幂的运算(基础)知识讲解教学提纲

合集下载

八年级上册幂的运算知识点

八年级上册幂的运算知识点

八年级上册幂的运算知识点在数学学科中,幂指的是数的乘方运算,即一个数的自乘若干次的结果。

在八年级上册数学课程学习中,幂的运算是一个重要的知识点,本文将全面介绍八年级上册幂的运算知识点。

一、幂的定义幂是指一个数自乘若干次得到的结果,其中,第一个数称为底数,第二个数称为指数。

幂的标准写法为 a^n,其中,a是底数,n是指数。

指数为正整数时,表示底数自乘n次的结果;指数为0时,结果为1;指数为负整数时,表示底数自除n次的结果。

二、幂的简化简化幂是指将幂简化为不含指数的形式。

当指数相同的幂相加或相减时,可以通过运用幂运算转化为同一底数幂的运算。

例如:2^3 + 5^3 = (2+5) ^ 33^4 - 2^4 = (3-2) * (3^3+2^3)三、幂的乘方幂的乘方是指同一个底数的幂相乘的运算。

当同一底数幂相乘时,可以将指数相加得到新的指数,例如:4^3 * 4^2 = 4^(3+2) = 4^5四、幂的除法幂的除法是指同一个底数的幂相除的运算。

当同一底数幂相除时,可以将指数相减得到新的指数,例如:9^4 / 9^2 = 9^(4-2) = 9^2五、幂的分配律幂的分配律指幂乘或幂除时,若底数相同,则可以将幂运算中的括号内指数分别与外部指数相乘或相除。

例如:2^3 * (3^4 * 3^2) = 2^3 * 3^(4+2) = 2^3 * 3^6(4^3 / 4^2) ^ 5 = 4^(3*5 - 2*5) = 4^5六、幂的零指数幂的零指数是指任何底数的0次幂等于1,例如:3^0 = 15^0 = 1七、幂的负指数幂的负指数指底数的倒数的任何次幂等于这个数的负指数幂,例如:2^-3 = 1/2^3 = 1/8总之,八年级上册幂的运算知识点包括幂的定义、简化、乘方、除法、分配律、零指数和负指数。

掌握这些知识点,对于解决数学题目具有重要的意义。

希望学生们认真学习,熟练掌握八年级上册幂的运算知识点,做到理论和实践相结合,灵活应用知识。

(完整版)幂的运算知识点总结

(完整版)幂的运算知识点总结

欢迎共阅第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂的乘法数
数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:
是正整数相加。

即法则:底数不变,指数a a a a a a m n m n m m n n
n )
,m (知识点二:幂的乘方与积的乘方
1、幂的乘方)
()()
,(a a a a m n m m n
mn mn n 逆运算:是正整数即底数不变,指数相乘。

2、积的乘方(ab)
(ab)n n n n n n )
(,b a b a n 逆运算;是正整数再把所得的幂相乘。


把每一个因式分别乘方知识点三:同底数幂的除法
同底数幂的除法m
nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)
0010(02.50000502.0)
1-10(96.6696000)
,
0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。

即任何不等于零指数幂的意义:规定是正整数变,指数相减。

即同底数幂相除,底数不。

幂的运算 知识要点复习

幂的运算 知识要点复习
要点诠释:(1)公式的推广: ( 为正整数).
(2)逆用公式: 逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:
要点四、注意事项
(1)底数可以是任意实数,也可以是单项式、多项式.
(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.
(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.
④ ⑤
A. 1个 B. 2个 C. 3个 D. 4个
【变式2】计算:
(1)a4•(3a3)2+(﹣4a5)2
(2)(2 )20•( )21.
5、已知x2m=2,求(2x3m)2﹣(3xm)2的值.
要点二、幂的乘方法则
(其中 都是正整数).即幂的乘方,底数不变,指数相乘.
要点诠释:(1)公式的推广: ( , 均为正整数)
(2)逆用公式: ,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.
要点三、积的乘方法则
(其中 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.
(5)灵活地双向应用运算性质,使运算更加方便、简洁.
(6)带有负号的幂的运算,要养成先化简符号的习惯.
【典型例题】
类型一、同底数幂的乘法性质
1、计算:
(1) ;
(2) .
【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.
(2)在幂的运算中,经常用到以下变形:

类型二、幂的乘方法则
2、计算:
(1) ;(2) ;
(3) ;(4) .
3、已知2x=8y+2,9y=3x﹣9,求 x+2y的值.

