勾股定理的应用

合集下载

关于勾股定理的八大应用

关于勾股定理的八大应用

关于勾股定理的八大应用
对于勾股定理的八大应用,具体如下:
1)判断是否超速:利用勾股定理可以判断司机是否超速。

2)求旗杆高度:利用勾股定理可以求旗杆高度。

3)折叠问题:利用勾股定理可以解决折叠问题,例如折叠矩形
纸张的问题。

4)求树高:利用勾股定理可以求树的高度。

5)求梯子最省力的位置:利用勾股定理可以求梯子最省力的位
置。

6)求面积问题:利用勾股定理可以解决一些求面积的问题。

7)求台风问题:利用勾股定理可以解决台风问题,例如台风眼
里是否有平地的问题。

8)九章算术问题:利用勾股定理可以解决九章算术中的一些问
题。

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理作为数学中著名的定理之一,广泛应用于各个领域。

它是数学中的基础定理之一,也是几何学中三角形研究的重要工具。

本文将从几个应用角度介绍勾股定理在实际生活中的运用。

一、建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。

举个例子,我们在修建某一斜坡时,需要确定其坡度,勾股定理可以帮助我们准确计算出坡度。

此外,在设计斜面道路、楼梯等结构时,勾股定理也能帮助我们确保结构的稳定与安全。

二、航海导航中的应用在航海导航中,勾股定理被广泛用于测量船只的航向和航速。

通过测量船只相对于岸上两个点的距离,结合勾股定理可以计算出船只的位移和速度,为航海者提供准确的导航信息。

三、地理测量中的应用在地理测量中,勾股定理被用于测量两个相隔较远的地点之间的距离。

通过在地面上进行三角测量,即测量两个点与另一个点的夹角以及距离,再利用勾股定理求解,可以得到精确的距离数据,为地理测量和地图绘制提供重要支持。

四、天文学中的应用在天文学中,勾股定理被用于测量遥远星体之间的距离和角度。

天文学家通过观测星体的位置和角度,结合勾股定理的计算方法,可以确定天体的距离和大小,进而推断宇宙的形态和结构。

五、计算机图形学中的应用计算机图形学中,勾股定理被广泛应用于图形处理和渲染。

图形引擎通过勾股定理来计算线段的长度、图形的形状和倾斜度等信息,为计算机生成的图像提供基础数学支持。

综上所述,勾股定理作为数学中一项重要的基础定理,在实际生活中有着广泛的应用。

它在建筑工程、航海导航、地理测量、天文学和计算机图形学等领域中都起着重要的作用。

通过勾股定理的运用,我们可以提高工作效率,确保工程安全,促进科学发展。

因此,深入理解和应用勾股定理对我们的日常生活和社会发展都具有重要意义。

勾股定理在生活中的应用

勾股定理在生活中的应用

勾股定理在生活中的应用
勾股定理又称勾股论,即毕达哥拉斯设计的一个无理定理:“任意三角形的两边之积等于另外一边的平方之和”。

这个定理具有广泛的应用:
1、勾股定理在日常生活中可以用来确定三角形各边之间的关系:例如可以判断其中一边是不是一个倍数关系或者一个反比例关系。

通过建立对应方程,容易得到三角形三边的数值,作为三角形的参数。

2、也可以依据勾股定理来测量距离。

例如,构建一个直角三角形,让其一条边固定为一个值,我们使用两个斜边长度表示其他边的长度。

可以用i中国的三角测量法来求得某个距离的长度。

3、另外可以用勾股定理判断特殊的三角形。

例如可以判断一个三角形是不是等腰三角形、等边三角形或是直角三角形,只需要判断两边之积是否等于另外一边的平方之和。

4、勾股定理在空间中也有极大的作用,尤其是研究四面体或是更高维度的几何图形时。

例如可以用它来判断四面体的面面角是否都相等,以及求出该四面体的各个角。

另外还可以用它来求棱锥的体积、双曲线的起始点和极点等。

5 、另外勾股定理在物理学中也有广泛的应用,比如可以分析绳子长度或梯形长宽间的关系等。

总之,勾股定理由其卓越的简洁得到广泛应用,从日常生活到飞空实验都能发挥着无穷的作用,它被越来越多的人向科学家们赞美。

勾股定理的应用的例子

勾股定理的应用的例子

勾股定理的应用的例子:
一、圆柱侧面上两点间的最短距离圆柱侧面的展开图是一个矩形,圆柱上两点之间最短距离的求法,是把圆柱展开成平面图形,依据两点之间线段最短,以最短路线为构造直角三角形,利用勾股定理求解.
二、长方体(或正方体)表面上两点间的最短距离长方体每个面都是平面图形,所以计算同一个面上的两点之间的距离比较容易,若计算不同平面上的两点之间的距离,就变成了两个面之间的问题,必须将它们转化到同一平面内,即把四棱柱设法展开成一个平面图形,再构造直角三角形利用勾股定理解决,正方体的展开图从哪一面上展开都一样,而长方体的展开图一定要注意打开哪一个侧面,并且向上、下与向左、右展开会出现长度不的路线,应通过尝试从几条路线中选一条符合要求的.
三、折叠问题关于折叠问题的解题步骤:(1)利用重叠的图形传递数据(一般不用重叠的图形进行计算);(2)选择或构造直角三角形,这个直角三角形一般一边已知,另两边可通过重叠图形找到数量关系,从而利用勾股定理列方程求解.。

