第七章 SPSS的相关分析

合集下载

第7章 相关分析与回归分析(含SPSS)

第7章 相关分析与回归分析(含SPSS)



四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。

偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)

偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。

(二)偏相关系数在SPSS中的实现

1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶

SPSS-7相关分析

SPSS-7相关分析

第7章相关分析相关分析是研究变量间密切程度的一种常用统计方法。

线性相关分析研究两个变量间线性关系的程度。

相关系数是描述这种线性关系程度和方向的统计量,通常用r表示。

如果一个变量y可以确切地用另一个变量x的线性函数表示,那么,两个变量间的相关系数是+1或-l。

如果变量y随着变量x的增、减而增、减,即变化的方向一致。

例如,在一定的温度范围内昆虫发育速率与温度的关系,温度越高,发育速率相对也就越快。

这种相关称为正向相关,其相关系数大于0。

如果变量y随着变量x的增加而减少,变化方向相反。

例如,降雨强度与田间害虫种群数量的关系,随着降雨强度的增加,时间延长,害虫种群数量逐步下降。

这种相关关系称为负相关,其相关系数小于0。

相关系数r没有单位,其值在-1~+1之间。

 SPSS系统中有一个用于相关分析的“Correlate”菜单项,其中包括有板有三个过程:① Bivariate 分析两个变量之间的相关关系;② Partial偏相关分析,分析在一个或多个变量的影响下,两个变量之间的相关关系;③ Distance 相似性分析(距离分析)。

 在这里将结合例子介绍两个变量之间的相关分析和偏相关分析过程的应用。

 7.1二个变量间的相关分析本节介绍两两变量间的相关分析。

包括两个连续变量间的相关和两个等级变量间的秩相关。

这两种相关使用同一个过程,通过选择不同的分析方法来实现。

选择哪一种分析方法要看具体的数据类型。

 [例子7-1]调查了29人身高、体重和肺活量的数据见表7-1,分析这三者之间的相互关系。

表7-1 身高、体重和肺活量的调查数据编号身高体重肺活量编号身高体重肺活量1 135.10 32.0 1.75 16 153.00 32.0 1.752 139.90 30.4 1.75 17 147.60 40.5 2.003 163.60 46.2 2.75 18 157.50 43.3 2.254 146.50 33.5 2.50 19 155.10 44.7 2.755 156.20 37.1 2.75 20 160.50 37.5 2.006 156.40 35.5 2.00 21 143.00 31.5 1.757 167.80 41.5 2.75 22 149.90 33.9 2.258 149.70 31.0 1.50 23 160.80 40.4 2.759 145.00 33.0 2.50 24 159.00 38.5 2.2510 148.50 37.2 2.25 25 158.20 37.5 2.0011 165.50 49.5 3.00 26 150.00 36.0 1.7512 135.00 27.6 1.25 27 144.50 34.7 2.2513 153.30 41.0 2.75 28 154.60 39.5 2.5014 152.00 32.0 1.75 29 156.50 32.0 1.7515 160.50 47.2 2.251037.1.1操作步骤1)准备数据文件在数据编辑窗口,定义变量名“no”为编号、“height”为身高、“weight”为体重、“vcp”为肺活量。

《SPSS统计分析案例教程》第七章相关分析

《SPSS统计分析案例教程》第七章相关分析
在进行相关分析前,应 该对数据进行清洗和整 理,处理好缺失值和异 常值。
变量选择和散 点图绘制
选择需要分析的变量和 绘制散点图时应该注意 变量的代表性和数据的 分布情况。
04
相关分析的应用
相关分析在社会科学研究中的应用
01
社会调查数据
相关分析可以用于研究社会现象之间的相互关系,例如人口统计学特
征与失业率之间的关系。
变量间关系
相关分析是研究变量间关系的一种方法,主要研究自变 量与因变量之间的线性关系,自变量与因变量之间的因 果关系等。
相关分析的目的
要点一
检验假设
要点二
预测
通过相关分析可以检验自变量与因变 量之间是否具有线性关系,从而验证 假设是否成立。
通过相关分析可以建立自变量与因变 量之间的线性回归模型,利用该模型 可以对未来数据进行预测,从而为决 策提供依据。
要点三
控制
通过相关分析可以了解自变量与因变 量之间的因果关系,从而对一些变量 进行控制,达到优化系统的目的。
相关分析的原理
计算相关系数
相关分析是通过计算相关系数来实现的,相关系数是描述两个变量之间线性关系强度和方 向的统计量,通常用r表示。
判断相关程度
相关系数的绝对值越接近于1,表明两个变量之间的线性关系越强;相关系数的绝对值越 接近于0,表明两个变量之间的线性关系越弱。
对数据要求较高
相关分析对数据的要求较高,需要满足线性相关、正态分布、独立同分布等假设。如果数据不满足这些假设,相关分析的 结果可能不准确。
相关分析局限性的解决方法
补充实验和准实验研 究
通过实验或准实验的方式,可以确定 变量之间的因果关系,从而弥补相关 分析的不足。例如,通过随机对照实 验可以确定某种药物对降低血压是否 具有显著效果。

上机实验七 SPSS相关分析

上机实验七 SPSS相关分析

上机实验七SPSS相关分析题目:1、分析数学和英语得分是否存在线性关系?数据来源:SPSS课程资料correlate2.sav假设:H0:数学和英语得分存在线性关系H1:数学和英语得分不存在线性关系基本结果:结论:Pearson相关系数为0.834,sig值为0.003,sig值小于0.05,所以数学和英语得分存在正相关;Spearman相关系数为0.770,sig值为0.009,sig值小于0.05,所以数学和英语得分存在正相关;无论是用Pearson、Spearman相关系数,都可以得出数学和英语得分存在正相关的结论,故接受H0假设,且SIG值均小于0.05,两者之间存在正相关线性关系。