(完整版)幂的知识点

(完整版)幂的知识点

幂的运算(基础)【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n pa a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m nm n aa a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】 解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()pp p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()pp p p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=. 【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma =.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m ma a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【答案与解析】解:∵ 25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn m n n ma a a ==.(2)本题培养了学生的整体思想和逆向思维能力.举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nmn.类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n na n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则2、计算:(1)23[()]a b --; (2)32235()()2y y y y +-g ;(3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=. 【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n 变成323288(8)(8)mn m n ⨯=⨯,再代入计算.【答案与解析】解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算性质,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mmab==,则()()()36322mm m m ab a b b +-⋅= .【答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算. 【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m ma a -= ③()36933a a = ④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【答案】A ;提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3618327a a =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >) 要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nn aa-=(a ≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0n a a -≠是na 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy-=(0xy ≠),()()551a b a b -+=+(0a b +≠).要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a a a --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷- 【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算. 3、已知32m =,34n =,求129m n+-的值.【答案与解析】 解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】解: ∵ 331133273m-===,∴ 3m =-. ∵ 122nn -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数: (1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067 【答案与解析】 解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯; (3)-0.000135=41.3510--⨯; (4)0.00067=46.710-⨯. 【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】 一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15c D.8c2.2nn a a+⋅的值是( ).A. 3n a + B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).A.224x x x += B.347x x x x ⋅⋅= C. 4416a a a ⋅= D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310 B. 1000×1010=3010 C. 100×310=510 D. 100×1000=410 5.下列计算正确的是( ). A.()33xy xy =B.()222455xyx y -=- C.()22439xx -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25mn==,则2m n+=____________.8. 若()319x aa a ⋅=,则x =_______.9. 已知35na=,那么6n a =______. 10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na =,则3222()8()n n a a --=__________.三.解答题13. 判断下列计算的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335nn x xx +⋅=,求n 的值.(2)若()3915n ma b b a b ⋅⋅=,求m 、n 的值.【答案与解析】 一.选择题1. 【答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=.2. 【答案】C ; 【解析】2222n n n n n a a a a ++++⋅==.3. 【答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=. 4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510. 5. 【答案】D ;【解析】()333xy x y =;()2224525xyx y -=;()22439x x -=.6. 【答案】C ; 【解析】()333915288,39,315m n m n a b a b a b m n ====,解得m =3,n =5.二.填空题7. 【答案】30;【解析】2226530m n m n+==⨯=g . 8. 【答案】6;【解析】3119,3119,6x aa x x +=+==. 9. 【答案】25;【解析】()2632525n n aa===.10.【答案】5;1; 【解析】338,38,5mma a aa m m +⋅==+==;3143813,314,1x x x +==+==.11.【答案】64;9n -;103-; 12.【答案】200; 【解析】()()32322222()8()81000800200n nn n a a aa--=-=-=.三.解答题 13.【解析】 解:(1)×;(2)×;(3)×;(4)× 14.【解析】解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;(2)233322696411()()327a b a b a b a b -+-=-+;(3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--;(5)()()236331293125325272a a a a a a a -+-⋅=-⋅=-.15.【解析】 解:(1)∵3335nn x x x +⋅= ∴ 4335n xx +=∴4n +3=35 ∴n =8(2)m =4,n =3解:∵()3915n ma b ba b ⋅⋅=∴ 333333915nmnm a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15 ∴n =3且m =4。

(完整版)幂的运算总结及方法归纳.docx

(完整版)幂的运算总结及方法归纳.docx

(完整版)幂的运算总结及方法归纳.docx幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用 a m ? a n a m n( m 、 n 为正整数), a m a n a m n (a 0, m 、 n 为正整数且 m > n ), (a m ) n a mn( m 、 n 为正整数), (ab) n a n b n( n 为正整数), a 01(a 0) ,a n1( a 0 ,n为正整数)时,要特别注意各式子成a n立的条件。

◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。

换句话说,将底数看作是一个“整体”即可。

◆注意上述各式的逆向应用。

如计算0.252004 4 2005,可先逆用同底数幂的乘法法则将42005 写成42004 4 ,再逆用积的乘方法则计算0.25 200442004(0.25 4) 2004120041,由此不难得到结果为1。

◆通过对式子的变形,进一步领会转化的数学思想方法。

如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。

◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律” 这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。

一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:a m a n a m n m、n为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即a m a n a p a m m p (m、 n、 p为正整数 )注意点:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数 .(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算 .例题:例 1:计算列下列各题(1)a3 a4;( 2) b b2b324;( 3)cc c简单练习:一、选择题1.下列计算正确的是 ( )A.a2+a3=a5B.a2·a3=a5C.3m+2m=5mD.a2+a2=2a42.下列计算错误的是 ( )A.5 x2- x2=4x2B.am+am=2amC.3m+2m=5mD. x·x2m-1=x 2m3.下列四个算式中①a333②x336325·a=2a+x =x③b·b·b=b④p2+p2+p2=3p2正确的有 ( )A.1个B.2个C.3个D.4个4.下列各题中,计算结果写成底数为10 的幂的形式,其中正确的是 ()A.100 × 102=103B.1000× 1010=103C.100 × 103=105D.100×1000=104二、填空题1.a4·a4=_______;a4+a4=_______。