勾股定理简介及应用

勾股定理简介及应用

勾股定理简介及应用勾股定理是古希腊数学家毕达哥拉斯在公元前6世纪提出的一条三角形重要的几何定理,它可以用来计算三角形的边长或角度。

勾股定理的表述是:在一个直角三角形中,直角边的平方等于斜边的两个边的平方和。

即a²+ b²= c²,其中a和b是直角三角形的两个直角边,c是斜边。

勾股定理的应用非常广泛,可以用来解决各种实际问题,以下是一些典型的应用:1. 面积计算:勾股定理可以用来计算三角形的面积。

根据定理,面积等于直角边的乘积的一半。

例如,一个直角边长为a,另一个直角边长为b的直角三角形的面积为1/2 * a * b。

2. 边长计算:勾股定理可以用来计算三角形的边长。

如果已知两个边长a和b,可以用勾股定理求解斜边的长度c。

例如,已知一个直角三角形的两条直角边长分别为3和4,可以用勾股定理计算出斜边的长度为5。

3. 角度计算:勾股定理可以用来计算三角形的角度。

根据定理,如果已知三角形的两个边长a和b,并且要求斜边与其中一个直角边之间的角度,可以使用反正弦函数求解。

例如,已知一个直角三角形的两条直角边长分别为3和4,可以用反正弦函数求解出斜边与边长为3的直角边之间的角度。

4. 判断三角形类型:勾股定理可以用来判断三角形的类型。

如果三个边长满足勾股定理,即a²+ b²= c²,那么这个三角形是直角三角形;如果两个边长的平方和小于第三个边长的平方,即a²+ b²< c²,那么这个三角形是钝角三角形;如果两个边长的平方和大于第三个边长的平方,即a²+ b²> c²,那么这个三角形是锐角三角形。

5. 应用于解决实际问题:勾股定理可以用来解决很多实际问题,例如在建筑工程中计算屋顶的坡度和高度、在导航中确定航程和航向、在物理中计算物体的运动轨迹等等。

总结来说,勾股定理是一条非常重要和实用的几何定理,它不仅可以用来计算三角形的边长和角度,还可以用来解决各种实际问题。

勾股定理的应用及方法

勾股定理的应用及方法

勾股定理的应用及方法勾股定理是数学中的一个重要定理,它描述了直角三角形中,直角边的平方和等于斜边的平方。

具体表述为:在一个直角三角形中,设直角边的长度分别为a 和b,斜边的长度为c,则有a²+ b²= c²。

勾股定理的应用非常广泛,在几何学、物理学和工程学等领域都有重要的应用。

下面我将介绍一些常见的勾股定理的应用及解题方法。

1. 求解三角形的边长和角度:勾股定理可以用于求解三角形的边长和角度。

当我们已知两条边长,可以利用勾股定理计算出第三条边长。

而已知两边长和夹角时,可以利用勾股定理计算出第三边长或者求解夹角的大小。

例如,已知直角三角形的斜边长为5,一条直角边长为3,我们可以利用勾股定理计算出另一条直角边的长度:3²+ b²= 5²9 + b²= 25b²= 16b = 4同样地,已知直角三角形的两条直角边长度为3和4,可以利用勾股定理计算斜边的长度:3²+ 4²= c²9 + 16 = c²c²= 25c = 52. 解决实际问题:勾股定理也可以应用于解决实际问题。

例如,在测量中,我们经常需要通过已知的边长计算其他未知边长的问题。

有一道经典的应用题是“房子问题”:如果一个房子的两堵墙的长度分别为6米和8米,房子的对角线长度是多少?根据勾股定理可知,对角线的长度即斜边的长度c,可以通过勾股定理求解:6²+ 8²= c²36 + 64 = c²c²= 100c = 10因此,房子的对角线长度为10米。

3. 判断三角形的形状:勾股定理还可以用来判断三角形的形状。

根据勾股定理,如果一个三角形的三条边满足a²+ b²= c²,那么这个三角形就是直角三角形。

例如,如果一个三角形的三条边长分别为3、4和5,我们可以通过勾股定理验证这个三角形是否为直角三角形:3²+ 4²= 5²9 + 16 = 2525 = 25由此可见,三角形的三条边满足勾股定理,所以这个三角形是一个直角三角形。