题目:2、分析汽车销售额和燃油效率之间是否存在线性关系?数据来源:SPSS课程资料correlate1.sav假设:H0:汽车销售额和燃油效率之间存在线性关系H1:汽车销售额和燃油效率之间不存在线性关系基本结果:结论:Pearson相关系数为-0.492,sig值为0.000,sig值小于0.05,所以汽车销售额和燃油效率之间存在负相关;Spearman相关系数为-0.614,sig值为0.000,sig值小于0.05,所以汽车销售额和燃油效率之间存在负相关;无论是用Pearson、Spearman相关系数,都可以得出汽车销售额和燃油效率之间存在负相关的结论,且SIG值均小于0.05,故接受H0假设,两者之间存在负相关线性关系。

题目:3、试分析工资高低是否和教育水平相关?数据来源:SPSS课程资料Employee data.sav假设:H0:工资高低和教育水平相关H1:工资高低和教育水平不相关基本结果:结论:Pearson相关系数为0.661,sig值为0.000,sig值小于0.05,所以工资高低和教育水平之间存在正相关;Spearman相关系数为0.688,sig值为0.000,sig值小于0.05,所以工资高低和教育水平之间存在正相关;无论是用Pearson、Spearman相关系数,都可以得出工资高低和教育水平之间存在正相关的结论,且SIG值均小于0.05,故接受H0假设,两者之间存在正相关线性关系。

第七章 SPSS的相关分析

第七章  SPSS的相关分析

单因素方差分析

当一个变量为定类变量,另一变量为定距 变量时,两变量间是否有关,通常以分组 平均数比较的方法来考察。即按照定类变 量的不同取值来分组,看每个分组的定距 变量的平均数是否有差异。不同组间的平 均数差异越小,两个变量间的关系越弱; 相反,平均数差异越大,变量间关系越强。
单因素方差分析的基本步骤

最后,对不同看法进行分析。如果显著性 水平设为0.05,则概率值小于0.05,拒绝原 假设,认为本市户口和外地户口对未来三 年是否打算买房的看法是不一致的。

在列联表中,这一定理就具体转化为:若 两变量无关,则两变量中条件概率应等于 各自边缘的概率乘积。反之,则两变量有 关,或称两变量不独立。
由此可见,期望值(独立模型)与观察值 的差距越大,说明两变量越不独立,也就 越有相关。因此,卡方的表达式如下:
X
2


j i
( O ij E ij ) 2 E ij
第七章
相关分析与检验
主要内容
方差分析回顾 相关分析的概念
列联分析
简单相关分析
偏相关分析
方差分析回顾
概念:方差分析是从因变量的方差入手,研究诸 多自变量中哪些变量是对因变量有显著影响的变 量,对因变量有显著影响的各个自变量其不同水 平以及各水平的交互搭配是如何影响因变量的。 方差分析认为因变量的变化受两类因素的影响: 第一,自变量不同水平所产生的影响; 第二,随机变量所产生的影响。这里的随机变量指 那些人为很难控制的因素,主要指试验过程中的 抽样误差。
卡方的取值在0~∞之间。卡方值越大,关 联性越强。在SPSS中,有Pearson X2和 相似比卡方(Likelihood Ratio X2 )两种。

SPSS统计分析第七章相关分析

SPSS统计分析第七章相关分析

例二
四川绵阳地区3年生中山柏的数据。分析月生长量与 月平均气温、月降雨量、月平均日照时数、月平均湿 度四个气候因素哪个因素有关。Month:月份,hgrow: 生长量,temp:月平均气温,rain: 月降雨量,hsun: 月平均日照时数,humi: 月平均湿度。 数据编号data10-05 分析变量:hgrow(生长量)与hsun(月平均日照时 数) 控制变量:humi(月平均湿度)、rain(月降雨量)、 temp(月平均气温)
两个或若干变量之间或两组观测量之间的关 系有时也可以用相似性或不相似性来描述。 相似性测度用大数值表示很相似,较小的数 值表明相似性小。不相似性使用距离或不相 似性来描述。大值表示相差甚远。
三、相关系数统计意义的检验
由于我们通常是通过抽样方法;利用样本研 究总体的特性。由于抽样误差的存在,样本 中两个变量间相关系数不为0,不能说明总体 中这两个变量间的相关系数不是0,因此必须 经过检验。检验的零假设是:总体中两个变 量间的相关系数为0。SPSS的相关分析过程 给出这假设成立的概率。
但实际上,如果对体重相同的人,分析身高 和肺活量。是否身高值越大,肺活量越大呢? 结论是否定的。正是因为身高与体重有着线 形关系,体重与肺活量才存在线形关系,因 此,得出身高与肺活量之间存在较强的线形 关系的错误结论。偏相关分析的任务就是在 研究两个变量之间的线形相关关系时控制可 能对其产生影响的变量。
一、相关分析的概念
相关分析是研究变量间密切程度的一种常用统计方法。 线性相关分析研究两个变量间线性关系的程度。 相关系数是描述这种线性关系程度和方向的统计量, 通常用r表示。相关系数r没有单位;其值在-l~+1之 间。当数值愈接近-l或+1之间时,关系愈紧密,接近 于0时,关系愈不紧密。 对其数值可以从小到大排列的数据才能计算其相关系 数。例如不能计算宗教信仰与颜色喜好之间的关系。

