6.3 一次函数图象(2)(含答案)-
一次函数图像练习题及答案
一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基本概念之一,也是初中数学中的重点内容。
掌握一次函数的概念和图像特点,对于解决实际问题和理解其他函数类型都有很大帮助。
在这篇文章中,我将给出一些一次函数图像的练习题及其答案,希望能够帮助读者更好地理解和应用一次函数。
练习题一:已知函数f(x) = 2x + 3,求出函数的图像。
解答一:一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。
根据给定的函数f(x) = 2x + 3,我们可以得知斜率k = 2,截距b = 3。
根据斜率和截距的意义,我们可以得到以下图像特点:1. 斜率k = 2表示每增加1个单位的x,y的值增加2个单位。
2. 截距b = 3表示当x = 0时,y的值为3,即函数的图像与y轴相交于点(0, 3)。
根据上述特点,我们可以画出函数f(x) = 2x + 3的图像。
首先,我们将点(0, 3)标记在坐标系上,然后根据斜率k = 2,我们可以找到另外一个点(1, 5),再连接这两个点,就得到了一次函数的图像。
练习题二:已知函数g(x)的图像如下图所示,请写出函数g(x)的表达式。
解答二:根据给定的函数图像,我们可以得知函数g(x)与x轴相交于点(-2, 0)和(3, 0),并且函数图像在x轴的右侧上升。
根据这些特点,我们可以推测函数g(x)的表达式为g(x) = ax + b。
为了确定a和b的值,我们可以利用已知的两个点(-2, 0)和(3, 0)。
将这两个点的坐标代入函数表达式,可以得到以下方程组:-2a + b = 03a + b = 0解这个方程组,我们可以得到a = 0,b = 0。
因此,函数g(x)的表达式为g(x) = 0。
练习题三:已知函数h(x)的图像如下图所示,请写出函数h(x)的表达式。
解答三:根据给定的函数图像,我们可以观察到函数h(x)与x轴相交于点(0, -3),并且函数图像在x轴的右侧下降。
6.3 一次函数图像(2)
过第四象限,则m的取值范围是
【】
A.m<3
B. m>3
C. m ≤4
D. m> 4
例3、已知一次函数y=(m-2)x+(3+n). (1)已知y随x的增大而减小,求m、n的取值范 围?
(2)当m、n分别取何值时,函数图像经过原点? (3)已知图像与y轴交点在X轴下方,求m、n的取 值范围?
(4)若图像经过二、三,四象限,求m、n的取 值范围;
图象特征
从左到右下降, b>0 交y轴于正半轴.
大致图象
y
0
x
从左到右下降, K<0 b=0 图像过坐标原点.
从左到右下降, b<0 交y轴于负半轴.
y
0
x
y
0
xห้องสมุดไป่ตู้
例1、已知函数:
(1) y x 3 (2) y 0.5x 1
(3) y 3x (5) y 2x 1
2
(4) y 3 x 1 23
初中数学 八年级(上册)
6.3 一次函数的图像(2)
变它量和的有增些函大一数而次上函关升数系,的有图式的象像有有下的什山像一么上样山关随一自系样变,呢量随的自?
增大而下降.
练习:画出下列函数的图像
y=2x+4、y=1 x、y=3x 1 2
O
观察图像,你有什么发现?
练习:画出下列函数的图像
y= x-1、y= 2x、y= 1 x 1 3
O
观察图像,你有什么发现?
一次函数y=kx+b的性质: 增减性
⑴当k>0时,y随x的增大而增大; ⑵当k<0时,y随x的增大而减小.
进一步观察 图像与坐标轴的交点,你又有何发现?
进一步观察 图像与坐标轴的交点,你又有何发现?
苏科版数学八年级上册 6.3一次函数的图像 教案 (2)
环节一:复习引入环节二:探索新知问题1.在平面直角坐标系中,描出下列各点的位置:A(4,1),B(-1,4),C(-4,-2),D(3,-2),E(0,1 ),F( -4,0 ) .问题2.写出点G的坐标教师提问:有序数对在平面直角坐标系中是以点的形式呈现的,那么本章我们学习的函数关系在平面直角坐标系中是以怎样的形式呈现的呢?生:函数图像师:什么是函数图像呢?(学生思考片刻,PPT显示潮位图)我们前面所学的潮位图反映的就是一天中潮位与时间之间的函数关系,它是怎么得到的呢?试一试:请同学们尝试在平面直角坐标系中画一画一次函数y=2x+1的图像(大部分学生都能画出函数图像,有些描了多个点,有些描了两个点,和教师课前的预期一致)教师提问没画出来的同学1:这个问题难在哪?生:不知道图像是什么。
本环节通过让学生回忆根据坐标描点及根据点些坐标,将数与形联系起来,而平面直角坐标系正是数形结合的桥梁。
下面一组提问将问题进一步延伸到本章所学的函数中,将函数关系与其图像联系起来,并让同学回忆起函数图像的概念,为本节课描点画函数图像做铺垫。
由于学生小学里已经接触过正比例的图像,学生也在课前利用洋葱数学中的微课环节三:应用新知点来猜想得话不合适,描点越多越好,但是我们无法把所有点都描出来,因此我们要借助信息化手段帮助我们描出足够多的点。
利用几何画板建立参数,从(-8,-15)开始横坐标每隔0.1取一个坐标直到(8,17),并描出。
通过几何画板描点,学生能够合理猜想该函数图像是条直线。
(这里也可以利用EXCEL画散点图,但是效果没有几何画板清晰,震撼。
这里也没有用实验手册上的追踪点的方法画连续的图像,因为现阶段学生对于连续性这件事还是理解有困难的,高中课本上研究函数图像也只用了EXCEL列表画散点图。
)合理猜想:一次函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线(板书)(由于书中没有证明一次函数图像是条直线,所以教师在教学中这里也没有涉及证明,证明作为课后阅读材料提供给学生,并且需要用到以后学到的知识。
苏科版数学八年级上册6.3 一次函数的图象 (2)教学 教案.doc
一次函数的图像 (2)教学设计一、 教学目标:1. 知识与能力目标:(1) 让学生会画一次函数的图像,理解一次函数的图像与性质以及与正比例图像之间的关系。
(2) 灵活运用一次函数的性质解决实际问题。
2. 过程与方法目标:(1) 通过一次函数的图象与性质的探究,培养学生的观察、比较、类比、联想、分析、归纳、概括的逻辑思维能力以及培养学生的动手实践能力。
(2) 通过一次函数的图像和性质的探究,培养学生数形结合、分类讨论的数学思想方法。
(3) 通过实际问题的解决培养学生的建模(函数)能力,培养学生的创新意识和创新能力。
3. 情感态度和价值目标:(1) 通过实际问题的解决,培养学生勇于探索、锲而不舍的精神;(2) 通过对一次函数图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
4. 数学思考:强调学生自主探索发现的过程和收集、处理信息能力和获取新知识的能力。