勾股定理的实际测量应用

勾股定理的实际测量应用

勾股定理的实际测量应用勾股定理是一条数学定理,描述了直角三角形中边长之间的关系。

在实际测量中,勾股定理被广泛应用于各种领域,包括建筑、地理测量、导航和天文学等。

本文将探讨勾股定理在实际测量中的应用,并介绍一些相关案例。

1. 地理测量在地理测量中,勾股定理被用于测量地面的距离和高度。

例如,当我们需要测量一个山峰的高度时,可以利用勾股定理计算斜边和水平距离之间的关系。

通过测量斜边和水平距离,我们可以确定山峰的高度。

类似地,在航空测量中,通过测量飞机和地面上两个点的距离和角度,可以使用勾股定理计算出高度差。

2. 建筑在建筑领域,勾股定理常用于测量建筑物的水平和垂直距离。

例如,在建造一座大楼时,工程师可以利用勾股定理计算建筑的高度和斜边之间的关系。

通过这些测量,工程师可以确保建筑物的各个方面都符合设计要求。

3. 导航勾股定理在导航中也有广泛应用。

当我们使用地图和指南针导航时,可以利用勾股定理计算出两个点之间的直线距离。

这在航海、飞行和汽车导航等领域都非常有用。

此外,当我们需要确定一个目标的方位角时,也可以利用勾股定理计算出相对方位的关系。

4. 天文学在天文学中,勾股定理被用于测量星体之间的距离和角度。

通过测量星体的视差和角度,可以使用勾股定理计算它们的真实距离。

这对于研究星系和宇宙的结构非常重要。

总结:勾股定理作为一条基本的数学定理,被广泛应用于实际测量中。

无论是地理测量、建筑、导航还是天文学,勾股定理都发挥着重要的作用。

它不仅帮助我们测量距离、高度和角度,还为各个领域的科学研究提供了重要的数学工具。

在未来,勾股定理的应用将继续推动科学技术的发展,帮助我们更好地理解和利用世界的各个方面。

勾股定理生活中的应用

勾股定理生活中的应用

勾股定理生活中的应用
勾股定理是数学中的一条重要定理,它在生活中有着广泛的应用。

勾股定理是
指直角三角形中,直角边的平方和等于斜边的平方。

这个简单的公式在我们的日常生活中有着很多实际的应用。

首先,勾股定理在建筑设计中起着重要作用。

在设计房屋或其他建筑物时,建
筑师需要使用勾股定理来计算房屋的结构和角度。

这有助于确保建筑物的结构稳固,同时也能够确保建筑物的外观符合设计要求。

其次,勾股定理在地理测量中也有着重要的应用。

地理学家和测量员们经常使
用勾股定理来计算地球上不同地点之间的距离和角度。

这有助于我们更好地理解地球的形状和大小,同时也能够帮助我们更准确地进行地图绘制和导航。

此外,勾股定理在工程领域也有着广泛的应用。

工程师们经常使用勾股定理来
计算机械设备的角度和距离,以确保设备能够正常运行并且安全稳定。

这对于工程项目的顺利进行至关重要。

最后,勾股定理还在日常生活中有着一些小小的应用。

比如在装修房屋时,我
们可能需要使用勾股定理来确保墙角的垂直度;在购买家具时,我们可能需要使用勾股定理来计算家具的尺寸和摆放位置。

总之,勾股定理在我们的生活中有着广泛的应用,它不仅帮助我们更好地理解
世界,同时也为我们的生活和工作提供了便利。

因此,我们应该更加重视数学知识的学习,以便更好地应用数学知识解决实际问题。

勾股定理实际应用

勾股定理实际应用

一、勾股定理在生活中的应用1、理解问题实质,能够从生活问题中转化为几何图形关系。

如图4,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 距点C 5cm ,一只蚂蚁如果要沿着长方体表面从点A 爬到点B ,需要爬行的最短路程是多少?2、弄清方位角知识,在航海、测绘等问题中使用。

如图,一艘船以6海里/小时的速度从港口A 出发向东北方向航行,另一艘船以2.5海里/小时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距3、利用勾股定理,测量物体高度。

如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m ,那么这棵树的高度大约为4、利用勾股定理,选择最优方案。

在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要 m . 二. 特殊几何图形中勾股定理计算规律:等腰直角三角形。

(1)斜边中线等于斜边一半并且是特殊的三线合一。

(2)斜边是直角边的2倍。

例题1如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a的距离为2,点B 到直线b 的距离为3,AB=230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6 B .8 C .10 D .12图4 图5 BA 图6 AB例题2如图所示,铁路上有A 、B 两点(看做直线上两点)相距40千米,C 、D 为两村庄(看做两个点),AD ⊥AB ,BC垂直AB ,垂足分别为A 、B ,AD=24千米,BC=16千米,现在要在铁路旁修建一个煤栈,使得C 、D 两村到煤栈的距离相等,问煤栈应建在距A 点多少千米处?联系生活的应用实例:如图,公路AB 和公路CD 在点P 处交会,且∠APC=45°,点Q 处有一所小学,PQ=1202 m ,假设拖拉机行驶时,周围130m 以内会受到噪声的影响,那么拖拉机在公路AB 上沿PA 方向行驶时,学校是否会受到噪声影响?请说明理由;若受影响,已知拖拉机的速度为36km/h ,那么学校受影响的时间为多少秒?根据实际情况分类讨论 实例:为美化小区环境,某小区有一块面积为30平方米的等腰三角形草地,测得其一边长为10米.现要给这块三角形草地围上白色的低矮栅栏,现在准备这种低矮栅栏的长度分别有以下三种:①10+261米;②20+210米;③20+610米,则符合要求的是( )A .只有①②B .只有①③C .只有②③D .①②③一、选择题1、一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东60°,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为( )A .18海里/小时B .183海里/小时C .36海里/小时D .36海里/小时 2 如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .12≤a≤13 B .12≤a≤15 C .5≤a≤12 D .5≤a≤13*3如图,在△ABC 中,已知∠C=90°,AC=60cm ,AB=100cm ,a ,b ,c…是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC平行,另一组对边分别在BC 上或与BC 平行.若各矩形在AC 上的边长相等,矩形a 的一边长是72cm ,则这样的矩形a 、b 、c…的个数是( )A .6 B .7 C .8 D .9*4下列说法:①已知直角三角形的面积为4,两直角边的比为1:2,则斜边长为10;②直角三角形的最大边长为3,最短边长为1,则另一边长为2;③在△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5,其中正确结论的序号是( )A .只有①②③B .只有①②④C .只有③④D .只有②③④**5、如图,在等腰Rt △ABC 中,∠ACB=90°,CA=CB ,点M 、N 是AB 上任意两点,且∠MCN=45°,点T 为AB 的中点.以下结论:①AB=2 AC ;②CM 2+TN 2=NC 2+MT 2;③AM 2+BN 2=MN 2;④S △CAM +S △CBN =S△CMN .其中正确结论的序号是( )A .①②③④B .只有①②③C .只有①③④D .只有②④二、填空题:*6第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA 1=A 1A 2=A 2A 3=A 3A 4=…=A 8A 9=1,请你计算OA 9的长 .*7如图,在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了180m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C ,那么,由此可知,B 、C 两地相距m .**8如图,四边形ABCD 、EFGH 、NHMC 都是正方形,A 、B 、N 、E 、F 五点在同一直线上,且正方形ABCD 、EFGH 面积分别是4和9,则正方形NHMC 的面积是 .**9我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt △ABC 是奇异三角形,在Rt △ABC 中,∠C=90°,AB=c ,AC=b ,BC=a ,且b >a ,其中,a=1,那么b= .三、解答题:*10如图,A 、B 两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB ).经测量,森林保护区中心P 点在A 城市的北偏东30°方向,B 城市的北偏西45°方向上.已知森林保护区的范围在以P 为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?*11在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向.在一次反恐演习中,甲队员在A处掩护,乙队员从A处沿12点方向以40米/分的速度前进,2分钟后到达B处.这时,甲队员发现在自己的1点方向的C处有恐怖分子,乙队员发现C处位于自己的2点方向(如图).假设距恐怖分子100米以外为安全位置.(1)乙队员是否处于安全位置?为什么?(2)因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置.为此,乙队员至少应用多快的速度撤离?(结果精确到个位.参考数据:13≈3.6,14≈3.74.)**12如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?13如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=√5,则BC 的长为14如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是15如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于16正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE 是等腰三角形,则腰长为在△ABC中,AB=2√2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为17已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD18如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长。