SPSS统计分析_第七章_相关分析

SPSS统计分析_第七章_相关分析

以一个例子来进行Kendall秩相关系数的计算。
如果两位鉴定家各自以吸引力的大小将7幅抽
象派画评定了秩,那么可能知道这些秩评定
之间的相符的程度。
画 号
2
6
5
1
4
3
7
鉴别家1
鉴别家2
1
2
2
3
3
1
4
4
5
6
6
5
7
7
依次取观测2(鉴别家2)给出的秩,数出每一个右面在 秩次上比自己小的个数,并将这些个数加起来。例如抽 象画2的秩为2,其个数是1,因为其右边的只有抽象画5 的秩比它小。6个数依次为1,1,0,0,1和0,所以总 和为Q=3,Kendall秩相关系数则为: R=1-4Q/n(n-1)=1-12/42=0.714
二、相关系数
积矩相关系数(Pearson相关系数)
Spearman和Kendall秩相关系数 偏相关系数
1、积矩相关系数(Pearson相关系数)
积矩相关系数(又称积差相关系数)适用于等间隔测度, 相关系数采用Pearson积矩相关。
R
xy

( x x)( y y)
i 1 i i
n
等。
有关统计量
不相似性测度 等间隔数据的不相似性(距离)测度可以使用的统 计量:欧几米德(欧氏)距离、欧氏距离平方等。 计数数据,使用卡方。 二值(只有两种取值)数据,使用欧氏距离、欧氏 距离平方等。
相似性测度
等间隔数据使用统计量皮尔逊相关或余弦。 测度二元数据的相似性使用的统计量有二十余种。
仍以四川绵羊地区中山柏生长的数据为例
中这两个变量间的相关系数不是0,因此必须
经过检验。检验的零假设是:总体中两个变

spss在财务管理中的应用 第7章 相关分析

spss在财务管理中的应用 第7章 相关分析

7.2.1 Pearson相关系数
1.Pearson相关概述
Pearson积差相关系数的计算一般
需要满足以下条件:
第一、两列数据呈现正态分布; 第二、数据必须成对出现; 第三、成对样本数量应该大于30; 第四、两列数据必须是连续性数据。
7.2.1 Pearson相关系数

在会计和财务管理中的应用
苏海洋
S P S S
第7章 相关分析

学习目标:
掌握相关分析的概念;
掌握散点图的SPSS绘制过程及结果解释; 掌握Pearson相关系数的SPSS操作及结果解释; 掌握Spearman等级相关的SPSS操作及结果解释; 了解Kendall相关系数的SPSS操作及结果解释; 掌握偏相关分析的SPSS操作及结果解释。
系只是大致的、不是某事物的每一个变化都会引起与之相联系的另一个变量 的确定变化。
前言
相关分析可以分为线性相关和非线性相关两大类,本教材主要介绍线性相关。
按照强度:强相关、弱相关和零相关(即不相关);
按照方向:正相关和负相关。
按照涉及变量的多少:如果只是涉及到两个变量的相关可以称为简单相关;
固定资产投资”的关系,所以将他们放
入【变量(V)】框中。如果要分析多 个变量间的两两关系,可以把这些变量
一次性放入【变量(V)】框中。然后
单击【确定】按钮,提交系统分析。
7.2.1 Pearson相关系数

步骤3:结果解释。
从表中可以看出“国内生产总值”和
“全社会固定资产投资”的pearson相 关系数r=0.987,数值上表明其为正相
7.1 散点图
步骤3:单击【散点/点状(S)】进入到 如右上图示界面,上面有多种类型的散 点图可供选择。这里选择【简单分布】 选项,单击【定义】按钮进入【简单散 点图】主对话框,将“国内生产总值”

