二极管的介绍
各种二极管符号及作用
各种二极管符号及作用二极管是一种常见的电子器件,广泛应用于电路中。
它具有电流只能单向通过的特性,常用于整流、检波、稳压、开关等电路中。
下面将详细介绍各种二极管的符号及作用。
1.正向导通二极管(正向二极管):正向导通二极管的符号为一个三角箭头指向一条直线。
它由P型半导体和N型半导体组成,P区称为阳极,N区称为阴极。
当外加正向电压时,两个半导体之间的势垒会被压低或消除,形成导电通道,电流可以顺利通过。
所以正向导通二极管主要用作整流器、放大器等电路中。
2.反向截止二极管(反向二极管):反向截止二极管的符号为一个三角箭头指向一条直线,并且箭头与直线相连。
它同样由P型半导体和N型半导体组成,但是当外加反向电压时,两个半导体之间的势垒会增大,阻断电流流动。
所以反向截止二极管主要用作保护电路中的组件,防止过电压损坏其他器件。
3.发光二极管(LED):发光二极管的符号与正向导通二极管相似,但在箭头顶部加了两条斜线,表示发光。
发光二极管在正向导通时会发出可见光或红外线,常用于指示灯、显示屏、数码管等场景中。
4. 齐纳二极管(Zener二极管):齐纳二极管的符号与正向导通二极管相似,但在箭头上加了一个斜杠。
齐纳二极管是一种特殊的二极管,主要用于稳压电路中。
当反向电压达到其中一特定电压值时,齐纳二极管会出现反向击穿现象,即通过漏电流来维持固定电压输出。
因此,齐纳二极管可以用来实现稳定的电压源。
5. Schottky二极管:Schottky二极管的符号与正向导通二极管相似,但箭头底部加了一个横线。
Schottky二极管由金属与半导体的接触形成,具有快速开关速度和低导通压降的特性。
它广泛应用于高速开关电路、电源转换器、射频调制解调器等场景中。
6.多层结二极管(TPD):多层结二极管的符号使用两个三角箭头,一个指向上方,一个指向下方,两个三角箭头之间有一个横线连接。
多层结二极管由多个PN结级联而成,可以在高电压条件下工作。
二极管三极管主要参数
二极管三极管主要参数二极管和三极管是半导体器件中常见的两种元件,它们在电子电路中具有重要的作用。
下面将详细介绍二极管和三极管的主要参数。
一、二极管的主要参数:1.电压额定值:也称为反向工作电压(VR)或正向导通电压(VF),表示二极管在正向和反向工作时能够承受的最大电压。
对于正向工作,一般为0.7V左右,而对于反向工作,一般为数十V至几百V。
2.最大定向电流:指二极管在正向工作时能够承受的最大电流,也称为连续电流(IF),一般为几毫安到几十安。
3.反向漏电流:指二极管在反向工作时的漏电流,也称为反向电流(IR),一般为几微安到几毫安。
4.开启时间和关断时间:也称为导通时间和截止时间,指二极管从关断到开启、从开启到关断的时间,一般为纳秒或微秒级。
5.反向恢复时间:指二极管在从正向工作状态转为反向工作状态时,恢复正常的导通特性所需的时间,一般为纳秒或微秒级。
6.动态电阻:指二极管在正向工作时的电压变化与电流变化的比值,一般在工作点附近呈线性关系。
7.耐压能力:指二极管在正向和反向工作时能够承受的最大电压,一般为几十伏到几百伏。
二、三极管的主要参数:1.当前放大倍数:也称为直流电流放大倍数(hFE)或β值,指输入电流和输出电流之间的比值,一般为几十至几千。
2.基极电流:也称为输入电流(IB),指输入信号经过基极向集电极注入的电流。
3.饱和电流:也称为最大电流(IC),指当三极管的基极电流达到一定值时,集电极电流不能再继续增大的电流值。
4.最大功耗:指三极管能够承受的最大功率,一般为几十毫瓦到几瓦。
5.最大频率:指三极管能够工作的最高频率,一般为几十MHz到几GHz。
6.最小输入电压:指三极管能够正常工作的最小输入电压。
7.最大输入电压:指三极管能够承受的最大输入电压。
三、总结:二极管主要参数包括电压额定值、最大定向电流、反向漏电流、开启时间和关断时间、反向恢复时间、动态电阻和耐压能力。
这些参数主要描述了二极管在正向和反向工作时的性能。
二极管标准
二极管标准二极管是一种常见的电子元器件,它具有单向导电性,可以将电流限制在一个方向上。
由于其简单、可靠、易于制造等优点,广泛应用于电子设备中。
在电子工程领域中,二极管的标准是一个非常重要的概念,本文将对二极管标准进行详细介绍。
二极管的标准主要包括以下几个方面:1. 尺寸标准二极管的尺寸标准通常是指其外观尺寸和引脚尺寸。
外观尺寸包括长度、宽度和高度等,引脚尺寸包括引脚间距、引脚长度和引脚直径等。
不同类型的二极管尺寸标准可能有所不同,但一般都遵循国际电工委员会(IEC)制定的标准。
2. 电性能参数二极管的电性能参数是指其正向电压降、反向击穿电压、最大正向电流和最大反向电流等参数。
这些参数是评价二极管性能优劣的重要指标,也是选择二极管时需要考虑的因素。
在国际标准中,这些参数通常以符号表示,并规定了测量方法和测试条件。
3. 包装标准二极管的包装标准是指其外观包装形式和内部结构。
外观包装形式包括管式、贴片式、芯片式等形式,内部结构包括晶体管、金属-半导体-金属(MSM)二极管、肖特基二极管等。
不同的包装形式和内部结构适用于不同的应用场合,需要根据具体情况进行选择。
4. 工作温度范围二极管的工作温度范围是指其可以正常工作的温度范围。
一般来说,二极管的工作温度范围越宽,其适用范围就越广。
在国际标准中,一般规定了二极管的最低和最高工作温度。
以上是二极管标准的主要内容,下面我们将分别对其进行详细介绍。
一、尺寸标准二极管的尺寸标准主要包括外观尺寸和引脚尺寸两个方面。
这些参数对于二极管的安装和使用都非常重要。
1. 外观尺寸外观尺寸是指二极管外形的长度、宽度和高度等参数。
这些参数一般以毫米为单位表示。
不同类型的二极管外形可能有所不同,但一般都符合IEC制定的标准。
2. 引脚尺寸引脚尺寸是指二极管引脚之间的距离、长度和直径等参数。
这些参数一般以毫米为单位表示。