勾股定理在实际生活中的应用

勾股定理在实际生活中的应用

勾股定理在实际生活中的应用
勾股定理是古希腊数学家勾股所提出的,它表明了一个有三个正整
数组成的三角形的三条边(a,b,c)之间的关系,即a^2+b^2=c_2,主要
用于计算三角形中各边的长度,这个定理应用广泛。

1. 三棱锥和其他几何体
勾股定理在解决三角形问题的同时也有助于计算立体几何图面的表面
积和体积,特别是可以用来计算三棱锥的表面积和体积,对于任何一
个具有两个边长的三棱锥,可以使用勾股定理来求解它的底面和顶面
之间的距离,从而算出它的表面积和体积。

2. 建筑计算
勾股定理在建筑计算中也有用到,它可以帮助计算建筑物外墙和屋顶
坡度的高度,或者确定其他三角形形状建筑物的高度。

同时,屋面的
坡度也可以使用勾股定理来计算,因为屋面的坡度也是一个三角形,
勾股定理可以用来确定屋面的高度和角度。

3. 水利
建纳水利也是勾股定理的常用应用,它可以用来计算水渠或水坝底开
口的高度。

由于受水库底部和上部水平面之间的水头高度受到引水渠
容积受限,进一步受到引水渠斜度限制,那么可以使用勾股定理来求
解引水渠底开口高度。

因此,可以用勾股定理确定引水渠中水的流量,从而计算出正确的储水渠的容积。

4. 导航测量
导航测量中也使用到勾股定理,比如用它来计算从某一特定点到特定方位的垂直距离。

对角线距离也可以通过使用勾股定理来进行计算,这是由于当测量站和要测量的点之间存在着三角形关系,用勾股定理就可以求出两点之间的距离。

勾股定理的应用领域

勾股定理的应用领域

勾股定理的应用领域勾股定理是数学中的一条重要几何定理,常用于解决直角三角形的计算问题。

它的应用领域广泛,涉及到建筑、航海、地理测量、导航等诸多领域。

本文将介绍勾股定理在几个典型领域中的应用,并探讨其重要性和实用性。

一、建筑领域在建筑领域中,勾股定理被广泛应用于各种测量和设计工作中。

比如,在修建一座高楼大厦时,如何准确测量建筑物的高度就需要运用勾股定理。

通过在地面上设立两个测量点,利用勾股定理可以计算出建筑物的高度。

此外,勾股定理还用于计算建筑物的倾斜角度、角度平分线的长度等等。

二、航海领域勾股定理在航海领域中有着重要的应用。

船舶在航行过程中需要确定自身位置与目标位置之间的距离。

通过使用勾股定理,船舶上的导航员可以利用三角形的边长关系计算出船舶与目标的距离。

这对于实现准确导航、避免碰撞起着至关重要的作用。

三、地理测量领域在地理测量领域中,勾股定理也是一项基础工具。

例如,当我们要测量两个地点之间的直线距离时,可以运用勾股定理。

通过在地图上标注两个地点,勾股定理可以帮助我们计算出它们之间的距离。

此外,勾股定理还可以用于计算地球表面的高度差、山坡的斜率等问题。

四、导航领域在现代导航系统中,勾股定理扮演着重要角色。

例如,全球定位系统(GPS)利用勾股定理来确定接收器与卫星之间的距离。

GPS系统中的接收器接收到来自不同卫星的信号后,通过测量信号的传播时间以及勾股定理,可以计算出接收器与卫星的距离。

基于这些距离计算,GPS系统可以确定接收器的精确位置。

通过以上几个典型领域的介绍,我们可以看到勾股定理在现实生活中的广泛应用。

它不仅简化了很多复杂的计算问题,还提高了测量的准确性和效率。

因此,我们在学习数学知识的同时,也要认识到这些知识在实际应用中的重要性。

总结起来,勾股定理在建筑、航海、地理测量和导航等领域中都发挥着重要作用。

它的应用不仅便利了我们的生活和工作,还推动了相关领域的发展。

因此,我们应该深入学习和掌握勾股定理,以便更好地应用于实际问题中,为社会发展做出贡献。

勾股定理应用实例

勾股定理应用实例

勾股定理应用实例
1. 建筑工程中:勾股定理可以用于测量和计算建筑物中的角度和边长。

例如,可以使用勾股定理来计算屋顶的倾斜角度或墙壁之间的角度。

2. 地理测量学中:勾股定理可以用于计算地面上两个点之间的直线距离。

例如,可以使用勾股定理来计算一个城市中两个建筑物之间的距离。

3. 飞行导航中:勾股定理可以用于计算飞机的航向和距离。

例如,可以使用勾股定理来计算两个导航点之间的航向和距离,以帮助导航员正确引导飞机。

4. 游戏开发中:勾股定理可以用于计算游戏中角色之间的距离或检测游戏中的碰撞。

例如,可以使用勾股定理来判断玩家角色是否与敌人角色发生碰撞。

5. 三角形解析几何中:勾股定理被广泛应用于解决三角形的各种问题,例如计算三角形的面积、边长或未知角度。

通过应用勾股定理,可以解决和证明许多三角形的性质和关系。

勾股定理及其应用

勾股定理及其应用

勾股定理及其应用勾股定理是中国古代数学的一大发明,也是数学中最基础、最重要的定理之一。

它描述了直角三角形中三边的关系,被广泛应用于几何学、物理学、工程学等领域。

本文将介绍勾股定理的原理以及它在实际问题中的应用。

一、勾股定理的原理勾股定理可以用数学公式表示为:在直角三角形中,直角边的平方等于两条直角边的平方和。

设直角三角形的两条直角边分别为a和b,斜边为c,根据勾股定理可以得出以下公式:a² + b² = c²这个公式是勾股定理的基本表达式,它是通过对直角三角形的三边进行数学推导得出的。