第七章SPSS的相关分析

第七章SPSS的相关分析

第七章SPSS的相关分析SPSS是一种常用的统计分析软件,可以进行各种统计分析方法,如相关分析。

相关分析是一种用来研究两个变量之间关系的方法。

本文将介绍SPSS中进行相关分析的方法和步骤。

进入“Correlate”选项后,弹出一个新的窗口,在这个窗口中有两个选项:“Bivariate”和“Partial”。

在这里我们选择“Bivariate”选项,因为我们想要研究两个变量之间的直接关系。

然后,我们可以选择要进行相关分析的变量,将其移动到右边的“Variables”框中。

在“Bivariate”选项的窗口中,还有一个选项“Options”,点击这个选项可以设置一些其他的参数。

比如我们可以选择是否计算缺失值、是否使用Spearman相关系数等。

根据实际情况,我们可以酌情选择这些参数。

在设置完成后,点击“OK”按钮,SPSS将进行相关分析,并且将结果显示在“Output”窗口中。

在输出结果中,我们可以看到相关系数的值以及相关系数的显著性水平。

此外,SPSS还会生成相关系数的散点图,方便我们直观地观察变量之间的关系。

除了进行简单的两个变量之间的相关分析,SPSS还可以进行多个变量之间的相关分析。

在“Bivariate”选项的窗口中,我们可以选择多个变量,将其移动到右边的“Variables”框中。

然后,我们可以选择是否计算偏相关系数,以及是否进行Bonferroni校正等。

总结起来,SPSS是一种方便易用的统计分析软件,可以进行各种统计分析方法,包括相关分析。

通过SPSS,我们可以快速而准确地对变量之间的关系进行研究。

在分析结果中,SPSS还会为我们提供有用的图表和统计指标,帮助我们更好地理解和解释数据。

SPSS第7章 相关分析

SPSS第7章 相关分析
第7章 相关分析
7.1 线性相关系数r及显著性检验 7.1.1相关模型的假设和计算 7.1.2 相关过程的实现 7.1.3 相关分析实例 7.2偏相关系数 7.2.1 偏相关系数的含义及计算 7.2.2偏相关系数的计算分析方法 7.3 距离分析 7.3.1 距离分析简介 7.3.2 过程与选择 7.3.3 实例分析
•检验相关系数的显著性,其中n是抽样单位的样本容量,这个 统计量是服从具有n-2个自由度的t分布。
•SPSS可以计算单侧检验或两侧检验。如果事先对研究对象、观
测结果一无所知,可用两侧检验。如比较男女性学习成绩,事
先不知男性高还是女性高;当某年级学生外语学习成绩与数学
学习成绩呈正相关、负相关未知时,常采用两侧检验(默认 值)。当计算的t值绝对数大于(表载值)临界值, 即原假设H0: =0被拒绝。如果相关的方向事先已知道,如语文成绩与外文
7.1.1相关模型的假设和计算
•本章将介绍SPSS软件的相关模型,具体包括皮尔逊、斯皮尔曼 和肯特尔三种子模型。相关模型要求X、Y变量都是呈正态分布 的随机变量,即当X取某一定值时,Y的条件分布为一正态分布; 而当Y取某一定值时,X的条件分布同样也为一正态分布。满足 上述正态分布的定比数据可用Pearson相关模型。对于定序数据 以及不满足上述正态分布的数据,则不能使用Pearson相关模型, 而应该使用参数检验模型——Spearman和Kendall相关模型。但 Pearson相关模型是最重要、最基本、最常用的模型。
7.1 线性相关系数r及显著性检验
•自然界中,很多因素是息息相关的。一般而言,东亚大陆1月 份天气冷,降水减少;7月份气温上升,降水增加,那么气温 与降水是否有关?再如身材高大的人,体重般偏重;反之亦 然。人的身高与体重的关系是相互依存的,但并不是一一对应 的。制约身高、体重关系的还有其他因素,如遗传、营养状态、 运动水平和年龄等。学习时间与学习成绩也是如此,学习时间 长的人,学习成绩好;反之亦然,但并不是绝对的。那么,学 习时间与学习成绩是什么关系呢?定性分析有时是不够的,如 何来确切地衡量两个变量之间的关系,人们常用相关分析的方 法。换言之,相关分析通常用来研究两个变量之间的关系,当 一个变量数值增大(减少)时,另一个变量数值是增大、减小 还是不变。

利用SPSS进行相关分析

利用SPSS进行相关分析
个变量的取值来估计另一个变量的取值,这就是回归分析。 绘制散点图和计算相关系数是相关分析最常用的工具,它
们的相互结合能够达到较为理想的分析效果。
多元统计分析
二、绘制散点图
2.1 散点图的特点 散点图:是将数据以点的形式画在直角坐标系上,通过观
察散点图能够直观的发现变量间的相关关系及它们的强弱程度和 方向。
多元统计分析
多元统计分析
多元统计分析
多元统计分析
三、 计算相关系数
3.1 相关系数的特点 利用相关系数进行变量间线性关系的分析通常需要完成以下
两个步骤:
1.计算样本相关系数r
①相关系数r的取值在-1~+1之间 ②r>0表示两变量存在正的线性相关关系;r<0表示两变量 存在负的线性相关关系 ③r=1表示两变量存在完全正相关;r=-1表示两变量存在 完全负相关;r=0表示两变量不相关 ④|r|>0.8表示两变量有较强的线性关系; |r|<0.3表示两变 量之间的线性关系较弱
完全正相关 y
x
r=0.7~0.8
正相关
y
x
r=0
无相关 y
r=-1
x
完全负相关
r=-0.7 ~ -0.8 x
负相关
r=0
x
无相关
多元统计分析
2.2 散点图应用举例 例8-3为了分析影响生猪养殖的原因,我们选取以下代表生猪生 产的主要指标:Y1肉猪出栏头数(万头)、Y2生猪年底存栏头 数(万头)、Y3猪肉产量(万吨)、Y4出口活猪数量(万头)。 对生猪生产有影响的指标有:X1猪(毛重)生产价格指数 (1977年为100)、X2粮食产量(万吨)、X3粮食零售价格指 数(1977=100)、X4农村居民人均纯收入(元)、X5乡村总人口 数(万人)、X6全国人均猪肉消费量(斤)。

第七章SPSS的相关分析课件

第七章SPSS的相关分析课件
• 如:x和y的取值为:(-1,-1) (-1,1) (1,-1) (1,1) • r=0 但 xi2+yi2=2
• 数据中存在极端值时相关系数不好 • 如:(1,1)(2,2)(3,3),(4,4),(5,5),(6,1) • r=0.33 但总体上表现出: x=y • 应结合散点图分析
• 常用的相关系数: Pearson简单相关系数、Spearman等级相关系数和 Kendall 相关系数等
2024/9/16
6
2024/9/16
选择x轴和y轴的变 量
选择分组变量: 分别以不同颜色 点的表示 选择标记变量:散 点图上可带有标 记变量的值
7
例题 7.1
• 利用住房状况调查数据, 绘制家庭收入与计划购买住房面积之间的散 点图
2024/9/16
8
相关关系的概念
从样本数 据来看变量间
有关系吗
2024/9/16
27
2024/9/16
28
相关分析 须面对的 四个问题
关系的 强度如何
※这种关系 是否为因果
关系
这种关系 能否从样本推
到总体
2024/9/16
9
相关系数
• 相关系数以数值的方式精确地反映了两个变量间线性相关的强弱程度 • 利用相关系数进行变量间线性关系的分析的步骤 • 计算样本相关系数r • 相关系数r的取值在-1~+1之间 • R>0表示两变量存在正的线性相关关系;r<0表示两变量存在负的线
• 在小样本下,在零假设成立时, Spearman等级相关系数服从Spearman 分布;在大样本下, Spearman等级相关系数的检验统计量为Z统计量, 定义为:
Z r n 1