不同类型的二极管引脚尺寸可能有所不同,但一般都符合IEC制定的标准。
二极管原理及其基本电路
二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。
本文将介绍二极管的原理以及其基本电路。
一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。
在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。
当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。
在二极管的工作中,主要有以下几个重要的特性。
1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。
在这个过程中,二极管的导电性变得很好。
正向电压越大,二极管导通越好。
2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。
当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。
3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。
当正向电压超过这个限制时,二极管截止,不导通。
而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。
二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。
1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。
它由一个电压源、一个限流电阻和一个二极管组成。
通过改变电压源的电压,可以测量二极管在不同电压下的电流。
当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。
2.整流电路:整流电路主要用于将交流电转换为直流电。
它由一个二极管和负载组成。
当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。
而当二极管处于反向偏置状态时,它阻止反向电流通过。
3.限流电路:限流电路主要用于限制电流的大小。
它由一个电压源、一个电阻和一个二极管组成。
二极管起到了稳压和限流的作用。
二极管介绍
3.开关二极管的主要参数5.温度对二极管参数的影响6.二极管的简单检测方法7.稳压管的简单应用电路组成部分将PN 结用外壳封装起来,并加上电极引线就构成半导体二极管。
P 区引出线为二极管正极,区引出线为二极管负极。
二极管组成与电路符号如下图所示,图中箭头方向为地极管单向导电时的电流方向.+普通二极管符号-稳压二极管符号Dz自由电子P 区与N 区中载流子的扩散运动平衡状态下的PN 结小信号检波的灵敏度高线性好;用于检波和高频电路.反向电流小;允许工作温度高;击穿电压高及热稳定性好;用于整流和逻辑电路.按材料分类结的静电容量发生变化.用于自动频率二极管按用途分类图示出常用硅二极管的伏安特性际表示的是加在二极管两端的电压和流过二极管的电流间的关系。
当电压在零值附近时,电流为零。
当电压为流开始出现(通常将这个正向压称为死区电压)IF 电流明显增大。
当在二极管加上电流随不增加,当时,IR 结被击穿,不具有单向导电性能,这个电压称为击穿电压稳压二极管一般用硅半导体材料制成,与开关二极管有相类似的伏安特性。
当稳压二极管加VZ 反向电压的数值大到一定程度时则击穿,在此击穿区随着IZ 反向电流的变化,而VZ 反向电夺保持基本不变,表现出很好的稳压特性。
只要控制IZ 反向电流不超过一定值,管子不会因过热而损坏。
VVF IRIzt二极管正向特性在环境温度升高时,二极管的正向特性曲线将左移,在室温附近,温度每升高正向压降减少结论:二极管的特性对温度很敏感。
V20℃温度每升高约增大一倍。
温度系数变化1℃稳定电压小于负温度系数,即温度升高稳定电压值下降;稳定电压在大于电压上升;稳压值在u开关整流二极管主要工作参数1.最大整流电流是二极管长期运行是允许通过的最大正向平均电流,其值与及外部散热条件等有关。
在规定散热条件下,二极管正向平均电流若超过此值,则将因结温过高而烧坏。
2.最高反向工作电压是二极管长期运行是允许外加的最大反向电压,若超过此值,二极管有可能因反向击穿而损坏。
肖特基二极管、开关二极管、快恢复二极管
肖特基二极管、开关二极管、快恢复二极管是现代电子元件中常见的三种二极管类型。
它们在电子设备中起着不同的作用,本文将分别介绍这三种类型的二极管的特点、应用和工作原理。
一、肖特基二极管1. 特点肖特基二极管,又称作劲步二极管,是一种具有非常快速反应时间和低逆向漏电流的二极管。
它采用了金属-半导体接触来代替传统的P-N 结,因此具有更快的开关速度和更低的开启电压。
2. 应用由于其快速开关特性和低漏电流,肖特基二极管广泛应用于高频开关电源、无线通信设备、医疗设备和汽车电子系统等领域。
3. 工作原理当正向电压施加到肖特基二极管上时,由于金属-半导体接触的特性,电子能够迅速地从金属电极注入到半导体中,使得二极管快速导通;在反向电压下,由于金属-半导体接触的势垒高,几乎没有反向漏电流,因此具有很高的反向击穿电压。
二、开关二极管1. 特点开关二极管是为了快速开关电路而设计的一种二极管,具有较快的反应时间和较低的导通压降。
它专门用于电路的开关控制,能够快速地打开和关闭。
2. 应用开关二极管广泛应用于开关电源、逆变器、直流-直流变换器等高频开关电路中,可以实现高效率和快速响应。
3. 工作原理开关二极管的工作原理和普通二极管相似,但它被优化设计,以实现更快的反应时间和更低的导通压降,从而适合高频开关电路的应用。