浙教版初中数学七年级下册幂的运算(基础)知识讲解

浙教版初中数学七年级下册幂的运算(基础)知识讲解

幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【396573 幂的运算 知识要点】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+. 【答案与解析】解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体.举一反三:【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()p p p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n ⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-. (2)原式22122151()p p p p p p p x xx x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22n n n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【答案与解析】解:由2220x +=得22220x ⋅=.∴ 25x =.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-.【答案与解析】解:(1)2()m a 2m a =. (2)34[()]m -1212()m m =-=. (3)32()m a -2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、(2016春•湘潭期末)已知a x =3,a y =2,求a x +2y 的值.【思路点拨】 直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【答案与解析】解:∵a x =3,a y =2,∴a x +2y =a x ×a 2y =3×22=12.【总结升华】本题考查同底数幂的乘法,幂的乘方,解题时记准法则是关键. 举一反三:【变式1】已知2a x =,3b x =.求32a b x+的值. 【答案】解:32323232()()238972a b a b a b x x x x x +===⨯=⨯=.【396573 幂的运算 例3】【变式2】已知84=m ,85=n ,求328+m n 的值. 【答案】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m n m n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =.(2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.举一反三:【变式】(2015春•铜山县校级月考)(﹣8)57×0.12555.【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.。

七年级数学幂的运算知识点

七年级数学幂的运算知识点

七年级数学幂的运算知识点在七年级数学中,幂的运算是一个常见的知识点。

幂的运算需要掌握基本的概念和运算规律,才能进行有效的计算。

本文将介绍七年级数学中幂的运算知识点。

一、幂的概念幂是数学中的一个概念,它表示同一个数连乘多次的结果。

其中,底数表示被连乘的数,指数表示连乘的次数。

例如,2的3次幂可以表示为2³,意思是2乘以2乘以2,其结果为8。

在数学中,连乘的次数必须是正整数。

二、幂的运算规律1、乘法规律当幂的底数相同时,按照下列公式进行乘法运算:am × an =am+n。

例如,2的3次幂乘以2的4次幂,可以化简为2的7次幂。

2、除法规律当幂的底数相同时,按照下列公式进行除法运算:am ÷ an =am-n。

例如,2的5次幂除以2的2次幂,可以化简为2的3次幂。

3、幂的乘方规律当幂的底数相同时,按照下列公式进行指数运算:(am)n = amn。

例如,2的3次幂的4次幂,可以化简为2的12次幂。

4、幂的除法规律当幂的底数相同时,按照下列公式进行指数运算:(am)n = amn。

例如,2的12次幂除以2的3次幂,可以化简为2的9次幂。

三、幂的运算例题1、计算2² × 2³的结果解:根据乘法规律,将底数相同的幂相乘,即可得到结果。

2²× 2³ = 2^(2+3) = 2⁵ = 32。

2、计算5¹⁰ ÷ 5³的结果解:根据除法规律,将底数相同的幂相除,即可得到结果。

5¹⁰ ÷ 5³ = 5^(10-3) = 5⁷ = 78125。

3、计算(3²)³的结果解:根据幂的乘方规律,将底数相同的幂进行指数运算,即可得到结果。

(3²)³ = 3^(2×3) = 3⁶ = 729。

4、计算81 ÷ 3⁴的结果解:根据幂的除法规律,将底数相同的幂进行指数运算,即可得到结果。

七年级下册幂的运算讲义

七年级下册幂的运算讲义

七年级下册数学讲义课 题:幂的运算教学目标:1、同底数幂的乘法及其运用;2、幂的乘方及其运用;3、积得乘方及其运用。

教学过程:一、知识梳理(一) 同底数幂的乘法1、文字语言叙述:同底数幂相乘,底数不变,指数相加。

2、表达式: n m n m a a a +=⋅(m ,n 都是正整数)3、注意:(1)对于三个(或三个以上)同底数幂相乘,也具有底数不变,指数相加的性质。

(2)同底数幂的乘法运算中的“同底数”,不仅可以是数,也可 以是代数式。

(3)要注意分清底数和指数。

(二)幂的乘方1.、文字语言叙述:幂的乘方,底数不变,指数相乘2、表达式: ()mn nm a a =(m ,n 都是正整数)3.、注意:(1)()p n m mnp a a ⎡⎤=⎢⎥⎣⎦(m ,n ,p 都是正整数)仍成立。

(2)幂的乘法中的底数“a ” 可以是数,也可以是代数式(3)要注意区分幂的乘法运算法则和同底数幂的乘法法则。

(三)积得乘方1、文字语言叙述:积的乘方,等于每个因式分别乘方2、 表达式: ()n n nb a ab =(n 都是正整数) 3、 注意:(1)三个(或三个以上)的积的乘方,也具有这一特性,即()n n n n abc a b c =(n 都是正整数)。

(2)这里的“a ”,“b ” 可以是数,也可以是代数式(3)应抓住“每一个因数乘方”这一要点。

二、例题分析题型一:比较幂的大小1、化幂的底数为相同后,通过比较指数的大小来确定幂的大小【例题1—1】314161a=b=27c=9a b c 若81,,,则比较、、的大小关系是2、化幂的知识为相同后,通过比较底数大大小来确定幂的大小【例题1—2】444333222a=b=3c=5a b c 已知1,,,则比较、、的大小关系是3、将幂乘方后,通过比较乘方所得数的大小来确定幂的大小【例题1—3】35a =3b =4a b 已知,,则比较、的大小关系是4、利用中间量传递来确定幂的大小【例题1—4】16131533比较和的大小5.计算()()()()()541053423223a a a a a a a ---⋅+--⋅-⋅- 题型二、法则的逆用1、 逆用同底数幂的乘法法则【例题2—1】m m+n 5=4,535n =已知,求的值。