《SPSS统计分析案例教程》第七章相关分析

《SPSS统计分析案例教程》第七章相关分析
《spss统计分析案例教程》 第七章相关分析
2023-11-06
目 录
• 相关分析概述 • 描述性相关分析 • 参数相关分析 • 偏相关分析 • 距离相关分析 • 相关分析的注意事项
01
相关分析概述
定义
相关分析是用来研究两个或多个变量之间关系的统计方法。
它探究变量之间的依赖性、关联程度和预测能力。
变量设置
在变量视图中,设置每个变量的类型 、标签、值等属性。
执行偏相关分析
在菜单栏中选择“分析”->“回归 ”->“多元”->“偏相关”,进入 偏相关分析对话框。
设置自变量和因变量
在偏相关分析对话框中,将需要分析 的自变量和因变量拖入相应的区域。
调整选项
根据需要,可以勾选“校正变量” 和“显示非参数检验结果”等选项 。
运行分析
点击“确定”按钮,开始偏相关分 析,并生成相应的结果。
05
距离相关分析
距离相关系数的概念与计算
距离相关系数概念
距离相关系数是用来度量两个变量之间相似或不相似的一种方 法,它基于两个变量值之间的距离来计算。
距离相关系数的取值范围
距离相关系数的取值范围在-1到1之间,其中1表示完全正相关, -1表示完全负相关,0表示无相关。
在弹出的“距离相关”对话框中,将需 要分析的变量拖入“变量”框中。
06
相关分析的注意事项
数据质量对相关分析的影响
缺失值处理
数据清洗
数据正态性
在相关分析前,应检查数据中 是否存在缺失值。对于缺失值 ,需要选择合适的处理方法, 如插值、删除或使用特定的统 计方法来处理。
数据中可能存在异常值、离群 点或错误数据,这些数据会影 响相关分析的结果。在进行相 关分析前,应对数据进行清洗 ,以消除这些潜在问题。

SPSS课件-07相关分析

SPSS课件-07相关分析

三、Spearman等级相关系数的计算
1
计算公式
ቤተ መጻሕፍቲ ባይዱ
Spearman等级相关系数使用变量的排序位置而不是数值来计算。
2
解读
Spearman等级相关系数可以用来描述变量之间的单调关系,不受异常值的影响。
3
SPSS计算方法
在SPSS中,你可以使用非参数统计功能来计算Spearman等级相关系数。
四、Kendall秩相关系数的计算
明因果关系。
布及异常值的影响。
关系是线性的。
七、案例分析
实际案例分析
通过相关分析某公司的销售数据,寻找变量间的关 系。
SPSS操作演示
展示如何在SPSS中进行相关分析并解读结果。
八、总结
相关分析的意义
相关分析帮助我们了解变量之间的关系,为进一步的数据分析提供基础。
不同相关系数的适用范围
Pearson、Spearman和Kendall三种相关系数适用于不同类型的数据分析。
SPSS课件-07相关分析
本课程将介绍相关分析的概念和应用。我们将探讨Pearson、Spearman和 Kendall三种相关系数的计算方法,以及相关分析的限制和注意事项。
一、相关分析的概念
相关分析的定义
相关分析是一种统计方法,用于描述和评估两个或多个变量之间的关系。
相关系数的含义
相关系数衡量了变量之间的关联程度,值介于-1和1之间。
1
计算公式
Kendall秩相关系数通过比较变量的排列
解读
2
顺序来计算。
Kendall秩相关系数可以用来描述变量之
间的排序关系,适用于有序分类变量。
3
SPSS计算方法
在SPSS中,你可以使用非参数统计功 能来计算Kendall秩相关系数。

SPSS第7单元相关分析

SPSS第7单元相关分析

SPSS应用
SPSS应用
SPSS应用
对Kendall's tua-b等级相关系数的统计 检验,一般如果个案数n≤30,将直接利用 Kendall's tua-b等级相关统计量表,SPSS将 自动根据该表给出对应的相伴概率值。
SPSS应用
SPSS应用
6.3.2 SPSS中实现过程
研究问题 某语文老师先后两次对其班级学生同一篇
作文1 86.00 78.00 62.00 75.00 89.00 67.00 96.00 80.00 77.00 59.00 79.00 68.00 85.00 87.00 75.00 73.00 95.00 88.00
作文2 83.00 82.00 70.00 73.00 92.00 65.00 93.00 85.00 75.00 65.00 75.00 70.00 80.00 75.00 80.00 78.00 90.00 90.00
定距变量又称为间隔(interval)变量, 它的取值之间可以比较大小,可以用加减法计 算出差异的大小。例如,“年龄”变量、“收 入”变量、“成绩”变量等都是典型的定距变 量。
SPSS应用
Pearson简单相关系数用来衡量定距变量 间的线性关系。如衡量国民收入和居民储蓄存 款、身高和体重、高中成绩和高考成绩等变量 间的线性相关关系。
SPSS应用
图6-2 “Bivariate Correlations”对话框(一)
SPSS应用
图6-3 “Bivariate Correlations:Options”对话框
6.2.3 结果和讨论
SPSS应用
SPSS应用
6.2.4 绘制相关散点图
如果对变量之间的相关程度不需要掌握得 那么精确,可以通过绘制变量的相关散点图来 直接判断。仍以上例来说明。

