8一元一次不等式组
一元一次不等式和一元一次不等式组
一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。
】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。
4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。
” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。
2.不等式与一次函数的关系,可以利用函数图像来分析解答。
如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。
专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。
第8章《一元一次不等式》单元教案
第8章一元一次不等式8.1认识不等式1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”等数学术语.3.理解不等式的解的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.重点理解并会用不等式表达数学量之间的关系,知道不等式的解的意义.难点不等号的准确应用;不等式的解.一、创设情境,问题引入问题:世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元.某班有27名少先队员去世纪公园进行活动.当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,究竟李敏的提议对不对呢?是不是真的“浪费”呢?二、探索问题,引入新知同学们的探索过程如下:买27张票,付款:5×27=135(元);买30张票,付款:4×30=120(元).显然 120<135.这就是说,买30张票比买27张票付款要少,表面上看是“浪费”了3张票,而实际上节省了.思考:(1)我们只用120元就买了30张票,买30张票,我们不仅省钱,而且多买了票,那么剩下的3张票如何处理呢?(2)买30张票比买27张票付的款还要少,这是不是说任何情况下都是多买票反而花钱少?(3)至少要有多少人去参观,多买票反而合算呢?能否用数学知识来解决?设有x人要进世纪公园,如果x≥30,显然按实际人数买票,每张票只要付4元.如果x<30,那么:按实际人数买票x张,要付款5x(元),买30张票,要付款4×30=120(元),如果买30张票合算,那么应有120<5x.现在的问题就是:x取哪些数值时,上式成立?前面已经算过,当x=27时,上式成立.让我们再取一些值试一试,将结果填入课本P51页的表格中.由上表可见,当x=________时,不等式120<5x成立.也就是说,少于30人时,至少要有________人进公园时,买30张票反而合算.像上面出现的120<135,x<30,120<5x那样用不等号“<”或“>”表示不等关系的式子,叫做不等式.不等式120<5x中含有未知数x.能使不等式成立的未知数的值,叫做不等式的解.【例1】判断下列各式哪些是等式,哪些是不等式.(1)4<5;(2)x2+1>0;(3)x<2x-5;(4)x=2x+3;(5)3a2+a;(6)a2+2a≥4a-2.分析:根据不等式的定义对各小题进行逐一判断即可.解:(1)4<5是不等式;(2)x2+1>0是不等式;(3)x<2x-5是不等式;(4)x=2x+3是方程;(5)3a2+a是代数式;(6)a2+2a≥4a-2是不等式.故(1),(2),(3),(6)是不等式.点评:熟知用不等号连结的式子叫不等式是解答此题的关键.【例2】 用适当的符号表示下列关系: (1)x 的13与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.分析:(1)非正数用“≤0”表示;(2),(4)不小于就是大于等于,用“≥”来表示;(3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重.用“≥”表示. 解:(1)13x +2x≤0; (2)设炮弹的杀伤半径为r ,则应有r≥300;(3)设每件上衣为a 元,每条长裤是b 元,应有3a +4b≤268;(4)用P 表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,则应有a≥b. 点评:一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠.三、巩固练习1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2≤3,其中不等式有( )A .2个B .3个C .4个D .5个2.学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x +30y≥500”表示的实际意义是( )A .两种客车总的载客量不少于500人B .两种客车总的载客量不超过500人C .两种客车总的载客量不足500人D .两种客车总的载客量恰好等于500人3.x 与y 的平方和一定是非负数,用不等式表示为________.4.下列各数:0,-3,3,4,-0.5,-20 ,-0.4中,________是方程x +3=0的解;________是不等式x +3>0的解;________是不等式2x +3<x 的解.5.用不等式表示. (1)x 的23与5的差小于1; (2)x 与6的和大于9;(3)8与y 的2倍的和是正数;(4)a 的3倍与7的差是负数; (5)x 的3倍大于或等于1;(6)x 与5的和不小于0.四、小结与作业小结通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?作业1.教材第52页“习题8.1”中第1,2 题.2.完成练习册中本课时练习.本节教学过程中,始终通过师生互动,鼓励学生积极思考,努力探索,合作交流,关注学生能否发现问题,提出问题,能否敢于发表自己的见解,吸取正确的见解;关注学生学习过程中表现的学习习惯、个性品质、情感态度等. 通过游戏、分组竞赛等激发学生的积极性,培养团队精神.通过例题和闯关游戏,检测学生学习情况,及时反馈调节;通过不同层次的变式题,评价各层学生的学习效果,增强学习信心.留给学生思考、探究的时间和空间.对学生回答是否正确、全面都给予及时的肯定和鼓励,时刻注意激发学习内驱力,确保学生学得更多、更快、更好!总之,本节教学既贴近生活,又超越生活,既努力从生活中来,又努力到生活中去,实现了:生活世界、数学世界、教学世界的融会贯通!8.2 解一元一次不等式8.2.1 不等式的解集1.使学生掌握不等式的解集的概念,以及什么是解不等式.2.使学生能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想.重点1.认识不等式的解集的概念.2.将不等式的解集表示在数轴上.难点不等式的解集的概念.