幂的运算法则教案

幂的运算法则教案

幂的运算法则教案一、知识导入幂是数学中的一种运算方法,用于表示一个数不断乘以自身的结果。

幂包括底数和指数两个部分,如a的n次幂表示底数a连乘n次的结果。

在本节课中,我们将学习幂的运算法则,掌握幂的乘法法则和除法法则。

二、幂的乘法法则幂的乘法法则表明,当两个幂有相同的底数时,它们的乘积等于底数不变,指数相加的结果。

例如,对于相同的底数a:a的n次幂乘以a的m次幂等于a的n+m次幂。

具体计算步骤如下:1. 确定两个幂的底数相同,记为a。

2. 将两个幂的指数相加,得到n+m。

3. 结果为底数不变,指数为n+m的幂。

实例演示:假设有a的2次幂乘以a的3次幂,即a² * a³。

根据乘法法则,底数相同,则指数相加,结果为a的5次幂,即a⁵。

所以,a² * a³ = a⁵。

请同学们在自己的纸上进行类似的练习,掌握幂的乘法法则。

三、幂的除法法则幂的除法法则表明,当两个幂有相同的底数时,它们的商等于底数不变,指数相减的结果。

例如,对于相同的底数a:a的n次幂除以a的m次幂等于a的n-m次幂。

具体计算步骤如下:1. 确定两个幂的底数相同,记为a。

2. 将两个幂的指数相减,得到n-m。

3. 结果为底数不变,指数为n-m的幂。

实例演示:假设有a的5次幂除以a的2次幂,即a⁵ / a²。

根据除法法则,底数相同,则指数相减,结果为a的3次幂,即a³。

所以,a⁵ / a² = a³。

请同学们在自己的纸上进行类似的练习,巩固幂的除法法则。

四、综合练习现在,我们进行一些综合的练习,加深对幂的运算法则的理解。

题目1:计算2的4次幂和2的3次幂的乘积。

根据乘法法则:2的4次幂乘以2的3次幂等于2的7次幂。

即2⁴ * 2³ = 2⁷。

题目2:计算5的6次幂除以5的4次幂的结果。

根据除法法则:5的6次幂除以5的4次幂等于5的2次幂。

即5⁶ / 5⁴ = 5²。

初中数学知识点精讲精析 幂的运算

初中数学知识点精讲精析 幂的运算

12.1 幂的运算学习目标1. 巩固同底数幂的乘法法则,学生能灵活地运用法则进行计算。

2. 掌握幂的乘方的法则,并能够用式子表示。

知识详解1. 同底数幂的乘法(1)法则:同底数幂相乘,底数不变,指数相加。

(2)符号表示:a m·a n=a m+n(m,n都是正整数)。

2. 幂的乘方(1)法则:幂的乘方,底数不变,指数相乘。

(2)符号表示:(a m)n=a mn(m,n都是正整数)。

3. 积的乘方(1)法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(2)符号表示:(ab) n=a n b n(n为正整数)。

4. 同底数幂的除法(1)法则同底数幂相除,底数不变,指数相减。

(2)符号表示a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)。

(3)0次幂任何不等于0的数的0次幂都等于1,即a0=1(a≠0)【典型例题】例1:计算23(2)yx的结果是【答案】264y x【解析】22634 (2)yy x x=例2:计算3 (2)a的结果是【答案】38a【解析】338 (2)a a=例3:计算:23()nm的结果是【答案】62m n【解析】2623()n m n m =【误区警示】易错点1:同底数幂的乘法1. 计算32a a ∙的结果是【答案】5a【解析】32325a a a a +∙==易错点2:幂的乘方与积的乘方2. 已知10m =2,10n =3,则3210m n +=【答案】72【解析】3232322372()()101010321010m n m n m n +===∙=【综合提升】针对训练1. 计算232x x ∙的结果是2. 若x ,y 为正整数,且5222y x =∙,则x ,y 的值有 对。

3. 3x a a ∙可以写成1.【答案】52x【解析】25322x x x =∙2.【答案】4【解析】∵222y x y x +=∙∴x+y=5, ∵x ,y 为正整数, ∴x ,y 的值有x=1,y=4;x=2,y=3; x=3,y=2; x=4,y=1. 共4对.3.【答案】13x a +【解析】313x x a a a +=∙【中考链接】(2014年遂宁)下列计算错误的是( )A .4÷(﹣2)=﹣2B .4﹣5=﹣1C .2(2)--=4D.0 2014=1 【答案】C【解析】A、B、D都正确,不符合题意,C.2(2)--= 2114(2)=-课外拓展指数是有理数乘方的一种运算形式,它表示的是几个相同因数相乘的关系。