二、勾股定理的应用1. 解决几何问题勾股定理在几何学中有广泛的应用。

例如,可以通过已知直角边的长度来计算斜边的长度,或者通过已知斜边和一个直角边的长度来计算另一个直角边的长度。

通过勾股定理,我们可以解决诸如直角三角形的边长计算、角度计算等几何问题,对于建筑设计、地理测量等领域都有重要意义。

2. 测量地理距离在地理学中,我们often需要计算地球表面上两点之间的直线距离。

由于地球是球状的,所以实际距离不能直接通过直线距离计算得出。

但是在较小的地理范围内(例如一个城市、一个国家等),可以将地球表面近似为平面,这样就可以使用勾股定理来计算两点之间的近似直线距离。

3. 解决物理问题勾股定理也在物理学中得到了广泛的应用。

例如,在力学中,我们可以通过勾股定理计算一个斜面上物体的重力分量和斜面的角度之间的关系;在光学中,勾股定理可以用来计算光的传输路径和折射角度等。

4. 三角函数的应用勾股定理与三角函数之间存在紧密的关系。

通过勾股定理,我们可以定义正弦、余弦和正切等三角函数。

这些三角函数在科学计算、电子工程、信号处理等领域中有广泛的应用,例如在无线通信中,计算机图形学中,音频信号处理中等。

总结:勾股定理作为数学中的重要定理,不仅仅是理论的产物,更是实践中的有力工具。

它的应用广泛涉及到几何学、物理学、工程学等多个领域。

勾股定理的应用(3种题型)

勾股定理的应用(3种题型)

