复用和信道编码3GPPTS36212
3gpp标准 文档
3GPP标准概述和组织架构首先3GPP标准化组织主要包括项目合作组(PCG)和技术规范组(TSG)两类。
其中PCG工作组主要负责3GPP总体管理、时间计划、工作的分配等,具体的技术工作则由各TSG工作组完成。
目前,3GPP包括3个TSG,分别负责EDGE无线接入网(GERAN)、无线接入网(RAN)、系统和业务方面(SA)、核心网和终端(CT)。
每一个TSG进一步分为不同的工作子组,每个工作子组分配具体的任务。
例如SA WG1负责需求制定,SA WG2负责系统架构,SA WG3负责安全,SA WG5负责网络管理等等。
又如,TSG RAN 划分为5个工作小组,分别是RAN层1规范组、层2和层3规范组、lub/Lur/Lu规范与OAM需求规范组。
无线性能与协议规范组和终端一致性测试规范组。
目前,3GPP已经正式发布R99、R4、R5、R6、R7、R8共6个版本。
R8版本于2009年3月正式发布,R9的标准工作也已正式启用。
其中,R99-R7版本已基本稳定,R8部分特征正在完善过程中。
另外,3GPP相关的标准工作可以分为两个阶段:SI(Study Item,技术可行性研究阶段)和WI(Work Item,具体技术规范撰写阶段)。
SI阶段主要以研究的形式确定系统的基本框架,并进行主要的候选技术选择,以对标准化的可行性进行判断。
WI阶段分为Stage2、Stage3两个子阶段。
其中,Stage2主要通过对SI阶段中初步讨论的系统框架进行确认,同时进一步完善技术细节。
该阶段规范并不能够直接用于设备开发,而是对系统的一个总体描述,仅是一个参考规范,根据Stage2形成的初步设计,进一步验证了系统的性能。
Stage3主要是确定具体的流程、算法及参数等。
3GPP各版本针对核心网的演进1 R99阶段:这是3G标准的第一个阶段,2000年3月发布。
延续了GSM/GPRS系统的核心网系统结构,即分为电路域和分组域分别处理语音和数据业务。
5G(NR)中调制、信道编码和时隙配置
一、调制方式3GPP TS38.214中为5G(NR)定义的调制特点如下:MCS的范围从0~28‘Qm可以是2、4、6(64QAM)和8(256QAM)3GPP定义三个不同表:表1最大64QAM,表2最大256QAM,表3低数据速率(高可靠低时延)TBS是由一个复杂算法决定。
二、信道编码5G(NR)网络中控制通道使用Reed-Muller分组代码和循环冗余校验(CRC) 辅助极化码(对应于LTE 中的咬尾卷积)。
数据信道使用速率兼容的准循环低密度奇偶校验(LDPC)码(相对于LTE中的Turbo代码)。
三、双工方式5G(NR)网络中支持的双工选项包括:FDD(频分双工);TDD(时分双工)的半静态配置上行/下行(UL/DL)配置和动态TDD配置。
网络中针对TDD的应用:在小型/孤立的小区中可以使用动态的TDD来适应上行/下行流量变化;而对于大型屋顶小区可采用半静态的TDD 配置,这可能更适合处理干扰问题,比完全动态的TDD更加理想。
四、时隙配置在5G网络TDD的应用中启用灵活Slot(插槽)配置操作。
具体来说,一个时隙中的OFDM符号可以配置为下行(DL)、上行(UL)或灵活(Flesx);下行(DL)传输可以在下行(DL)或“灵活(Flesx)的OFDM符号中进行,并且上行(UL)传输也可以发生在上行(UL)或灵活(Flesx)符号中完成;网络侧也可以特定于小区和特定终端(UE)通过RRC进行具体配置,确定下行(DL)、上行(UL)资源分配。
在5G(NR)网络中如果未对Slot进行配置,则所有资源都默认为是灵活的。
OFDM符号是否用于下行(DL)或上行(UL)传输可根据动态的下行(DL)控制信息(DCI)的在层一/层二得到的信令确定。
而在4G(LTE)网络只允许帧结构中配置相同的Slot(插槽)模式。
TD-SCDMA基本原理和关键技术
智能天线
TDD双工
TDD双工方式: 上下行信道使用相同频率,利于智能天线的实现 便于提供非对称业务 不需要对称的频率资源
D U U U D D D
DATANG MOBILE COMMUNICATIONS EQUIPMENT CO.,LTD.
TD-SCDMA技术特点
TD-SCDMA技术特点
智能天线
TDD双工
5ms子帧
联合检测
联合检测: 有效降低多用户干扰 和智能天线联合使用,大大提升了系统容量
Power
联合检测计算量随用户数量成非线性迅速增长
DATANG MOBILE COMMUNICATIONS EQUIPMENT CO.,LTD.
44
Subframe #1
Subframe #2
Subframe #1
Subframe #2
Radio frame #i
DATANG MOBILE COMMUNICATIONS EQUIPMENT CO.,LTD.
Radio frame #i+1
扩频与调制
OVSF码 经过信道 编码和交 织的数据 流 扰码
(864Chips)
DATANG MOBILE COMMUNICATIONS EQUIPMENT CO.,LTD.
物理层时隙结构(1)
GP (32chips)
SYNC_DL(64chips)
75 s 96chips
DwPTS
用于下行同步和小区初搜; 32个不同的SYNC_DL码,每个小区用1个SYNC_DL码,由网络规划确定; 对SYNC_DL码(DwPCH)不进行扩频、加扰操作;
在TD-SCDMA系统中,TS0可认为是特殊时隙 P-CCPCH(BCH)必须分配在TS0; 对TS0上的信道不进行功率控制; TS0上的信道进行全小区覆盖,除了FACH信道外不进行波束赋形。
中国移动TD-SCDMA Femto基站设备技术规范
Q C A 0 0 2 2 0 1 0
中国移动 T D S C D M AF e m t o 基 站 设备技术规范
C h i n a M o b i l e T D S C D M A F e m t o c e l l T e c h n o l o g y S p e c i f i c a t i o n
版本号:1 . 0 . 0
2 0 1 1 3 3发 布
2 0 1 1 3 3实 施
中国移动通信集团公司
发布
Q C A 0 0 2 2 0 1 0
目
1 2 3 4 5 5 . 1 5 . 2
录5 . 35 .45 . 5 5 . 6 5 . 7 5 . 8
5 . 9 5 . 1 0
5 . 1 1
范围...................................................................................................................................1 规范性引用文件 ...............................................................................................................1 术语、定义和缩略语 .......................................................................................................2 概述.......................................................
常用通信术语缩写解析
缩写中文全称英文全称2G 第二代移动通信系统Second Generation of Wireless Communications Systems 3G 第三代移动通信系统 Third Generation of Wireless Communications Systems 3G-MSC 第三代移动交换中心3G Mobile Switch Center3GPP 第三代合作项目3G Partnership Project3G-SGSN 第三代服务GPRS节点3G Service GPRS NodeA/D 模数转换Analog-to-DigitalAAA 认证、鉴权和计费Authentication、Authorization and AccountingAB 地址总线Address BusABB 模拟基带Anolog BasebandAC 天线校准Antenna CalibrationAC 交流电Alternating CurrentACLR 邻道泄漏比Adjacent Channel Leakage RatioACPR 邻道功率比Adjacent-Channel Power RatioACS 邻道选择性Adjacent Channel SelectivityADC 模数转换器Analog-to-Digital ConverterADI 美国模拟器件公司Analog Devices InstrumentsAEP 有源方向图法Active Element PatternAFC 自动频率控制Auto Frequency ControlAFMS来音频信号AFPCB 音频电路板AGC 自动增益控制Automatic Gain ControlA-GPS 辅助全球定位系统AHB Advanced High Performance BusALC自动电平控制Automatic Level ControlALEV自动电平ALPS 高级线性规划系统Advanced Linear Programming System ALPS 相关逻辑并行运算系统Associative Logic Parallel System AMP放大器AMPS 先进移动电话业务Advanced Mobile Phone Service AMR Adaptive Multi-rate CodecAM-SAP 确认业务接入点ANT天线ANT/SW 天线开关AOA 到达的角度APC自动功率控制API Application Program InterfaceAPI 应用编程接口Application Programming InterfaceARFCH 绝对信道号ARQ 自动请求重发ASIC 专用集成电路Application Specific Integrated Circuit ASIC专用接口集成电路ASK amplifier shift keyingASM Antenna Switch ModuleASP application service providerAST-DET 饱和度检测ATM asynchronous transfer modeATM 异步转移模式ATMS到移动台音频信号ATPC 自动发送功率控制Automatic Transmit Power Control AUC 身份鉴定中心AUX 辅助数据通道Auxiliary Data ChannelAWGN additive white Gaussian noiseBAI Baseband and Audio InterfaceBAP 基带模拟处理器BB 基带BasebandBCCH 广播控制信道BCFE 广播控制功能实体BCH 广播信道Broadcast ChannelBER 误码率Bit Error RateBH 接力切换Baton HandoverBIAS-PA 功放信置BIAS-PD 推动偏置BIC 总线接口BLIGHT 背景灯BMC 广播/多播控制BPSK 二进制相移键控binary phase shift keying BS 基站Base StationBSC 基站控制器Base Site ControllerBT 高斯滤波器带宽与比特率之比BTS 基站收发器base transceiver stationBUZZ 蜂鸣器C/I 载干比CA 码分配CAI 公共空间接口CAMEL 移动网定制应用增强逻辑CBCH 小区广播信道CC 呼叫控制CCBS 用户忙呼叫完成CCH 公共传输信道Common Transport ChannelsCCITT 国际电话与电报咨询委员会International Telephone and Telegraph consultative committeeCCPCH 公共控制物理信道CCRR co-channel rejection ratioCCTrCH 编码复用传输信道Coded Composite Transport ChannelCDMA 码分多址code-division multiple accessCDPD Cellular Digital Packet DataCEPT 欧洲邮电管理委员会CG 计费网管Change Gate WayCIR 允许的信息速率Committed Information RateCM 连接管理模块CM 交叉调制Cross ModulationCMD California Micro DevicesCMM 控制管理维护模块CMOS 互补金属氧化物半导体complementary metal-oxide semiconductor CMRR common-mode rejection ratioCN 核心网子系统CNAP 主叫名显示CODEC 编码器/解码器COFDM 编码正交频分复用Code Or-thogonal Frequency Division Multiplexing CORBA Common Object Request Broker ArchitectureCPCH 公共物理信道CPLD 复杂可编程逻辑设备Complex Programmable Logical DeviceCQI 信道质量指示Channel Quality IndicatorCRC 循环冗余校验CTCH 公共业务信道CW 连续波continuous waveCWDM 粗波分复用Coarse Wavelength Division MultiplexingCWTS 中国无线通信标准Chinese Wireless Telecommunication StandardsDAB 数字音频广播Digital Audio BroadcastingDAI 数字音频接口Digital Audio InterfaceDARPA 美国国防部高级研究计划署DCA 动态信道分配技术Dynamic Channel AllocationDCCH 专用控制信道DCH 专用传输信道Dedicated Transport ChannelsDCIN 外接电源输入DCS distributed communications system or digital cellular system DCS1800 Digital Cellular System at 1800MHzDCU 数据计算单元Data Computation UnitDDC 数字下变频DDS 直接数字频率合成技术Dirrect Digital SynthesisDEC 网络范围内的数据保密性机制DECODER 解码器DECT 数字增强无绳通信系统digital European cordless telephone DEM 解调DemodulationDEMUX 分接DeMutiplexDF 抽取滤波器Decimation FilterDF 判决反馈Decision FeedbackDFMEA Design Failure Mode Effect and AnalysisDFMS 来数据信号DIF 数字中频DIO DSP I/O intercore blockDM 双模Dual ModelsDMA Direct Memory AccessDMAC DMA ControllerDOA 到达的方向Direction Of ArrivalDPCH 专用物理信道DPT 动态分组传输技术Dynamic Packet Transport DRA 动态资源分配Dynamic Resource Allocation DRNC 