七年级下册数学幂运算知识点讲解

七年级下册数学幂运算知识点讲解

七年级下册数学幂运算知识点讲解数学是一门具有挑战和启发性的学科。

作为一名初中生,了解和掌握幂运算是十分重要的。

在这篇文章里,我们将详细介绍七年级下册数学幂运算的知识点,以便可以更好地理解和掌握这方面的基础知识。

一、幂的定义幂运算,简单地说就是同一个自然数相乘的运算。

数学中,幂表示一个数字或是变量的次方。

也就是说,“幂”是一个数的指数,可以表示成X^N,其中X是底数,N是幂。

例如:X²表示X的平方,X³表示X的立方。

在这里,需要注意一点:我们通常使用X^N这种形式来表示一个数X的N次幂。

这里,幂是一个指数,它告诉我们计算的是多少个X的乘积,X^N的结果就是将X连乘N次得到的值。

二、幂运算的性质了解幂运算的性质,有助于我们更好地掌握计算方法。

以下是几个值得注意的幂运算的性质:1、乘方的交换律:a^b×a^c=a^(b+c)或者a^b×a^c=(a^b)^c。

2、乘方的结合律:(a×b)^c=a^c×b^c3、除法的定义:a^b/a^c=a^(b-c)或者a^b/(a^c)=(a^(b-c))4、幂的乘积:a^b∙c^b=(a∙c)^b5、乘方的倒数:a^(-b)=1/a^b,其中a≠0。

三、幂运算的计算学习数学,当然要重视计算方法。

接下来,我们将介绍一些求幂的简单计算方法:1、相同底数的乘方:如果底数相同,幂相加。

例如:3^2×3^4=3^(2+4)=3^62、不同底数,幂相同:如果幂相同,底数相乘。

例如:2^3×3^3=(2×3)^3=6^33、底数不同,幂不同:根据指数运算法则化简。

例如:5^6×(2/5)^6=(5×2/5)^6=2^6=64四、幂运算的应用幂运算在数学中的应用十分广泛。

无论是几何还是代数,自然科学还是社会科学,都离不开幂运算。

在这里,我们列举一些常见的应用案例,大家可以自行探索:1、幂运算在计量学中的应用2、幂运算在图表中的应用3、幂运算在物理学中的应用4、幂运算在流体动力学中的应用5、幂运算在传输技术中的应用总之,幂运算是数学中十分基础和重要的一部分。

幂的运算复习讲义

幂的运算复习讲义

课 题(课型) 幂的运算 学生目前情况(知识遗漏点):复习巩固教 学 目 标或考 点 分 析:1. 学会应用同底数幂的乘法和除法。

2. 掌握幂的乘方和积的乘方。

3. 幂的混合运算和科学计数法 教学重难点: 同底数幂的乘法和除法、幂的乘方和积的乘方 教学方法:知识梳理,例题讲解,知识巩固,巩固训练,拓展延伸幂的运算知识点一、同底数幂的乘法 1、同底数幂的乘法 同底数幂的乘法法则:文字叙述:同底数幂相乘,底数不变,指数相加。

字母表示:________________________2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即m n p m n pa a a a ++⋅⋅= 注意点:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.3、逆用同底数幂的乘法法则: =m n a a例1、计算列下列各题(1) x 3·x 5+(x 4)2; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-例2、若15(3)59n n x x x -⋅+=-,求x 的值.()2 (3)例11、(1)已知5544222,36a b c ---===,比较a,b,c 的大小。

(2)当a,b 满足什么条件时,等式1)1(=+b a 成立?4、绝对值小于1的数的科学计数法把一个正数写成10n a ⨯的形式(其中110a ≤<,n 为整数),这种计数法称为科学计数法,其方法如下:(1)确定a ,a 是只有个位整数的数;(2)确定n ,当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中做起第一个非0数前0的个数(包括整数位上的0)。

. 例12、(1)用科学计数法表示:0.000096=________________________. (2) 用小数表示4102-⨯-=______________________________.(3)为减少全球金融危机对我国经济产生的影响,国务院决定拿出40000亿元以扩大内需,保持经济平稳较大增长.这个数用科学记数法表示为 亿元. (4)2015nm =_______________________m. (5)最薄的金箔的厚度为m 000000091.0,用科学记数法表示为 m .例13、(1)计算并用科学计数法表示:78106.41067.3⨯-⨯(2)有一句谚语:“捡了芝麻,丢了西瓜,”意思是说有些人办事只抓一些无关紧要的小 事,却忽略了具有重大意义的大事.据测算,5万粒芝麻才200g,请你计算1粒芝麻有多少千克?练习:1.下列计算正确的是( )A .1)1(0-=-B .1)1(1=--C .33212a a =- D .4731)()(aa a =-÷- 2.下列各式:①5151=-,②0)00001.0(0=,③001.0102=-,④ 313310=÷-正确的有( )A .0个B .1个C . 2 个D .3个3.下列计算错误的是 ( )A .1)0001.0(0=B .01.0)1.0(2=-C .1)5210(0=⨯-D .0001.0104=-4.若,)31(,3,3.0022-=-=-=-c b a 则 ( )A .d c b a <<<B .c d a b <<<C .b c d a <<<D .b d a c <<<5.通过世界各国卫生组织的努力,甲型H1N1流感疫情得到了有效地控制,到目前为止,全球感染人数为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学计数法表示为( )A .5101.3-⨯B .6101.3-⨯C .7101.3-⨯D .8101.3-⨯6.=÷6622_____________.=-2)21(______________.7.肥皂泡表面厚度大约是0.0007mm,用科学记数法表为____________________mm8. 当___________时, .1)12(0=-a9. 已知==-=x x x 则且,1)3(,30_____________. 10.已知==-x x 则,1312___________________.11.计算:(1)031452222)21(2+⨯⨯++---- (2)02213)2()21(])1(8)2[(-⨯-⨯-⨯------π。