二、 教学重点:一次函数的图像和性质三、 教学难点:灵活运用一次函数的性质解决实际问题。
四、 教学方法:引导发现法;启发式教学法;谈话法;分层教学法五、 教具准备:多媒体课件六、 教学过程:(一) 温故而知新1.函数y =432 x 的图像与x 轴交点坐标为________,与y 轴的交点坐标为________。
2.如果一次函数y=kx -3k+6的图象经过原点,那么k 的值为________。
3.画正比例函数y =kx 的图象,通常先取(0,___)和(1,___)两点,再过两点作直线;画一次函数y =kx +b 的图象,通常选择先取(0,___)和(____,0),再过两点作直线。
4.若正比例函数的图像经过点(-1,2),则这个图像必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)5.已知一次函数y=kx+b 的图象经过A (–2,– 3), B (1,3)两点。
(1)求这个函数的函数关系式;(2)判断点P ( –1,1)是否在这个函数的图象上设计意图:通过温故而知新来承上启下,为本节课做好必备的知识准备。
专题:一次函数的图像及性质重难点(答案)有答案
初中数学.精品文档如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯专题:一次函数的图像及性质重难点考点一一次函数的图像及性质1.一次函数y=kx+b与y=kx的图像关系(1)平移变换:y=kx------------------------→y=kx+b;(2)作图:通常采用“两点定线”法作图,一般取直线:与y轴的交点(0,b) ,与x轴的交点(-bk,0) ;注意:平移前后两直线,平行直线的系数k ;2.一次函数y=kx+b的图像与性质k b示意图象限增减性k>0 b>0y随x增大而.b<0k<0 b>0y随x增大而.b<0注意:①系数k叫直线的斜率,反映直线的倾斜程度,与直线的增减性有关,即:k>0时直线递增,k<0时直线递减;②常数b叫直线的截距,反映直线与y轴的交点位置,即:b>0时直线交于y正半轴,b<0时直线交于y负半轴.【例1】1.对于y=-2x+4的图象,下列说法正确的是(D) A.经过第一、二、三象限B.y随x的增大而增大C.图象必过点(-2,0) D.与y=-2x+1的图象平行2.若ab<0且a>b,则函数y=ax+b的图象可能是(A) 3.将函数y=-0.5x 的图象向上平移3个单位,得到的函数与x轴、y轴分别交于点A,B,则△AOB 的面积是9 .4.已知一次函数y=kx+2k+3(k≠0)的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1 .5.已知一次函数y=(2m-1)x-m+3,分别求下列m的范围:(1)过一、二、三象限;(2)不过第二象限;(3) y随x增大减小.(4)与y正半轴相交.解:(1) 12<m<3;(2) m≥3;(3) m<12;(4) m<3且m≠12.变式训练1:1.点A(x1,y1),B(x2,y2)是一次函数y=kx+2(k<0)图象上不同的两点,若t=(x2-x1)(y2-y1),则( A )A.t<0 B.t=0 C.t>0 D.t≤0 2.如图,在同一坐标系中,一次函数y=mx+n与正比例函数y=mnx (m,n为常数,且mn≠0)的图象可能是( A )3.将直线y=3个单位得到直线y=-3x-n,则实数m= - 3 ,n= -2 .4.已知函数y=abx+a-b的图像经过一、二、四象限,则函数y=ax+b的图像经过一三四象限.5.已知直线l:y=kx+b与直线y=-3x+4平行,且与直线y=-2x-2交y轴于上同一点.(1)直线l:y=kx+b的关系式为y=-3x-2 ;(2)当-3≤x<1时,求直线l的函数值y的取值范围.解:(2)-5<y≤7考点二一次函数关系式的确定1.求一次函数表达式的方法称为:待定系数法.【例2】1.已知y是x的一次函数,下表列出了y与x的部分x …-101…y …1m -5…A.-2.一次函数的图象经过点A(-2,-1),且与直线y=2x+1平行,则此函数的表达式为(B)A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-5 3.若y-2与x成正比例,且当x=1时,y=6,则y关于x的函数表达式是y=4x+2 .4.已知一次函数图像经过两点A(2,7)、B(m,-5),且与直线y=-2x+1相交于y轴一点C,则m的值是-2 .5.已知某产品的成本是5元/件,每月的销售量y(件)与销售价格x(元/件)成一次函数关系,调查发现,当售价定位30元/件时,每月可售出360件产品,若降价10元,每月可多售出80件.(1)求销售量y与销售价格x的函数关系式;(2)若某月可售出480件产品,求该月的利润.解:(1) y=-8x+600;(2)当y=480,x=15,利润=4800元.变式训练2:1.如图1,两摞相同规格的碗整齐地叠放,根据图信息,则饭碗的高度y(cm)与饭碗数x (个)之间关系式是y=1.5x+4.5 ;图1 图22.如图2,已知直线l1与直线l2相较于点A,点A的横坐标为-1,直线l2与x轴交于点B(-3,0),若△ABO的面积为3,则l1的函数关系式是y=-2x ;l2的函数关系式是y=x+3 .3.已知函数y=kx+b,当自变量x满足-3≤x≤2时,函数值y的取值范围是0≤y≤5,求该函数关系式.解:当k>0时y=x+3;当k<0时y=-x+2;考点三一次函数与方程、不等式【例3】1.如图3,函数y1=2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式2x>ax+3的解集是(A)A.x>1 B.x<1C.x>2 D.x<22.如图是直线y=kx+b的图象,图3初中数学.精品文档根据图上信息填空:(1)方程kx +b =0的解是 x =1 ; 方程kx +b =2的解是 x =0 ;(2)不等式kx +b >0的解集为 x <1 , 不等式kx +b <0的解集为 x >1 ; (3)当自变量x >0 时,函数值y <2, 当自变量x <0 时,函数值y >2;(4)不等式0<kx +b ≤2的解集为 0≤kx +b <1 ; 变式训练3:1.一元一次方程ax -b =0的解为x =-3,则函数y =ax -b 的图象与x 轴的交点坐标是( B ) A .(3,0) B .(-3,0) C .(0,3) D .(0,-3) 2.如图,函数y =ax +b 和y =kx 的交于点P ,根据图象解答:(1)方程ax +b -kx =0的解是 x =-4 ; (2)方程组⎩⎨⎧y =ax +b ,y =kx的解是 ;(3)不等式ax +b<kx 的解集是_ x >-4__;(4)不等式组 的解集为 -4<x <0 .