漂移无线网络控制器DRNS 漂移无线网络子系统DRP 数字射频DSCH 下行共享信道Downlink Shared Channel DSP 数字信号处理Digital Signal ProcessorDSS 数字信号处理子系统DSP Subsystem DTCH 专用业务信道DTMS 到数据信号DTV 数字电视Digital TVDUT device under testDVB-C 数字有线节目DVB-S 数字卫星节目DWDM 密集波分复用Dense Wavelength Division MultiplexingDwPTS 下链导引时隙Downlink Pilot Timeslot Physical ChannelEBI 外部总线接口External Bus InterfaceEBMM External Baseband Memory ModuleECC Emergency Call CodeECT 直接呼叫转移EDGE 改进数据率GSM服务Enhanced Data rate for GSM Evolution EEPROM 电擦除可编程只读存储器electrically erasable programmable read-only memoryEER Envelope Eliminaton RestorationEFR Enhanced Full-rate codecE-GSM Extended GSM frequency bandEIR 移动设备识别寄存器Equipment Identify RegisterEMC 电磁适应性electromagnetic compatibilityEMI 电磁接口electromagnetic interferenceEMI 电磁干扰External Memory InterfaceEPROM 电编程只读存贮器ESD 静电漏电Electro-static dischargeETACS 增强的全接入通信系统ETSI 欧洲电信标准委员会European Telecommunications Standards Institute EUIC 增强用户身份保密性EVITA+ 评估验证集成测试应用平台Evaluation Verification Integration Test Application PlatformEVM 矢量幅度误差EWC 增强无线联盟FACCH 快速随路控制信道FACH 前向接入信道Forward Access ChannelFCA 固定信道分配技术FCC 联邦通信委员会federal communications commissionFCH 频率校正信道FDD 频分复用frequency division duplexFEC 前向纠错Forward Error Correction.FEM 前端模块FER 误帧率frame error rateFET 场效应管field-effect transistorFH 跳频Frequency HoppingFHSS 跳频扩频frequency-hopping, spread spectrumFIFO 先进先出first-in, first-outFIR 有限冲激响应finite impulse responseFM 调频Frequency ModulationFN 闪烁噪声Flicker NoiseFPACH 快速物理接入信道FPLMTS 未来公共陆地移动通信系统Future Public Land Mobile Telecom System FSA 全球IC设计委外代工协会Fabless Semiconductor AssociationFSK frequency shift keyingFSM 有限状态机Finite State MachineFTA Final Type ApprovalFTMS Field Trial Mobile StationFU 功能单元Functional UnitGaAs 砷化镓gallium arsenideGaN gallium nitrideGDA Gate Way Design AutomstitionGFSK Gaussian filtered frequency shift keyingGGSN 通用分组无线业务网关支持节点GIF-SYN 双工中频GMM 通用分组无线业务移动性管理GMSC 网关移动交换中心GMSK Gaussian minimum shift keyingGP 保护时隙GPIB general-purpose interface busGPIO 通用输入输出General Purpose Input/OutputGPRS 通用分组无线业务General Packet Radio ServiceGPS 全球定位系统global positioning systemGSM 全球移动通信系统Global System for Mobile communication GTP 通用分组无线业务隧道协议HBT heterojunction bipolar transistorHDB3 三阶高密度双极性码Trinodal high density bipolar code HDR hardware defined radioHDTV 高清晰度电视High-definition TelevisionHEMT high electron mobility transistorHLR 归属用户位置寄存器HLR 归属位置寄存器HOOK 外接免提状态HPA 高功率线性放大器High Power AmplifierHRF 高通滤波器HRPD High Rate Packet DataHSCSD 高速电路交换数据high-speed circuit-switched dataHSDPA 高速下行链路分组接入High Speed Downlink Package Access HS-DSCH 高速下行共享信道High Speed Downlink Shared Channel HS-SCCH 高速下行共享信道的共享信息信道HTTP 超文本传输协议hypertext transfer protocolHW 硬件HardwareIC 干扰抵消(算法Interference CancellationIC 集成电路integrated circuitICD In-Circuit DebuggerICE In-Circuit EmulatorICTRL 供电电流大小控制端IDU 室内单元Indoor UnitIEMF 感应电动势法Induced Electromotive ForceIF 中频intermediate frequencyIIC/I2C Inter-Integrated Circuit (BusIM 互调intermodulationIM IP多媒体IM 相互调制Inter ModulationIMD 互调失真intermodulation distortionIMEI 国际移动设备识别码IM-MGW IP多媒体媒体网关功能IMS IP多媒体核心网子系统IMSI International Mobile Subscriber IdentityIMT-2000国际移动通信—2000 International Mobile Telecommunication for the 21st centuryInGaP indium gallium phosphideInP indium phosphideIOT Inter operability testIP 知识产权Intellectual PropertyIP internet protocolIPTV 互联网协议电视Internet Protocol TelevisionISCP 干扰信号码功率ISDN 综合业务数字网ISI 多径干扰ISM industrial, scientific, and medicalISUP 综合业务数字网用户部分ITS Incompatible Time Sharing SystemITU 国际电信联盟International Telecommunication UnionIWF 互通功能JD 联合检测Joint DetectionJPEG Joint Photographic Expert Group; glossy image compression format JTAG 标准检测访问接口与边界扫描结构LAC 位置区号LAL 位置区域识别码LAN 本地网络Local Area NetworkLCD 液晶显示器Liquid Crystal DisplayLCR 低码片速率Low Chip RateLDMOS laterally diffused metal oxide siliconLDO 低压差线性稳压器Low Drop Out RegulatorLINC Linear Amplification with Nonlinear ComponentsLLC Logical Link ControlLMDS 本地多点分配业务系统Local Multipoint Distribution ServiceLNA 低噪音放大器low-noise amplifierLO 本机振荡器local oscillatorLOG 逻辑LOGKED 锁机LOMC 本地操作维护中心LOS 信号丢失Loss of SignalLPF 低通滤波器low-pass filterLSI large scale integrationLTCC low-temperature co-fired ceramicLTE 本地终端模拟器Local Terminal EmulatorLTP 长期预测器LTPS 低温多晶硅Low Temperature Poly Silicon LVDS 低压差分技术Low Voltage Differential Signaling M&C 监控Monitor and ControlMAC 媒体访问控制(媒体接入层Media Access Control MAC 测量与控制Measurement and ControlMAI 多址干扰MAP 移动应用部分MBOA 多频段OFDM联盟MCC Mobile Country CodeMCP Multi Chip PackageMDM 调制解调MDS multipoint distribution systemsMDU 调制解调单元Modem UnitME Mobile EquipmentMexE 移动执行环境MF 匹配滤波器Matching FilterMGW 媒体网关MIPS Mega Instructions Per SecondMM 移动性功能管理模块MMDS multichannel multipoint distribution serviceMMI 人机界面Man Machine InterfaceMMIC 单片微波集成电路monolithic microwave integrated circuitMMS 多媒体信息服务Multimedia Messaging ServiceMMSE-BLE最小均方误差块均衡Minimum Mean Square Error Block Linear Equalizer MNC Mobile Network CodeMOM 矩量法Method of MomentMOSFET metal-oxide semiconductor field-effect transistorMP3 Audio Player 3 of MPEG 1 and 2MPEG Moving Picture Experts GroupMS 移动台Mobile StationMSC 移动交换中心MSIN 移动台识别码MSK 最小移频键控MSM Mobile Station ModemMTMRA 多发多收天线MTP 消息传输部分MUD 多用户检测Multiuser DetectionMUX 复分接器Multiplexer/DemultiplexerNAM 号码分配模块NAS 非接入层NBAP 节点B应用协议NCO 数控振荡器Numerically Control Oscillator NFR 陷频滤波测试Notch Filter RejectionNMS 网络管理系统Network management system NNMC 全国网管中心NRI 网络资源标识NTC Negative Temperature CoefficientNZIF Near ZIFODB 运营商闭锁业务ODU 数字微波收发信机Outdoor UnitOEM Original equipment ManufacturerOFDM 正交频分复用Orthogonal Frenquency Division MultiplexingOLED 有机发光显示器Organic Light Emitting DisplayOMC 操作管理中心Operation And Management CenterOMT 操作管理终端Operation And Management TerminalONSRQ 免提开关控制OO-VHDL 面向对象的VHDL Object Oriented VHDLOSA 开放业务接入OSR 过采样比Over Sampling RatioOTA 空中下载技术Over The AirOVSF 正交可变扩频因子Orthogonal Variable Spreading Factor OXCO oven controlled crystal oscillatorPA 功率放大器Power AmplifierPAE power added efficiencyPAN 个人接入网Personal Acess NetworkPAR peak-to-average ratioPAS 个人介入系统Personal Acess SystemPC 功率控制Power ControlPCB 印制电路板Printed Circuit BoardPCCH 寻呼控制信道P-CCPCH 主公共控制物理信道PCDE 峰值码域误差Peak Code Domain ErrorPCH 寻呼信道Paging ChannelPCM 脉冲编码调制pulse-code modulationPCN personal communications networkPCS Personal Communication SystemPCU 程序控制单元Program Control UnitPDA Personal Digital AssistantPDATA 并行数据PDC 个人数字蜂窝电话Personal Digital Cellular PDCP 分组数据汇聚协议Package Data Collect Protocol PDH 准同步数字系列Plesiochronous Digital Hierarchy PDP Packet Data ProtocolPDPCH 分组数据物理信道PDSCH 物理下行链路共享信道PECL positive emitter-coupled logicPGA 可编程功率放大器Programmable Gain Amplifier PhCH 物理信道Physical ChannelPHEMT pseudomorphic high-electron-mobility transistor PHS 个人手持电话系统Personal Handy-phone SystemPI 外围设备连接Peripheral InterconnectPICH 寻呼指示信道PIN 个人识别码PIO 并行输入输出Parallel I/OPLL 索相环Phase-Locked LoopPLMN 公共陆地移动网Public Land Mobile NetworkPMIC 电源管理集成电路Power Management Integrated Circuit PMU 功率管理单元Power Management UnitPNMC 