幂运算专题讲解教案设计

幂运算专题讲解教案设计

幂运算专题讲解教案设计。

一、教学目标的设定1.理解幂的定义2.掌握幂的运算规则、幂的乘方法则、幂函数的图像与性质3.了解幂运在实际应用中的重要性4.熟练掌握幂运算的计算方法及题型解法二、教学策略的选择1.引导学生主动探究本教案设计中,以引导学生进行自主学习和探究为主要教学策略。

例如,在引入幂的定义时可以通过提供一些具有表现力的图像,让学生自己去猜测表现出来的性质,并引导学生分析这些性质的本质。

2.强调综合性与实用性本教案设计中,注重强调幂运算在数学实践中的重要性以及与其它数学概念之间的联系,从而培养学生综合知识的能力。

3.采用多元化的教学方法本教案设计中,采用多种教学方法进行教学,如讲解、演示、练习和巩固和拓展。

在讲解方面,教师可以通过图像、表格等方式来生动形象地介绍幂及其相关概念。

三、教学活动的安排1.探究幂的定义及性质可以以一个具有表现力的图像引入讲解幂的含义和定义。

引导学生猜测并推导出幂的基本性质。

2.讲解幂的运算法则、幂的乘方法则及幂函数的图像与性质在讲解幂的运算法则和幂的乘方法则时,可以结合实际问题来进行讲解,并通过图形演示和数学计算来进行理论的讲解。

在讲解幂函数的图像及其性质时,则可以通过多组实际数据来进行对比分析,从而帮助学生深入理解幂函数的概念和本质。

3.幂函数的应用在幂函数的应用方面,可以通过一些实际问题进行课堂讨论和例题演练,让学生明确幂函数在实际中的应用,并通过演练来掌握幂函数的应用技巧。

4.总结与提高在教学活动的结尾处,可以进行幂运算相关概念的总结及强化巩固,以及一些拓展性的问题探讨,以提高学生对幂运算的深刻理解与应用能力。

本教案设计旨在通过多种教学方法来授课,让学生在主动探究、实用探究及跨学科探究等方面不断提高,以最终达到教学目标。

并且,本教案通过全面深入地分析幂函数相关的概念性问题和应用性问题,让学生在各方面综合素质上不断提高,帮助学生更好的升学就业和面对未来生活的挑战。

七年级下册幂的运算知识点

七年级下册幂的运算知识点

七年级下册幂的运算知识点幂的运算在数学中是一个基础且重要的概念。

在七年级下册的数学学习中,学生们会接触到幂的运算,并掌握幂的基本运算规律。

本文将从定义、运算法则和应用三个方面详细介绍幂的运算知识点。

一、定义幂是数学中的一种表示方式,用于表示一个数的指数形式,由底数和指数两部分组成。

其中,底数是被乘方的数,指数表示幂的次数,比如a^2表示a的平方,a^3表示a的立方。

二、运算法则1. 幂的乘法规则底数相同时,幂相乘,指数相加。

例如,2^3 × 2^4 = 2^(3+4) = 2^72. 幂的除法规则底数相同时,幂相除,指数相减。

例如,5^7 ÷ 5^4 = 5^(7-4) = 5^3 3. 幂的幂法则幂的幂,底数不变,指数相乘。

例如,(2^3)^4 = 2^(3×4) = 2^12 4. 积的幂法则积的幂等于各因子幂的乘积。

例如,(2 × 3)^4 = 2^4 × 3^45. 商的幂法则商的幂等于分子幂除以分母幂。

例如,(5^4 ÷ 7^2)^3 = 5^(4×3) ÷ 7^(2×3)三、应用幂的运算在数学中有广泛的应用。

比如,在科学计算中,通过对数据进行指数运算,可以得到更加精确的结果。

在几何中,幂的概念还可以用于圆的切线和切点的问题中。

另外,在代数表达式的化简中,幂的运算也是不可或缺的一部分。

通过灵活运用幂的运算法则,可以简化代数式,使得计算更为方便和高效。

总之,幂的运算是学习数学的基础,在学习第一次接触一定要认真掌握。

同时,也要灵活应用幂运算法则,掌握好运用方法,为后续的学习打下坚实的基础。

初中幂运算知识点总结

初中幂运算知识点总结

初中幂运算知识点总结一、幂的概念在数学中,若a是任何一个不等于0的实数,那么a的n次方就是a自身连乘n次,表示为a^n。

其中,a是底数,n是指数。

1.1 底数和指数在a^n中,a是底数,n是指数,其中a和n是对运算数的一切限定。

a称为幂的底数,n称为指数。

底数和指数是幂运算的两个基本概念,我们需要通过练习来熟悉底数和指数的概念。

示例1:计算2的3次方。

解:2的3次方表示为2^3,其中2是底数,3是指数。

2^3=2*2*2=8。

示例2:计算(-3)的4次方。

解:(-3)的4次方表示为(-3)^4,其中-3是底数,4是指数。

(-3)^4=(-3)*(-3)*(-3)*(-3)=81。

1.2 幂的相等当两幂相等时,它们的底数和指数都相等。

这是我们进行乘方运算时需要注意的一点,也是我们常用的一条幂的基本定理。

示例3:如果a^m = a^n (其中a≠0, a≠1),那么m和n必相等。

解:若a^m = a^n,即a自身连乘m次等于a自身连乘n次,那么m和n必相等。

例如,2^3=2^3,那么3和3相等。

1.3 幂的零指数对于任何不等于0的实数a,a的零次幂等于1,即a^0=1。

示例4:计算5的零次幂。

解:5的零次幂表示为5^0,5^0=1。

1.4 幂的负指数对于任何不等于0的实数a和任意整数n,a的-n次方等于1除以a的n次方,即a^(-n)=1/(a^n)。

示例5:计算2的负三次方。

解:2的负三次方表示为2^(-3),2^(-3)=1/2^3=1/8。

二、幂的运算法则在幂运算中,有一些基本的运算法则,需要我们掌握和使用,下面我们来总结一些常用的运算法则。

2.1 幂数相乘当底数相同,指数相加时,可以将幂数相加得到表示该幂的底数相同的一次幂。

示例6:计算2的3次方乘以2的4次方。

解:2的3次方乘以2的4次方表示为2^3 * 2^4,根据幂数相乘的法则,底数相同,指数相加,所以2^3 * 2^4=2^(3+4)=2^7=128。