一、创设情境,问题引入问题1:已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n-m______0;(2)m+n______0;(3)m-n______0; (4)n+1______0;(5)m·n______0; (6)m+1______0.问题2:下列各数中,哪些是不等式x+2>5的解?哪些不是?-3,-2,-1,0,1.5,3,3.5,5,7二、探索问题,引入新知在上面问题2中,我们发现3.5,5,7都是不等式x+2>5的解.由此可以看出,不等式x+2>5有许多个解.进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解.由此可见,不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集.结论:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集的过程,叫做解不等式.不等式x+2>5的解集,可以表示成x>3,它也可以在数轴上直观地表示出来,如图所示.同样,如果某个不等式的解集为x≤-2,也可以在数轴上直观地表示出来,如图所示.观察讨论:这两条折线所指的方向为什么不同?它们有什么规律吗?数轴上空心的圆点和实心的圆点是什么意义?结论:不等式的解集在数轴上可直观地表示出来,但应注意不等号的类型,小于在左边,大于在右边.当不等号为“>”“<”时用空心圆圈,当不等号为“≥”“≤”时用实心圆圈.【例1】在数轴上表示下列不等式的解集:(1)x<-2;(2)x≥1;分析:(1)在-2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.解:(1)如图所示:(2)如图所示:点评:熟知实心圆点与空心圆点的区别是解答此题的关键.【例2】在数轴上表示不等式-4≤x<1的解集,并写出其整数解.分析:根据“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线,可得答案.解:在数轴上表示不等式-4≤x<1的解集,如图:整数解为:-4,-3,-2,-1,0.点评:不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.三、巩固练习1.方程3x=6的解有________个,不等式3x<6的解有________个.2.在数轴上表示下列不等式的解集.(1)x>-4;(2)x≤3.5;(3)-2.5<x≤4.3.请用不等式表示如图的解集.(1)(2)(3)(4)(5)四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第2,3题.2.完成练习册中本课时练习.本节课属于一节概念课,按照“情境诱导—学生自学—展示归纳—巩固练习”的步骤进行.但从教学中来看,部分学生不会自学,个别学生不积极参与到小组活动之中.通过本节课的教学让我深深认识到,作为一名数学教师,要想让自己的学生出类拔萃,一定要在平时培养学生的自学习惯,自学能力,表达能力,教师要舍得时间,不能急躁.8.2.2不等式的简单变形1.通过本节的学习让学生在自主探索的基础上,联系方程的基本变形得到不等式的基本性质.2.掌握一次不等式的变形求解一元一次不等式基本方法.3.体会一元一次不等式和方程的区别与联系.重点掌握不等式的三条基本性质.难点正确应用不等式的三条基本性质进行不等式变形.一、创设情境、复习引入复习等式的基本性质一:在等式的两边都________或________同一个________或________,等式仍然成立.等式的基本性质二:在等式的两边都________或________同一个________,等式仍然成立.不等式有哪些基本性质?解一元一次方程有哪些基本步骤呢?一元一次不等式的解与方程的解是不是步骤类似呢?二、探索问题,引入新知在解一元一次方程时,我们主要是对方程进行变形.在研究解不等式时,我们同样应先探究不等式的变形规律.如图,一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然a>b),如果在两边盘内分别加上等量的砝码c,那么盘子仍然像原来那样倾斜(即a+c>b+c).结论:不等式的性质1:如果a>b,那么a+c>b+c,a-c>b-c.这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等式的方向不变.思考:不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?试一试:将不等式7>4两边都乘以同一个数,比较所得的数的大小,用“<”,“>”或“=”填空:7×3________4×3,7×2________4×2,7×1________4×1,7×0________4×0,7×(-1)________4×(-1),7×(-2)________4×(-2),7×(-3)________4×(-3),……从中你能发现什么?结论:不等式的性质2:如果a>b ,并且c>0,那么ac>bc.不等式的性质3:如果a>b ,并且c<0,那么ac<bc.这就是说,不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式两边都乘以(或除以)同一个负数,不等号的方向改变.与解方程一样,解不等式的过程,就是要将不等式变形成x>a 或x<a 的形式.【例1】 根据不等式的基本性质,把下列不等式化成“x>a”或“x <a”的形式:(1)4x >3x +5;(2)-2x <17.分析:(1)根据不等式的性质1:两边都减3x ,可得答案;(2)根据不等式的性质3:不等式的两边都除以-2,可得答案. 解:(1)两边都减3x ,得x >5; (2)两边都除以-2,得x >-172. 点评:不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.【例2】 根据不等式性质解下列不等式.(1)x +3>5; (2)-23x <50; (3)5x +5<3x -2.分析:根据不等式的基本性质对各不等式进行逐一分析解答即可. 解:(1)根据不等式性质1,不等式两边都减3,不等号的方向不变,得x +3-3>5-3,即x >2; (2)根据不等式性质2,不等式两边都乘以-32,不等号的方向改变,得-23x×(-32)>50×(-32),即x >-75; (3)根据不等式性质1,2,不等式两边同时减去(5+3x),然后除以2,不等号的方向不变,得(5x +5-5-3x)÷2<(3x -2-5-3x)÷2,即x <-72. 点评:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.三、巩固练习1.已知实数a ,b 满足a +1>b +1,则下列选项错误的是( ) A .a >b B .a +2>b +2C .-a <-bD .2a >3b2.若3x >-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.如果a <b ,则12-3a________12-3b(用“>”或“<”填空). 4.