考点四 两个一次函数相交综合应用【例4】如图,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A B ,,直线l 1,l 2交于点C . (1)求点D 的坐标和直线l 2的解析表达式; (2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标. 解:(1) D (1,0)和直线l 2:y =32x -6;(2) C (2,-3)和△ADC 的面积4.5; (3)点P 的坐标(6,3).※课后练习1.平面直角坐标系中,将y =3x 的图象向上平移6个单位,则平移后的图象与x 轴的交点坐标为( B ) A .(2,0) B .(-2,0) C .(6,0) D .(-6,0) 2.直线y =kx +b 经过第一、三、四象限,则直线y =bx -k 的图象可能是( C )3.直线y =3(x -1)在y 轴上的截距是-3 ,其图像不过第 二 象限且由直线y = 3x -1 向下平移2单位得到.4.已知直线y =kx +m 与直线y =-2x 平行且经过点P (-2,3),则直线y =kx +m 与坐标轴围成的三角形的面积是 14 .5.若y =ax +2与y =bx +3的交于x 轴上一点,则a b = 23 .6.已知函数y =2x -3,当自变量x 的取值范围是-1<x ≤0, 则函数值y 的取值范围是 -5<y ≤-3 .7.如图1,正比例函数y 1的图象与一次函数y 2的图象交于点A (1,2),两直线与y 轴围成的△AOC 的面积为2,则这正比例函数的解析式为y 1= 2x ,一次函数y 2= -2x +4 . 8.如图2,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得不等式组的解集 x <-3 .图1 图29.某商店购进一批单价为16元/件的电子宠物,销售一段时间后,为了获取更多利润,商店决定提高售价.经试销发现:当按20元/件的价格销售时,每月能卖出360件;当按25元/件的价格销售时,每月能卖出210件.若每月的销售数量y (件)是售价x (元/件)的一次函数,则按28元/件的价格销售时,这个月可卖出____120____件,这个月的利润是___1440___元.10.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (1,b ). (1)根据图中信息填空: ①b =2 ; ②方程组的解为;③不等式x+1≤mx+n 的解集为 x ≤1 ;(2)判断直线l 3:y=nx+m 是否也经过点P ? 请说明理由.解:(2)直线l 3:y=nx+m 经过点P . 理由:因为y=mx+n 经过点P (1,2),所以m+n=2,所以直线y=nx+m 也经过点P .11.如图,直线l 1:y 1=2x +1与坐标轴交于A ,C 两点,直线l 2:y 2=-x -2与坐标轴交于B ,D 两点,两直线的交点为点P . (1)求△APB 的面积;(2)利用图象直接写出下列不等式的解集: ①y 1<y 2; ②y 1<y 2≤0. 解:(1)联立l 1,l 2的表达式, 得⎩⎨⎧ y =2x +1,y =-x -2,解得⎩⎨⎧x =-1,y =-1, ∴点P 的坐标为(-1,-1).又∵A (0,1),B (0,-2),∴S △APB =3×12=32.(2)由图可知,①当x <-1时,y 1<y 2. ②-2≤x <-1时,0<y 2≤y 1.12.“十一”期间,小明一家计划租用新能源汽车自驾游.当前,有甲乙两家租车公司,设租车时间为x h ,租用甲公司的车所需要的费用为y 1元,租用乙公司的车所需要的费用为y 2元,他们的租车的情况如图所示.根据图中信息: (1)直接写出y 1与y 2的函数关系式;{02<-<+kx b ax初中数学.精品文档(2)通过计算说明选择哪家公司更划算. 解:(1)y 1=15x +80(x ≥0), y 2=30x (x ≥0).(2)当y 1=y 2时,x =163,选甲乙一样合算;当y 1<y 2时,x >163,选甲公司合算;当y 1>y 2时,x <163,选乙公司合算.。
6.3 一次函数图像1-2
总结:一次函数y=kx+b的图象是过点
(0,b)、
的一条直线。
练5:函数y=-x+4与x轴交点坐标为_______ ,与y轴(4交,0)点坐标 为 (0,4) 。
函数y=-x+4与坐标轴围成的面积为多少呢?
(4,0) (0,4)
一般解题步骤:
1、画出图象的草图 2、求出图象与坐标轴交点坐标
3、求出三角形的面积。 S△=
练3:你能快速画出一次函数y=kx+b图象的草图吗?
若k>0, b>0 若k>0, b<0 若k<0, b<0
y
k>0, b>0
k<0, b>0
k>0, b<0
x
o
若k<0, b>0
k<0, b<0
(2013 •鞍山)在一次函数y=kx+2中,若y随x的增大而增大,
则它的图象不经过第
象限四.
变式:如果一次函数y=kx+b的图象不经过第一象限,则
当k<0时 y随x的增大而减小.
(2013•遵义)P1(x1,y1),P2(x2,y2)是正比例函数 点,下列判断正确的是( D )
A、 y1>y2 C、 当x1<x2时, y1<y2
B、 y1<y2 D、当x1<x2时, y1>y2
(2013•资阳)在一次函数y=(2﹣k)x+1中,y随x的增大
y
A(0,2)
B(4,0)
O
x
观察图象,你能获得哪些信息?
1.一次函数图象与一次函数解析式
已知一次函数的图象经过(2,1),(6,– 1)两 个点,请你画出这个函数的图象并求出它的解析式.
6-3 一次函数的图像(课件)-2022-2023学年八年级数学上册同步精品课堂(苏科版)
研究方法:
画图象→观察图象→变量(坐标)意义解释.
典例分析
例1:画出函数y =-6x与 y =-6x +5的图象.
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实
数,列表表示几组对应值:
x
-2
-1
0
1
2
y=-6x
12
6
0
-6
-12
17
11
5
-1
-7
y=-6x+5
y
y=-6x+5
1
2
(3)由题意得1-2m<0且m-1<0,解得 m 1.
1
.
2
课堂小结
图象:
一次函数y=kx+b(k,b是常数,k≠0)的图象是一条直线,
我们称它为直线y=kx+b.
一次函数的图
象和性质
画法:
①两点法:两点确定唯一一条直线;
②平移法:由直线y=kx向上或向下平移.
性质:
当k>0时:
①b>0,经过一、二、三象限,y随x的增大而增大;
1.5x
y=
4
观察发现:
①图象形状及位置:都是一条经过原点和 第二、四 象限的直线.
②变化趋势:直线从左到右 下降,即y随x的增大反而 减小.
