实例96】SD卡读写13.3.1 实例功能13.3.2 典型器件介绍13.3.3 硬件设计13.3.4 程序设计13.3.5 经验总结13.4 【实例97】高精度实时时钟芯片的应用13.4.1 实例功能13.4.2 典型器件介绍13.4.3 硬件电路设计13.4.4 程序设计13.4.5 经验总结第14章综合应用实例14.1 【实例98】智能手机充电器设计14.1.1 智能手机电池充电器的结构组成14.1.2 智能手机电池充电器的硬件电路设计14.1.3 智能手机电池充电器的软件设计14.1.4 经验总结14.2 【实例99】单片机控制门禁系统14.2.1 门禁系统的结构组成14.2.2 门禁系统的硬件电路设计14.2.3 门禁系统的软件设计14.2.4 经验总结14.3 【实例100】电机保护器的设计14.3.1 电机保护器的结构组成14.3.2 电机保护器的硬件电路设计14.3.3 电机保护器的软件设计14.3.4 设计中的几个关键问题14.3.5 经验总结附录1 8051的指令列表附录2 PS/2键盘键值和符号对照表51单片机应用开发实战手册第1章 MCS-51单片机基础1.1 概述1.2 MCS-51单片机硬件结构1.2.1 MCS-51单片机的基本组成1.2.2 AT89S52单片机的引脚图及各引脚功能说明1.3 MCS-51单片机的复位1.4 MCS-51的存储系统1.4.1 MCS-51程序存储器1.4.2 MCS-51数据存储器1.4.3 特殊功能寄存器(SFR)1.5 MCS-51的中断系统1.5.1 MCS-51的中断源1.5.2 MCS-51的中断请求标志1.5.3 MCS-51的中断控制1.5.4 MCS-51的中断处理过程第2章51单片机软硬件开发环境2.1 硬件开发环境的建立2.1.1 Protel 99SE2.1.2 开发工具的选择2.1.3 硬件开发所需仪器2.2 软件开发环境的建立2.2.1 系统概述2.2.2 Keil C51单片机软件开发系统的整体结构2.2.3 Keil C51 的使用2.3 Keil C51+ Proteus 实现单片机的软件仿真……第3章单片机应用系统设计的必备知识第4章简单应用系统设计案例——I/O使用第5章简单应用系统设计案例——定时器和中断使用第6章简单应用系统设计——串行通信类第7章简单应用系统设计——控制类第8章综合应用系统设计案例——基础篇第9章综合应用系统设计案例——提高篇第10章综合应用系统设计案例——实践篇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1.3
单片机应用系统开发流程图
6
1.3 单片机应用系统的一般开发流程
1 2 3 4 5 6 确定系统的功能与性能 确定系统基本结构 单片机应用系统硬、软件的设计原则 硬件设计 软件设计 资源分配
7
1.4 单片机应用系统调试
1. 单片机应用系统调试工具 单片机开发系统 万用表 逻辑笔 逻辑脉冲发生器与模拟信号发生器 示波器 逻辑分析仪 2. 单片机应用系统的一般调试方法 硬件调试 软件调试
13
3.2 设计思路分析
MAX7219是一种串行接口的8位LED数码管显 示驱动器。它与通用微处理器只有3根串行线 相连,最多驱动8个共阴级数码管或64个发光 二级管。它内部有可存储显示信息的8×8静态 RAM,动态扫描电路,以及段、位驱动器。 其主要特点包括:串行接口的传输速率可达 10MHz;独立的发光二极管控制;译码与非译 码两种显示方式可选;数字与模拟两种亮度控 制方式;可以级联使用。 由于MAX7219集成度高,驱动能力强,亮度可 调,编程容易,与单片机接口十分简单,占用 单片机的接口资源少,成为单片机应用系统中 首选的LED显示接口电路。
VOUT1
图4.4 单片机模块工作原理图
21
4.4 软件设计
本例软件设计的重点在于对液晶显示模 块的驱动。由于内含GXM12864控制驱 动器,所以需要了解控制器的指令集并 掌握如何使用。 本例中经常用到液晶显示,包括屏幕提 示、键盘输入值的显示以及行驶中状态 信息的显示。要编写正确的液晶显示程 序,必须掌握所用液晶模块的指令集。