省级网管中心PRACH Physical-Random Access ChannelPRBS 伪随机二进制序列Pseudo-random Binary Pulse Sequence PROM 可编程只读存储器PS Philips SemiconductorPSAM 导频符号辅助调制Pilot Symbol Assisted ModulationPSK phase shift keyingPSTN 公用交换电话网Public Switching Telephone NetworkPVC 永久虚电路PVCO voltage-controlled oscillatorPWDM 极化波复用Polarization Wavelength Division Multiplexing PWM 脉宽调制Pulse Width ModulationQAM quadrature amplitude modulationQASK quadrature amplitude shift keyingQoS 服务质量要求Quality of ServiceQPSK 正交相移键控Quadrature Phase Shift KeyingRAB 无线接入承载Radio Access BearerRACH 随机接入信道Random Access ChannelRAM 随机存储器Random Access MemoryRAN 无线接入网RANAP 无线接入网络应用实体RAT Radio Access TechnologyRBER 残余比特误码率Remainder Bit Error RateRBW 中频分辨率带宽RCCC 并行级联分组码RF 射频Radio FrequencyRFADAT 射频频率合成器数据RFAENB 射频频率合成器启动RFCI RAB子码流组合指示RFDRXM 双路射频收模块Radio Frequency Double Receiver Module RFDTXM 双路射频发模块Radio Frequency Double Transmitter Module RFI 射频接口radio frequency interferenceRFIC 射频集成电路radio frequency integrated circuitRFID 射频标签Radio Frequency IdentificationRFTRXU 射频收发信机模块Radio Frequency Transceiver UnitRISC reduced instruction set computingRLC 无线链路控制RLP 无线链路协议RMS Record Management SystemRMS 均方根值RNC 无线网络控制器RNS 无线网络子系统ROM 只读存储器Read Only MemoryRRC 平方根升余弦Root-Raised CosineRRC 无线资源控制RRM 无线资源管理RRM 无线资源管理Radio Resource ManagementRSC 循环系统卷积码Recursive Systematic ConvolutionalRSCP 接收信号码功率 RSL 接收信号电平 Received signal level RSSI 接收信号强度指示 Received signal strength indication RSU 倒换单元 Redundancy Switch Unit RSVP 资源预留协议 RTK Real Time Kernel RTK-E Real Time Kernel, embedded RTT 无线传输技术 RU Resource Unit RX 接收机 Receiver RXIFN 接收中频信号负 RXIFP 接收中频信号正 RXON 接收开 RXVCO 收信压控振荡器 SA 智能天线 Smart Antenna SABP 服务区广播协议 SACCH 慢速随路控制信道 SAP 服务接入点 SAR 电磁波吸收比值 Specific Absorption Rate SAT 饱和度 SAW 地面声波 Surface Acoustic Wave SBDM "Swift" Baseband Digital Module SC 系统控制器 System Controller S-CCPCH 辅助公共控制物理信道 SCDMA 同步码分多址 Synchronous Code Division Multiplexing Access SCH 同步信道 Synchronization Channel SCIF 系统控制器界面 System Controller Interface SCLK 串行时钟 SCM 信号编码调制 signal code modulation SCTP 简单控制传输协议 SD Sigma Delta 调制 Sigma Delta Modulation SDAT 串行数据 SDCCH 快速随路控制信道 SDH 同步数字系列Synchronous Digital Hierarchy SDM 统计复用 Statistical Division Multiplexing SDR 软件定义无线电 Softwaer Defined Radio SDU 业务数据单元 SEMC 安全性管理中心Security Management Center SF 扩频系数 Spreading Factor SFDR 无杂散动态范围Spurs Free Dynamic Range SFN System Frame Number SGSN 支持 GPRS 的功能实体SGW 信令网关 SiGe silicon-germaniumSIM 用户识别模块 Subscriber Identity Module SIP 系统级封装 SIR 信干比Signal Interference Ratio SLIP 串行线路网际协议 Serial Line Internet Protocol SM 会话管理功能模块 SMCP "Swift" Multi-Chip Package Module SMMI "Swift"人机接口界面 "Swift" Man-Machine Interface Module SMOC 调制解调器 SMR specialized mobile radio SMS Short Message Service (Point-to-Point SMSCB Short Message Service Cell Broadcast SMT surface-mount technology or surface-mount toroidal SNDR 信号与噪声畸变比 Signal to Noise- Distorsion Ratio SNMP 简单网络管理协议 Simple network management protocol. SNR 信噪比 signal-to-noise ratio SoC 系统级芯片 SOC 信号操作控制器 Signal Operation Control SoC 片上系统(系统单芯片)System-on-Chip SOIC small-outline integrated circuit SONET synchronous optical network SPDT single-pole double-throw SPI 串行外围接口 Serial Peripheral Interface SRAM 静态随机存储器 SRB 信令无线承载 SRNC 服务无线网络控制 SRNS 服务无线网络子系统 SS 同步偏移控制符号 Synchronization Shift SS 辅助服务 Supplementary Service SSB single side band SSCF 具体业务协调功能 SSCOP 特定业务面向连接协议 SSPA solid state power amplifiers SSPA 固态功率放大器 Solid State Power Amplifier STM SDH 光同步传输模式 SVC 交换虚电路 SW 开关 SWDC 未调整电压 SW-RF 射频开关SYNSTR 频率合成器启动 TACS 全选址通信系统 Total Access Communications System TACS 全接入移动通信系统 TC 测试用例 Test case TCH Traffic Channel TCP transmission control protocolTDD-LCR Time Division Duplex – Low Chip Rate TDK 东京电气化学工业株式会社 Tokyo Dengikagaku Kogyo K.K TDMA time-division multiple access TD-SCDMA 时分同步码分多址技术 Time Division-Synchronous Code Division Multiple Access TE 终端设备 Terminal Equipment TEMP 温度监测 TETRA trans European trunked radio TF 传输格式 Transport Format TFC 传输格式组合 Transport Format Combination TFCI 传输格式组合指示 Transport Format Combination Indicator TFCS 传输格式组合集合 Transport Format Combination Set TFD 薄膜二极管 Thin Film Diode TFI 传输格式显示 Transport Format Indicator TFS 传输格式集合 Transport Format Set THD 总谐波失真 Total Harmonics Distortion TMEM TD-SCDMA Modem Emulation Module TMU Tandem Mailbox Unit TP 测试点 Test Point TPC 传输功率控制 Transmitter Power Control TrBK 传输块 Transport Block TrCH 传输信道 Transport Channel TSG 技术规范部 Technical Specification Group TSM TD-SCDMA System for Mobile communication TSMB Two-Slot Mother Board TTD Test, Trace and Debug (tool TTI 传输时间间隔 Transmission Time Interval TTL transistor — transistor logic TX Transmitter, Transmission TXC 发信控制 Transmitter Control TXCO temperature-compensated crystal oscillator TXVCO 发信压控振荡器 UART Universal Asynchronous Receiver / Transmitter UCA 均匀圆阵 Uniform Circular Array UE 用户终端 User Equipment UHF 超高频 UltraHigh Frequency ULA 均匀直线阵 Uniform Linear Array UM-SAP 非确认业务接入点 UMTS 公用移动电话系统 UniversalMobile Telecommunications Service UpPTS 上行导频时隙 USB 通用串行总线Universal Serial Bus USCH 上行共享信道 Uplink Shared Channel UTRAN 无线网络子系统 UWB 超宽带 Ultra WidebandVBW 视频分辨率带宽 VCXO 压控晶体振荡器 Voltage Control X-tal [Crystal] Oscillator VDSM 超深亚微米 Very Deep Submicron VHDL 高速集成电路硬件描述语言 VHSIC Hardware Description Language VHE 虚拟归属环境 VHSIC 高速集成电路Very High Speed Integrated Circuit VLR 拜访用户位置寄存器 Visiter Location Register VLR 拜访位置寄存器 VOFDM 正交矢量频分复用 Vector Orthogonal Frequency Division Multiplexing VSAT 小孔径终端 very small aperture terminal (satellite service VSB 残余边带 vestigial side band VSWR 电压驻波比 Voltages Standing Wave Ratio WAD 无线广告业务 Wireless AD WAFI Walkthrough and Fagan Inspection WAP 无线应用协议 Wireless Application Protocol WBMP 无线位图Wireless Bitmap WCDMA 宽带码分多址技术 wideband code-division multiple access WD-CP 看门狗脉冲 WIFI 无线相容性认证 Wireless Fidelity WiMAX 全球微波接入互操作性 Worldwide Interoperability for Microwave Access WLAN 无线局域网wireless local area network WMF 白化匹配滤波 White Matching Filter ZF-BLE 迫零块均衡(算法) Zero Forcing Block Linear Equalizer ZIF 零中频 Zero Intermediate Frequency。
3Gpp38.XX系列介绍
3GPP TS 38.xx 系列规范涵盖了与5G无线通信系统相关的多个协议,每个规范都有不同的编号,用于讨论不同的方面和功能。
以下是一些重要的3GPP TS 38.xx 系列规范及其主要内容的简要介绍:1.3GPP TS 38.101 系列:o TS 38.101-1:5G系统架构的概述和一般要求,包括测试方法和测试设备的一般要求。
o TS 38.101-2:5G系统的协议体系结构,包括核心网和无线接入网的协议体系结构。
o TS 38.101-3:5G系统的信令协议和流程,包括核心网和无线接入网的信令流程。
o TS 38.101-4:5G系统的安全性能规范,描述了与安全相关的测试和性能要求。
2.3GPP TS 38.104 系列:基于IP的核心网络(NGCN)介绍o TS 38.104-1:5G系统的系统级能力测试和性能测试,包括测试用例和测试环境的定义。
o TS 38.104-2:5G系统的性能测试结果的表示和定义。
3.3GPP 38.106:o3GPP 38.106规范是关于5G新无线接口的规范,主要涉及了5G新空中接口的技术规范,包括物理层和射频(RF)层的要求。
o38.106规范详细定义了5G NR(New Radio)的物理层特性,如载波频率、信号结构、多路访问方法、信道编码等。
o这个规范为5G系统的实际实施提供了技术指导,确保了不同厂家的设备和网络能够互操作,并满足5G通信的性能和可靠性要求。
4.3GPP 38.108:o3GPP 38.108规范是关于5G系统架构的规范,提供了有关5G网络架构和协议的详细信息。
o这个规范定义了5G核心网络和无线接入网络之间的接口,包括用户面和控制面的协议。
o38.108规范还包括了与服务质量(QoS)、移动性管理、安全性、用户身份验证和连接管理等相关的规定。
o该规范的主要目标是确保5G系统的各个组件能够协同工作,为5G提供高性能、低延迟和广泛的应用支持。
cmmb移动多媒体广播课程复用 - 内部公开.