三、快恢复二极管1. 特点快恢复二极管是一种具有快速恢复时间和低反向漏电流的二极管。
它采用特殊的工艺和材料设计,在高频开关电路中表现出色良好的性能。
2. 应用快恢复二极管广泛应用于开关电源、逆变器、变频器、汽车电子系统等需要高速开关和快速反应的电路中。
3. 工作原理快恢复二极管的工作原理是通过优化材料和工艺,降低二极管的存储电荷和开关时间,从而实现更快的反应速度和更低的反向漏电流。
以上就是对肖特基二极管、开关二极管、快恢复二极管的介绍,这三种二极管在现代电子设备中扮演着重要的角色,在不同的领域发挥着关键作用。
随着电子技术的不断发展,相信这些二极管类型也会不断得到改进和优化,为电子设备的性能提升和功耗降低做出更大的贡献。
常用二极管型号及参数大全
常用二极管型号及参数大全
二极管是一种最常用的电子器件之一,它具有方便、可靠、低成本等优点,在电子领域被广泛应用。
常用的二极管型号和参数有很多,下面我将介绍一些常见的二极管型号及其参数。
1.PN结二极管:
型号:1N4148
参数:正向电压降:0.7V,反向最大电压:75V,最大连续电流:
300mA
2.快恢复二极管:
型号:1N4937
参数:正向电压降:1.2V,反向最大电压:600V,最大连续电流:1A 3.高速二极管:
型号:BAT54
参数:正向电压降:0.55V,反向最大电压:30V,最大连续电流:350mA
4.整流二极管:
型号:1N4007
参数:正向电压降:1V,反向最大电压:1000V,最大连续电流:1A 5.功率二极管:
型号:1N5408
参数:正向电压降:1.2V,反向最大电压:1000V,最大连续电流:3A 6.双向导通二极管:
型号:BAT54S
参数:正向电压降:0.55V,反向最大电压:30V,最大连续电流:650mA
7. Zenner二极管:
型号:1N4742A
参数:正向电压降:1.2V,反向最大电压:12V,最大电流:1W
8.稳压二极管:
型号:1N5231B
参数:正向电压降:0.7V,反向最大电压:4.7V,最大连续电流:0.5W
9.光电耦合二极管:
型号:PC817
参数:正向电压降:1.2V,反向最大电压:80V,最大连续电流:50mA 10.电容二极管:
型号:BB001
参数:正向电压降:1.2V,反向最大电压:6V,最大连续电流:50mA。
二极管知识介绍
稳压二极管的伏安特性
P&L
11
#
稳压二极管
型号
PULS产品常用的稳压二极管举列 参数
BZG03系列 VZ : 10-270V、 Iz: 2-50mA.
TZMC系列 VZ : 2.4-75V、 Iz: 2.5-5mA.
ZMM系列 VZ : 0.7-79V、 Iz: 7.8-340mA.
P&L
8
#
开关二极管
型号
PULS产品常用的开关二极管举列 参数
BAV99系列 VRM: 85V、VFM: ≤1.25V、IFM: 4.5A、trr: ≤4ns
MCL4148 VRM: 100V、VFM: 1.0V、IFM: 0.5A、trr: 4ns
BAV103
VRM: 250V、VFM: ≤1.0V、IFM: 1.0A、trr: ≤50ns
BYV32E系列 VRM: 100-200V、VFM: ≤0.85V、IFM: 20A、trr: ≤25ns
BAW156
VRM: 85V、VFM: ≤1.25V、IFM: 4A、trr: ≤3µs
P&L
6
#
第二章: 开关二极管
P&L7# Nhomakorabea开关二极管
➢ 开关二极管作用:
利用了二极管的单向导电特性。在PN结加上正向电压后,其导通电阻很小;而加上反 向电压后截止,其电阻很大。因此在电路中起到控制电流接通或关断的作用。
当V<VA时,此时电压不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为正向死 区,这个不能使二极管导通的电压称为死区电压。
当VA<V<VB时,PN结内电场被克服,二极管导通,电流随电压增大迅速上升,在正常使用的电流范 围内,导通时二极管的端电压值几乎不变,这个电压称为二极管的正向电压。
二极管工作原理
二极管工作原理一、概述二极管是一种最简单的电子器件,也是最基本的半导体器件之一。
它由一个P 型半导体和一个N型半导体组成,通过P-N结的形成实现了电流的单向导通。
本文将详细介绍二极管的工作原理及其相关特性。
二、二极管的结构二极管由两个半导体材料组成,通常为硅(Si)或者锗(Ge)。
其中一个半导体被掺入三价杂质,形成P型半导体;另一个半导体被掺入五价杂质,形成N型半导体。
两个半导体材料通过P-N结相连接,形成二极管。
三、二极管的工作原理当二极管处于正向偏置时,即P端连接正电压,N端连接负电压,P-N结内的电子从N端向P端流动,同时空穴从P端向N端流动。
这种情况下,P-N结的电势垒被降低,电流可以通过二极管,二极管处于导通状态。
当二极管处于反向偏置时,即P端连接负电压,N端连接正电压,P-N结的电势垒被增加,电子和空穴被阻挡,无法通过P-N结。
这种情况下,二极管处于截止状态,不导电。
四、二极管的特性1. 正向电压和电流关系:在正向偏置下,二极管的电流与电压呈指数关系。
当正向电压小于二极管的正向压降时,电流几乎为零;当正向电压超过正向压降时,电流急剧增加。
2. 反向电压和反向电流关系:在反向偏置下,二极管的反向电流很小,可以忽稍不计。
当反向电压达到一定值时,二极管会发生击穿,反向电流急剧增加。
3. 正向压降:不同类型的二极管有不同的正向压降值。
常见的硅二极管的正向压降约为0.6V,锗二极管约为0.2V。
4. 反向击穿电压:当反向电压超过二极管的反向击穿电压时,二极管会发生击穿,反向电流急剧增加。
这会导致二极管损坏,因此在设计电路时需要注意反向击穿电压的限制。
五、二极管的应用1. 整流器:由于二极管的单向导通特性,可以将交流信号转换为直流信号。
常见的整流电路就是利用二极管进行整流。