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b -3a <0,则b <3a ;________(2)如果-5x >20,那么x >-4;________(3)若a >b ,则 ac 2>bc 2;________(4)若ac 2>bc 2,则a >b ;________(5)若a >b ,则 a(c 2+1)>b(c 2+1); (6)若a >b >0,则1a <1b .________ 5.指出下列各式成立的条件: (1)由mx <n ,得x >n m ; (2)由a <b ,得m 2a <m 2b ;(3)由a >-2,得a 2≤-2a.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第58页“练习”.2.完成练习册中本课时练习.让学生参与知识的形成过程的学习,有利于培养学生动手实践,积极探索的科学学习方法,有利于培养学生的良好学习习惯和严谨的学习态度,有利于发展学生的直觉思维、形象思维和逻辑思维能力,有利于培养学生的独立钻研、相互交流和共同协作的科学态度,符合新课标的思想.8.2.3 解一元一次不等式第1课时 一元一次不等式的解法1.掌握一元一次不等式的概念.2.体会解不等式的步骤,体会数学学习中比较和转化的作用.3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握.重点掌握一元一次不等式的解法.难点掌握一元一次不等式的解法.一、创设情境、复习引入1.不等式的三条基本性质是什么?2.一个方程是一元一次方程的三个条件是什么?3.解一元一次方程的一般步骤是什么?二、探索问题,引入新知让同学们观察下列不等式: ①x-7≥2;②3x<2x +1;③13x≤5;④-4x >8.它们有什么共同点?你能借鉴一元一次方程给它下个定义吗? 结论:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.我们再来解一些一元一次不等式. 【例1】 下列各式:(1)-x≥5;(2)y -3x <0;(3)x π+5<0;(4)x 2+x≠3;(5)3x +3≤3x;(6)x +2<0是一元一次不等式的有哪些? 分析:利用一元一次不等式的定义判断即可. 解:(1)-x≥5,是;(2)y -3x <0,不是;(3)x π+5<0,是;(4)x 2+x≠3,不是;(5)3x +3≤3x,不是;(6)x +2<0,是.如何来解一元一次不等式呢?【例2】 解不等式,并把解集在数轴上表示出来:(1)2(5x +3)≤x-3(1-2x); (2)1+x 3>5-x -22. 分析:(1)先去括号,然后通过移项、合并同类项,化未知数系数为1解不等式;(2)先去分母,然后通过移项、合并同类项,化未知数系数为1解不等式.解:(1)去括号,得:10x +6≤x-3+6x ,移项、合并同类项,得:3x≤-9,系数化为1,得:x≤-3;表示在数轴上为:(2)去分母,得:6+2x >30-3x +6,移项、合并同类项,得:5x >30,系数化为1,得:x >6.表示在数轴上为:点评:需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.结论:解一元一次不等式的步骤:1.去括号,去分母;2.利用不等式的性质移项;3.合并同类项;4.系数化为1.三、巩固练习1.下列各式中,一元一次不等式是( ) A .x ≥5x B .2x >1-x 2 C .x +2y <1 D .2x +1≤3x2.不等式x +1≥2的解集在数轴上表示正确的是( )3.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =________.4.不等式组m(x -5)>2m -10的解集是x >m ,则m 的值是________.5.解不等式2(x +6)≥3x-18,并将其解集在数轴上表示出来.6.解不等式2x +13-5x -12≥-1,并把它的解集在数轴上表示出来. 四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1教材第61页“习题8.2”中第1,4 题.2.完成练习册中本课时练习.在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣.但是部分学生在作业中存在以下问题:由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向.第2课时 列一元一次不等式解决实际问题1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题.2.通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系.重点寻找实际问题中的不等关系,建立数学模型.难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.一、创设情境,问题引入在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛.育才中学有25名学生通过了预选赛,通过者至少答对了多少道题?有哪些可能的情形.二、探索问题,引入新知讨论:(1)试解决这个问题(不限定方法).你是用什么方法解决的?有没有其他方法?与你的同伴讨论和交流一下.(2)如果利用不等式的知识解决这个问题,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述?分析:如果用不等式,必须找出不等关系.根据题意可知,答对题的得分减去答错题的扣分大于或等于80分.所以这个问题的关键是表示出答对的题数和答错或不答的题数.解:设通过者答对了x道题,答错或不答的题有(20-x)道,根据题意可得,10x-5(20-x)≥80,解得:x≥12,所以,通过者至少要答对12道题.你能类比列一元一次方程解决实际问题的方法,总结出列不等式解决实际问题的步骤吗?结论:用一元一次不等式解决实际问题的步骤:(1)审题,找出不等关系; (2)设未知数;(3)列出不等式;(4)求出不等式的解集; (5)找出符合题意的值; (6)作答.【例1】学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?分析:先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x ≤70040,x ≤1712.答:最多还能买词典17本. 【例2】 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?分析:(1)设甲队胜了x 场,则负了(10-x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a 场,根据积分超过15分才能获得参赛资格,进而得出答案.解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2.答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5.答:乙队在初赛阶段至少要胜6场.点评:正确表示出球队的得分是解题关键.三、巩固练习1.