正比例函数y=kx (k是常数,k≠0)的图象是一条经过原点的
直线,我们称它为直线y=kx.
y=kx(k≠0)
图象
经过的象限
增减性
k>0
k<0
y=2
1
.
y
5
y=-6x
0
y=6x+5
一次函数的图像(解析版)
5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。
初中数学专题一次函数的图像(含答案)
7.4 一次函数的图像(一)课内同步训练1.正比例函数的图像过点A (1,2),B (-2,m-1),则m 的值是________.2.一次函数的图像过点A (-1,2),B (0,2),则它的解析式是________.3.在同一坐标系内画出下列函数的图像,并说出它们有什么关系:(1)y=32x ;(2)y=32x+24.一次函数y 1=k 1x +b 1,利y 2=k 1x+b 2的图像交于y 轴上的同一点,则必有( )A .k 1=k 2B .b 1=b 2C .k 1=b 2D .k 2=b 15.一次函数y=ax+b 中,a>0,b<0,则它的图像可能是( )6.在直线y=3x-4上求出到y 轴的距离等于12的点的坐标.7.已知直线y=kx+b与x轴交于点(1,0),与直线y=2x-3和y轴交于同一点,•求出这条直线的解析式.课外延伸训练1.一次函数y1=k1x1+b1与y2=k2x2+b2交于x轴上同一点,则必有________.2.y=2x+b与两坐标轴围成的三角形面积为4,则b=________.3.(1)在直角坐标系中作出函数y=2x的图像,再分别将它向上平移4•个单位和向左平移2个单位,得到两个函数的图像.你发现了什么?能否结合函数的解析式给予说明?(2)如果要平移直线y=3x-6,使平移后的直线经过点(4,0),你能设计出几种方案?4.在同一坐标平面内,如果2个一次函数的图像相交,交点可能在象限内,也可能在坐标轴上.(1)若常数k、b、m、n均是正数且各不相等,试说明函数y=kx+b利y=mx+n的图像必相交,但交点不可能在第四象限内;(2)在问题(1)中,就交点在第一、第二、第三象限和坐标轴上的情况,各举出一例,并探索交点在坐标轴上的位置;(3)在问题(1)的2个函数中,若有k=n,b=m,k≠b,则交点在第几象限内?试说明不论k、b取何值,交点都在同一条直线上,并找出这条直线.7.4 一次函数的图像(一)(答案)[课内同步训练]1.5 2.y=-4x-23.图像略,2条直线互相平行4.B 5.B 6.(0.5,-2.5)(提示:点到y轴的距离等于这个点横坐标的绝对值)7.y=3x-3[课外延伸训练]1.b1k2=b2k1 2.±43.(1)平移以后两个函数的图像是同一条直线,设平移后的函数解析式为y=2x+k,向上平移4个单位过点(0,4),向左平移2个单位过点(-2,0),用待定系数法求得k=4(2)可将直线向下平移6个单位,也可以将直线向右平移2•个单位4.(1)因为k≠m,所以两直线必相交;因为字母都是正数,两直线都不经过第四象限,所以交点不可能在第四象限内(2)略,交点在坐标轴上时只能在x轴的负方向(3)满足本题条件的两直线方程为:y=kx+b,y=bx+k,它们的交点在第一象限内,坐标是(1,k+b),所以不论k、b取何值,交点都在经过点(1,0)且垂直于x轴的直线上.一次函数的图像(二)课内同步训练1.正比例函数y=•kx•的图像经过(•-•2,•4)•,•那么这个正比例函数的关系式是________,它的图象经过第_______象限,y 随x 的增大而________.2.正比例函数y=(k+1)23k x 的图像过第二、第四象限,则k=________.3.若一次函数y=mx+(m 2+m-4)的图像过点(0,8),且y 随x 的增大而减小,则m=____.4.一次函数y=kx+b 的图象经过第一、第二、第三象限,则下列结论成立的有(• )A .k>0,b>0B .k>0,b<0C .k<0,b<0D .k<0,b>05.正比例函数y=0.3x ,y=-3x ,y=(a 2+1)x 中,y 随x 增大而增大的个数是( )A .0B .1C .2D .36.某市为节约用水,实行价格调控,限定每户每月用水不超过6t 时,每t•价格为2元;当用水量超过6t 时,超过部分每吨价格为3元,则每户每月的水费y (元)•与用水量x (t )之间的函数图像是( )7.已知正比例函数y=-(k 2+1)x ,点(-2,y 1)、(-3,y 2)、(1,y 3)在它的图像上,则( )A .y 2<y 1<y 3B .y 2>y 1>y 3C .y 2>y 3>y 1D .y 3<y 2<y 18.在直角坐标系中作出一次函数y 1=-x+5与y 2=2x-2的图像,•并借助图像回答下列问题(1)当x 为何值时,y 1=1?此时y 2的值为多少?(2)当x 为何值时,y 1=y 2;(3)当x 为何值时,y 1>y 2.课外延伸训练1.一个游泳池的容积为Am3,进水管每分钟进水P m3,出水管每分钟放水qm3(P>q),一天对空池进行灌水5min后察觉未将水管堵上.随时将出水管堵上,继续灌水.•下图中能反映池内水量v(m3)与灌水时间t(min)之间函数关系的是()2.某地出租车的收费标准如下:里程不超过3km时收起步价8元;里程勃勃3km时,超过部分增收1.2元/km.试写出车费y(元)与里程x(km)的函数关系式,•并画出这个函数的图像.3.已知一次函数y=2x-3(1)当x取何值时,函数y的值在-1与2之间变化?(2)当x从-2到3变化时,函数y的最小值和最大值各是多少?4.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.(1)用含x的解析式表示S,写出x的取值范围,画出函数S的图像.(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?5.已知点A(-3,y1),B(1,y2)在直线y=-23x+4上.(1)比较y1和y2的大小;(2)若另有一个正比例函数的图像过点B,•设在这个正比例函数中使函数值等于y1和y2的自变量分别为x1和x2,试比较x1和x2的大小.7.4 一次函数的图像(二)(答案)[课内同步训练]1.y=2x,一、三,增大 2.-3 3.-4 4.D 5.C 6.B 7.B8.(1)x=4,•此时y=6 (2)x=73(3)x<73[课外延伸训练]1.B 2.y=8(03) 1.2 4.4(3)xx x<≤⎧⎨+>⎩3.(1)12<x<2 (2)y的最小值是-3,最大值是74.(1)S=-3x+24•其中0<x<8 (2)9 (3)不能5.(1)y1>y2x1>x2。
(最新整理)一次函数(含参考答案)
(完整)一次函数(含参考答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)一次函数(含参考答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)一次函数(含参考答案)的全部内容。