2. 信号调制:二极管可以用于调制信号,例如调幅、调频等。
3. 电压稳定器:通过特殊的电路连接方式,二极管可以实现稳压功能,用于稳定电源输出电压。
二极管的工作原理
二极管的工作原理一、引言二极管是一种常见的电子元件,具有广泛的应用。
了解二极管的工作原理对于理解电子电路的基本原理和应用至关重要。
本文将详细介绍二极管的工作原理,包括结构、工作特性和应用。
二、结构二极管由P型半导体和N型半导体组成。
P型半导体中的杂质原子会导致电子空穴对,而N型半导体中的杂质原子会导致自由电子。
当P型半导体与N型半导体相接触时,形成的结区称为P-N结。
三、工作原理1. 正向偏置当二极管的P端连接正电压,N端连接负电压时,称为正向偏置。
在这种情况下,由于正电压的作用,P区的电子空穴对会向N区扩散,而N区的自由电子会向P区扩散。
这种扩散会导致P-N结区域形成一个耗尽层,其中几乎没有可挪移的电子或者空穴。
2. 反向偏置当二极管的P端连接负电压,N端连接正电压时,称为反向偏置。
在这种情况下,由于负电压的作用,P区的电子空穴对会被吸引到P-N结区域,而N区的自由电子也会被吸引到P-N结区域。
这种吸引会导致P-N结区域的耗尽层变得更宽。
3. 正向偏置下的导通当二极管处于正向偏置状态时,当正向电压超过二极管的导通电压(正向压降),二极管就会开始导通。
在导通状态下,电流可以自由通过二极管。
4. 反向偏置下的截止当二极管处于反向偏置状态时,即使施加的反向电压较小,二极管也会截止。
在截止状态下,几乎没有电流通过二极管。
四、工作特性1. 正向电压与电流关系当二极管处于正向偏置状态时,正向电压与电流之间存在一个非线性关系。
当正向电压较小时,电流较小;当正向电压较大时,电流急剧增加。
这种非线性关系使得二极管在电子电路中可以用作开关或者整流器。
2. 反向电压与电流关系当二极管处于反向偏置状态时,反向电压与电流之间存在一个反向电流极限。
当反向电压超过该极限时,二极管会发生击穿现象,导致大电流通过二极管,可能会损坏二极管。
五、应用1. 整流器由于二极管具有只允许电流单向通过的特性,因此可以用作整流器。
整流器将交流电转换为直流电,常用于电源和电子设备中。
电子元器件系列知识----二极管介绍
电子元器件知识----二极管晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。
作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
正因为二极管具有上述特性,电路中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。
二极管种类有很多,根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。
按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。
点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。
由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。
面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。
平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。
极性识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。
发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。
用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极。
二极管的工作原理晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。
二极管 介绍
二极管介绍二极管一、引言二极管是一种电子元器件,被广泛应用于电子设备中的电路中。
它具有正向导通和反向截止的特性,常用于整流、调制、放大和开关等功能。
本文将从结构、工作原理、分类和应用等方面对二极管进行详细介绍。
二、结构和工作原理二极管由两个不同材料组成,即P型半导体和N型半导体。
两个半导体之间的交界面称为P-N结。
P型半导体上的杂质含有三价元素,如硼(B)、铝(Al)等,而N型半导体上的杂质含有五价元素,如磷(P)、砷(As)等。
当P-N结加上正向偏置电压时,P型区域与N型区域之间的电子和空穴将扩散并重新结合。
这种情况下,电子从N型区域流向P型区域,空穴则相反。
这种导通状态称为正向偏置。
反之,当P-N结加上反向偏置电压时,P型区域的电子被吸引向P-N结区域,N型区域的空穴被吸引向P-N结区域,电子和空穴无法通过P-N结进行结合,形成截止状态。
三、分类根据用途和特性,二极管可分为多种类型。
以下是常见的二极管分类:1. 整流二极管整流二极管也称为信号二极管,主要用于将交流电信号转换为直流电信号。
最常见的整流二极管是硅二极管和锗二极管。
2. 光电二极管光电二极管是一种能够将光能转换为电能的器件。
光电二极管常用于光电转换、光通讯和传感器等领域。
3. 齐纳二极管齐纳二极管是一种具有稳定的正向电压和锐利的负阻抗特性的二极管。
它常用于电力管理、稳压电源和高频电路等领域。
4. 可变电容二极管可变电容二极管可以改变其电容大小。
它通常由两个电容导板之间的PN结构成,通过改变偏置电压来调节电容值。
可变电容二极管被广泛应用于调谐电路和无线电设备等领域。
四、应用二极管在电子设备中被广泛应用。
以下是一些常见的应用场景:1. 整流器二极管可以将交流电转换为直流电,常用于电源、逆变器和电动机驱动器等领域。