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个2.甲、乙两人从相距24 km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8 km /hB .大于8 km /hC .小于4 km /hD .大于4 km /h3.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.4.某工人计划在15天内加工408个零件,最初三天中每天加工24个.问以后每天至少加工多少个零件,才能在规定的时间内超额完成任务?四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第6 ,7 题.2.完成练习册中本课时练习.本节课是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题.这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径.通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题.经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程.促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用.同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法.8.3一元一次不等式组第1课时解一元一次不等式组1.了解一元一次不等式组及其解集的概念.2.探索不等式组的解法及其步骤.重点1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况.2.一元一次不等式组的解法.难点一元一次不等式组的解法.一、创设情境,问题引入1.解下列不等式,并把解集在数轴上表示出来.(1)3x>1-x ;(2)6x -7<2-4x.2.问题:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么需要多少时间能将污水抽完?二、探索问题,引入新知对问题2的分析:设需要x 分钟能将污水抽完,那么总的抽水量为30x 吨,由题意可知30x≥1200,并且30x≤1500.在这个实际问题中,未知量x 应同时满足这两个不等式,我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组:⎩⎪⎨⎪⎧30x≥1200 ①,30x ≤1500 ②,分别求这两个不等式的解集,得⎩⎪⎨⎪⎧x≥40x≤50 在同一数轴上表示出这两个不等式的解集,可知其公共部分是40和50之间的数(包括40和50),记作40≤x≤50.这就是所列不等式组的解集.所以,需要40到50分钟能将污水抽完.结论:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集.解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分,利用数轴可以帮我们得到一元一次不等式组的解集.探究:设a ,b 是已知实数,且a >b ,在数轴上表示下列不等式组的解集. (1)⎩⎪⎨⎪⎧x>a ,x>b ;(2)⎩⎪⎨⎪⎧x<a ,x<b ;(3)⎩⎪⎨⎪⎧x<a ,x>b ;(4)⎩⎪⎨⎪⎧x>a ,x<b. 解:(1)解集为:x>a (2)解集为:x<b (3)解集为:b<x<a (4)无解结论:皆大取大,皆小取小,大小小大取中间,大大小小是无解. 【例1】 下列不等式组:①⎩⎪⎨⎪⎧x>-2,x<3;②⎩⎪⎨⎪⎧x>0,x +2>4;③⎩⎪⎨⎪⎧x 2+1<x ,x 2+2>4;④⎩⎪⎨⎪⎧x +3>0,x<-7;⑤⎩⎪⎨⎪⎧x +1>0,y -1<0.其中是一元一次不等组的有哪些? 分析:根据一元一次不等式组的定义,只含一个未知数且有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.【例2】 解不等式组,并把解集在数轴上表示出来. (1)⎩⎪⎨⎪⎧1-3x≤5-x ,4-5x>-x ; (2)⎩⎪⎨⎪⎧3(x -2)≥x -4,2x +13>x -1. 分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可. 解:(1)⎩⎪⎨⎪⎧1-3x≤5-x ①,4-5x>-x ②, 由①得:x≥-2,由②得:x <1,∴不等式组的解集为:-2≤x<1.如图,在数轴上表示为:(2)∵解不等式3(x -2)≥x-4得:x≥1,解不等式2x +13>x -1得:x <4,∴不等式组的解集是1≤x <4,在数轴上表示不等式组的解集是:. 【例3】 若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -a>0,1-x>x -1无解,求a 的取值范围.分析:先求出各不等式的解集,再与已知解集相比较求出a 的取值范围. 解:由x -a >0得,x >a ;由1-x >x -1得,x <1,∵此不等式组的解集是空集,∴a ≥1.故答案为:a≥1.点评:熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、巩固练习1.将不等式组⎩⎪⎨⎪⎧2x -6≤0,x +4>0的解集表示在数轴上,下面表示正确的是( )2.解集如图所示的不等式组为( )A .⎩⎨⎪⎧x>-1x≤2B .⎩⎪⎨⎪⎧x≥-1x>2C .⎩⎪⎨⎪⎧x≤-1x<2D .⎩⎪⎨⎪⎧x>-1x<2 3.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( ) A .m ≥5 B .m >5C .m ≤5D .m <5 4.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是________. 5.解不等式组,并把解集表示在数轴上. (1)⎩⎪⎨⎪⎧x -23+3<x -1,1-3(x +1)≥6-x ; (2)⎩⎪⎨⎪⎧2x -1≥0,3x +1>0,3x -2<0.四、小结与作业小结 先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第65页“习题8.3”中第1,2 题.2.完成练习册中本课时练习.教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法.用“皆大取大,皆小取小,大小小大取中间,大大小小是无解”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力.在教学中我要求学生在解不等式(组)时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想.第2课时 列一元一次不等式组解决实际问题。
一元一次不等式(组)知识总结及经典例题分析
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
八年级一元一次不等式(教师讲义带答案).