第4章液晶显示模块
4.1 实例说明
对于现在流行的嵌入式电子产品, 对于现在流行的嵌入式电子产品,如便携式仪 智能电器、消费类电子产品等, 表、智能电器、消费类电子产品等,显示输出 模块是必不可少的。 模块是必不可少的。液晶显示已得到广泛地应 用。 本章将介绍如何在51单片机系统中实现液晶显 本章将介绍如何在 单片机系统中实现液晶显 总的来说,本例是要实现这样的功能: 示。总的来说,本例是要实现这样的功能: 单片机上运行C语言程序 在51单片机上运行 语言程序,通过单片机与 单片机上运行 语言程序, 液晶模块靡靡之间的接口电路,控制液晶模块, 液晶模块靡靡之间的接口电路,控制液晶模块, 显示需要的内容,并控制显示的格式。 显示需要的内容,并控制显示的格式。
23
传 感 器
放 大 器
A/D 转转转
数 电
字 路
D/A 转转转
功 率 放 大 器
执 行 部 件
图5.1 一般测控系统框图
24
5.1基于 基于MAX527的并行 的并行D/A转换器设计实例 基于 的并行 转换器设计实例
5.2设计思路分析 设计思路分析
本例实现的是基于51单片机控制的 本例实现的是基于 单片机控制的D/A 转换系 单片机控制的 设计这样的系统时, 统,设计这样的系统时,需要着重考虑下面 3 个方面的内容。 个方面的内容。 1.如何针对系统需求选择合适的 如何针对系统需求选择合适的D/A转换器件; 转换器件; 如何针对系统需求选择合适的 转换器件 2.如何根据所选的 如何根据所选的D/A转换器件设计外围电路 如何根据所选的 转换器件设计外围电路 以及与单片机的接口电路; 以及与单片机的接口电路 3. 如何编写控制 如何编写控制D/A转换器件实现 转换器件实现D/A 转换的 转换器件实现 接口程序。 接口程序。
9
2.2 8051开发工具 开发工具
1. 8051开发工具 2. Keil C51编译器 3. A51宏汇编器
10
2.3 8051开发工具的使用 开发工具的使用 µVision是一个集成软件开发平台。其中包 含了编辑器、项目管理器和程序生成器。 µVision支持所有的Keil 8051,251和166工具。 µVision提供以下特性帮助用户加快嵌入式 应用的开发过程: 双击Keil µVision IDE的图标,启动Keil µVision IDE程序,你会得到图2.2所示的 KeilµVision2 IDE的主界面。通过用Project 菜单中的New Project命令建立项目文件,过 程如下:
25
5.4硬件电路设计 硬件电路设计
本例选用Maxim公司出品的4路12位电压输出 型高精度D/A转换器MAX527。MAX527采用 ±5V供电,8位数据总线(D0~D3复用产生12 位输入的高4位),数据通过两次写操作(低8 位LSB,高位MSB)装入各输入寄存器,并通 过异步装载输入信号将寄存器中的数据再装入 DAC寄存器。 MAX527芯片的引脚分布如图5.4所示。
18
4.3 硬件电路设计
本例中液晶显示模块选用图形液晶显示模块 GXM12864,它内含KS0108B/HD61202控制器, 是一种采用低功耗CMOS技术实现的点阵图形 LCD模块,有8位的微处理器接口,通过内部 的DDRAM实现128点×64点大小的平板显示。 该液晶显示模块使用KS0108B作为列驱动器, 同时使用KS0107B作为行驱动器。KS0107B不 与CPU发生联系,只要提供电源就能产生行驱 动信号和各种同步信号,比较简单。 GXM12864的内部逻辑电路如图4.2所示。
1
单片机C 单片机C语言 开发与应用案例详解
魏 伟
中国化学工业出版社
主要内容
51系列单片机开发的基础知识 单片机软件开发工具 LED显示模块 液晶显示模块 D/A转换与A/D转换模块 MCS-51单片机与键盘接口 串行接口模块 单相交流多用表设计实例 程控直流电压电流表设计实例
2
第1章 51系列单片机开发的基础知识
MAX527
图5.4 MAX527芯片的引脚分布