幂的运算-教师讲义

幂的运算-教师讲义

胜蓝教育教师辅导讲义年级:七年级课时数:3 学员姓名:辅导科目:数学学科教师:课程主题幂的运算授课类型T掌握正整数幂的乘法运算性质C能用代数式和文字语言正确地表述这些性质T熟练地进行运算授课日期时段年月日 A段(8:00--10:00)教学内容【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2.能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.要点一、同底数幂的乘法性质+⋅=m n m na a a(其中,m n都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n pa a a a++⋅⋅=(,,m n p都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m na a a+=⋅(,m n都是正整数).要点二、幂的乘方法则()=m n mna a(其中,m n都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnpa a (0≠a,,,m n p均为正整数)(2)逆用公式:()()n mmn m na a a==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n nab a b (其中n是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c(n为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+. 解:(1)原式234944++==.(2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()ppp x x x +⋅-⋅-(p 为正整数); (3)232(2)(2)n⨯-⋅-(n 为正整数). 解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()p pp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.解:由2220x +=得22220x ⋅=.∴ 25x=. 类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -. 解:(1)2()m a 2ma=.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m m aa --==.4、已知25mx =,求6155m x -的值.解:∵ 25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【变式1】已知2ax =,3bx =.求32a bx +的值.解:32323232()()238972a b ab a b x x x x x +===⨯=⨯=.【变式2】已知84=m,85=n,求328+m n的值.解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.解:(1)错,这是积的乘方,应为:222()ab a b =.(2)对.(3)错,系数应为9,应为:326(3)9x x -=.一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15cD.8c2.2nn a a+⋅的值是( ). A. 3n a+B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).)22525 ==一.选择题1.下列计算正确的是( ).A. ()325x x = B.()5315x x = C. 4520x x x ⋅= D.()236x x --=2.()()2552aa -+-的结果是( ).A.0B.72a -C.102aD. 102a - 3.下列算式计算正确的是( ). A.()33336aaa +== B.()22nnxx -= C.()()3626yy y -=-= D.()33333327c c c ⨯⨯⎡⎤==⎢⎥⎣⎦4.31n x +可以写成( ). A.()13n x + B.()31n x + C.3n x x ⋅ D.()21n n x +5.下列计算中,错误的个数是( ).①()23636xx = ②()2551010525a ba b -=- ③3328()327x x -=-④()42367381x yx y = ⑤235x x x ⋅=A. 2个B. 3个C. 4个D. 5个 6.93191993+的个位数字是( )A .2B .4C .6D .8二.填空题7.化简:(1)33331)31(b a ab +-=_______;(2)()()322223a a a +⋅=_______.8.直接写出结果:(1)()_____n=233n n n a b ; (2)1011x y =()5_____y ⋅;(3)若2,3n n a b ==,则6n =______.9. 501420031[()]3_____3-⨯=.10.若23,25,290a b c ===,用a ,b 表示c 可以表示为 .11.已知554433222,3,5,6a b c d ====,那么a 、b 、c 、d 从小到大的顺序是 .12.若整数a 、b 、c 满足50189827258abc⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则a = ,b = ,c = .a=【解析】()1152【答案】a=6,b=。