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
人教版八年级数学一元一次不等式组试题及答案
一元一次不等式组知识点1 解一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A )A .⎩⎪⎨⎪⎧x>2x<-3B .⎩⎪⎨⎪⎧x +1>0y -2<0C .⎩⎪⎨⎪⎧3x -2>0(x -2)(x +3)>0 D .⎩⎪⎨⎪⎧3x -2>0x +1>1x2.下列四个数中,为不等式组⎩⎪⎨⎪⎧3x -6<0,3+x>3的解的是(C )A .-1B .0C .1D .23.(福州中考)不等式组⎩⎪⎨⎪⎧x ≥-1,x<2的解集在数轴上表示正确的是(A )4.(福州中考)不等式组⎩⎪⎨⎪⎧x +1>0,x -3>0的解集是(B )A .x >-1B .x >3C .-1<x <3D .x <35.(湘西中考)不等式组⎩⎪⎨⎪⎧2x -1≤3,x +3>4的解集是(B )A .x >1B .1<x ≤2C .x ≤2D .无解6.(雅安校级月考)不等式组⎩⎪⎨⎪⎧x -3>2,x<3的解集是(D )A .x <3B .3<x <5C .x >5D .无解7.(周口一模)不等式组⎩⎪⎨⎪⎧x -1≤1,5-2x ≥-1的解集在数轴上表示为(A )8.(自贡中考)不等式组⎩⎪⎨⎪⎧-2x +3≥0,x -1>0的解集是1<x ≤32.9.代数式1-k 的值大于-1而又不大于3,则k 的取值范围是-2≤k<2.10.若y 同时满足y +1>0与y -2<0,则y 的取值范围是-1<y <2.11.(天津中考)解不等式组:⎩⎪⎨⎪⎧x +2≤6,①3x -2≥2x.②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得x ≤4; (Ⅱ)解不等式②,得x ≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为2≤x ≤4. 12.解不等式组:(1)(济南中考)⎩⎪⎨⎪⎧x -3<1,①4x -4≥x +2;②解:解不等式①,得x <4.解不等式②,得x ≥2. ∴不等式组的解集为2≤x <4.(2)(郴州中考)⎩⎪⎨⎪⎧x -1>0,①3(x -1)<2x ;②解:解不等式①,得x >1. 解不等式②,得x <3. ∴不等式组的解集是1<x <3.(3)(云南中考)⎩⎪⎨⎪⎧2(x +3)>10,①2x +1>x ;②解:解不等式①,得x >2. 解不等式②,得x >-1. ∴不等式组的解集为x >2.(4)(无锡中考)⎩⎪⎨⎪⎧2(x -1)≥x +1,①x -2>13(2x -1).② 解:解不等式①,得x ≥3. 解不等式②,得x>5. ∴不等式组的解集为x>5.知识点2 不等式组的运用13.(威海中考)已知点P(3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是(A )14.若不等式组⎩⎪⎨⎪⎧x>3,x>m的解集是x>3,则m 的取值范围是m ≤3.15.(达州中考)不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )16.(株洲中考)一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是(C )A .4B .5C .6D .717.若不等式组⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A )A .1B .2C .3D .418.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m的解集是x <2,那么m 的取值范围是(D )A .m =2B .m >2C .m <2D .m ≥219.(潍坊中考)若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x>x -2无解,则实数a 的取值范围是(D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-120.(绵阳中考)在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为(C )21.(烟台中考)不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x<0的最小整数解是3.22.(龙东中考)不等式组2≤3x -7<8的解集为3≤x <5.23.(鄂州中考)若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为x >32.24.(遂宁中考)解下列不等式组,并把解集在数轴上表示出来.(1)⎩⎪⎨⎪⎧3(x +2)>x +8,①x 4≥x -13;②解:解不等式①,得x >1. 解不等式②,得x ≤4.∴这个不等式的解集是1<x ≤4. 其解集在数轴上表示为:(2)⎩⎪⎨⎪⎧2x +3>3x ,①x +33-x -16≥12.②解:解不等式①,得x<3. 解不等式②,得x ≥-4.∴这个不等式组的解集是-4≤x<3. 其解集在数轴上表示为:25.(毕节中考)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),①2x -1+3x2<1,②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.解:解不等式①,得x ≥-1. 解不等式②,得x <3.∴原不等式组的解集是-1≤x <3. 其解集在数轴上表示如下:∴不等式组的非负整数解有:0,1,2.26.(南通中考)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围.解:解不等式①,得x >-25.解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3. ∴1<a ≤32.27.(安徽中考)解不等式:x 3>1-x -36.解:去分母,得2x >6-(x -3). 去括号,得2x >6-x +3.移项,合并同类项,得3x >9. 系数化为1,得x >3.28.(大庆中考)解关于x 的不等式:ax -x -2>0.解:由ax -x -2>0,得(a -1)x >2. 当a -1=0,则ax -x -2>0无解.当a -1>0,则x>2a -1.当a -1<0,则x<2a -1.29.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.解:去括号,得2x +2<3x.移项,合并同类项,得-x <-2. 系数化为1,得x >2. 其解集在数轴上表示为:30.(南京中考)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.解:去括号,得2x +2-1≥3x +2. 移项,得2x -3x ≥2-2+1. 合并同类项,得-x ≥1. 系数化为1,得x ≤-1.∴这个不等式的解集为x ≤-1,在数轴上表示如下:31.求不等式2x -7<5-2x 正整数解.解:移项,得2x +2x <5+7. 合并同类项,得4x<12. 系数化为1,得x <3.∴不等式的正整数解为1,2.32.已知不等式x +8>4x +m(m 是常数)的解集是x <3,求m.解:移项,得x -4x >m -8. 合并同类项,得-3x >m -8.系数化为1,得x <-13(m -8).∵不等式的解集为x <3,∴-13(m -8)=3.解得m =-1.33.(济南中考)解不等式组:⎩⎨⎧2x -1>3,①2+2x ≥1+x.②解:解不等式①,得x>2. 解不等式②,得x ≥-1. ∴不等式组的解集为x>2.34.(泰州中考)解不等式组:⎩⎪⎨⎪⎧x -1>2x ,①12x +3<-1.②解:解不等式①,得x <-1.