一次函数专题【基础知识回顾】一、 一次函数的定义:一般的:如果y= ( ),那么y 叫x 的一次函数特别的:当b= 时,一次函数就变为y=kx(k≠0),这时y 叫x 的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b 的同象是经过点(0,b )(—b k,0)的一条 , 正比例函数y= kx 的同象是经过点 和 的一条直线.【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取 个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx (k≠0),当k 〉0时,其同象过 、 象限,此时时y 随x 的增大而 ;当k 〈0时,其同象过 、 象限,时y 随x 的增大而 。
3、 一次函数y= kx+b ,图象及函数性质①、k 〉0 b >0过 象限②、k >0 b 〈0过 象限③、k<0 b >0过 象限④、k<0 b >0过 象限4、若直线l1:y= k1x+ b1与l1:y= k2x+ b2平行,则k1 k2,若k1≠k2,则l1与l2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,y 随x 的增大而 y 随x 的增大而只改变的值的值不变】三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b中的字母与的值步骤:1、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b中解一元一次方程可求求直线与坐标轴的交点坐标。
一次函数图像练习题及答案
一次函数图像练习题及答案一次函数是数学中最简单的一种函数形式,它的图像是一条直线。
在学习一次函数的图像时,做一些练习题可以帮助我们更好地理解和掌握这一概念。
下面是一些一次函数图像练习题及其答案,供大家参考。
练习题1:已知一次函数 y = 2x + 3,求该函数对应的图像的斜率和截距,并画出函数图像。
答案1:这是一个一次函数,其一般形式为 y = kx + b。
比较已知函数 y = 2x + 3 和一般形式可以得知,斜率 k = 2,截距 b = 3。
斜率代表着直线的斜率,即直线上点的纵坐标变化量与横坐标变化量的比值,截距表示了直线与纵轴的交点。
根据斜率和截距,我们可以画出函数图像。
首先,选择几个合适的x 值,计算对应的 y 值,然后将这些点连接成一条直线。
选择 x = 0,代入函数 y = 2x + 3,得到 y = 2(0) + 3 = 3;选择 x = 1,代入函数 y = 2x + 3,得到 y = 2(1) + 3 = 5;将这两个点连接起来,就得到了直线的图像。
注意到斜率为正,直线的图像是向上倾斜的。
练习题2:已知一次函数的图像过点 (1, 4),斜率为 3,求该一次函数的表达式。
答案2:已知直线的斜率为 3,过点 (1, 4),我们使用点斜式得到该一次函数的表达式。
点斜式为 y - y₁ = k(x - x₁),其中 (x₁, y₁) 为过直线的一点,k 为直线的斜率。
代入已知条件,得到 y - 4 = 3(x - 1)。
展开化简得到 y - 4 = 3x - 3。
移项得到 y = 3x + 1。
所以该一次函数的表达式为 y = 3x + 1。
练习题3:已知一次函数的图像与 x 轴交点为 (2, 0),y 轴交点为 (0, -3),求该一次函数的表达式。
答案3:已知直线与 x 轴的交点为 (2, 0),与 y 轴的交点为 (0, -3),我们可以通过这两个点求出直线的斜率和截距,从而得到一次函数的表达式。
八年级数学上册试题 6.3一次函数的图象同步练习-苏科版(含答案)
6.3一次函数的图象一、选择题.1. 在平面直角坐标系x0y 中,函数y=-3x+1 的图象经过( ) A. 第一、二、 三象限 B. 第一、二、 四象限 C. 第一、三、 四象限 D. 第二、三 、四象限2. 已知一次函数y=kx+b 的图象如图所示,则y=-2kx-b 的图象可能是( )..C. D.3. 下列图象中,可以表示一次函数 y =kx+b 与正比例函数 y =kbx(k,b 为常数,且kb≠0) 的图象的是( )....4. 点 P (a,b) 在函数y=3x+2 的图象上,则代数式6a-2b+1 的值等于( ) A.5 B.3 C.-3 D.- 1D CB A B A5. 一次函数y=ax-a(a≠0) 的大致图象是( )....6. 如图,四个一次函数y=ax,y=bx,y=cx+1,y=dx-3 的图象如图所示,则 a,b,c,d 的大小关系是( )A. b>a>d>cB.a>b>c>dC. a>b>d>cD. b>a>c>d 7. 一次函数y=mx+n 与 y =mnx(mn ≠0), 在同一平面直角坐标系的图象是( )....8.1975年中国登山队成功登顶珠穆朗玛峰,如图是当年5月18~28日珠峰海拔8km,9km 处风速变化的真实记录,从图中可得到的正确结论是( ) ①同一天中,海拔越高,风速越大; ②从风速变化考虑,27日适合登山; ③海拔8km 处的平均风速约为20m/s.D B C A D C B AA.①②B.①③C.②③D.①②③9. 一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:①李师傅上班处距他家2000米;②李师傅路上耗时20分钟;③修车后李师傅骑车的速度是修车前的4倍;④李师傅修车用了5分钟,其中错误的是( )离家的时间(分钟)A.0 个B.1 个C.2 个D. 3 个10. 小明同学利用计算机软件绘制函数、b 为常数)的图象如图所示,由学习函数的经验,可以推断常数a 、b 的值满足 ( )A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0二、填空题11. 在平面直角坐标系中,函数 y=kx+b 的图象如图所示,则 kb 0(填“>”、“=” 或“<”).12.当直线 y =(2-2k)x+k-4 经过第二、三、四象限时,则 k 的取值范围是 13. 已知一次函数y=(2-2k)x+k-3 的图象经过第二、三、四象限,则k 的取值范围是 , 14. 匀速行驶的一列火车穿过一个隧道,车在隧道内的长度y(m) 与火车行驶时间 x (s) 之间的关系可用如图所示的图象描述,则该隧道的长度等于 .15. 一次函数 y =2x- 116. 一次函数 y=ax+b一定不经过第 象限 . 在直角坐标系中的图象如图所示,则化简a-b-|a+b|的是,17. 关 于x 的一次函数y=(k+2)x-2k+1, 其 中k 为常数且k≠-2 ①当k=0 时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过 (m,a),(m+3,a²-2)(m,a 为常数),则④无论 k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有18. 已知一次函数 y =(11-a)x-7+a(a≠11) 的图象不经过第四象限,若关于 x 的不等式有且只有4个整数解,则满足条件的所有整数a 的和为三、解答题19. 已知,一次函数y=(1-3k)x+2k-1, 试回答:(1)k 为何值时,y 是x的正比例函数?(2)当函数图象不经过第一象限时,求k 的取值范围.20 .(1)直线y=2x-3 经过第象限;(2)若直线y=mx+n 经过第一、二、三象限,请直接写出m,n 的取值范围;(3)若直线y=mx+n 不经过第一象限,请直接写出m,n 的取值范围.21. (西丰县期末)已知一次函数y=3x+3 的图象与x 轴交于点A, 与y轴交于点B.( 1 )求A,B 两点的坐标;(2)在给定的直角坐标系中,画出一次函数y=3x+3 的图象.