复用器单业务功能测试 复用器单业务码流流量测试 复用器单业务时间特性测试
复用器多业务并发功能测试
复用器多业务并发码流流量测试 复用器多业务并发时间特性测试
复用标准及实施指南
复用器设备技术要求和测量方法
终端解复用处理
终端解复用通用流程
复用帧头 复用帧净荷 填充
从信道解调芯片得到的 复用帧/复用子帧数据
本地监控模块
状态指示接口2
①复用器业务输入
业务输入包括视频/音频输入和数据输入。数据输入包括数据广播、ESG、紧急广播、加密授权等的 输入。 视频/音频输入采用RTP/UDP传输协议在IP网络传输,每个IP包大小不超过网络MTU大小。 数据输入采用数据输入消息经UDP传输协议在IP网络传输,每个IP包大小不超过网络MTU大小
ቤተ መጻሕፍቲ ባይዱ
支持多频点网络 支持漫游 支持叠加网络
SDI
节目内容 集成播出
音视频压缩
UDP
UDP
加扰器
加密 授权 ECM
数据广播
TCP
加扰器
CW CW ECM
UDP
S波段 卫星覆盖网
TCP
CAS
UDP EMM
复用器 MUX
PMS
调制器
移动多媒体终端
业务运营 支撑系统 BOSS
ESG
TCP
U波段 地面覆盖网
PMS流
电子业务 指南
数据广播
加密授权
复用子帧 复用子帧 复用子帧
复用
3
PMS流
5
GPS射频信号 或GPS授时信息
GPS接口
时钟模块 控制信息 表发生 网管模块
LTE学习之路(9)——3GPPTS协议系列总结
LTE学习之路(9)——3GPPTS协议系列总结规范编号规范名称内容更新时间射频系列规范TS 36.101UE⽆线发送和接收描述FDD和TDD E-UTRA UE的最⼩射频(RF)特性08-Oct-2010TS BS⽆线发送与接收描述E-UTRA BS在成对频谱和⾮成对频谱的最⼩RF特性30-Sep-2010TS FDD直放站⽆线发送与接收描述FDD直放站的射频要求和基本测试条件30-Sep-2010TS BS与直放站的电磁兼容包含对E-UTRA基站、直放站和补充设备的电磁兼容(EMC)评估01-Oct-2010TS移动终端和辅助设备的电磁兼容的要求建⽴了对于E-UTRA终端和附属设备的主要EMC要求,保证不对其他设备产⽣电磁⼲扰,并保证⾃⾝对电磁⼲扰有⼀定的免疫性。
定义了EMC测试⽅法、频率范围、最⼩性能要求等01-Oct-2010TS⽀持⽆线资源管理的要求描述⽀持FDD和TDD E-UTRA的⽆线资源管理需求,包括对E-UTRAN和UE测量的要求,以及针对延迟和反馈特性的点对点动态性和互动的要求08-Oct-2010TS BS⼀致性测试描述对FDD/TDD E-UTRA 基站的射频测试⽅法和⼀致性要求30-Sep-2010TS FDD直放站⼀致性测试描述了FDD直放站的⼀致性规范,基于36.106中定义的核⼼要求和基本⽅法,对详细的测试⽅法、过程、环境和⼀致性要求等进⾏详细说明01-Oct-2010TS⽀持辅助全球导航卫星系统(A-GNSS)的要求描述了基于UE和UE辅助FDD或TDD的辅助全球导航卫星系统终端的最低性能21-Jun-2010TS UE⽀持零散频段的要求定义了终端⽀持与版本⽆关频段时所要满⾜的要求。
04-Oct-2010物理层系列规范TS LTE物理层——总体描述物理层综述协议,主要包括物理层在协议结构中的位置和功能,包括物理层4个规范36.211、36.212、36.213、36.214的主要内容和相互关系等30-Mar-2010TS物理信道和调制主要描述物理层信道和调制⽅法。
3GPP LTE规范梳理
1.3GPP标准体系3GPP技术规范组(technical specification group, TSG)的工作分为四个工作组,即GSM/EDGE无线接入网(GERAN)、无线接入网(RAN)、业务和系统(SA)、核心网和终端(CT)。
其中,GERAN工作组负责GSM/GPRS/EDGE无线接入网技术规范的制定,范围有Layer1、Layer2、Layer3规范,Iu、Iub、Iur接口规范,基站的无线性能规范和一致性测试规范等;RAN工作组负责3GPP UTRAN/E-UTRAN 的无线接入网技术规范的制定;SA工作组负责3GPP业务与系统方面的技术规范制定,包括业务能力,系统架构,安全,编码,网络管理等;CT工作组负责3GPP 核心网和终端方面的技术规范的制定,范围有移动性管理,呼叫控制,核心网内网元间信令,网际互联的定义,核心网操作维护需求、业务能力协议,端到端互联,终端的一致性测试等。
针对于LTE项目中,TSG RAN负责开发LTE无线侧规范,分组核心演进(EPC)规范是由TSG SA和TSG CT制定的。
图 1 3GPP技术标准分类2.LTE核心网相关标准2.1 EPC相关架构等相关体系标准号涵盖内容TS 23.401 LTE系统的整体架构(各网元功能,QoS,用户面和控制面的接口描述和相关数据信令流)TS 29.305 主要介绍了LTE系统interworking场景中有关的基于MAP的Gr,Gf接口和基于Diameter的S6a,S13,S13a接口)TS 29.805 主要分析了LTE系统interworking的可行性TS 24.301 EPS中的NAS协议上述所述的标准中,涉及到PCC部分的标准集合如下:标准号涵盖内容TS 23.203 策略与计费控制体系架构TS 29.212 策略与计费控制Gx接口TS 29.213 策略与计费控制信令流和QoS参数映射TS 29.214 策略与计费控制Rx接口TS 29.215 策略与计费控制S9接口TS 29.219 策略与计费控制Sy接口TS 32.240 电信管理、计费管理、计费架构和原理3.无线侧相关标准LTE的规范采用与WCDMA规范类似的表示方式,使用的是以36开头的编号方式。
2g到5g的信道编码技术和信源编码技术
2g到5g的信道编码技术和信源编码技术
在2G到5G的移动通信网络中,广泛应用了各种信道编码技术和信源编码技术,以提高数据传输的可靠性和效率。
信道编码技术:
1. 2G时代主要采用的是卷积编码技术,通过引入冗余信息来纠正信道中的误码和干扰。
2. 3G时代引入了Turbo编码技术,通过迭代方式提高解码性能,对信道进行更高效的编码和纠错。
3. 4G时代采用了LDPC(低密度奇偶校验)编码技术,能够实现接近香农极限的编码效果,提高了信道容量和传输速率。
4. 5G时代引入了极化码(Polar Code)技术,通过在信道编码时提供更强的纠错能力和更高的编码效率,适应了高速率和大容量的通信需求。
信源编码技术:
1. 2G时代主要采用的是AMR(自适应多速率编码)技术,根据语音信号的特点和通信质量要求,选择不同的编码率来实现高音质和低码率传输的平衡。
2. 3G时代引入了WCDMA的优化编码技术,通过对语音信号进行高效压缩和编码,提高语音质量和数据传输速率。
3. 4G时代采用了更高级的AAC(高级音频编码)技术,能够提供更好的音频质量和更低的码率,适应了更丰富的媒体应用需求。
4. 5G时代将引入更专业的视频和图像编码技术,如HEVC (高效视频编码)和AV1(开放媒体编码),以实现更高质量和更低比特率的视频传输。
(技术规范标准)中国联通光纤分布系统设备技术规范
中国联通公司企业标准QB/CU xxx-2013中国联通光纤分布系统设备技术规范China Unicom Fiber Distributed System Equipment Technical Specification(V1.0)2013-xx-xx发布2013-xx-xx实施中国联通公司发布目录目录 (I)前言 (V)中国联通室内分布系统技术规范 (1)1范围 (1)2规范性引用文件 (1)3缩略语 (1)4系统定义 (2)4.1 多系统接入单元 (2)4.2 扩展单元 (3)4.3 远端单元 (3)5设备功能要求 (3)5.1 系统制式 (3)5.2 载频要求 (3)5.3 业务要求 (3)5.4 双通道能力要求 (3)5.5 固网和WLAN能力要求 (3)5.6 远程供电 (4)5.6.1 光纤直流远供 (4)5.6.2 PoE供电 (4)5.7 网管功能要求 (4)5.8 组网要求 (4)5.8.1 组网能力 (4)5.8.2 传输方式 (4)5.9 设备升级能力 (4)5.9.1 2G&3G系统 (4)5.9.2 3G&4G系统 (5)6设备形态 (5)6.1 多系统接入单元 (5)6.1.1 功耗 (5)6.1.2 设备尺寸 (5)6.1.3 接口需求 (5)6.2 扩展单元 (6)6.2.1 功耗 (6)6.2.2 设备尺寸 (6)6.2.3 接口需求 (6)6.3 远端单元 (7)6.3.1 室内型 (7)6.3.2 室外型 (8)7无线射频指标 (9)7.1 工作频段 (9)7.1.1 定义 (9)7.1.2 指标要求 (9)7.2 标称最大线性输出功率及误差 (10)7.2.1 定义 (10)7.2.2 指标要求 (10)7.3 自动电平控制(ALC) (10)7.3.1 定义 (11)7.3.2 指标要求 (11)7.4 最大增益及误差 (11)7.4.1 定义 (11)7.4.2 指标要求 (11)7.5 增益调节范围 (12)7.5.1 定义 (12)7.5.2 指标要求 (12)7.6 增益调节步长及误差 (12)7.6.1 定义 (12)7.6.2 指标要求 (13)7.7 频率误差 (13)7.7.1 定义 (13)7.7.2 指标要求 (13)7.8 矢量幅度误差(EVM) (14)7.8.1 定义 (14)7.8.2 指标要求 (14)7.9 峰值码域误差(PCDE) (14)7.9.1 定义 (14)7.9.2 指标要求 (14)7.10 带内波动 (15)7.10.1 定义 (15)7.10.2 指标要求 (15)7.11 射频输入动态范围 (15)7.11.1 定义 (15)7.11.2 指标要求 (15)7.12 输入互调 (16)7.12.1 定义 (16)7.12.2 指标要求 (16)7.13 输出互调 (17)7.13.1 定义 (17)7.13.2 指标要求 (17)7.14 噪声系数 (17)7.14.1 定义 (17)7.14.2 指标要求 (18)7.15 杂散发射(非期望辐射) (18)7.15.1 频谱发射模板 (18)7.15.2 杂散辐射 (19)7.16 阻塞 (25)7.16.1 定义 (25)7.16.2 指标要求 (25)7.17 带外增益和带外抑制 (27)7.17.1 定义 (27)7.17.2 指标要求 (27)7.18 带内载波泄露抑制 (28)7.18.1 定义 (28)7.18.2 指标要求 (29)7.19 传输时延 (29)7.19.1 系统时延及最小系统时延 (29)7.19.2 时延校正补偿精度和范围 (30)7.20 输入、输出电压驻波比 (30)7.20.1 定义 (30)7.20.2 指标要求 (30)7.21 邻道抑制比(ACRR) (31)7.21.1 定义 (31)7.21.2 指标要求 (31)7.22 最大允许输入电平 (31)7.22.1 定义 (31)7.22.2 指标要求 (31)7.23 收发隔离度 (32)7.24 FDD-LTE系统特有指标要求。
LTE协议学习总结2 - 物理层 (1)
物理层概述_总体描述
物理层过程
小区搜索
功率控制
上行同步和上行定时控制 随机接入相关过程 HARQ相关过程 通过在频域,时域和功率域进行物理资源控制,LTE隐式地支持干扰协调。
物理层测量
UE和eNode-B对无线特性进行测量,并且上报网络中的高层。这些包括,例如用于同频和异 频切换的测量,不同无线接入技术间(RAT)切换的测量,定时测量和无线资源管理(RRM) 的测量并且支持定位。 不同RAT切换的测量用于支持GSM,UTRA FDD,UTRA TDD,CDMA2000 1x RTT 和 CDMA2000 HRPD的系统间切换。
DwPTS 和 UpPTS的长度是可配置的。
支持5ms和10ms上下行切换点,如果和TD同一个频点,就用5ms,避免干扰
帧结构_上下行配比方式
“D”代表此子帧用于下行传输,“U” 代表此子帧用于上行传输,“S”是由DwPTS、 GP和UpPTS组成的特殊子帧。
若与TD使用同一个频段,则应该使用转换周期为5ms的配比方式,以避免系统间干扰; 在转换点周期为10ms的配置里,子帧6仅包含DwPTS;
5G 3GPP R15 38.212 物理层复用与信道编码
范围.......................................................................................................................................................... 6 参考.......................................................................................................................................................... 6 定义,符号和缩写.................................................................................................................................. 6
定义..................................................................................................................................................................... 6 符号..................................................................................................................................................................... 6 缩略语.