SPSS统计分析第7章 相关分析

SPSS统计分析第7章 相关分析
根据经验可将其相关程度分为几种:当|r|≥0.8时视为高度相 关;当0.5≤|r|<0.8时视为中度相关;当0.3 ≤ |r|<0.5时视为低度相 关;当|r|<0.3时说明变量之间的相关性很弱。
7.2二元变量相关分析
➢第2步 对样本来自的两总体是否存在显著的线性关系进行推断: 由于存在抽样的随机性和样本数量较少等原因,通常样本相关 系数不能直接用来说明样本来自的两总体是否具有显著的线性 相关性,需要通过假设检验的方式对样本的总体进行统计推断。
取值范围界于-1与1之间,即-1≤r≤1
当0<r ≤ 1,表明变量之间存在正相关关系;
当-1 ≤ r<0,表明变量之间存在负相关关系;
当|r|=1时,表示其中一个变量的取值完全取决于另一个变量, 二者即为函数关系;
当r=0时,说明变量之间不存在线性相关关系,但这并不排除 变量之间存在其它非线性相关的可能。
Pearson简单相关系数及t统计量 n
(xi x)( yi y)
r
i1
n
n
(xi x)2 ( yi y)2
t r n2 1 r2
i1
i1
7.1二元变量相关分析
定序变量的相关性分析 :定序变量又称为有序(ordinal)变 量、顺序变量、等级变量,它取值的大小能够表示观测对象的
某种顺序关系(等级、方位或大小等)。定序变量的相关系数 用斯皮尔曼(Spearman)相关系数和肯德尔(Kendall’s )相 关系数来衡量。
主要内容
7.1 相关分析简介 7.2 两变量相关分析 7.3 偏相关分析 7.4 距离分析
7.3 偏相关分析
(1) 基本概念
偏相关分析的任务就是在研究两个变量之间的线性相关关 系时控制可能对其产生影响的变量,这种相关系数称为偏相关 系数。偏相关系数的数值和简单相关系数的数值常常是不同的, 在计算简单相关系数时,所有其他自变量不予考虑。

SPSS数据分析教程-7-相关性

SPSS数据分析教程-7-相关性

精选课件
14
相关系数为0或接近于0不能说明两个变量之间 没有相关性,它只说明没有线性相关性。不能 排除具有其它非线性关系。
Pearson 相关系数是一种线性关联度量。如果 两个变量关系密切,但其关系不是线性的,则 Pearson 相关系数就不是适合度量其相关性的 统计量。
精选课件
15
SPSS的双变量相关可以计算两个或者两个以 上变量间的协方差和Pearson相关系数。同时 还可以检验该相关系数是否显著区别于0。
精选课件
17
选择【分析】→【相关】→【双变量】
精选课件
18
精选课件
19
精选课件
20
Spearman等级相关系数—定序变量之 间的相关性的度量
斯皮尔曼等级相关的适用条件为:
两个变量为定序变量。 一个变量为定序变量,另一个变量为尺度数据,且
两总体不是正态分布,样本容量n不一定大于30。
精选课件
Pearson相关系数
Xn ½=
(xi ¡ x¹)(yi ¡ y¹)
i= 1
Sxபைடு நூலகம்Sy
相关系数的数值范围是介于–1与 +1之间:
如果|½ | ' 0,表明两个变量没有线性相关关系。
如果|½ | ' 1 ,则表示两个变量完全直线相关。线性相关的方 向通过相关系数的符号来表示,“+”号表示正相关,“﹣” 表示负相关。
文字可编辑目录点击添加标题点击添加标题点击添加标题点击添加标题添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本添加文本点击添加文本点击添加文本点击添加文本点击添加文本添加文本点击添加文本点击添加文本点击添加文本添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本添加文本点击添加文本点击添加文本点击添加文本添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本点击添加文本01020304添加标添加文本点击添加文本点击添加文本点击添加文本点击添加文本会议基调年会视频

SPSS数据分析—相关分析

SPSS数据分析—相关分析

相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS 做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以。

相关系数有一些需要注意的地方:1、两变量之间存在相关,仅意味着存在关联,并不意味着因果关系。

2、相关系数不能进行加减乘除运算,没有单位,不同的相关系数不可比较3、相关系数大小容易受到数据取值区间大小和数据个数大小的影响。

4、相关系数也需要进行检验确定其是否有统计学意义相关系数的假设检验中HO:相关系数=0,变量间没有相关性H1:相关系数工0,变量间有相关性相关系数很多,我们一般根据变量的类型进行选择,我们知道变量类型由低级到高级可以分为定类、定序、定距、定比四种类型,而变量的数据类型则可以分为连续型或者离散型,注意不要混淆、定距、定比变量,基本上也就是连续变量一般使用pearson 相关系数, 也称为积差相关系数, 是一种线性相关系数, 使用最为广泛, 适用条件是两变量需要为线性关系, 并且都来自正态分布总体, 且要求成对出现、定序、定距、定比变量一般使用spearman等级相关系数也称为秩相关系数,该系数利用了变量的次序信息,而且对原始数据没有过多要求,因此比pearson 相关系数使用范围更广, 它利用两变量的秩次大小作为分析依据, 也可以认为是基于秩次的pearson 相关系数,当数据不符合pearson相关系数的要求时,可以选择使用spearman相关系数,但是如果是定距或定比变量,还是建议用pearson 相关系数, spearman 相关系数的效能略低。