-3),C(-2,m) 三点,22. 如图,在平面直角坐标系中,一条直线经过A(1,1),B(3, (1 )求m的值;(2)设这条直线与y 轴相交于点D, 求△OCD的面积. Array23. 已知y-2 与x成正比例,当x=2 时,y=6. (1 )求y 与x之间的函数解析式.(2)在所给直角坐标系中画出函数图象.(3)此函数图象与x 轴交于点A, 与y 轴交于点B, 点C在x 轴上,若S=3, 请直接写出点C的坐标.24. 根据学习函数的经验,对经过点(0,1)和点(2,3)的函数y=- |kx-2 |+b 的图象与性质进行如下探究.(1)求函数的表达式;(2)用合理的方式画出函数图象,并写出这个函数的一条性质 ;(3)若关于x的方程- |kx-2 |+b=mx+4 有实数解,则m 的取值范围是,答案一、选择题,B. C. A.C.A.B.C.A.B.C.二、填空题11.<12. 1<k<4.13. 1<k<3.14. 900.15. 二 .16.-2b.17.②③④.18.27.三、解答题19. (1)∵y是x的正比例函数,∴2k- 1=0,解得:,∴当时,y 是x 的正比例函数.(2)当函数图象经过第二、四象限时,解得:;当函数图象经过第二、三、四象限时,解得:∴当函数图象不经过第一象限时,k 的取值范围20.(1) ∵k=2>0,b=-3<0,所以直线y=2x-3 经过第一、三、四象限;故答案为:一、三、四.(2)∵直线y=mx+n 经过第一、二、三象限,∴m>0,n>0,(3)∵直线y=mx+n 不经过第一象限,∴直线y=mx+n 经过第二、三、四象限,∴m<0,n≤0.21 . (1)在y=3x+3 中,令y=0, 则x=- 1; 令x=0, 则y=3,所以,点A 的坐标为( -1,0),点B 的坐标为(0,3);(2)如图:22. (1)设直线的解析式为y=kx+b, 把A(1,1),B(3,-3) 代入,可得:解得:,所以直线解析式为:y=-2x+3,把C(-2,m) 代入y=-2x+3 中,得: m=7;( 2 ) 令x=0, 则y=3,所以直线与y 轴的交点坐标为(0,3),由 ( 1)得点C 的坐标为(-2,7),所以△OCD的面23. (1)∵y-2 与x 成正比例,∴设y-2=kx(k≠0),∵当x=2 时,y=6,∴6-2=2k,解得k=2,∴y-2=2x,函数关系式为:y=2x+2;( 2)当x=0 时,y=2,当y=0 时,2x+2=0, 解得x=- 1,所以,函数图象经过点B(0,2),A(-1,0),函数图象如图:( 3)∵点C 在x轴上,若S △w=3,∴AC=3,由图象得:C(-4,0) 或 ( 2,0).24 . (1)∵函数y=-|kx-2|+b 的图象经过点(0,1)和点(2,3),*解∴函数的表达式为y=- |x-2 |+3;(2)列表:描点、连线画出函数图象如图:函数的一条性质:函数有最大值3.故答案为函数有最大值3.(3)把点(2,3)代入y=mx+4 得,3=2m+4,解得事由图象可知,关于x 的方程- |kx-2|+b=mx+4 有实数解,则m的取值范围是m> 1,故答案为或m>1.。
6.3 一次函数图象(2)(含答案)-
∴- +b=12,解得
∴所求一次函数的解析式为y=- x+3或y=-2x+8.
3.一次函数y=mx+n的图象如图所示,则下列结论正确的是( ).
A.m<0,n<0 B.m<0,n>0 C.m>0,n>0 D.m>0,n<0
二、填空题
4.直线y=kx+b与直线y=-2x+1平行,则k=______.
5.若直线y=mx+2m-3经过第二,三,四象限,则m的取值范围是______.
二、解答题
10.已知一次函数y=(6+3m)x+(n-4),求:
(1)m为何值时,y随x的增大而减小?
(2)n为何值时,函数图象与y轴的交点在x轴的下方?
(3)m,n为何值时,函数图象经过原点?
11.函数y=-2x+6与x轴交于点A,与y轴交于点B,求△AOB的面积.
◆拓展训练
12.设一次函数y=kx+b的图象经过点P(3,2),它与x轴,y轴正方向分别交于A,B, 当AO+BO=12时,求这个一次函数的解析式.
6.3一次函数图象(二)
◆基础训练
一、选择题
1.直线y=-2x+6与x轴的交点坐标是( ).
A.(0,-3) B.(0,3) C.(3,0) D.(- ,1)
2.函数y=2x,y=-3x,y=- x的共同特点是( ).
A.图象位于同样的象限B.y随x的增大而减小
C.y随x的增大而增大D.图象都过原点
三、解答题
6.正比例函数或一次函数(y=kx+b)的图象如图所示,试确定k,b的情况.
一次函数的图象与性质学生练习 含答案
一次函数的图象与性质考点·方法·破译1.一次函数及图象:⑴形如y =kx +b (k ,b 为常数,且k ≠0),则y 叫做x 的一次函数,当b =0,k ≠0时,y 叫做x 的正比例函数.⑵正比例函数y =kx (k ≠0)的图象是经过(0,0),(1,k )两点的直线,一次函数y =kx +b (k ≠0)是经过(0,b )、(-kb ,0)两点的直线. 2.一次函数的性质:当k >0时,y 随自变量x 的增大而增大;当k <0时,y 随x 的增大而减小.3.函数y =kx +b 中的系数符号,决定图象的大致位置的增减性.经典·考题·赏析【1】(山东)函数y =ax +b ①和y =bx +a ②(ab ≠0)在同一坐标系中的图象可能是( )【2】如图,已知正方形ABCD 的顶点坐标为A (1,1)、B (3,1)、C (3,3)、D (1,3),直线y =2x +b 交AB 于点E ,交CD 于点F .直线与y 轴的交点为(0,b ),则b 的变化范围是_____.【3】已知一次函数y =kx +b ,当自变量取值范围是2≤x ≤6时,函数值的取值范围5≤y ≤9.求此函数的解析式.【4】如图,直线y=-5x-5与x轴交于A,与y轴交于B,直线y=kx+b与x轴交于C,与y轴交于B点,CD⊥AB交y轴于E.若CE=AB,求直线BC的解析式.【5】如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B.另一条直线y=kx+b(k≠0)经过(1,0),且把△AOB分成两部分.⑴若△AOB被分成的两部分面积相等,求k和b的值;⑵若△AOB 被分成的两部分的面积比为1:5,求k和b的值.一次函数的图象与性质答案考点·方法·破译1.一次函数及图象:⑴形如y =kx +b (k ,b 为常数,且k ≠0),则y 叫做x 的一次函数,当b =0,k ≠0时,y 叫做x 的正比例函数.⑵正比例函数y =kx (k ≠0)的图象是经过(0,0),(1,k )两点的直线,一次函数y =kx +b (k ≠0)是经过(0,b )、(-kb ,0)两点的直线. 2.一次函数的性质:当k >0时,y 随自变量x 的增大而增大;当k <0时,y 随x 的增大而减小.3.函数y =kx +b 中的系数符号,决定图象的大致位置的增减性.经典·考题·赏析【例1】(山东)函数y =ax +b ①和y =bx +a ②(ab ≠0)在同一坐标系中的图象可能是( )【解法指导】A 中①a >0,b >0,②b <0,a <0矛盾.B 中①a <0,b <0,矛盾.C 中①a >0,b >0②b >0,a =0矛盾.D 中①a >0,b <0②b <0,a >0,故选D .