第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。

勾股定理的内容及应用条件

勾股定理的内容及应用条件

勾股定理的内容及应用条件勾股定理,又称毕达哥拉斯定理,是数学中的一条基本定理,描述了直角三角形中各边之间的关系。

根据勾股定理,直角三角形的斜边的平方等于其他两条边的平方和。

具体表达式为:c^2 = a^2 + b^2,其中c表示斜边的长度,a和b 表示直角边的长度。

勾股定理的应用条件是直角三角形,即三角形中存在一个角为90度的三角形。

只有在直角三角形中,才能使用勾股定理进行计算。

勾股定理在几何学中有很广泛的应用。

下面介绍一些常见的应用领域:1. 测量距离:勾股定理可以用来测量两点之间的距离。

设两点的坐标分别为(x1, y1)和(x2, y2),则两点之间的距离d可以通过勾股定理计算得出:d =sqrt((x2-x1)^2 + (y2-y1)^2)。

这在地理测量、导航系统和三维空间中的距离计算中都有广泛应用。

2. 解决三角形的边长和角度:通过已知角度和边长的条件,可以利用勾股定理计算出三角形中的其他边长或角度。

例如,已知两边的长度和它们之间的夹角,可以利用勾股定理计算出第三条边的长度。

这在解决房地产规划、建筑设计和导弹轨迹计算等问题中非常实用。

3. 三角函数的推导:勾股定理是三角函数的基础之一。

三角函数是数学中的重要概念,与勾股定理有密切的关系。

勾股定理可以推导出正弦函数、余弦函数和正切函数等三角函数的定义和性质。

通过三角函数的运算,可以解决物理、工程学和天文学等领域中的各种问题。

4. 解决平面几何问题:勾股定理可以应用于解决直角三角形以外的平面几何问题。

例如,通过将图形拆分为直角三角形,可以运用勾股定理计算出图形的长度、面积和角度等参数。

这在建筑设计、地图绘制和机械制造等领域中非常重要。

5. 数据验证:勾股定理可以用来验证数据的正确性。

例如,在测量两条边的长度和夹角后,可以利用勾股定理验证所得结果是否符合实际情况。

这在科学实验和工程测试中具有重要意义。

总结来说,勾股定理的内容是描述直角三角形中各边之间的关系,即斜边的平方等于两直角边的平方和。

勾股定理的应用和原理

勾股定理的应用和原理

勾股定理的应用和原理一、勾股定理的定义勾股定理是数学中一个重要的几何定理,它描述了直角三角形的两个直角边的平方和等于斜边的平方。

勾股定理的数学表达式为:a2+b2=c2其中,a和b是直角三角形的两条直角边,c是直角三角形的斜边。

二、勾股定理的应用勾股定理在实际生活和工作中有着广泛的应用,常见的应用包括:1. 测量和计算勾股定理可以用来测量和计算各种物理量。

例如,在测量一个不可直接测量的距离时,可以通过测量两个已知的距离,然后应用勾股定理计算出未知距离。

勾股定理也可以用于计算地面上两点的距离、三维空间中的距离等。

2. 建筑和设计勾股定理在建筑和设计中有着广泛的应用。

例如,在建造一个直角墙角时,可以利用勾股定理来保证墙角的精确度。

在设计一些几何图形、景观和艺术品时,也常常需要使用勾股定理进行计算和布局。

3. 导航和定位勾股定理在导航和定位系统中也起着重要的作用。

例如,在导航系统中,可以通过测量两个已知位置的距离,然后应用勾股定理计算出当前位置与目标位置的相对位置。

勾股定理也可以用于计算地图上两个点之间的距离和方向。

4. 计算机图形学在计算机图形学中,勾股定理被广泛应用于三维图形的渲染、空间变换和光线追踪等算法中。

例如,在计算机游戏中渲染一个三角形表面时,可以利用勾股定理计算出每个像素的亮度和颜色。

勾股定理也可以用于计算图像的旋转、缩放和平移等变换操作。

三、勾股定理的原理勾股定理的原理可以通过几何推导和代数证明两种方式来解释。

1. 几何推导几何推导是一种直观的方法来证明勾股定理。

可以通过构造一个与直角三角形相似的几何图形,来展示勾股定理的原理。

简单来说,勾股定理的原理是基于几何形状和比例的关系。

2. 代数证明代数证明是一种基于数学符号和方程的方法来证明勾股定理。

可以通过代数运算和等式推导,来证明勾股定理的原理。

简单来说,勾股定理的原理是基于代数表达式和等式的关系。

四、总结勾股定理是数学中的一个重要定理,它描述了直角三角形的两个直角边的平方和等于斜边的平方。

勾股定理的八大应用

勾股定理的八大应用

勾股定理的八大应用
1. 测量直角三角形边长和角度:勾股定理可以用来确定直角三角形的斜边长,也可以用来计算两侧的直角边的长度。

它还可以用来计算三角形角度。

2. 计算斜率和距离:勾股定理可以用来计算误差,比如在工程学中,测量仪器的精度可以通过勾股定理来检验。

3. 计算面积和体积:勾股定理可以用来计算任意形状的物体的表面积和体积。

4. 面对三角形和圆形的圆角问题,勾股定理可以帮助我们解决。

5. 在游泳、篮球和足球比赛中,勾股定理可以帮助我们预测运动员的最终目标。

6. 在数学中,勾股定理是三角函数的基础,可以用来证明一些三角函数的恒等式。

7. 勾股定理可以用来推导其他数学和物理方程的解,如波动方程。

8. 勾股定理也可以用于解决实际问题,例如构建建筑物或在电路中设计电路。

勾股定理应用(含解答)

勾股定理应用(含解答)

勾股定理点击一:勾股定理勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2 = c 2. 即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;(2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长. 即c 2= a 2+b 2,a 2= c 2-b 2,b 2= c 2-a 2. 点击二:学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明.如上图示,在图(1)中,利用图1边长为a ,b ,c 的四个直角三角形拼成的一个以c 为边长的正方形,则图2(1)中的小正方形的边长为(b -a ),面积为(b -a )2,四个直角三角形的面积为4×21ab = 2ab .(图1)(2)(3)由图(1)可知,大正方形的面积 =四个直角三角形的面积+小正方形的的面积,即c 2 =(b -a )2+2ab ,则a 2+b 2 = c 2问题得证.请同学们自己证明图(2)、(3). 点击三:在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点. 点击四:直角三角形边与面积的关系及应用直角三角形有许多属性,除边与边、边与角、角与角的关系外,边与面积也有内的联系.设a 、b 为直角三角形的两条直角边,c 为斜边,S ∆为面积,于是有:222()2a b a ab b +=++,222a b c +=,12442ab ab S ∆=⨯=,所以22()4a b c S ∆+=+.即221[()]4S a b c ∆=+-.也就是说,直角三角形的面积等于两直角边和的平方与斜边平方差的四分之一.利用该公式来计算直角三角形的有关面积、周长、斜边上的高等问题,显得十分简便.点击五:熟练掌握勾股定理的各种表达形式.如图2,在Rt ABC ∆中,90=∠C 0,∠A 、∠B 、∠C 的对边分别为a 、b 、c,则c 2=a 2+b 2, a 2=c 2-b 2 , b 2=c 2-a 2, 点击六:勾股定理的应用(1)已知直角三角形的两条边,求第三边; (2)已知直角三角形的一边,求另两条边的关系; (3)用于推导线段平方关系的问题等.(4)用勾股定理,在数轴上作出表示2、3、5的点,即作出长为n 的线段.类型之一:勾股定理例1:如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积是 cm 2.解析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可. 根据勾股定理公式的变形,可求得.解:由勾股定理,得132-52=144,所以另一条直角边的长为12. 所以这个直角三角形的面积是21×12×5 = 30(cm 2). 例2: 如图3(1),一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到 顶点B,则它走过的最短路程为( )A .a 3B .a )21(+C .3aD .a 5 解析:本题显然与例2属同种类型,思路相同.但正方体的 各棱长相等,因此只有一种展开图.解:将正方体侧面展开得,如图3⑵. 由图知AC=2a,BC=a .根据勾股定理得.a 5a 5a )a 2(AB 222==+= 故选D .类型之二:在数轴上表示无理数例3:在数轴上作出表示出两直角边的长度后即可在数轴上作出.解:3和1,所以需在数轴上找出两段分别长为3和1的线段,如图所示,然后即可确定斜边长,线段即可.∙ ∙AB C图3⑵∙ AB图3⑴下面的问题是关于数学大会会标设计与勾股定理知识的综合运用例5:阅读材料,第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.解:2;3;2;5;6;7;22;3;这8条线段的长的乘积是7072例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么()2b a +的值为( )(A )13 (B )19 (C )25 (D )169解析:由勾股定理,结合题意得a 2+b 2=13 ①. 由题意,得 (b-a)2=1 ②. 由②,得 a 2+b 2-2ab =1 ③. 把①代入③,得 13-2ab=1 ∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab =13+12=25. 因此,选C.说明:2002年8月20日~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如下图所示:它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》. 类型之四:勾股定理的应用(一)求边长例1:已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长..(二)求面积例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积)①观察图1-1.正方形A中含有__________个小方格,即A的面积是__________个单位面积;正方形B中含有__________个小方格,即B的面积是__________个单位面积;正方形C中含有__________个小方格,即C的面积是__________个单位面积.②在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?③你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(2)做一做:①观察图1-3、图1-4,并填写下表:②三个正方形A,B,C的面积之间有什么关系?(3)议一议:①你能用三角形的边长表示正方形的面积吗?②你能发现直角三角形三边长度之间存在什么关系吗?③分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度,②中的规律对这个三角形仍然成立吗?解析:注意到图中每个小方格代表一个单位面积,通过观察图形不能得到答案:①99 9 9 18 18;②A中含4个,B中含4个,C中含8个,面积分别为4,4,8;③A与B的面积之和等于C,图1-2中也是A与B的面积之和等于C.(2)①答案:②答案:.(3)答案:①设直角三角形三边长分别为a,b,c(如图);②,.③成立.(三)作线段例3 作长为、、的线段.解析:作法:1.作直角边长为1(单位长)的等腰直角三角形ACB(如图);2.以斜边AB为一直角边,作另一直角边长为1的直角三角形ABB1;3.顺次这样作下去,最后作到直角三角形AB2B3,这时斜边AB、AB1、AB2、AB3的长度就是、、、.证明:根据勾股定理,在Rt△ACB中,∵AB>0,∴AB=.其他同理可证.,、点评证明线段的平方差或和,常常要考虑到运用勾股定理;若无直角三角形,则可通过作垂线的方法,构成直角三角形,以便为运用勾股定理创造必要的条件.(五)实际应用例5:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?解析 (1)由点A 作AD⊥BC 于D , 则AD 就为城市A 距台风中心的最短距离 在Rt△ABD 中,∠B=30º,AB =220,∴AD=21AB=110.由题意知,当A 点距台风(12-4)20=160(千米)时,将会受到台风影响. 故该城市会受到这次台风的影响.(2)由题意知,当A 点距台风中心不超过60千米时,将会受到台风的影响,则AE =AF =160.当台风中心从E 到F 处时, 该城市都会受到这次台风的影响.由勾股定理得∴EF=2DE =6015.因为这次台风中心以15千米/时的速度移动,所以这次台风影响该城市的持续时间为154151560 小时. (3)当台风中心位于D 处时,A 城市所受这次台风的风力最大,其最大风力为12-20110=6.5级.。