三、只限定序变量1. Gamm相关系数2. Kendall等级相关系数,分为T -a , T -b , T -c三种3.Somer's D 相关系数四、定类变量定类变量的相关性大都是根据卡方值衍生而来1. person 卡方实际上也就是卡方检验2. 列联系数3. © -Phi 系数4. Cramer's V 系数 5^Lambda (入)系数6.Goodman and Kruskal 的 Tau-y 系数 五、二分类变量 1. 相对危险度RR 值 2. 优势比OR 值熟悉了各种相关系数的情况之后,我们来看一下在 SPSS 中的操作1. 分析一描述性统计一交叉表此过程一般用来分析列联表的,由于数据的组成大多是列联表形式, 包含了很多种相关系数2. 分析一相关一双变量2J Ph 1 fQ 烹恫_」LsmbdatL) 苹:nt 护妁■flff ------------------------ 1S MTIHS ' d(S>.」Kendall 的 uu-bCBJKMidairs Od-ctC) 鬥申(E ).Kappa (K ) 厂昭Q )味交艾典:纸计量 冋鸟 21童畤理Cadiran s and Uactef-Haenszel Stif 蜀 t*J该对话框集中了绝大部 分的相关系数,并且按 虜变量类型归类因此该过程此分析为简单相关分析,是最常用的相关分析对话框很简号且只有pearson相关系数、kendall相关垂数* _spearB antff 三种,选项按钮可H迭择输出描述统计量和协方瓮、叉积倡羞N1 36D 7169114$.1 $114i3■ nr13295 01541»a5Jli3S413tfl工性4 • a ;.j呻—*从"碣P^are&nifl曲T1X <如515事方片浚f〕附101313731.203120745O:.7ON1313 fi HR Peirs&n 10 匚性,455*1音医1”训■0伯:hfO iueti<a32.431050609^-r.12074502JO2587550051N1313 ' 0 05^T :卩I 需相结果中,首先是描述性统计量•输出基本的均值和标准差.其次为pearsonffi 关系数和叉积值以及协方差,可£1 看出相黄系数为0. 655.为中等相关. 显著性检蚩r=0. 015<0. 05> 拒電两竇量不相关的原個设.相关系数有效.可见生产忌值和专利甲请数量是正相关的.3. 分析一相关一偏相关变量之间都是互相关联的,我们分析两个变量间的相关关系时,免不了会携带其 他变量对其的影响,为了得到两个变量间纯粹的相关关系, 我们需要控制一些变 量的影响,此时的相关分析称为偏相关分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