【例2】如图,已知正方形ABCD 的顶点坐标为A (1,1)、B (3,1)、C (3,3)、D (1,3),直线y =2x +b 交AB 于点E ,交CD 于点F .直线与y 轴的交点为(0,b ),则b 的变化范围是_____.【解法指导】直线y =2x +b 是平行于直线y =2x 的直线,当直线经过B 点时,b 最小,当x =3时,y=1∴1=2×3+b , b =-5当直线经过D 点时,b 最大,所以当x =1时,y =3∴3=2×1+b , b =1∴-5≤b ≤1【例3】已知一次函数y =kx +b ,当自变量取值范围是2≤x ≤6时,函数值的取值范围5≤y ≤9.求此函数的解析式.【解法指导】⑴当k >0,y 随x 的增大而增大,∴y =kx +b 经过(2,5),(6,9)两点∴⎩⎨⎧=+=+9652b k b k ∴⎩⎨⎧=-=31b k ,∴y =x +3 ⑵当k <0,y 随x 的增大而减小,∴y =kx +b 经过(2,9),(6,5)两点∴⎩⎨⎧=+=+5692b k b k ∴⎩⎨⎧-=-=111b k ,∴y =-x +11∴所求解析式为y =x +3或y =-x +11【例4】如图,直线y =-5x -5与x 轴交于A ,与y 轴交于B ,直线y =kx +b 与x 轴交于 C ,与y 轴交于B 点,CD ⊥AB 交y 轴于E .若CE =AB ,求直线BC 的解析式.【解法指导】由CE =AB ,CD ⊥AB 可得△AOB ≌△EOC ,因而OB =OC 而y =-5x -5与y 轴交于B∴B (0,-5)∴C (5,0),而直线BC 经过(0,-5),(5,0)可求得解析式y =x -5【例5】如图,已知直线y =-x +2与x 轴、y 轴分别交于点A 和点B .另一条直线y =kx +b (k ≠0)经过(1,0),且把△AOB 分成两部分.⑴若△AOB 被分成的两部分面积相等,求k 和b 的值;⑵若△AOB 被分成的两部分的面积比为1:5,求k 和b 的值.【解法指导】欲求k 和b 的值,需知道直线y =kx +b (k ≠0)经过两已知点,而点C (1,0)在直线上,因而只需求出另一点的坐标即可.解:⑴由题意得(2,0)、B (0,2),∴C 为OA 的中点,因而直线y =kx +b 过OA 中点且平分△AOB 的面积时只可能韦中线BC .∴y =kx +b 经过C (1,0),(0,2)∴⎩⎨⎧=+=b b kx 20∴k =2 b =2 ⑵①设y =kx +b 与OB 交于M (0,t )则有S △OMC =S △CAN ,∴MN ∥x 轴,∴N (34,32) ∴直线y =kx +b 经过34,32),(1,0)∴⎪⎩⎪⎨⎧=+=+03234b k b k ∴⎩⎨⎧-==22b k。
最新北师大版初中数学一次函数的图象(含答案)
7.4 一次函数的图象知识要点理解一次函数的图象和性质,学会用函数图象刻画两个变量之间的关系、•根据一次函数的图象求二元一次方程组的解,学会综合运用一次函数的知识解决几何问题和实际问题.1.一次函数的图象与性质如下表:2.画一次函数图象的原则:以简单为原则选取两点画直线. (1)画正比例函数的图象,通常选取(0,0),(1,k )两点画直线,个别情况可变通.•如画函数y=23x 的图象,可以选取(0,0),(3,2)两点. (2)画一次函数y=kx+b 的图象时,通常选取(0,b ),(-bk,0)两点,即取与坐标轴相交的两点.这样选取一是便于描点,二是便于计算.3.理解一次函数的图象,必须把图象与k 、b•的符号及图象所经过的象限有机统一起来(如上表).一次函数y=kx+b (k ≠0)的图象是直线.①比例系数k ,确定直线的走向,当k>0时,直线从左到右,向上“走向”;当k<0时,直线从左到右,•向下“走向”.反之成立.②b 确定直线与y 轴的交点位置.当b>0时,直线与y 轴的交点在y•轴的正半轴上;当b=0时,直线与y 轴的交点是原点;当b<0时,直线与y 轴的交点在y•轴的负半轴上,反之成立.4.在直角坐标系中求直线相交所围成的图形的面积,•往往通过将原图形割补成若干三角形(底在坐标轴上),再求出它们的面积的和或差.5.一次函数图象与一元一次方程、二元一次方程组、一元一次不等式的关系. (1)方程kx+b=0的根是直线y=kx+b 与x 轴交点的横坐标.(2)方程组1122y k x b y k x b =+⎧⎨=+⎩的解是两直线y=k 1x+b 1与y=k 2x+b 2的交点坐标.(3)一元一次不等式的解可由一次函数的图象观察得出.基础能力平台 1.选择题.(1)已知正比例函数y=kx 的图象经过点(1,2),则k 的值为( ) A .12B .1C .2D .4 (2)如图,直线y=kx+b 与x 轴交于点(-4,0),则y>0时,x 的取值范围是( )A .x>-4B .x>0C .x<-4D .x<0 (3)一次函数y=x+1的图象在( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限(4)点A (5,y 1)和B (2,y 2)都在直线y=-x 上,则y 1与y 2的关系是( )A .y 1≥y 2B .y 1=y 2C .y 1<y 2D .y 1>y 2 (5)函数y=x+2的图象大致是( )(6)若点P 为y 轴上的一点,且点P 到点A (4,3),点B (-2,-1)的距离和最小,则点P 的坐标为( ) A .(0,53) B .(0,32) C .(0,13) D .(0,0) (7)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,•则油箱内剩余油量Q(升)与行驶时间t (时)的函数关系用图象表示应为( )(8)如图是某蓄水池的横断面示意图,分为深水池和浅水池,•如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )2.填空题.(1)函数y=6-2x 的图象经过点(0,____)和(____,0). (2)函数y=5x 的图象经过_______象限.(3)当k________时,函数y=(2k-1)x+1中y 的值随x 的增大而减小. (4)直线y=kx+3与x 轴交于(-3,0),则k 的值是________.(5)若一次函数的图象经过第一、三、四象限,则一次函数的解析式为______(•填一个即可). (6)若y+3与x+2成正比例,且x=3时,y=7,则:①y 与x•之间的函数关系式为__________;②当x=-1时,y 的值为________;③当y=0时,x 的值为_______. (7)已知一次函数y=kx+3和y=3x+b 的图象都经过点A (3,6),且它们分别与x•轴交于点B 、C ,则:k=_______;b=_______;点B 坐标为_________;点C 坐标为________;•△ABC 的面积为_________.(8)一次函数y=kx+b 的自变量的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为_________.(9)下列三个函数y=-5x ,y=-13x ,y=(x 共同点是 ①__________;②__________;③_________. 3.分别求出下图中直线的函数解析式:(1) (2)4.已知一次函数y=-34x+3.(1)求该函数的图象与坐标轴围成的图形的面积;(2)求该函数与两坐标轴交点间的距离;(3)求原点到直线y=-34x+3的距离.5.已知一次函数y=(2m-3)x+(n+4).