2. 放大器二极管具有整流和放大特性,被广泛应用于声音放大器、射频放大器等领域。
3. 稳压器稳压二极管可以提供稳定的电压输出,在电路中用于稳定电源和保护其他元器件。
二极管工作原理
二极管工作原理一、引言二极管是一种常用的电子元件,广泛应用于电子电路中。
了解二极管的工作原理对于理解电子电路的基本原理和设计具有重要意义。
本文将详细介绍二极管的工作原理,包括结构、特性以及工作原理的解释。
二、结构二极管由两个半导体材料组成,通常是硅(Si)或者砷化镓(GaAs)。
其中一个半导体被称为P型半导体,另一个被称为N型半导体。
P型半导体中的杂质原子带有正电荷,被称为“空穴”,而N型半导体中的杂质原子带有负电荷,被称为“电子”。
两个半导体材料通过P-N结相连接,形成二极管的结构。
三、特性1. 正向特性当二极管的正极连接到正电压,负极连接到负电压时,即形成正向偏置。
此时,P型半导体的空穴和N型半导体的电子会向P-N结区域扩散。
在P-N结区域,空穴和电子发生复合,产生正向电流。
正向电流的大小与施加在二极管上的电压成正比。
2. 反向特性当二极管的正极连接到负电压,负极连接到正电压时,即形成反向偏置。
此时,P型半导体的空穴和N型半导体的电子被吸引到二极管的结区域,形成电场。
这个电场阻止了电子和空穴的扩散,从而阻止了电流的流动。
只有当反向电压超过二极管的击穿电压时,电流才会开始流动。
四、工作原理解释二极管的工作原理可以通过能带理论解释。
能带理论是描述半导体中电子能量状态的一种理论。
在P型半导体中,能带中的能量较低,因为空穴占据了能量较高的位置。
而在N型半导体中,能带中的能量较高,因为电子占据了能量较低的位置。
当P-N结相连接时,形成了能带的弯曲,形成了能带弯曲区域。
在这个区域,电子从N型半导体向P型半导体扩散,空穴从P型半导体向N型半导体扩散,从而形成了电流。
五、应用二极管的工作原理使其在电子电路中有着广泛的应用。
以下是一些常见的应用领域:1. 整流器:二极管可以将交流电转换为直流电。
在整流器电路中,二极管只允许电流在一个方向上通过,从而实现了交流电到直流电的转换。
2. 信号检测器:二极管可以用于检测信号的存在和强度。
二极管介绍
1.发光二极管的作用发光二极管(LED)是一种由磷化镓(GaP)等半导体材料制成的、能直接将电能转变成光能的发光显示器件。
当其内部有一定电流通过时,它就会发光。
图4-21是共电路图形符号。
发光二极管也与普通二极管一样由PN结构成,也具有单向导电性。
它广泛应用于各种电子电路、家电、仪表等设备中、作电源指示或电平指示。
2.发光二极管的分类发光二极管有多种分类方法。
按其使用材料可分为磷化镓(GaP)发光二极管、磷砷化镓(GaAsP)发光二极管、砷化镓(GaAs)发光二极管、磷铟砷化镓(GaAsInP)发光二极管和砷铝化镓(GaAlAs)发光二极管等多种。
按其封装结构及封装形式除可分为金属封装、陶瓷封装、塑料封装、树脂封装和无引线表面封装外,还可分为加色散射封装(D)、无色散射封装(W)、有色透明封装(C)和无色透明封装(T)。
按其封装外形可分为圆形、方形、矩形、三角形和组合形等多种,图4-22为几种发光二极管的外形。
塑封发光二极管按管体颜色又分为红色、琥珀色、黄色、橙色、浅蓝色、绿色、黑色、白色、透明无色等多种。
而圆形发光二极管的外径从¢2~¢20mm,分为多种规格。
按发光二极管的发光颜色又可人发为有色光和红外光。
有色光又分为红色光、黄色光、橙色光、绿色光等。
另外,发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。
3.普通单色发光二极管普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。
它属于电流控制型半导体器件,使用时需串接合适的限流电阻。
图4-23是普通发光二极管的应用电路。
普通单色发光二极管的发光颜色与发光的波长有关,而发光的波长又取决于制造发光二极管所用的半导体材料。
红色发光二极管的波长一般为650~700nm,琥珀色发光二极管的波长一般为630~650 nm ,橙色发光二极管的波长一般为610~630 nm左右,黄色发光二极管的波长一般为585 nm左右,绿色发光二极管的波长一般为555~570 nm。
各种二极管的用途
各种二极管的用途二极管是一种由半导体材料制成的电子器件,由于其特殊的电学特性,被广泛应用于电子电路中。
下面将介绍一些常见的二极管用途。
1.整流:最常见的二极管应用之一是整流。
在交流电源中,二极管可以将来自电源的交流信号转换为单向的直流信号。
这种整流作用通常用于电源适配器、电池充电器等需要直流电源供应的设备中。
2. 保护:二极管可以用作电路中的保护器件,防止反向电压或过大电压对其他器件的损坏。
例如,将二极管连接在继电器、开关等器件的线圈或电磁线圈的两端,可以保护其不受到反电动势(Back EMF)的损坏。
3.发光二极管(LED):发光二极管是一种可以将电能转换为光能的二极管。
由于其高效、低能耗、长寿命和各种颜色的可选择性,LED广泛应用于照明、显示屏、指示灯等各种领域。
4.电压调节器:通过组合多个二极管和电阻器,可以构建电压稳定器电路,用于调整输入电压到所需的输出电压水平。
这种电压调节器可以用于电源、电动车电池管理系统等需要稳定电压供应的应用中。
5.开关:二极管的非线性特性使其可以用作开关。
当二极管处于正向偏置时,它可以允许电流通过;而在反向偏置时,它将堵塞电流。
这种开关特性可以用于时序电路、电子开关等应用中。
6.频率调谐器:二极管的电容特性可以用于构建频率调谐电路。
在正向电压下,二极管的电容值较大,电路共振频率较低;而在反向电压下,电容值较小,共振频率较高。
这种特性可以在收音机、电视等通信设备中用于调谐频率。
7.压限器:二极管的压限器功能可以将电路中的电压限制在一定范围之内,防止过电压损坏其他电子器件。