27
5.5 软件设计
单片机实现D/A转换程序的流程如图5.8所示。
图5.8 单片机实现D/A转换的程序流程
28
5.7 A/D转换器的接口设计实例 Байду номын сангаас换器的接口设计实例
5.7.2 设计思路分析 本例要实现的一个51单片机A/D转换系统,设 计这样的系统时,需要着重考虑下面几个方面 的内容。 1.如何针对系统需求选择合适的A/D 转换器件; 2.如何根据所选的A/D转换器件设计外围电路 以及与单片机的接口电路; 3.如何编写控制A/D转换器件实现A/D转换的接 口程序。
8
第2章单片机软件开发工具
2.1 Keil软件简介 软件简介 Keil 软件公司的 软件公司的8051 单片机软件开发工具可用 于众多的8051 派生器件以实现嵌入式应用。 派生器件以实现嵌入式应用。 于众多的 Keil 提供工业用的 提供工业用的8051 开发工具。为了帮助你 开发工具。 熟悉我们是如何分配工具的,下面介绍工具套 熟悉我们是如何分配工具的, 件的概念。工具套件是几个应用程序的集合, 件的概念。工具套件是几个应用程序的集合, 这些程序用来创建8051 应用系统。使用汇编器 应用系统。 这些程序用来创建 汇编8051 汇编程序,使用编译器将 源代码编 汇编程序,使用编译器将C 汇编 译成目标文件, 译成目标文件,使用连接器创建一个绝对目标 文件模块供仿真器使用。 文件模块供仿真器使用。
C10 C7
0.01 F Y1 12M RST
P3.2(INT0) P3.3(INT1) P3.4(T0) P3.5(T1) EA/VPP XTAL0 XTAL1 RESET P3.6(WR) P3.7(RD)
22pF C8
VCC
22pF 10 F + C9 S1 RST 10k R9
VSS VCC (RXD)P3.0 (TXD)P3.1 ALE(PROG) PSEN
26
1 2 3 4 5 6 7 8 9 10 11 12
VOUTC VOUTD VOUTB Vdd
24 23 22 21 20 19
VOUTA /CSMSB Vss AGnd /CSLSB /RW
VREFAB VREFCD 18 DGnd A0 17 A1 /LDAC 16 D8/D0 D7 15 D9/D1 D6 14 D10/D2 D5 13 D11/D3 D4
1.1 单片机应用系统开发 单片机应用系统的一般硬件组成 由于单片机主要用于工业测控,其典型应 用系统应包括单片机系统、用于测控目的 前向传感器输入通道,后向伺服控制输出 通道以及基本的人机对话通道。大型复杂 的测控系统是一个多机系统,还包括机与 机之间进行通信的互相通道。典型单片机 应用系统结构如图1.1所示。
14
3.3 硬件电路设计
MAX7219与8051单片机连接采用三线串行接口,典 型应用电路如图3.4所示。具体连接方式参见图3.5 和图3.6。
图3.4 MAX7219与8051应用电路原理图
15
图3.5基于MAX7219的8位数码管显示电路单片机部分
16
3.4 软件设计
软件设计是本章的重点,在软件设计之前应仔细阅读3.2节有关MAX7219 时序和内部寄存器部分。在这里,仅给出相关程序代码。 源程序如下: //max7219 led drive program #include<reg51.h> /**************************************************************/ //通用符号宏定义 #define HIGH 1 #define LOW 0 #define TRUE 1 #define FALSE 0 #define ZERO 0 #define MSB 0x80 #define LSB 0x01 //max7219 part #define DECODE_MODE 0x09 #define INTENSITY 0x0A #define SCAN_LIMIT 0x0B #define SHUT_DOWN 0x0C #define DISPLAY_TEST 0x0F 17