(1)当m为何值时,函数y随x的增大而增大;(2)当m、n为何值时,其图象与y轴的交点在x轴下方;(3)当m、n为何值时,其图象经过原点;(4)当m、n为何值时,其图象不经过第二象限.6.已知y是关于x的一次函数,当x=3时,y=2;当x=2时,y=0;(1)求这个一次函数的解析式;(2)在平面直角坐标系中画出所求函数的图象,并求出函数图象与坐标轴所围成图形的面积.7.(1)画出一次函数y=2x+4的图象;(2)在同一坐标系中画出y=2x+4关于y 轴的对称图形,并求出其解析式.8.甲骑自行车,乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示,根据图象解决下列问题:(1)谁先出发?先出发多少时间?谁先到达终点,先到多少时间? (2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段时,请你根据下列情形,分别列出关于行驶时间x 的方程或不等式(不化简,也不求解):•①甲在乙的前面;②甲与乙相遇;③甲在乙的后面.拓展延伸训练1.如图,在下列直角坐标系中,一次函数y=12kx-2k 的图象大致是( )2.k为何整数时,函数y=-54x+2k+14与函数y=-23x+3k的交点位于第四象限?并求出此时k为正整数时,两直线与x轴所围成的三角形的面积.3.某工厂有甲、乙两条生产线先后投产,在乙生产线投产以前,甲生产线已经生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30•吨成品.(1)分别求出甲、乙两条生产线投产后,总产量y(吨)•与乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;•观察图象,指出第15天和第25天结束时,哪条生产线的总产量高?4.某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)与行李重量x(千克)的一次函数,•其图象如图所示,求:(1)y与x之间的函数关系式;(2)旅客可免费携带的行李的重量.自主探究提高已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动.•相应△ABP的面积S关于时间t的函数图象如图乙.若AB=6,试回答下列问题:(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积为多少?(4)图乙中的b是多少?答案:【基础能力平台】1.(1)C (2)A (3)A (4)C (5)B (6)C (7)B (8)C2.(1)6 3 (2)一、三(3)k<12(4)1(5)y=x-3等(6)①y=2x+1 ②-1 ③-1 2(7)1 -3 (-3,0)(1,0) 6 (8)y=13x-4或y=-13x-3(9)①过原点②直线在二、•四象限③y随x的增大而减小3.y=32x-3,y=-32x+124.(1)6 (2)5 (3)12 55.(1)m>32(2)m≠32且n<-4(3)n=-4且m≠32(4)m>32且n≤-46.(1)所求函数的解析式为y=2x-4 (2)画图象略,S=4 7.(1)略(2)y=-2x+48.(1)甲先出发先出发10分钟,乙先到达终点,先到5分钟(2)甲的速度为每分钟0.2公里,乙的速度为每分钟0.4公里(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.设甲行驶的时间为x(分钟)(10<x<25),则根据题意可得:甲在乙的前面:0.2x>0.4(x-10);甲与乙相遇:0.2x=0.4(x-10);甲在乙的后面:0.2x<0.4(x-10).【拓展延伸训练】1.B2.k=-1,0,1时,两直线的交点位于第四象限,当k为正整数1时,S△ABC=1 1403.(1)甲生产线生产时对应的函数关系式是y=20x+200.•乙生产线生产时对应的函数关系式是y=30x.令20x+200=30x,解得x=20.即第20天结束时,两条生产线的产量相同;(2)由(1)可知,甲生产线所对应的生产函数图象一定经过两个点A(•0,200)和B(20,600);乙生产线所对应的生产函数图象一定经过两点O(0,0)•和B(•20,600).由图象可知:当第15天结束时,甲生产线的产量高;第25天结束时,乙生产线的产量高4.(1)y=15x-6(x≥30)(2)旅客最多可免费携带30公斤行李【自主探究提高】(1)8 (2)24 (3)60 (4)17。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 一次函数图象(二)
◆基础训练
一、选择题
1.直线y=-2x+6与x轴的交点坐标是().
A.(0,-3) B.(0,3) C.(3,0) D.(-9
2
,1)
2.函数y=2x,y=-3x,y=-1
2
x的共同特点是().
A.图象位于同样的象限 B.y随x的增大而减小
C.y随x的增大而增大 D.图象都过原点
3.一次函数y=mx+n的图象如图所示,则下列结论正确的是().
A.m<0,n<0 B.m<0,n>0 C.m>0,n>0 D.m>0,n<0
二、填空题
4.直线y=kx+b与直线y=-2x+1平行,则k=______.
5.若直线y=mx+2m-3经过第二,三,四象限,则m的取值范围是______.
三、解答题
6.正比例函数或一次函数(y=kx+b)的图象如图所示,试确定k,b的情况.
7.下图表示某出版社图书的销售成本与销售量的关系图象以及图书的销售收入与销售量的关系图象.请你认真观察图象,回答下列问题:
(1)印刷这些图书出版社前期投资多少钱?
(2)如果只卖出1千册,观察图象,估计是赚钱还是赔钱?
(3)观察图象,卖出多少册书才能不赔不赚(保本)?
(4)设L 1的关系式是y 1=k 1x+b 1,L 2的关系关系是y 2=k 2x+b 2,观察图象,你能比较k 1和k 2的大小吗?
◆能力提高
一、填空题
8.函数y=23
x+4的图象与x 轴的交点坐标为________,与y 轴的交点坐标为______. 9.一次函数y=k (x-k )(k>0)的图象不经过第________象限.
二、解答题
10.已知一次函数y=(6+3m )x+(n-4),求:
(1)m 为何值时,y 随x 的增大而减小?
(2)n 为何值时,函数图象与y 轴的交点在x 轴的下方?
(3)m ,n 为何值时,函数图象经过原点?
11.函数y=-2x+6与x轴交于点A,与y轴交于点B,求△AOB的面积.
◆拓展训练
12.设一次函数y=kx+b的图象经过点P(3,2),它与x轴,y轴正方向分别交于A,B,•当AO+BO=12时,求这个一次函数的解析式.
答案:
1.C 2.D 3.B 4.-2 5.m<0
6.图(1)中k>0,b=0;图(2)中k<0,b=0;图(3)中k<0,b>0;图(4)中k<0,b<0.7.(1)2000元(2)赔本(3)2000册(4)k2>k1
8.(-6,0)(0,4) 9.二
10.(1)m<-2 (2)n<4 (3)m≠-2且n=4 11.9
12.设A(-b
k
,0),B(0,b),则2=3k+b,又由b>0,k<0,
∴-b
k
+b=12,解得
1
2,
,
3
8.
3
k
k
b
b
⎧=-
=-⎧
⎪
⎨⎨
=
⎩
⎪=
⎩
或
∴所求一次函数的解析式为y=-1
3
x+3或y=-2x+8.。