3GPP协议编号——标准协议之3GPP标准协议
标准协议之3GPP标准协议所有3G和GSM规范具有一个由4或5位数字组成的3GPP编号。
(例如:09.02或29.002)。
前两位数字对应下表所列的系列。
接着的两位数字对应01-13系列,或3位数字对应21-55系列。
词"3G"意味着采用UTRAN无线接入网的3GPP系统,词"GSM" 意味着采用GERAN无线接入网的3GPP系统(因而,"GSM"包括GPRS和EDGE性能)。
21-35系列规范只用于3G或既用于GSM也用于3G。
第三位数字为"0"表示用于两个系统,例如29.002用于3G和GSM系统,而25.101和25.201仅用于3G。
其它系列的大多数规范仅用于GSM系统。
然而当规范编号用完后,须查看每个规范的信息页面(见下表)或查看01.01 / 41.101 (GSM) 和21.101 (3G) 中的目录。
Q=可选的子部分编号-1或2位数字,如果有V=版本号,无分隔点-3位数字例如:21900-320.zip 是3GPP TR 21.900 版本3.2.00408-6g0.zip 是3GPP TS 04.08 版本6.16.032111-4-410 是3GPP TS 32.111 部分4 版本4.1.0 29998-04-1-100 是3GPP TS 29.998 部分4 子部分1 版本----------------------------------------------------------------------------------------------------------------好好研究下这个网站/specification-numbering就明白了每一个小类后面都有说明的----------------------------------------------------------------------------------------------------------------mark。
无线通信中的信道编码与解码技术教程
湖北省2015年上半年寿险理财规划师考试题本卷共分为1大题50小题,作答时间为180分钟,总分100分,60分及格。
一、单项选择题(共50题,每题2分。
每题的备选项中,只有一个最符合题意)1.保险近因原则是确定保险赔偿或给付责任的一项基本原则,近因原则所判断的关系是()A.保险人与被保险人之间保险关系B.保险人保险标的损失之间因素关系C.被保险人与损失之间因果关系D.风险事故与保险标明的损失之间关系2.下列不属于保险资金融通应当坚持的原则是__。
A.合法性B.流动性C.风险性D.效益性3.人寿保险按保险事故划分,可分为__。
A.生存保险、健康保险、意外伤害保险B.简易人寿保险、终身寿险、健康保险C.死亡保险、生存保险、生死两全保险D.普通人寿保险、残疾保险、年金保险4.保险合同的客体是______。
A.保险利益B.保险标的本身C.保险标的价值D.保险金额5. 两全保险是一种把__和生存保险结合起来的保险形式。
A.终身保险B.年金保险C.死亡保险D.定期寿险6. 15%、10%、5%,则对于该次事故保险人应该赔偿______。
B.5万元C.8万元D.10万元7. B两家保险公司承保同一财产,其中A公司承保4万元,B公司承保6万元,已构成了重复保险。
如发生了保险责任范围内的损失5万元,A公司在无B公司承保的情况下,应赔付4万元,B公司在无A公司承保的情况下,应赔付5万元。
请问,如果合同约定按照责任限额分摊,A、B两家保险公司分摊的赔款分别为__。
A.4万元、1万元B.4万元、5万元C.2.22万元、2.78万元D.2.3万元、2.7万元8. 以下用会计科目来反映的企业财产是______。
A.机器设备B.原材料C.流动资产D.建筑物9. 我国个人贷款抵押房屋保险的最长保险期限是______。
A.10年B.5年C.20年D.15年10. ______以各种信用行为为保险标的的保险。
A.信用保证保险B.产品责任保险C.家庭财产保险D.货物运输保险11. 一只价值5万元的钻戒。
ap6212 模块 字符编码
ap6212 模块字符编码【最新版】目录1.AP6212 模块概述2.字符编码简介3.AP6212 模块与字符编码的关系4.AP6212 模块在字符编码中的应用5.总结正文一、AP6212 模块概述AP6212 模块是一款高性能、低功耗的 Wi-Fi 模块,适用于各种物联网设备。
它支持 IEEE 802.11b/g/n 标准,提供高速、稳定的无线网络连接,同时支持WPA/WPA2 加密,保障网络安全。
AP6212 模块广泛应用于智能家居、工业自动化、医疗设备等领域。
二、字符编码简介字符编码是一种将字符与二进制代码之间建立对应关系的编码方式。
常见的字符编码有 ASCII 编码、Unicode 编码等。
在计算机系统中,字符编码是实现字符集和字符表示的重要手段。
三、AP6212 模块与字符编码的关系AP6212 模块作为一款 Wi-Fi 模块,其本身与字符编码没有直接关系。
然而,在实际应用中,AP6212 模块常常需要与其他设备进行通信,这些设备可能使用的是不同的字符编码方式。
因此,为了实现数据传输的准确性和兼容性,AP6212 模块需要支持多种字符编码方式。
四、AP6212 模块在字符编码中的应用在实际应用中,AP6212 模块可以通过以下方式支持不同字符编码:1.在固件中集成多种字符编码转换函数,以便在不同编码方式之间进行转换。
2.提供 API 接口,允许用户在程序中指定字符编码方式,以便进行数据传输。
3.与其他设备进行通信时,根据对方设备的字符编码方式,自动进行编码转换,以确保数据传输的正确性。
五、总结AP6212 模块作为一款 Wi-Fi 模块,在字符编码方面需要支持多种编码方式,以满足不同设备的通信需求。
第1页共1页。
LTE复用和信道编码
LTE 复用和信道编码目录1.1 前言................................................................................................. 错误!未定义书签。
2 1 范围 (3)3 2 参考文献 (3)4 3 定义, 符号和缩写 (3)4.1 3.1定义 (3)4.2 3.2符号 (3)4.3 3.3缩写 (4)5 4 信道映射 (5)5.1 4.1上行链路 (5)5.2 4.2下行链路 (5)6 5 信道编码, 复用和交织 (5)6.1 5.1常用程序 (5)6.1.1 5.1.1 CRC 算法 (6)6.1.2 5.1.2 码块分割和码块CRC校验 (6)6.1.3 5.1.3 信道编码 (8)6.1.3.1 5.1.3.1 咬尾卷及编码 (9)6.1.3.2 5.1.3.2 Turbo 码 (10)6.1.3.2.1 5.1.3.2.1 Turbo 编码 (10)6.1.3.2.2 5.1.3.2.2 Turbo码编码器的网格终止 (11)6.1.3.2.3 5.1.3.2.3 Turbo 码内交织器 (11)6.1.4 5.1.4 速率匹配 (13)6.1.4.1 5.1.4.1 Turbo码传输信道的码率匹配 (13)6.1.4.1.1 5.1.4.1.1 子块交织器 (13)6.1.4.1.2 5.1.4.1.2 比特收集、选择和传输(复用) (15)6.1.4.2 5.1.4.2 卷积编码传输信道和控制信息的速率匹配 (16)6.1.4.2.1 5.1.4.2.1 子块交织器 (17)6.1.4.2.2 5.1.4.2.2 比特收集、选择和传输 (18)6.1.5 5.1.5 码块的串行级联 (18)6.2 5.2上行传输信道和控制信息 (19)6.2.1 5.2.1 随机接入信道 (19)6.2.2 5.2.2 上行共享信道 (19)6.2.2.1 5.2.2.1 传输块CRC编码 (20)6.2.2.2 5.2.2.2 码块分段和码块的CRC校验 (21)6.2.2.3 5.2.2.3 上行共享信道信道编码 (21)6.2.2.4 5.2.2.4 码率匹配 (21)6.2.2.5 5.2.2.5 码块级联 (21)6.2.2.6 5.2.2.6 控制信息的信道编码 (21)6.2.2.6.1 5.2.2.6.1 宽带CQI 报告中信道质量信息格式化 (27)6.2.2.6.2 5.2.2.6.2 高层配置子带CQI报告的信道质量信息格式 (28)6.2.2.6.3 5.2.2.6.3 UE 选择子带CQI报告的信道质量信息格式 (28)6.2.2.6.4 5.2.2.6.4 PUSCH 中CQI/PMI 信息的信道编码 (29)6.2.2.7 5.2.2.7 数据和控制复用 (31)6.2.2.8 5.2.2.8 信道交织器 (31)6.2.3 5.2.3 PUCCH中上行控制信息 (33)6.2.3.1 5.2.3.1 UCI HARQ-ACK 的信道编码 (33)6.2.3.2 5.2.3.2 UCI 时序安排响应的信道编码 (34)6.2.3.3 5.2.3.3 UCI 信道质量信息的信道编码 (34)6.2.3.3.1 5.2.3.3.1 宽带报告中信道质量信息格式 (34)6.2.3.3.2 5.2.3.3.2 UE-selected 子带报告中信道质量信息格式 (35)6.2.3.4 5.2.3.4 UCI 信道质量信息和HARQ-ACK的信道编码 (37)6.2.4 5.2.4 PUSCH中不含UL-SCH 数据的上行控制信息 (37)6.2.4.1 5.2.4.1 控制信息的信道编码 (37)6.2.4.2 5.2.4.2 控制信息的映射 (38)6.2.4.3 5.2.4.3 信道交织器 (38)6.3 5.3下行传输信道和控制信息 (39)6.3.1 5.3.1 广播信道 (39)6.3.1.1 5.3.1.1 传输信息CRC校验 (39)6.3.1.2 5.3.1.2 信道编码 (40)6.3.1.3 5.3.1.3 码率匹配 (40)6.3.2 5.3.2 下行共享信道, 调度信道和多播信道 (40)6.3.2.1 5.3.2.1 传输块CRC 校验编码 (41)6.3.2.2 5.3.2.2 码块分段和码块的CRC 校验编码 (41)6.3.2.3 5.3.2.3 信道编码 (41)6.3.2.4 5.3.2.4 码率匹配 (42)6.3.2.5 5.3.2.5 码块串联 (42)6.3.3 5.3.3 下行控制信息 (42)6.3.3.1 5.3.3.1 DCI 格式 (43)6.3.3.1.1 5.3.3.1.1 格式0 (43)6.3.3.1.2 5.3.3.1.2 格式1 (44)6.3.3.1.3 5.3.3.1.3 格式1A (45)6.3.3.1.4 5.3.3.1.3A 格式1B (47)6.3.3.1.5 5.3.3.1.4 格式1C (48)6.3.3.1.6 5.3.3.1.4A 格式1D (49)6.3.3.1.7 5.3.3.1.5 格式2 (50)6.3.3.1.8 5.3.3.1.5A 格式2A (55)6.3.3.1.9 5.3.3.1.6 格式3 (56)6.3.3.1.10 5.3.3.1.7 格式3A (57)6.3.3.2 5.3.3.2 CRC 校验编码 (57)6.3.3.3 5.3.3.3 信道编码 (58)6.3.3.4 5.3.3.4 码率匹配 (58)6.3.4 5.3.4 控制格式标识 (58)6.3.4.1 5.3.4.1 信道编码 (59)6.3.5 5.3.5 HARQ 标识 (59)6.3.5.1 5.3.5.1 信道编码 (59)1范围本文档介绍了E-UTRA中物理层的信道编码、复用和调制2参考文献[1] 3GPP TR 21.905: "V ocabulary for 3GPP Specifications".[2] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation".[3] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures".[4] 3GPP TS 36.306: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio access capabilities".[5] 3GPP TS36.321, “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification”3定义, 符号和缩写3.1定义本文档使用的条款和定义在文献[1]中给出,本文档中条款的定义优先于文献[1]中相关条款3.2符号本文档定义了下列符号:DLN下行带宽配置, 表示信源组的数量[2]RBULN上行带宽配置, 表示信源信息组的数量[2]RBPUSCHN一个子帧中物理层上行共享信道中SC-FDMA符号的数量symbULN一个上行slot中包含的SC-FDMA符号数symbN一个子帧中用于SRS 传输的SC-FDMA 符号数(0 or 1).SRS3.3缩写BCH Broadcast channelCFI Control Format IndicatorCP Cyclic PrefixDCI Downlink Control InformationDL-SCH Downlink Shared channelFDD Frequency Division DuplexingHI HARQ indicatorMCH Multicast channelPBCH Physical Broadcast channelPCFICH Physical Control Format Indicator channelPCH Paging channelPDCCH Physical Downlink Control channelPDSCH Physical Downlink Shared channelPHICH Physical HARQ indicator channelPMCH Physical Multicast channelPMI Precoding Matrix IndicatorPRACH Physical Random Access channelPUCCH Physical Uplink Control channelPUSCH Physical Uplink Shared channelRACH Random Access channelRI Rank IndicationSRS Sounding Reference SignalTDD Time Division DuplexingTPMI Transmitted Precoding Matrix IndicatorTRI Transmitted Rank IndicationUCI Uplink Control Information UL-SCH Uplink Shared channel4信道映射4.1上行链路表4.1-1 表示上行链路传输信道和物理通信信道的映射关系。
GPRS信道编码方式的介绍
分组数据信道的编码方式●不同的编码方式其传输速率不同、纠错能力不同(编码方案越高,纠错能力越脆弱)●GPRS定义了CS-1至CS-4四种信道编码方式☯数据速率依次为9.05 Kbps, 13.4 Kbps, 15.6 Kbps,21.4 Kbps☯CS-1与SDCCH的信道编码相同;CS-1,CS-2所要求的C/I与电路型基本相同,可覆盖小区的90%-100%;CS-3较高;CS-4对C/I要求很高,需要良好的无线环境●网络根据对无线传输的实时监测结果调整信道编码模式☯不同的时隙可选择不同的信道编码方式☯当无线传输质量较好时,应采用效率更高的编码方式GPRS信道编码●GPRS的承载RLC/MAC数据块的无线块,即PDTCH信道,可以使用4种不同的编码方案:CS-1、CS-2、CS-3、CS-4●对于承载RLC/MAC控制块的无线块(除PTCCH/U和PRACH外的所有控制信道),即PACCH、PBCCH、PAGCH、PPCH、PNCH、PTCCH/D的信道编码都采用CS-1的编码方案●在PRACH上可以发送两种类型的分组随机接入突发脉冲☯8个信息比特的随机突发脉冲,和GSM随机接入突发脉冲的编码方案相同☯11个比特的随机突发脉冲,又被称为扩展的随机接入突发脉冲,是对GSM 随机接入突发脉冲的信道编码截短后的结果☯MS对两种随机接入突发脉冲都应该支持信道编码过程(步骤)●第一步:添加用于检错的分组校验序列BCS(Block Check Sequence)●第二步:对于CS-1~CS-3,包括USF预编码(CS-1 除外),添加4个尾比特,然后进行1/2卷积编码并截断至所期望的速率(CS-1 除外)。
卷积编码用于纠错,CS-4没有纠错编码。