解不等式②,得x <-8.∴不等式组的解集为x <-8.35.解不等式组⎩⎪⎨⎪⎧2(x +2)≤x +3,①x 3<x +14,②并它的解集表示在数轴上.解:解不等式①,得x ≤-1.解不等式②,得x <3.∴不等式组的解集是x ≤-1.不等式组的解集在数轴上表示为:36.解不等式组⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -2≤7-52x ,②并在数轴上表示出该不等式组的解集. 解:解不等式①,得x >52.解不等式②,得x ≤3.∴不等式组的解集是52<x ≤3.其解集在数轴上表示为:37.求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解. 解:解不等式①,得x ≤5.解不等式②,得x <23.∴不等式组的解集为x <23.∴这个不等式组不存在正整数解.38.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x>-52.解不等式②,得x ≤1.∴-52<x ≤1.故满足条件的整数有-2,-1,0,1.39.(呼和浩特中考)若关于x ,y 的二元一次方程组⎩⎨⎧2x +y =-3m +2,x +2y =4的解满足x +y>-32,求出满足条件的m 的所有正整数值. 解:⎩⎨⎧2x +y =-3m +2,①x +2y =4.②①+②,得3(x +y)=-3m +6, ∴x +y =-m +2.∵x +y>-32,∴-m +2>-32.∴m<72.∵m 为正整数, ∴m =1,2或3.40.已知:2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,3b -2x -16=0,可得a =3x -12,b =2x +163.∵a ≤4<b ,∴⎩⎪⎨⎪⎧3x -12≤4,①2x +163>4.②解不等式①,得x ≤3. 解不等式②,得x >-2.∴x 的取值范围是-2<x ≤3.。
一元一次不等式组教学设计
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)
创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
初中数学重点梳理:一元一次不等式(组)
一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。
知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
8.3.1 一元一次不等式组及其解法
知2-练
1
(福州)不等式组
x x
1的, 解集在数轴上表示正确的是 2
()
第十八页,编辑于星期五:九点 二十四分。
2
不等式组 A.x<1
x x
1 , 的解集是( 3
B.x≥3
)
C.1≤x<3
D.1<x≤3
知2-练
第十九页,编辑于星期五:九点 二十四分。
易看出,这两个不等式的解集没有公共部分.这时,
这个不等式组无解.
第二十三页,编辑于星期五:九点 二十四分。
总结
知3-讲
解不等式组的关键:一是要正确地求出每个不等 式的解集;二是要利用数轴正确地表示出每个不等式 的解集,并找出不等式组的解集.
第二十四页,编辑于星期五:九点 二十四分。
知2-练
1 解下列不等式组,并把它们的解集在数轴上表示出来:
第八页,编辑于星期五:九点 二十四分。
知1-练
1 下列不等式组是一元一次不等式组的有_________.
(填序号)
①
x 2 3x 1, 2y 7;
②
③ 2( x 1) 3x, ④
x
2;
⑤
x 1 0,
2
x
3
0
⑥
x 4 2 x 3;
x2 1 2x 2, 3x 1;
x 6 1,
式合在一起,就组成了一个一元一次不等式组. 要点精析:(1)这里的“几个”是指两个或两个以上;(2)每
个不等式只能是一元一次不等式;(3)每个不等式必须含 有同一个未知数. 2. 易错警示:判断一个不等式组是否为一元一次不等式组, 常出现以下几种错误:
①不等式组中不都是一元一次不等式;
八年级数学下册《一元一次不等式组》典型例题2(含答案)
《一元一次不等式组》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题8一条铁路线上EA,,,各站之间的路程如图所示,单位为千,DCB米.一列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题9某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题10某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三A,B类:A类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题11有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题12大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
八年级数学一元一次不等式(组)说课稿北师大版
《一元一次不等式组的解法》说课稿金堂县五凤学校唐仕兴我说课的题目是《一元一次不等式组》,内容选自八年级数学下册第一章第六节。
我主要从教材与学情分析、教法学法和手段、教学过程的设计、板书设计、设计说明五个方面来进行说课。
一、教材与学情分析1、教材的地位与作用本节主要学习一元一次不等式组的解集的确定,并要求学生会用数轴确定解集。
它是一元一次不等式的后续学习,也为下节和今后解决实际生产和生活问题奠定了坚实的知识基础。
另外,整个学习的过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数学思想会一直影响着学生今后数学的学习。
因此,一元一次不等式组是初中代数的一个重要内容。
2、学情分析:学生通过第一节课的学习,对一元一次不等式组概念已了解,并经历了“大小小大中间找”确定不等式组解集的探究过程,为此,学习一元一次不等式组的另外三种形式的解集的确定应该有了基础。
3、教学目标:根据以育人为本、以学生发展为本、以学生终身学习为本的理念,依据本节课的教材以及课程标准,我确定本节课的教学目标如下:(1)知识与技能:了解一元一次不等式组的解集的确定,会解由两个一元一次不等式组成的一元一次不等式组(另外三种形式)。
继续加强解一元一次不等式组的技能训练。
(2)数学思考:经历一元一次不等式组解集的探究过程,渗透类比和化归思想。
(3)解决问题:通过利用数轴解一元一次不等式组,培养学生数形结合的思想方法。
(4)情感、态度与价值观:让学生充分参与数学学习活动,从而获得成功的体验,建立良好的自信心。
4、教学重点、难点及关键根据教材的地位与作用、课程标准及学生的实际情况,教学重点确定如下:重点:一元一次不等式组及其解集的含义;一元一次不等式组的解法.由于不等式组的解集是组成它的几个不等式的解集的交集。
一般地,当这个集合是由无限个实数构成时,不可能一一列举出来。
而数轴上的点是与实数一一对应的,所以借助数轴就能直观地把不等式组的解集表示出来。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
八年级数学一元一次不等式
(3) x 3 x 2 . 5 2
七嘴八舌
8 3
下列解不等式过程是否正确,如果不正确 请给予改正。 x x 1 x 8 1 解不等式 x 2 3 6 去分母得 6x-3x+2(x+1)<6+x+8 去括号得 6x-3x+2x+2 <6+x+8 移项得 6x-3x+2x—x<6+8-2 合并同类项得 6x<16 8 系数化为1,得 x〉
4 什么叫解不等式? 求不等式的解集的过程,叫做 解不等式。
5、解一元一次不等式的步骤? 解题过程中应注意些什么? 怎么样在数轴上表示不等式的解?