在过电压情况下,二极管将进入击穿状态,形成导通通路,将过高的电压引导到地或其他安全路径上。
8.电流定向器:二极管的电流只允许单向流动,因此可以将其用作电流定向器。
通过与其他元件结合,可以构建整流电路、保护电路、检波电路等。
9.脉冲波形修整器:当二极管处于反向偏置状态时,其电压变化响应较慢,可以用于修整脉冲波形,去除波峰和波谷之间的噪声。
二极管的7种用途
二极管的7种用途二极管是一种电子器件,具有许多用途。
下面将介绍二极管的七种常见用途。
1. 整流器:二极管最常见的用途之一是作为整流器。
在交流电路中,如果我们希望将交流电转换为直流电,就需要使用二极管进行整流。
二极管可以让电流只能在一个方向上通过,将交流电信号变成直流电信号。
2. 发光二极管(LED):LED是一种广泛应用于照明和显示等领域的二极管。
当电流通过LED时,它会发出可见光。
LED有很高的能效,寿命长,且可以产生不同颜色的光,因此被广泛应用于指示灯、显示屏和照明等领域。
3. 太阳能电池板:二极管也被用于太阳能电池板中。
当太阳能电池板受到阳光照射时,二极管将电能转换为直流电。
它能有效地将光能转化为电能。
4. 播放器和录音机:在音频设备中,二极管也有重要的用途。
例如,在放音机和录音机中,二极管被用作检波器。
当音频信号通过二极管时,它将被转换为可听的声音。
5. 保护电路:二极管还可以用于保护其他电子元件。
例如,当交流电压超过一定范围时,二极管可以用来保护电路免受过高的电压损坏。
6. 温度传感器:二极管的电特性使其成为一种很好的温度传感器。
当温度变化时,二极管的电压也会变化,因此可以通过测量二极管电压来确定温度的变化。
3. 逻辑门:逻辑门是计算机中的重要组成部分,也是电子逻辑电路的基础。
二极管可以用来制作和实现各种逻辑门,如与门、或门和非门等。
这些逻辑门被用于处理和操作数字信号,实现计算机内部的数据处理和控制。
7. 放大器:二极管也可以作为放大器使用。
在某些应用中,二极管的非线性特性可以被利用来放大信号。
尽管二极管的增益相对较小,但在一些特定的应用中,二极管可以为信号提供必要的放大。
总之,二极管是一种极其重要和多功能的电子元件。
不仅可以作为整流器、发光二极管和太阳能电池板等重要设备的组成部分,还可在音频设备、保护电路、温度传感器和逻辑门等各个领域发挥重要作用。
二极管三极管的基础知识
二极管三极管的基础知识二极管和三极管是电子领域中常见的两种元件,它们在电路中起着重要的作用。
本文将从二极管和三极管的基础知识入手,介绍它们的结构、工作原理以及在电子设备中的应用。
一、二极管的基础知识二极管是一种具有两个电极的半导体器件,通常由P型半导体和N 型半导体组成。
它的主要作用是允许电流在一个方向上流动,而阻止电流在另一个方向上流动。
二极管的一个电极称为阳极(Anode),另一个电极称为阴极(Cathode)。
二极管的工作原理是基于PN结的特性。
PN结是指P型半导体和N 型半导体的结合处。
当P型半导体的电子与N型半导体的空穴相遇时,会发生电子与空穴的复合,形成一个带电的区域,这个区域被称为耗尽区。
在耗尽区的两端会形成一个电势差,这个电势差被称为势垒。
当二极管正向偏置时,即阳极连接正极,阴极连接负极,势垒将变得较小,电流可以流过二极管。
而当二极管反向偏置时,即阳极连接负极,阴极连接正极,势垒将变得较大,电流无法流过二极管。
二极管有很多种不同的类型,例如常用的正向工作电压为0.7伏的硅二极管和正向工作电压为0.3伏的锗二极管等。
它们在电子设备中广泛应用,如整流器、稳压器、电压调节器等。
二、三极管的基础知识三极管是一种具有三个电极的半导体器件,通常由P型半导体、N 型半导体和另一种掺杂物较少的P型半导体组成。
它的主要作用是放大电流和控制电流。
三极管的三个电极分别为基极(Base)、发射极(Emitter)和集电极(Collector)。
基极用于控制电流,发射极用于发射电子,集电极用于收集电子。
三极管有两种类型,NPN型和PNP型,它们的构造和工作原理基本相同,只是P型半导体和N型半导体的位置相反。
三极管的工作原理是基于PNP结和NPN结的特性。
当三极管的基极电流较小时,三极管处于截止区,电流无法通过三极管。
当基极电流增大时,会使三极管进入饱和区,电流可以从发射极流向集电极。
三极管的放大作用是通过控制基极电流来实现的,当基极电流变化时,发射极到集电极的电流也会相应变化。
二极管的特性及简介介绍
二极管的特性(tèxìng)与参数(cānshù)几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常(fēicháng)广泛。
二极管的工作(gōngzuò)原理晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压(diànyā)时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流,如下图导通区所示。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0,如下图截止区所示。
当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象,如下图击穿区所示。
I 电流截止区导通区V 电压击穿区二极管的导电(dǎodiàn)特性二极管最重要的特性就是单方向导电性。
在电路中,电流只能从二极管的正极流入,负极流出。
下面通过简单的实验说明二极管的正向(zhènɡ xiànɡ)特性和反向特性。
1.正向(zhènɡ xiànɡ)特性在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。
必须说明,当加在二极管两端(liǎnɡ duān)的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。