信道编码过程(流程图)GPRS信道编码1(CS-1)(segmented:片段)GPRS信道编码2(CS-2)(segmented:片段)GPRS信道编码3(CS-3)(segmented:片段)GPRS信道编码4(CS-4)(segmented:片段)RLC/MAC 块结构(GPRS)●RLC/MAC 数据块☯一个RLC的数据单元可以装载一个或多个LLC PDU字节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3GPP TS 36.212 V12.2.0 (2014-09)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Multiplexing and channel coding(Release 12)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners‟ Publications Offices.KeywordsUMTS, radio, Layer 13GPPPostal address3GPP support office address650 Route des Lucioles – Sophia AntipolisValbonne – FranceTel. : +33 4 92 94 42 00 Fax : +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2014, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationContentsForeword (5)1Scope (6)2References (6)3Definitions, symbols and abbreviations (6)3.1 Definitions (6)3.2Symbols (6)3.3 Abbreviations (7)4Mapping to physical channels (7)4.1Uplink (7)4.2Downlink (8)5Channel coding, multiplexing and interleaving (8)5.1Generic procedures (8)5.1.1CRC calculation (8)5.1.2Code block segmentation and code block CRC attachment (9)5.1.3Channel coding (11)5.1.3.1Tail biting convolutional coding (11)5.1.3.2Turbo coding (12)5.1.3.2.1Turbo encoder (12)5.1.3.2.2Trellis termination for turbo encoder (13)5.1.3.2.3Turbo code internal interleaver (13)5.1.4Rate matching (15)5.1.4.1Rate matching for turbo coded transport channels (15)5.1.4.1.1Sub-block interleaver (15)5.1.4.1.2Bit collection, selection and transmission (16)5.1.4.2Rate matching for convolutionally coded transport channels and control information (18)5.1.4.2.1Sub-block interleaver (19)5.1.4.2.2Bit collection, selection and transmission (20)5.1.5Code block concatenation (20)5.2Uplink transport channels and control information (21)5.2.1Random access channel (21)5.2.2Uplink shared channel (21)5.2.2.1Transport block CRC attachment (22)5.2.2.2Code block segmentation and code block CRC attachment (22)5.2.2.3Channel coding of UL-SCH (23)5.2.2.4Rate matching (23)5.2.2.5Code block concatenation (23)5.2.2.6 Channel coding of control information (23)5.2.2.6.1Channel quality information formats for wideband CQI reports (35)5.2.2.6.2Channel quality information formats for higher layer configured subband CQI reports (36)5.2.2.6.3Channel quality information formats for UE selected subband CQI reports (39)5.2.2.6.4Channel coding for CQI/PMI information in PUSCH (41)5.2.2.6.5Channel coding for more than 11 bits of HARQ-ACK information (42)5.2.2.7 Data and control multiplexing (42)5.2.2.8 Channel interleaver (43)5.2.3Uplink control information on PUCCH (45)5.2.3.1Channel coding for UCI HARQ-ACK (46)5.2.3.2Channel coding for UCI scheduling request (51)5.2.3.3Channel coding for UCI channel quality information (51)5.2.3.3.1Channel quality information formats for wideband reports (51)5.2.3.3.2Channel quality information formats for UE-selected sub-band reports (54)5.2.3.4Channel coding for UCI channel quality information and HARQ-ACK (58)5.2.4Uplink control information on PUSCH without UL-SCH data (58)5.2.4.1 Channel coding of control information (59)5.2.4.2 Control information mapping (59)5.2.4.3 Channel interleaver (60)5.3Downlink transport channels and control information (60)5.3.1Broadcast channel (60)5.3.1.1Transport block CRC attachment (60)5.3.1.2Channel coding (61)5.3.1.3 Rate matching (61)5.3.2Downlink shared channel, Paging channel and Multicast channel (61)5.3.2.1Transport block CRC attachment (62)5.3.2.2Code block segmentation and code block CRC attachment (62)5.3.2.3Channel coding (63)5.3.2.4Rate matching (63)5.3.2.5Code block concatenation (63)5.3.3Downlink control information (63)5.3.3.1DCI formats (64)5.3.3.1.1Format 0 (64)5.3.3.1.2Format 1 (65)5.3.3.1.3Format 1A (66)5.3.3.1.3A Format 1B (68)5.3.3.1.4Format 1C (70)5.3.3.1.4A Format 1D (71)5.3.3.1.5Format 2 (72)5.3.3.1.5A Format 2A (76)5.3.3.1.5B Format 2B (78)5.3.3.1.5C Format 2C (79)5.3.3.1.5D Format 2D (81)5.3.3.1.6Format 3 (82)5.3.3.1.7Format 3A (82)5.3.3.1.8Format 4 (82)5.3.3.2CRC attachment (84)5.3.3.3Channel coding (85)5.3.3.4Rate matching (85)5.3.4Control format indicator (85)5.3.4.1Channel coding (86)5.3.5HARQ indicator (HI) (86)5.3.5.1Channel coding (86)Annex A (informative): Change history (87)ForewordThis Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:Version x.y.zwhere:x the first digit:1 presented to TSG for information;2 presented to TSG for approval;3 or greater indicates TSG approved document under change control.Y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.z the third digit is incremented when editorial only changes have been incorporated in the document.1 ScopeThe present document specifies the coding, multiplexing and mapping to physical channels for E-UTRA.2 ReferencesThe following documents contain provisions which, through reference in this text, constitute provisions of the present document.∙References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.∙For a specific reference, subsequent revisions do not apply.∙For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (includinga GSM document), a non-specific reference implicitly refers to the latest version of that document in the sameRelease as the present document.[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".[2] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels andmodulation".[3] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layerprocedures".[4] 3GPP TS 36.306: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)radio access capabilities".[5] 3GPP TS36.321, “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium AccessControl (MAC) protocol specification”[6] 3GPP TS36.331, “Ev olved Universal Terrestrial Radio Access (E-UTRA); Radio ResourceControl (RRC) protocol specification”3 Definitions, symbols and abbreviations3.1 DefinitionsFor the purposes of the present document, the terms and definitions given in [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in [1].Definition format<defined term>: <definition>.3.2 SymbolsFor the purposes of the present document, the following symbols apply:DLN Downlink bandwidth configuration, expressed in number of resource blocks [2] RBULN Uplink bandwidth configuration, expressed in number of resource blocks [2] RBRBN Resource block size in the frequency domain, expressed as a number of subcarriersscPUSCHN Number of SC-FDMA symbols carrying PUSCH in a subframesymb-PU SCHinitialN Number of SC-FDMA symbols carrying PUSCH in the initial PUSCH transmission subframe symbULN Number of SC-FDMA symbols in an uplink slotsymbN Number of SC-FDMA symbols used for SRS transmission in a subframe (0 or 1).SRS3.3 AbbreviationsFor the purposes of the present document, the following abbreviations apply:BCH Broadcast channelCFI Control Format IndicatorCP Cyclic PrefixCSI Channel State InformationDCI Downlink Control InformationDL-SCH Downlink Shared channelEPDCCH Enhanced Physical Downlink Control channelFDD Frequency Division DuplexingHI HARQ indicatorMCH Multicast channelPBCH Physical Broadcast channelPCFICH Physical Control Format Indicator channelPCH Paging channelPDCCH Physical Downlink Control channelPDSCH Physical Downlink Shared channelPHICH Physical HARQ indicator channelPMCH Physical Multicast channelPMI Precoding Matrix IndicatorPRACH Physical Random Access channelPUCCH Physical Uplink Control channelPUSCH Physical Uplink Shared channelRACH Random Access channelRI Rank IndicationSR Scheduling RequestSRS Sounding Reference SignalTDD Time Division DuplexingTPMI Transmitted Precoding Matrix IndicatorUCI U plink Control InformationUL-SCH Uplink Shared channel4 Mapping to physical channels4.1 UplinkTable 4.1-1 specifies the mapping of the uplink transport channels to their corresponding physical channels. Table 4.1-2 specifies the mapping of the uplink control channel information to its corresponding physical channel.Table 4.1-1Table 4.1-24.2 DownlinkTable 4.2-1 specifies the mapping of the downlink transport channels to their corresponding physical channels. Table4.2-2 specifies the mapping of the downlink control channel information to its corresponding physical channel.Table 4.2-1Table 4.2-25 Channel coding, multiplexing and interleavingData and control streams from/to MAC layer are encoded /decoded to offer transport and control services over the radio transmission link. Channel coding scheme is a combination of error detection, error correcting, rate matching, interleaving and transport channel or control information mapping onto/splitting from physical channels.5.1Generic procedures This section contains coding procedures which are used for more than one transport channel or control information type.5.1.1 CRC calculation Denote the input bits to the CRC computation by 13210,...,,,,-A a a a a a , and the parity bits by 13210,...,,,,-L p p p p p . A is the size of the input sequence and L is the number of parity bits. The parity bits are generated by one of the following cyclic generator polynomials:- g CRC24A (D ) = [D 24 + D 23 + D 18 + D 17 + D 14 + D 11 + D 10 + D 7 + D 6 + D 5 + D 4 + D 3 + D + 1] and;- g CRC24B (D ) = [D 24 + D 23 + D 6 + D 5 + D + 1] for a CRC length L = 24 and;- g CRC16(D ) = [D 16 + D 12 + D 5 + 1] for a CRC length L = 16.