【重点梳理】-初二数学-幂的运算

【重点梳理】-初二数学-幂的运算

核心知识点一:同底数幂的乘法同底数幂相乘,底数不变,指数相加,即m n m n a a a +⋅=(m ,n 都是正整数).推导过程:一般地,对于任意底数a 与任意正整数m ,n ,核心知识点二:同底数幂的除法同底数幂相除,底数不变,指数相减,即m n m n a a a -÷=(m ,n 都是正整数,并且m n >).推导过程:一般地,对于任意底数a 与任意正整数m ,n ,幂的运算の重点梳理一、基础知识梳理核心知识点三:幂的乘方幂的乘方,底数不变,指数相乘,即()nm mn a a =(m ,n 都是正整数). 法则的推导过程:一般地,对于任意底数a 与任意正整数m ,n ,核心知识点四:积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即()n n n ab a b =(n 为正整数)法则的推导过程:一般地,对于任意底数a 、b 与任意正整数n ,核心知识点五:0次幂 01(0)a a =≠.核心知识点六:负整指数幂一般地,当n 是正整数时,1(0)n na a a -=≠.()m n a n m m nm m m m m m mn a a a a a a +++=⋅⋅⋅==个个()()()()n ab n n a n b n n ab ab ab ab a a a b b ba b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=个个个1、同底数幂的乘法:m n m n a a a +⋅=(m ,n 都是正整数).2、同底数幂的除法:m n m n a a a -÷=(m ,n 都是正整数m >n ).3、幂的乘方:()nm mn a a =(m ,n 都是正整数)4、积的乘方:()nn n ab a b =(m ,n 都是正整数)5、0次幂:01a =(0a ≠)6、负整指数幂:一般地,当n 是正整数时,1(0)n n a a a -=≠.二、知识体系梳理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算(基础)知识
讲解
幂的运算(基础)【学习目标】
1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);
2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.
【要点梳理】
【高清课堂396573 幂的运算 知识要点】
要点一、同底数幂的乘法性质
+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.
要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单
项式、多项式.
(2)三个或三个以上同底数幂相乘时,也具有这一性质,
即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).
(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的
底数与原来的底数相同,它们的指数之和等于原来的幂的指数。


m n m n a a a +=⋅(,m n 都是正整数).
要点二、幂的乘方法则
()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.
要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整
数)
(2)逆用公式: ()()n m
mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.
要点三、积的乘方法则
()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分
别乘方,再把所得的幂相乘.
要点诠释:(1)公式的推广:()=⋅⋅n n n n abc a b c (n 为正整数).
(2)逆用公式:()n
n n a b ab =逆用公式适当的变形可简化运算
过程,尤其是遇到底数互为倒数时,计算更简便.如:1010
101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭
要点四、注意事项
(1)底数可以是任意实数,也可以是单项式、多项式.
(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,
计算时不要遗漏.
(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.
(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.
(5)灵活地双向应用运算性质,使运算更加方便、简洁.
(6)带有负号的幂的运算,要养成先化简符号的习惯.
【典型例题】
类型一、同底数幂的乘法性质
1、计算:
(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;
(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.
【答案与解析】
解:(1)原式234944++==.
(2)原式34526177772222a a a a a a a +++=+-=+-=.
(3)原式
11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.
【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体.
举一反三:
【变式】计算:
(1)5323(3)(3)⋅-⋅-;
(2)221()()p p p x x x +⋅-⋅-(p 为正整数);
(3)232(2)(2)n ⨯-⋅-(n 为正整数).
【答案】
解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.
(2)原式22122151()p p p p p p p x x x x x +++++=⋅⋅-=-=-.
(3)原式525216222(2)22n n n +++=⋅⋅-=-=-.
2、已知2220x +=,求2x 的值.
【思路点拨】同底数幂乘法的逆用:22222x x +=⋅
【答案与解析】
解:由2220x +=得22220x ⋅=.
∴ 25x =.
【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.
类型二、幂的乘方法则
3、计算:
(1)2()m a ;(2)34[()]m -;(3)32()m a -.
【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是
2(3)62m m -=-.
【答案与解析】
解:(1)2()m a 2m a =.
(2)34[()]m -1212()m m =-=.
(3)32()m a -2(3)62m m a a --==.
【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.
4、(2014春•宝应县月考)已知2m =5,2n =7,求 24m+2n 的值.
【答案与解析】
解:∵2m =5,2n =7,
∴24m =625,22n =49,
∴24m+2n =625×49=30625.
【总结升华】本题考查同底数幂的乘法,幂的乘方,解题时记准法则是关键. 举一反三:
【变式1】已知2a x =,3b x =.求32a b x +的值.
【答案】
解:32323232()()238972a b a b a b x x x x x +===⨯=⨯=g g .
【高清课堂396573 幂的运算 例3】
【变式2】已知84=m ,85=n ,求328+m n 的值. 【答案】
解:因为3338(8)464===m m , 2228(8)525===n n .
所以323288864251600+=⨯=⨯=m n m n .
类型三、积的乘方法则
5、指出下列各题计算是否正确,指出错误并说明原因:
(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.
【答案与解析】
解:(1)错,这是积的乘方,应为:222()ab a b =.
(2)对.
(3)错,系数应为9,应为:326(3)9x x -=.
【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.
(2)注意系数及系数符号,对系数-1不可忽略.
举一反三:
【变式】(2015春•铜山县校级月考)(﹣8)57×0.12555.
【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×
]=﹣64.。

相关文档
最新文档