勾股定理的纯数学应用

勾股定理的纯数学应用

勾股定理的纯数学应用
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

在实际生活中,勾股定理有许多应用,以下是一些常见的例子:
1.计算面积:通过使用勾股定理,可以计算出不规则图形的面积。

例如,在
计算梯形、三角形和圆形的面积时,可以使用勾股定理来确定某些边长或
半径的长度。

2.确定高度:在建筑和工程领域,勾股定理可以用于确定建筑物或构筑物的
高度。

例如,如果已知一个建筑物的底部长度和宽度,以及其高度与底部
长度的比值,可以使用勾股定理来计算其高度。

3.设计图形:在设计和艺术领域,勾股定理可以用于设计各种形状和图案。

例如,可以使用勾股定理来设计具有特定比例和对称性的图形,如等边三
角形、正方形和圆形。

4.测量距离:在测量和测绘领域,勾股定理可以用于测量距离。

例如,可以
使用勾股定理来测量两点之间的距离,或者计算某一点到某一直线的距离。

5.确定时间:在天文学领域,勾股定理可以用于确定天体的位置和时间。


如,可以使用勾股定理来计算太阳系中的行星和卫星的位置,以及计算地
球的自转和公转周期。

总的来说,勾股定理是数学中的一个重要工具,它在实际生活中的应用非常广泛,包括建筑、工程、设计、艺术、测量、天文学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
前面
A
A
右面
10
10
10
C
B
B
上面
10
A
前面
A 10
10
C
B
B
左面
A
A
上面
10
10
10
C
最短路程AB=
(10 10 ) 10
2
2
10 5cm
长方体中的最短路线问题
拓展与提升2: 如果把正方体盒子换成如图 长为3cm,宽为2cm,高为1cm的长方体, 蚂蚁沿着表面需要爬行的最短路程又是多 少呢?
合作交流
例1.已知:在Rt△ABC中,AB=8,AC=6,则BC的长

10
2 或
7 B
.
B
8 6 C C 6 A
8
A
例2. 如图所示,校园内有两棵树相距12米,一棵树
高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞 13 到另一棵树的顶端,小鸟至少要飞 米. A
13米
C
B
8米 12米
风吹红莲倒一边
B
A
分析:蚂蚁由A爬到B的过程中较短的路线有多 少种情况? B
(1)经过前面和上面; (2)经过前面和右面; (3)经过左面和上面.
B
A
2 1
A
3
C
B 1 C
B 2
3
2
A
A 1
3
C
解: (1)当蚂蚁经过前面和上面时,如图,最短路程为
B
B
2 1
A
A
3
C
AB=
AC BC
2
2