- g CRC8(D ) = [D 8 + D 7 + D 4 + D 3 + D + 1] for a CRC length of L = 8.The encoding is performed in a systematic form, which means that in GF(2), the polynomial:23122221230241221230......p D p D p D p D a D a D a A A A ++++++++-++yields a remainder equal to 0 when divided by the corresponding length-24 CRC generator polynomial, g CRC24A (D ) or g CRC24B (D ), the polynomial:15114141150161141150......p D p D p D p D a D a D a A A A ++++++++-++yields a remainder equal to 0 when divided by g CRC16(D ), and the polynomial:7166170816170......p D p D p D p D a D a D a A A A ++++++++-++yields a remainder equal to 0 when divided by g CRC8(D ).The bits after CRC attachment are denoted by 13210,...,,,,-B b b b b b , where B = A + L . The relation between a k and b k is:k k a b = for k = 0, 1, 2, …, A -1A k k p b -=for k = A , A +1, A +2,..., A +L -1.5.1.2 Code block segmentation and code block CRC attachmentThe input bit sequence to the code block segmentation is denoted by 13210,...,,,,-B b b b b b , where B > 0. If B is larger than the maximum code block size Z , segmentation of the input bit sequence is performed and an additional CRC sequence of L = 24 bits is attached to each code block. The maximum code block size is:- Z = 6144.If the number of filler bits F calculated below is not 0, filler bits are added to the beginning of the first block.Note that if B < 40, filler bits are added to the beginning of the code block.The filler bits shall be set to <NULL > at the input to the encoder.Total number of code blocks C is determined by:if Z B ≤L = 0Number of code blocks: 1=C B B ='elseL = 24Number of code blocks: ()⎡⎤L Z B C -=/. L C B B ⋅+='end ifThe bits output from code block segmentation, for C ≠ 0, are denoted by ()13210,...,,,,-r K r r r r r c c c c c , where r is the code block number, and K r is the number of bits for the code block number r .Number of bits in each code block (applicable for C ≠ 0 only):First segmentation size: +K = minimum K in table 5.1.3-3 such that B K C '≥⋅if 1=Cthe number of code blocks with length +K is +C =1, 0=-K , 0=-Celse if 1>CSecond segmentation size: -K = maximum K in table 5.1.3-3 such that +<K K -+-=∆K K KNumber of segments of size -K : ⎥⎦⎥⎢⎣⎢∆'-⋅=+-K B K C C . Number of segments of size +K : -+-=C C C .end ifNumber of filler bits: B K C K C F '-⋅+⋅=--++for k = 0 to F -1-- Insertion of filler bits >=<NULL c k 0end fork = Fs = 0for r = 0 to C -1if -<C r-=K K relse+=K K rend ifwhile L K k r -<s rk b c =1+=k k1+=s s end whileif C >1The sequence ()13210,...,,,,--L K r r r r r r c c c c c is used to calculate the CRC parity bits ()1210,...,,,-L r r r r p p p paccording to section 5.1.1 with the generator polynomial g CRC24B (D ). For CRC calculation it isassumed that filler bits, if present, have the value 0.while r K k <)(r K L k r rk p c -+=1+=k kend whileend if 0=kend for5.1.3 Channel codingThe bit sequence input for a given code block to channel coding is denoted by 13210,...,,,,-K c c c c c , where K is thenumber of bits to encode. After encoding the bits are denoted by )(1)(3)(2)(1)(0,...,,,,i D i i i i d d d d d -, where D is the number of encoded bits per output stream and i indexes the encoder output stream. The relation between k c and )(i k d and betweenK and D is dependent on the channel coding scheme.The following channel coding schemes can be applied to TrCHs: - tail biting convolutional coding; - turbo coding.Usage of coding scheme and coding rate for the different types of TrCH is shown in table 5.1.3-1. Usage of coding scheme and coding rate for the different control information types is shown in table 5.1.3-2. The values of D in connection with each coding scheme: - tail biting convolutional coding with rate 1/3: D = K ; - turbo coding with rate 1/3: D = K + 4.The range for the output stream index i is 0, 1 and 2 for both coding schemes.Table 5.1.3-1: Usage of channel coding scheme and coding rate for TrCHs.Table 5.1.3-2: Usage of channel coding scheme and coding rate for control information.5.1.3.1 Tail biting convolutional codingA tail biting convolutional code with constraint length 7 and coding rate 1/3 is defined. The configuration of the convolutional encoder is presented in figure 5.1.3-1.The initial value of the shift register of the encoder shall be set to the values corresponding to the last 6 information bits in the input stream so that the initial and final states of the shift register are the same. Therefore, denoting the shift register of the encoder by 5210,...,,,s s s s , then the initial value of the shift register shall be set to()i K i c s --=10 = 133 (octal)1 = 171 (octal)2 = 165 (octal)Figure 5.1.3-1: Rate 1/3 tail biting convolutional encoder.The encoder output streams )0(k d , )1(k d and )2(k d correspond to the first, second and third parity streams, respectively asshown in Figure 5.1.3-1.5.1.3.2Turbo coding5.1.3.2.1Turbo encoderThe scheme of turbo encoder is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state constituent encoders and one turbo code internal interleaver. The coding rate of turbo encoder is 1/3. The structure of turbo encoder is illustrated in figure 5.1.3-2.The transfer function of the 8-state constituent code for the PCCC is: G (D ) = ⎥⎦⎤⎢⎣⎡)()(,101D g D g ,whereg 0(D ) = 1 + D 2 + D 3,g 1(D ) = 1 + D + D 3.The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when starting to encode the input bits.The output from the turbo encoder isk k x d =)0( k k z d =)1( k k z d '=)2(for 1,...,2,1,0-=K k .If the code block to be encoded is the 0-th code block and the number of filler bits is greater than zero, i.e., F > 0, thenthe encoder shall set c k , = 0, k = 0,…,(F -1) at its input and shall set >=<NULL d k )0(, k = 0,…,(F -1) and >=<NULL d k )1(, k = 0,…,(F -1) at its output.The bits input to the turbo encoder are denoted by 13210,...,,,,-K c c c c c , and the bits output from the first and second 8-state constituent encoders are denoted by 13210,...,,,,-K z z z z z and 13210,...,,,,-'''''K z z z z z , respectively. The bits outputfrom the turbo code internal interleaver are denoted by 110,...,,-'''K c c c , and these bits are to be the input to the second 8-state constituent encoder.Figure 5.1.3-2: Structure of rate 1/3 turbo encoder (dotted lines apply for trellis termination only).5.1.3.2.2 Trellis termination for turbo encoderTrellis termination is performed by taking the tail bits from the shift register feedback after all information bits areencoded. Tail bits are padded after the encoding of information bits.The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 5.1.3-2 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 5.1.3-2 in lower position) while the first constituent encoder is disabled. The transmitted bits for trellis termination shall then be:K K x d =)0(, 1)0(1++=K K z d , K K x d '=+)0(2, 1)0(3++'=K K z d K K z d =)1(, 2)1(1++=K K x d , K K z d '=+)1(2, 2)1(3++'=K K x d 1)2(+=K K x d , 2)2(1++=K K z d , 1)2(2++'=K K x d , 2)2(3++'=K K z d5.1.3.2.3 Turbo code internal interleaverThe bits input to the turbo code internal interleaver are denoted by 110,...,,-K c c c , where K is the number of input bits.The bits output from the turbo code internal interleaver are denoted by 110,...,,-'''K c c c . The relationship between the input and output bits is as follows:()i i c c ∏=', i =0, 1,…, (K -1)where the relationship between the output