只有当正向电压达到某一数值(硅管约为0.6V)以后(yǐhòu),二极管才能真正导通。
导通后二极管两端的电压称为二极管的正向压降。
二极管的用途
二极管二极管是常用的半导体元件之一。
本文介绍一些二极管的相关知识,供读者参考。
一、二极管的种类二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。
下面以用途为例,介绍不同种类二极管的特性。
1.整流二极管整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。
因为整流二极管正向工作电流较大,工艺上多采用面接触结构。
南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。
整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。
通常情况下额定正向T作电流LF在l A以上的整流二极管采用金属壳封装,以利于散热;额定正向工作电流在lA以下的采用全塑料封装。
另外,由于T艺技术的不断提高,也有不少较大功率的整流二极管采用塑料封装,在使用中应予以区别。
由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。
常见整流二极管的外形如图2所示。
选用整流二极管时,主要应考虑其最大整流电流、最大反向丁作电流、截止频率及反向恢复时间等参数。
普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管(例如l N系列、2CZ系列、RLR系列等)即可。
开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、反向恢复时间较短的整流二极管或快恢复二极管。
2.检波二极管检波二极管是把叠加在高频载波中的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二极管符号二极管(国标)二极管的判别及参数1.简述半导体是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。
半导体最重要的两种元素是硅(读“guī”)和锗(读“zhě”)。
我们常听说的美国硅谷,就是因为起先那里有好多家半导体厂商。
二极管应该算是半导体器件家族中的元老了。
很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管。
二极管最明显的性质就是它的单向导电特性,就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。
我们用万用表来对常见的1N4001型硅整流二极管进行测量,红表笔接二极管的负极,黑表笔接二极管的正极时,表针会动,说明它能够导电;然后将黑表笔接二极管负极,红表笔接二极管正极,这时万用表的表针根本不动或者只偏转一点点,说明导电不良(万用表里面,黑表笔接的是内部电池的正极)。
常见的几种二极管中有玻璃封装的、塑料封装的和金属封装的等几种。
像它的名字,二极管有两个电极,并且分为正负极,一般把极性标示在二极管的外壳上。
大多数用一个不同颜色的环来表示负极,有的直接标上“-”号。
大功率二极管多采用金属封装,并且有个螺帽以便固定在散热器上。
2.半导体二极管的极性判别及选用(1) 半导体二极管的极性判别一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP17等。
如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。
塑封二极管有圆环标志的是负极,如IN4000系列。
无标记的二极管,则可用万用表电阻档来判别正、负极,万用表电阻档示意图见图T304。
根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻档(一般用R×100或R×1k档。
不要用R×1或R×10k档,因为R×1档使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。
用表笔分别与二极管的两极相接,测出两个阻值。
在所测得阻值较小的一次,与黑表笔相接得一端为二极管的正极。
同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。
如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。
在这两种情况下,管子就不能使用了。
(2) 半导体二极管的选用通常小功率锗二极管的正向电阻值为Array 300~500 Ω,硅管为1 kΩ或更大些。
锗管反向电阻为几十千欧,硅管反向电阻在500 kΩ以上(大功率二极管的数值要大得多)。
正反向电阻差值越大越好。
点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。
面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。
选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。
选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。
3.半导体分立元器件命名方法利用二极管单向导电的特性,常用二极管作整流器,把交流电变为直流电,即只让交流电的正半周(或负半周)通过,再用电容器滤波形成平滑的直流。
事实上好多电器的电源部分都是这样的。
二极管也用来做检波器,把高频信号中的有用信号“检出来”,老式收音机中会有一个“检波二极管”,一般用2AP9型锗管。