3 3 = 18=3 2
2
B
2
c
A
a
b
如图,等腰 △ ABC底边上的高AD为8,周长为32, A 求这个三角形的面积.
解:设BD为X,则AB为(16-X). 在Rt△ABD中, ∠ADB=90º 由勾股定理得:
2 2 2 X +8 =(16-X) 2 2 即X +64=256-32X+X
8
B
X
D
C
∴ X=6 ∴ S∆ABC=
2 2
2 2 2 a +b =c .
c
B
b
C
a
自主学习
1.应用勾股定理解决实际问题时,应先根据 几何图形, 题意画出________,分析图形中各线段之间 数量关系, 的________,正确运用勾股定理求解。 (1)直接运用勾股定理通过计算求解; (2)借助勾股定理通过列方程求解.
2.在直角三角形中求边长时,一般有两种情况:
BC AD 268 48 2 2
2 .在一棵树的 10 米高处 B 有两只猴子 直角三角形中,当无法已知两边求第三边
. B
10
x
30-x
方程思想
A
C
20
课堂检测
1. 小溪边长着两棵树,恰好隔岸相望,一棵树AC高 30尺,另外一棵树BD高20尺;两棵树干间的距离是 50尺,每棵树上都停着一只鸟,忽然两只鸟同时看到 两树间水面上游出一条鱼,它们立刻以同样的速度飞 去抓鱼,结果同时到达目标。问这条鱼出现在两树之 A 间的何处?
C B A
D
图形的折叠
3.如图,一块直角三角形的纸片,两直角边 AC=6㎝,BC=8㎝。现将直角边AC沿直线AD 折叠,使它落在斜边AB上,且与AE重合,求 CD的长. A 6 6 x C
第8题图
E
x
4
B
D 8-x 8
小结
1.运用勾股定理解决实际问题,关键在于“找”
到合适的直角三角形. 2.在运用勾股定理时,我们必须首先明确哪 两条边是直角边,哪一条是斜边. 3.数学来源于生活,同时又服务于我们的生活. 数学就在我们的身边,我们要能够学以致用.
例3.在波平如镜的湖面上,有一朵美丽的红莲 ,它高出 水面1米 ,一阵大风吹过,红莲被吹至一边,花朵齐及水面, 如果知道红莲移动的水平距离为2米 ,问这里水深多少? A
解:设水深x米.
由图可知, 在Rt△BCH中, ∠BCH=90°.由勾股定理 2 2 2 得,BC +CH =BH x ? 2 2 2 即 x +2 =(x+1) 解得:x=1.5 答:这里水深1.5米.B
2 2
(2)当蚂蚁经过左面和上面时,如图,最短路程为
B
B 2
A
A 1
3
C
AB=
AC BC
2
2

4 2
2
2
= 20
(3)当蚂蚁经过前面和右面时,如图,最短路程为
B
B 1 C
A
A
3
2
2
AB=
AC BC
2
2

26
5 1
2

26
18
20
最短路程为 18即3 2cm
观察下列哪个距离最小?你发现了什么?
小 结: 把几何体适当展开成平面图形,再利用“两 点 睛: 点之间线段最短”性质来解决问题。
把几何体适当展开成平 面图形,再利用“两点之间线段 最短”性质来解决问题。
正方体中最短路线问题 拓展1:如果圆柱换成如图的棱长为10cm的正
方体盒子,蚂蚁沿着表面需要爬行的最短路程 又是多少呢? B
A
B
B
30
C
x
E
20
50-x
D
老伯菜地有多大?
2.王老伯有一块如图的四边形菜地,现测得∠B= 回顾与反思:勾股定理在生活中的应用十分广泛, 0 90 , AB = 3m , BC = 4m , CD = 12m , AD = 13m, 利用勾股定理解决问题,除了要会找出问题中隐 你能帮他算出这块菜地的面积吗 ? 藏的直角三角形外,有时还得要自己构造合适的 直角三角形。
B

AB 3 (1 2) 18
2 2
2 1
A
3
C
B 2

AB (+ 1 3) 2 20
2 2
A 1 3
C
③ AB ( 3 + 2 ) 1
2 2
26
A
3
2
B 1 C
如果长方形的长、宽、高分别 是a、b、c(a>b>c),则从顶点 A到B的最短路线是:
a (b c )
知识回顾
勾股定理 直角三角形两直角边a,b的平方和, 等于斜边c的平方,即a² +b ² =c ² 。
∵ 在Rt△ABC中, º ∠C=90 ,AB=c,AC=b,BC=a,
A
c a b 知 变形公式 : 〈注意〉运用勾股定理必须满足的前 2 2 二 提条件:在直角三角形中 a c b;同时还要 求 2 2 明确直角三角形的直角边与斜边 . b c a 一
拓展提升
1.已知直角三角形的周长为2 边长为2,求它的面积.
5,斜
领海缉私卫海权
2.如图,南北向MN为我国领海与公海的分界线,即MN以西为我国领 海,以东为公海,上午9时50分,我国缉私A艇发现正东方向有一走私 船C正以18海里/时的速度偷偷向我领海开来,便立即通知正在MN线 上巡逻的我国缉私B艇,缉私A艇与C船的距离是12海里,A、B两艇 的距离是6海里;测得缉私艇B距离 C船 海里,若走私船C的速 6 3 度不变,它最早会在什么时间进入我国领海,缉私艇B进行拦截?
构造直角三角形,
利用方程思想。
D
圆柱中的最短路线问题
如图所示,有一个高为12cm,底面半径为3cm 的圆柱,在圆柱下底面的A点有一只蚂蚁,它想 吃到圆柱上底面上与A点相对的B点处的食物, 问这只蚂蚁需要爬行的最短路程为多少厘米?( 的值取3)
B
A
分析:
B
方案1
6 12
B
A
A
方案2
C
3ห้องสมุดไป่ตู้
B
12
A
西
A
M D
12
C

6
B
6 3
作业布置 课作:P18T9,P28T2,P29T9.
家作:名校P7-8.
3.如图,在等腰三角形ABC中,已知 AB=AC=13cm,BC=10cm,AD是BC 上的中线,你能求出三角形ABC的 面积吗?
D
4.如图,在三角形ABC中,已知 AB=15,AC=13,BC=14,你能求出三 角形ABC的面积吗?
1 C
2
H

自学检测:P13
练习 T1、T2
想一想 一架长为5米的梯子AB,斜立在一竖 直的墙上,这时梯子底端距墙底3米,如 果梯子的顶端沿墙下滑1米,梯子的底端 在水平方向沿一条直线也将滑行1米吗?
两只小猴去池边
其中一只猴子爬下树走到离树 20 米的 时,应采用间接求法:灵活地寻找题中的等量 池塘 A ,另一只猴子爬到树顶 D 后直接 关系,利用勾股定理列方程求解。 跃向池塘的A处,如果两只猴子所经过 距离相等,试问这棵树有多高? D
相关文档
最新文档