解一元一次不等式的步骤
1、去分母 2、去括号 各步骤都有哪 3、移项 些注意点呢? 4、合并同类项 5、系数化为1 把解集在数轴上表示出来
去分母 去括号
/ 家政公司
弓箭,提起佩剑朝东舌走咯过去,嘴中满是讥讽嘲笑之话.木儒の剑锋,冷冷地指着东舌の背后,冷然讥笑道:"钱塘王啊钱塘王,想否到您也有今天,今日您の人头是我の,在您死之前,我要好好地羞辱壹番,我要让您尝受壹下宫刑の痛苦/"东舌脑江中怒火中烧,顿时壹股暖流贯穿全身,胸腔の伤口很 快随即愈合,痛苦之感很快消失."滚/老子送您上天/"说时迟,那时快.刀光壹闪/东舌拔出咯腰刀,登时寒光四射,刀刃破空袭出,所有人瞬间失色.唰/壹声惊鸿匹练过后般の裂帛声,东舌壹瞬间将木儒の二弟给解决咯.望着下体鲜血迸流,壹股痛彻心扉の痛苦油然而起,木儒瞬间如同死猪壹般哀嚎 咯起来.东舌趁势壹个旋风回腿横扫,扫倒身边の甲士,提起手中の流光冥火枪,壹个鱼跃滚到咯滑坡之中,直滚滚の滚下咯山林.众人壹脸呆滞地望着东舌逃走,连神都没什么回过来/木儒面如死灰,破空痛苦地大骂:"壹帮废物/快去通知奉先,给我召集精兵精将,我誓要将那小王八蛋碎尸万段/
一元一次不等式(组)的解法课件(共22张PPT)
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
中考数学点对点-一元一次不等式(组)及其应用(解析版)
专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。
不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。
类型二:一元一次不等式组无解的情况。
类型三:明确一元一次不等式组的解集求范围。
类型四:一元一次不等式组有解求未知数的范围。
类型五:一元一次不等式组有整数解求范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3、甲,乙两家超市以相同的价格出售同样的商品, 为了吸引顾客,各自推出不同的优惠方案:在甲超市累 计购买商品超出300元之后,超出部分按原价8折优惠; 在乙超市累计购买商品超出200元之后,超过部分按原 价8.5折优惠.设顾客预计累计购物x元(x>300). (1)请用含x的代数式分别表示顾客在两家超市购物所付 的费用;
4x 3 x 1
关于x的不等式组
2x
x 1 2
a
有解的概率为
.
考点4:不等式与函数
1.如图, 直线y=kx+b与x、y轴交于A、B两点,则不等式 kx+b<0的解集为 x<3 ;方程kx+b=0的解为 x=3 ;不等
式kx+b> -2的解集为 x>0 .
y
OA
3
-2 B
5.若关于 x 的不等式(1-a)x>2 可化为 x<1-2 a,则 a 的取值范
围是
.
【归纳总结】 1.基本概念:
(1)用 连接表示不等关系的式子叫做不等式.
(2)使不等式成立的
叫做不等式的解.
(3) 使不等式成立的未知数的___________叫做不等式的 解集.
(4) 求不等式的_______的过程叫做解不等式.
练习:
5.若关于x的一元一次不等式组 x<5,则m的取值范围是(
2x 1>3(x
x<m)
2),
的解集
6.关于x的不等式组
范围是
.
的解集为x>1 ,则a的取值
7.不等式组
的所有整数解的积为 .
8.有9张卡片,分别写有1至9这九个数字,将它们背面
朝上洗匀后,任意抽出一张,记卡片上的数字为a,则
(2)试比较顾客到哪家超市购物更优惠?说明你的理由.
不等式进行方案设计
1. (2015•四川泸州)某小区为了绿化环境,计划分 两次购进A、B两种花草,第一次分别购进A、B两种花 草30棵和15棵,共花费675元;第二次分别购进A、B两 种花草12棵和5棵。两次共花费940元(两次购进的A、 B两种花草价格均分别相同)。 (1)A、B两种花草每棵的价格分别是多少元? (2)若购买A、B两种花草共31棵,且B种花草的数量 少于A种花草的数量的2倍,请你给出一种费用最省的 方案,并求出该方案所需费用。
1.解不等式:4-5-62x≤ -
1+2x 2
.
5x 1>3(x 1),
2.解不等式组
1 2
x
1≤7
3 2
x,
把解集在数轴上表示出来。
3. x 2 >0 求x的取值范围 x 1
数轴是确定不等式组解集的重要工具
考点3:解含参数的不等式或不等式组(难点)
1.若不等式组 2x30 xm
3、(2015无锡)某工厂以80元/箱的价格购进60箱原材 料,准备由甲、乙两车间全部用于生产A产品.甲车间 用每箱原材料可生产出A产品12千克,需耗水4吨;乙车 间通过节能改造,用每箱原材料可生产出的A产品比甲 车间少2千克,但耗水量是甲车间的一半.已知A产品售 价为30元/千克,水价为5元/吨.如果要求这两车间生 产这批产品的总耗水量不得超过200吨,那么该厂如何 分配两车间的生产任务,才能使这次生产所能获取的利 润w最大?最大利润是多少?