散点图
• 将数据以点的的形式画在直角坐标系上 • 通过观察散点图能够直观的发现变量间的相关关系及他们的强弱程度 和方向
相关关系的两种类型
线性相关
非线性相关
相关系数是衡量变量间 相关关系强弱的统计量
基本操作步骤
• 菜单选项:graphs->scatter
• 选择散点图类型: – simple:简单散点图(显示一对变量的散点图) – overlay:重叠散点图(显示多对变量的散点图) – Matrix:矩阵散点图(显示多对变量间的统计关系) – 3-D Scatter:三维散点图(以立体图的形式展现三对变量间的统计关 系)
这种关系 能否从样本推 到总体
相关系数
• 相关系数以数值的方式精确地反映了两个变量间线性相关的强弱程度 • 利用相关系数进行变量间线性关系的分析的步骤 1. 计算样本相关系数r – 相关系数r的取值在-1~+1之间 – R>0表示两变量存在正的线性相关关系;r<0表示两变量存在负的 线性相关关系 – R=1表示两变量存在完全正相关;r=-1表示两变量存在完全负相 关;r=0表示两变量不相关 – |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示两变量之间的 线性关系较弱 2. 对样本来自的两总体是否存在显著的线性关系进行推断
• 步骤: – 计算样本的偏相关系数 – 对样本来自的两总体是否存在显著的净相关进行推断
计算样本的偏相关系数
• 假设有三个变量y、x1和x2,在分析x1和y之间的净相关时,当控制了 x2的线性作用后,x1和y之间的一阶偏相关定义为
ry1,2
ry1 ry 2 r12
2 (1 ry22 )(1 r12 )
• 用来度量定序变量间的线性相关关系 • 计算时并不直接采用原始数据( xi , yi ) ,而是利用数据的秩,用两变量的 秩 (U i ,Vi ) 代替 ( xi , yi ) 代入Pearson简单相关系数计算公式中
r 1
• •
n(n2 1)
6 Di2
,其中 D (Ui Vi )2
Pearson简单相关系数
• 适用于两个变量都是数值型(定距型)的数据 • 数学定义:
r
( x x )( y y ) (x x ) ( y y )
i i 2 i i
2
• 检验统计量
t
r n2 1 r2
简单相关系数是n个xi和yi分别标准 化后的积的平均数
Spearman等级相关系数
i 1 2 i的正相关性较强,它们秩的变化具有同步性,于是 Di (U i Vi )
的值较小,r趋向于1;
i 1
i 1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,于是 Di2 (Ui Vi )2
n
n
的值较大,r趋向于0;
选择x轴和y轴的变 量 选择分组变量: 分别以不同颜色 点的表示 选择标记变量 : 散 点图上可带有标 记变量的值
例题 7.1
• 利用住房状况调查数据,绘制家庭收入与计划购买住房面积之间的散 点图
相关关系的概念
从样本数 据来看变量间 有关系吗 相关分析 须面对的 四个问题
关系的 强度如何
※这种关系 是否为因果 关系
相关系数
• 相关系数只是较好地度量了两变量间的线性相关程度,不能描述非线性 关系 – 如:x和y的取值为:(-1,-1) (-1,1) (1,-1) (1,1) r=0 但 xi2+yi2=2 • 数据中存在极端值时相关系数不好 – 如:(1,1)(2,2)(3,3),(4,4),(5,5),(6,1) r=0.33 但总体上表现出: x=y 应结合散点图分析 • 常用的相关系数:Pearson简单相关系数、Spearman等级相关系数 和Kendall 相关系数等
表示分析结果中除显示统计检验的概率P-值以外,还输 出星号标记,以标明变量间的相关性是否显著 ; 不选中 则不输出星号标记。
基本操作步骤
• statistics选项:仅当计算简单相关系数时,选择输出哪些统计量. – means and standard deviations:均值、标准差; – cross-product deviations and covariances:分别输出两变量的离差 平方和(sum of square 分母)、两变量的差积和(cross-products分 子)、协方差(covariance) – 以上各个数据除以n-1
其中,ry1、ry 2、r12分别表示y和x1的相关系数、y和x 2的相关系数、 x1和x 2的相关系数。
• 偏相关系数的取值范围及大小含义与相关系数相同
净相关分析检验
• 原假设:两总体的偏相关系数与零无显著差异 • 检验统计量
nq2 tr 2 1 r
• r为偏相关系数;n为样本量;q为阶数。t统计量服从n-q-2个自由度的t分 布
相关系数
• 通常样本相关系数不能直接用来说明样本来自的两总体是否具有显著 的线性相关关系,需要通过假设检验的方式对样本来自的总体是否存 在显著的线性相关关系进行统计推断 • 基本步骤 – 提出原假设,即两总体无显著线性关系,存在零相关 – 选择检验统计量。对不同类型的变量应采用不同的相关系数,相 应也应采用不同的检验统计量 – 计算检验统计量的观测值和对应的概率P-值 – 决策。比较检验统计量的概率P-值与给定的显著性水平α
第七章 SPSS的相关分析
相关分析
• 客观事物之间的关系 – 商品的销售额和销售量 – 圆面积和圆半径 – 家庭收入和支出 – 子女身高和父母身高之间的关系 • 函数关系: – 指两事物之间的一种一一对应的关系。 – 即:当一个变量x取一定值时,另一变量y可以依确定的关系取一个确 定的值 • 统计关系(相关关系): – 指两事物之间的一种非一一对应的关系。事物间的关系不是确定 性的。 – 即:当一个变量x取一定值时,另一变量y的取值可能有几个.一个变 量的值不能由另一个变量唯一确定
例题 7.2
• 利用住房状况调查数据,分析家庭收入和计划购买的住房面积之间的 关系 • 两变量均为定距变量,采用简单相关系数
偏相关分析
• 研究商品的需求量和价格、消费者收入之间的关系. – 需求量和价格之间的相关关系包含了消费者收入对商品需求量的 影响;同时收入对价格也产生影响,并通过价格变动传递到对商 品需求量的影响中 • 粮食产量与平均气温、月降水量、平均日照时间、月平均湿度之间的 关系时 – 产量和平均气温之间的线性关系中实际上还包含了月平均日照时 数对产量的影响以及对平均气温的影响等
基本操作步骤
• 菜单选项:analyze->correlate->partial
选择参与分析的 变量
选择一个或多个 控制变量
option选项: – zero-order correlations:输出简单相关系数
例题 7.3
• 将家庭常住人口数作为控制变量,对家庭收入与计划购房面积做偏相 关分析
• 当两变量为完全正相关时,r=1;当两变量完全负相关时,r=-1
i 1
i 1
Spearman相关系数
• 在小样本下,在零假设成立时, Spearman等级相关系数服从Spearman 分布;在大样本下, Spearman等级相关系数的检验统计量为Z统计量, 定义为:
Z r n 1
• Z统计量近似服从标准正态分布
Kendall相关系数
• 度量定序变量间的线性相关关系
• 步骤: – 首先利用变量秩计算一致对数目(U)和非一致对数目(V) 例如:(2,3),(4,4),(3,1),(5,5),(1,2) 按x的秩升序排序:(1,2),(2,3),(3,1),(4,4),(5,5) 一致对:变量y的秩随变量x的秩同步增大的秩对 (2,3)(2,4)(2,5)(3,4)(3,5)(1,4)(1,5)(4,5)--8对 非一致对:变量y的秩未随变量x的秩同步增大的秩对 (2,1)(3,1)--2对
• 在小样本下,Kendallτ服从Kendall分布 • 在大样本下,采用的检验统计量为
Z
9n(n 1)
2(2n 5)
• Z统计量近似服从标准正态分布
基本操作步骤
• 菜单选项:analyze->correlate->bivariate
选择计算相关系 数的变量
选择计算哪种相 关系数
选择双边概率p值 或单边概率p值
• 在这种情况下,单纯利用相关系数来评价变量间的相关性显然是不准 确的,而需要在剔除其他相关因素影响的条件下计算变量间的相关性
偏相关分析
• 含义: – 也称净相关分析,它在控制其他变量的线性影响的条件下分析两 变量间的线性相关性 • 工具:偏相关系数(净相关系数)。 – 控制变量个数为一时,偏相关系数称为一阶偏相关系数 – 控制变量个数为二时,偏相关系数称为二阶偏相关系数 – 控制变量个数为零时,偏相关系数称为零阶偏相关系数,也就是 相关系数
– 两变量具有较强的正相关关系,则一致对数目U应较大,V应较小 – 两变量具有较强的负相关关系,则一致对数目U应较小,V应较大 – 两变量的相关性较弱,则U与V应大致相等,大约各占样本量的二 分之一
Kendall相关系数
• 计算Kendall τ 统计量
2 (U V ) n(n 1)
相关分析
• 统计关系: – 线性相关关系 • 正线性关系:两个变量线性的相随变动方向相同 • 负线性关系:两个变量线性的相随变动方向相反 – 非线性相关关系 • 统计关系强弱的测度 – 相关分析 – 散点图,相关系数
定类 定序
卡方类测量
定距
Eta系数
定类
定序 定距
卡方类测量
Spearman相关系数 Spearman相关系数 同序-异序对测量 Pearson相关系数
相关文档
最新文档