index i and the input index )(i ∏ satisfies the following quadratic form:()K i f i f i m od )(221⋅+⋅=∏The parameters 1f and 2f depend on the block size K and are summarized in Table 5.1.3-3.Table 5.1.3-3: Turbo code internal interleaver parameters.5.1.4Rate matching5.1.4.1Rate matching for turbo coded transport channelsThe rate matching for turbo coded transport channels is defined per coded block and consists of interleaving the threeinformation bit streams )0(k d , )1(k d and )2(k d , followed by the collection of bits and the generation of a circular buffer asdepicted in Figure 5.1.4-1. The output bits for each code block are transmitted as described in section 5.1.4.1.2.Figure 5.1.4-1. Rate matching for turbo coded transport channels.The bit stream )0(k d is interleaved according to the sub-block interleaver defined in section 5.1.4.1.1 with an outputsequence defined as )0(1)0(2)0(1)0(0,...,,,-∏Kv v v v and where ∏K is defined in section 5.1.4.1.1. The bit stream )1(k d is interleaved according to the sub-block interleaver defined in section 5.1.4.1.1 with an outputsequence defined as )1(1)1(2)1(1)1(0,...,,,-∏Kv v v v .The bit stream )2(k d is interleaved according to the sub-block interleaver defined in section 5.1.4.1.1 with an outputsequence defined as )2(1)2(2)2(1)2(0,...,,,-∏Kv v v v . The sequence of bits k e for transmission is generated according to section 5.1.4.1.2.5.1.4.1.1 Sub-block interleaverThe bits input to the block interleaver are denoted by )(1)(2)(1)(0,...,,,i D i i i d d d d -, where D is the number of bits. The output bit sequence from the block interleaver is derived as follows:(1) Assign 32=TCsubblockC to be the number of columns of the matrix. The columns of the matrix are numbered 0, 1, 2,…,1-TCsubblock C from left to right.(2) Determine the number of rows of the matrix TCsubblock R , by finding minimum integer TCsubblock R such that:()TCsubblockTC subblock C R D ⨯≤ The rows of rectangular matrix are numbered 0, 1, 2,…,1-TCsubblock R from top to bottom.(3) If ()D C R TC subblock TC subblock >⨯, then ()D C R N TCsubblock TC subblock D -⨯= dummy bits are padded such that y k = <NULL >for k = 0, 1,…, N D - 1. Then, )(i k k N d y D =+, k = 0, 1,…, D -1, and the bit sequence y k is written into the ()TC subblockTC subblock C R ⨯ matrix row by row starting with bit y 0 in column 0 of row 0: ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-⨯+⨯-+⨯-⨯--++-)1(2)1(1)1()1(12211210TC subblock TC subblock TCsubblock TCsubblock TCsubblock TCsubblock TCsubblock TC subblockTC subblockTCsubblock TCsubblock TCsubblock TCsubblock C R C R C R C R C C C C C y y y y y y y y y y y yFor )0(k d and )1(k d :(4) Perform the inter-column permutation for the matrix based on the pattern (){}1,...,1,0-∈TC subblock C j j P that is shown intable 5.1.4-1, where P(j ) is the original column position of the j -th permuted column. After permutation of thecolumns, the inter-column permuted ()TCsubblockTC subblock C R ⨯ matrix is equal to ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯-+-⨯-+⨯-+⨯-++-+++-TC subblock TC subblock TC subblock TCsubblockTCsubblock TCsubblockTCsubblock TCsubblock TC subblock TCsubblockTC subblock TCsubblockTCsubblockTCsubblock TCsubblock C R C P C R P C R P C R P C C P C P C P C P C P P P P y y y y y y y y y y y y )1()1()1()2()1()1()1()0()1()2()1()0()1()2()1()0((5) The output of the block interleaver is the bit sequence read out column by column from the inter-columnpermuted ()TCsubblock TC subblock C R ⨯matrix. The bits after sub-block interleaving are denoted by )(1)(2)(1)(0,...,,,i K i i i v v v v -∏,where )(0i v corresponds to )0(P y ,)(1i v to TCsubblockC P y +)0(… and ()TCsubblockTC subblock C R K ⨯=∏. For )2(k d :(4) The output of the sub-block interleaver is denoted by )2(1)2(2)2(1)2(0,...,,,-∏Kv v v v , where )()2(k k y v π= and where ()∏⎪⎪⎭⎫ ⎝⎛+⨯+⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎥⎢⎢⎣⎢=K R k C Rk P k TC subblock TC subblock TCsubblock mod 1mod )(πThe permutation function P is defined in Table 5.1.4-1.Table 5.1.4-1 Inter-column permutation pattern for sub-block interleaver.5.1.4.1.2 Bit collection, selection and transmissionThe circular buffer of length ∏=K K w 3 for the r -th coded block is generated as follows: )0(kk v w =for k = 0,…, 1-∏K)1(2kk K v w =+∏ for k = 0,…, 1-∏K)2(12kk K v w =++∏ for k = 0,…, 1-∏K Denote the soft buffer size for the transport block by N IR bits and the soft buffer size for the r -th code block by N cb bits.The size N cb is obtained as follows, where C is the number of code blocks computed in section 5.1.2:- ⎪⎪⎭⎫⎝⎛⎥⎦⎥⎢⎣⎢=w IR cb K C N N ,min for DL-SCH and PCH transport channels- w cb K N =for UL-SCH and MCH transport channelsFor UE category 0, for DL-SCH associated with SI-RNTI and RA-RNTI and PCH transport channel, N cb is alwaysequal to K w .where N IR is equal to:()⎥⎥⎦⎥⎢⎢⎣⎢⋅⋅=limit DL_HARQ MIMO ,min M M K K N N C soft IRwhere:If the UE signals ue-Category-v12xx indicating UE category 0, or if the UE signals ue-Category-v12xx not indicatingUE category 0 and is configured by higher layers with any of MCS/CQI-table-configuration, CQI-table-configuration for csi-MeasSubframeSet1-r10 or CQI-table-configuration for csi-MeasSubframeSet2-r10, N soft is the total number of soft channel bits according to the UE category indicated by ue-Category-v12xx . Otherwise, if the UE signals ue-Category-v1020, and is configured with transmission mode 9 or transmission mode 10 for the DL cell, N soft is the total number of soft channel bits [4] according to the UE category indicated by ue-Category-v1020 [6]. Otherwise, N soft is the total number of soft channel bits [4] according to the UE category indicated by ue-Category (without suffix) [6]. If N soft = 35982720 or 47431680, K C = 5,elseif N soft = 3654144 and the UE is capable of supporting no more than a maximum of two spatial layers for the DL cell, K C = 2 else K C = 1 End if.K MIMO is equal to 2 if the UE is configured to receive PDSCH transmissions based on transmission modes 3, 4, 8, 9 or 10 as defined in section 7.1 of [3], and is equal to 1 otherwise.M DL_HARQ is the maximum number of DL HARQ processes as defined in section 7 of [3]. M limit is a constant equal to 8.Denoting by E the rate matching output sequence length for the r -th coded block, and rv idx the redundancy version number for this transmission (rv idx = 0, 1, 2 or 3), the rate matching output bit sequence is k e , k = 0,1,..., 1-E . Define by G the total number of bits available for the transmission of one transport block.Set ()m L Q N G G ⋅=' where Q m is equal to 2 for QPSK, 4 for 16QAM, 6 for 64QAM and 8 for 256QAM, and where - For transmit diversity: - N L is equal to 2,- Otherwise:- N L is equal to the number of layers a transport block is mapped onto Set C G mod '=γ, where C is the number of code blocks computed in section 5.1.2. if 1--≤γC rset ⎣⎦C G Q N E m L /'⋅⋅= elseset ⎡⎤C G Q N E m L /'⋅⋅=end ifSet ⎪⎪⎭⎫ ⎝⎛+⋅⎥⎥⎤⎢⎢⎡⋅⋅=2820idx TC subblock cbTCsubblock rv RNR k , where TC subblock R is the number of rows defined in section 5.1.4.1.1. Set k = 0 and j = 0 while { k < E } if >≠<+NULL w cb N j k mod )(0 cb N j k k w e mod )(0+=k = k +1end if j = j +1end while5.1.4.2Rate matching for convolutionally coded transport channels and controlinformationThe rate matching for convolutionally coded transport channels and control information consists of interleaving thethree bit streams, )0(k d , )1(k d and )2(k d , followed by the collection of bits and the generation of a circular buffer asdepicted in Figure 5.1.4-2. The output bits are transmitted as described in section 5.1.4.2.2.Figure 5.1.4-2. Rate matching for convolutionally coded transport channels and control information.The bit stream )0(k d is interleaved according to the sub-block interleaver defined in section 5.1.4.2.1 with an outputsequence defined as )0(1)0(2)0(1)0(0,...,,,-∏Kv v v v and where ∏K is defined in section 5.1.4.2.1.。