1.设a、b、c表示三种不同物体的质量,用天枰称两次, 情况如图所示,则这三种物体的质量从小到大排序正 确的是( )
A c<b<a C c<a<b
B b<c<a D b<a<c
2.在一次数学知识竞赛中,竞赛题共30题.规定:答对 一道题得4分,不答或答错一道题倒扣2分,得分不低于 60分者得奖.得奖者至少应答对 道题.
x<a x<b,
x>a
解集在数轴上的表示
解集
_x_>__a__ _x_<__b__ b_<__x_<_a_ _无__解___
语言叙述 同大取大 同小取小 大小小大中间找 大大小小找不到
说明:在数轴上表示解集时,要注意“空心圆圈”和“实心圆点”的区别.
考点2: 一元一次不等式(组)的解法
不等 式的 基本 性质
性质 1 若 a>b,则 a±c________b±c
性质 2 若 a>b,c>0,则 ac______bc,ac______bc
性质 3
同向传 递性
若 a>b,c<0,则 ac______bc,ac______bc 若 a>b,b>c,则 a________c
考点2: 用数轴表示不等式(组)的解集
(1) 无解,则m的取值范围是
.
(2) 有解,则m的取值范围是
.
(3) 有4个整数解,则m的取值范围是
数轴是确定不等式组解集的重要工具
考点3:解含参数的不等式或不等式组(难点)
1.若不等式组2xx+-ab≤≥00 的解集为 3≤x≤4, 则不等式 ax+b<0 的解集为
2.已知x2+x+2yy==42mm,+1, 且-1<x-y<0,
则 m 的取值范围是(
)
考点3:解含参数的不等式组----有无解(难点)
3.若关于 x 的一元一次不等式组
x-a>0 (1)若 1-2x>x-2
无解,则 a 的取值范围是(
)
(2)xx-+2mm><20 有解,则 m 的取值范围为(
)
x-m<0 (3)7-2x≤1
的整数解共有 4 个,则 m 的取值范围是
考点4:不等式与函数
2.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点 P(a,2),则关于x的不等式x+1≥mx+n的解集
为 x≥1
.
3.如图相交于点A(m,3),
则不等y式y1<y2的解集为
。
P l1
2
oa
x l2
考点5:一元一次不等式的应用
A.至少20户 B.至多20户 C.至少21户 D.至多21户
2、(2015甘孜州)一水果经销商购进了A,B两种水果各 10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙 店)销售,预计每箱水果的盈利情况如下表:
甲店 乙店
A种水果/箱 11元 9元
B种水果/箱 17元 13元
(1)如果甲、乙两店各配货10箱,其中A种水果两店 各5箱,B种水果两店各5箱,请你计算出经销商能盈 利多少元? (2)在甲、乙两店各配货10箱(按整箱配送),且 保证乙店盈利不小于100元的条件下,请你设计出使 水果经销商盈利最大的配货方案,并求出最大盈利为 多少?
南师附中宿迁分校2019届第一轮复习之
一元一次不等式(组)及其应用
课前3分钟、瞄准中考、自我检测、力争满分
1、用数学式子表示下列各式:
(1)x的3倍与5的和为9
;
(2)3与x的和大于2
;
(3)x是非负数
;
(4)x的3倍小于2
;
(5)x与2的差不超过5
.
2.若一个三角形的两边长分别是4和9,且周长是偶数,
例2
(1)把不等式4-2x>0的解集在数轴上表示为
。
x 2, (2) (2017·湘潭)把不等式组 x 1 的解集在数轴上
表示为
。
2.由两个一元一次不等式组成的不等式组的解集有以下 四种情形(设 a>b):
一元一次 不等式组
x>a,
x>b x<a,
x<b x>b,
()
(4) x<1 的解为 x<1,则 a 的取值范围为
。
X≤a
练习:
1.不等式4-3x≥2x-6的非负整数解有
.
2.不等式组
的所有整数解的积为 .
3.关于 x 的方程 mx-1=2x 的解为正实数,则 m 的取值 范围是( )
4.如果关于 x 的不等式(a+1)x>a+1 的解集为 x<1,则 a 的 取值范围是( )
3.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲 饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲 饮料.
4.某种商品的进价为800元,出售时标价为1200元,后来 由于该商品积压,商店准备打折销售,但要保证利润率 不低于5%,则至多可打 折。
5.西宁市天然气公司在一些居民小区安装天然气与管道时, 采用一种鼓励居民使用天然气的收费办法,若整个小区 每户都安装,收整体初装费10000元,再对每户收费500 元.某小区住户按这种收费方法全部安装天然气后,每 户平均支付不足1000元,则这个小区的住户数( )
则第三边可能是(
)
考试热点1:概念与基本性质
3、已知实数 a,b,若 a>b,则下列结论正确的是( )
A.a-5<b-5
B.2+a<2+b
C. a3<b3
D.3a>3b
4.若实数 a,b,c 在数轴上对应点的位置如图所示,则下列不
等式成立的是( )
A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b