二极管的类型也有好几种,对于电子制作来说,常常用到以下的二极管:用于稳压的稳压二极管,用于数字电路的开关二极管,用于调谐的变容二极管,以及光电二极管等,最常看见的是发光二极管。
4.发光二极管(1) 符号(2) 发光二极管发光二极管在日常生活电器中无处不在,它能够发光,有红色、绿色和黄色等,有直径为3mm或5mm圆形的,也有规格为2×5mm长方形的。
与普通二极管一样,发光二极管也是由半导体材料制成的,也具有单向导电的性质,即只有接对极性才能发光。
发光二极管的发光颜色一般和它本身的颜色相同,但是近年来出现了透明色的发光管,它也能发出红黄绿等颜色的光,只有通电了才能知道。
辨别发光二极管正负极的方法,有实验法和目测法。
实验法就是通电看看能不能发光,若不能就是极性接错或是发光管损坏。
注意发光二极管是一种电流型器件,虽然在它的两端直接接上3V的电压后能够发光,但容易损坏,在实际使用中一定要串接限流电阻,工作电流根据型号不同一般为1mA到30mA。
另外,由于发光二极管的导通电压一般为1.7V以上,所以一节1.5V的电池不能点亮发光二极管。
同样,一般万用表的R×1档到R×1k档均不能测试发光二极管,而R×10k档由于使用15V 的电池,能把有的发光管点亮。
用眼睛来观察发光二极管,可以发现内部的两个电极一大一小。
一般来说,电极较小、个头较矮的一个是发光二极管的正极,电极较大的一个是它的负极。
若是新买来脚较长的一个是正极。
(3) 发光二极管的伏安特性发光二极管的伏安特性与普通二极管类似,但它的正向压降较大,并在正向压降达到一定值时发光。
发光颜色和构成PN结的材料有关,通常有红、黄、绿、蓝和紫等颜色。
发光亮度近似和工作电流密度成正比,但掺杂ZnO和GaP的发光二极管,其发光亮度随电流密度的增加会很快趋向饱和。
另外,随结温的升高,LED的发光亮度将会减弱。
由于发光二极管的响应时间(光信号对电信号的延迟时间)一般小于100ns,故直流信号、交流信号或脉冲信号均可作为它的驱动信号。
国产LED器件用FG × 1 × 2 × 3 × 4 × 5 × 6命名,其中×1表示材料,×1取值1,2,3分别对应LED的材料为GaAsP,饶GaAsAl和GaP。
×2表示发光颜色,×2取1~6时表示发光颜色为红、橙、黄、绿、蓝和复色,× 3表示封装形式。
× 4表示外形,取0 ~ 6各整数时,分别指发光二极管的外形为圆形、长方形、符号形、三角形、正方形、组合形和特殊形。
× 5 × 6为序号。
使用发光二极管时,若用电压源驱动,则应在电路中串接限流电阻,以防止LED中电流过大而损坏。
用交流信号驱动时,为防止LED被反向击穿,可在两端反极性并连整流二极管。
几种红色发光二极管的参数见表B313。
5.Z310半导体发光器件(2)LED数码管常用的LED数码管如图T310(a)所示。
它是利用发光二极管的制造工艺,由7个条状管芯和一个点状管芯的发光二极管制成。
LED数码管有两种不同的结构形式,其等效电路分别如图T311所示。
当各段发光二极管的阳极连在一起作为公共端,因此称为共阳极数码管。
工作时应当将阳极连电源正极,各驱动输入端通过限流电阻接相应的译码驱动器的输出。
当译码驱动器的输出为低电平时,数码管相应的段变亮。
T311LED数码管各段发光二极管的伏安特性与普通二极管类似,只是正向压降稍大,在正向电流达到适当大小时就能发光。
在一定范围内,发光亮度和正向电流的大小近似成正比,但正向电流应小于允许的最大电流,并应留有适当的裕量,一般以不超过极限电流的70%为宜。
因此,它的驱动输入端和译码电路或电压源相连时,应当串接合适的限流电阻,以免损坏器件。
表B314列出了几种数码管的参数。
LED 数码管的大小规格很多,一般尺寸大的工作电压也大,这是因为大尺寸数码管的每一段可能是由几个发光二极管串联组成,称为导光柱型。
国产LED 数码管的管脚排列规格很多,因此,使用时除查产品说明书外,主要采用实测的方法来确定各管脚的功能,下面以共阳极数码管为例来说明。
先按图T312准备好测试线路,把数码管的左下角接地,再使A 端逐个和其它管脚接触。
若A 端和所有管脚都已接触过,而数码管各段全不亮,则左下角管脚即为阳极或空脚(设数码管是好的)。
若A 端接触管脚时数码管上某段变亮,则A 端接触的管脚为阳极。
然后使A 和阳极连好,用地线分别接触阳极以外的各管脚,相应的段就会变亮,从而可确定管脚和显示段间的对应关系6.Z312半导体光敏器件(2)光敏二极管光敏二极管又称光电二极管,目前使用最多的是光电二极管。
它有四种类型:PN 结型,PIN 结型,雪崩型和肖特基结型。
以下简介PN 结型光敏二极管。
PN 结型光敏二极管同普通二极管一样,也是PN 结构造,只是结面积较大,结深较浅,管壳上有光窗,从而使人射光容易注入PN 结的耗尽区中进行光电转换,大的结面积增加了有效光面积,提高了光电转换效率。
在无光照射时,光敏二极管的伏安特性和普通二极管一样,此时的反向饱和电流叫暗电流,一般在几微安到几百微安之间,其值随反向偏压的增大和环境温度的升高而增大。
在检测弱光电信号时,必须考虑用暗电流小的管子。
在有光照时,光敏二极管在一定的反偏电压范围内(UR35V),其反向电流将随光照强度(10-3 ~ 103 lx 范围内)的增加而线性增加,这时的反向电流又叫光电流。
因此,对应一定的光照强度,光敏二极管相当于一个恒流源。
在有光照而无外加电压时,光敏二极管相当于一个电池,P 区为正,N 区为负。
光敏二极管有一定光谱响应范围,并对某波长的光有最高的响应灵敏度(峰值波长)。
因此,为获取最大的光电流,应选择光谱响应特性符合待测光谱的光敏二极管,同时加大照度和调整入射的角度。
光敏二极管的响应时间,一般小于几百微秒,主要取决于结电容和外部电路电阻的乘积。
表B316列出了几种光敏二极管的参数,其中灵敏度指输入给定波长的单位功率时,光敏二极管能输出的光电流值。