2018年新课标人教版数学七年级上册期中考试试卷及答案

合集下载

新人教版七年级(上)期中数学试卷(含答案)(5).

新人教版七年级(上)期中数学试卷(含答案)(5).

2017-2018学年河南省周口市太康县七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%2.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3 B.﹣7 C.±3 D.﹣3或﹣73.|﹣6|的相反数是()A.6 B.﹣6 C.D.4.下列各数中,最小的数是()A.5 B.﹣3 C.0 D.25.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×10106.下列说法错误的是()A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是250007.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab8.一个多项式加上3y2﹣2y﹣5得到多项式5y3﹣4y﹣6,则原来的多项式为()A.5y3+3y2+2y﹣1 B.5y3﹣3y2﹣2y﹣6 C.5y3+3y2﹣2y﹣1 D.5y3﹣3y2﹣2y﹣1二、填空题(本大题共7小题,每小题3分,共21分)9.2016的相反数是.10.若|a﹣2|+|b+3|=0,则a﹣b的值为.11.绝对值大于2且小于5的所有整数的和是.12.如果|a﹣1|+(b+2)2=0,则(a+b)2016的值是.13.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.14.在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣().15.若mn=m+3,则2mn+3m﹣5mn+10=.三、解答题(本大题共8小题,共65分)16.把下列各数填在相应的大括号里:1,﹣,8.9,﹣7,,﹣3.2,+1 008,﹣0.06,28,﹣9.正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …}.17.画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:1,﹣2,3,﹣4,1.6,3,﹣2,0.18.计算:(1)﹣3+(+5)﹣(+4)(2)(﹣2)×3﹣(﹣8)÷(﹣2)2(3)(﹣+)×(﹣60)(4)﹣12﹣(﹣10)÷×2+(﹣4)2.19.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?20.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为cm,课桌的高度为cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.21.多项式﹣2+x m﹣1y+x m﹣3﹣nx2y m﹣3是关于x,y的四次三项式.(1)求m和n的值;(2)将这个多项式按字母x降幂顺序排列.22.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.23.对于多项式(n﹣1)x m+2﹣3x2+2x(其中m是大于﹣2的整数).(1)若n=2,且该多项式是关于x的三次三项式,求m的值;(2)若该多项式是关于x的二次单项式,求m,n的值;(3)若该多项式是关于x的二次二项式,则m,n要满足什么条件?2017-2018学年河南省周口市太康县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【考点】11:正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.2.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3 B.﹣7 C.±3 D.﹣3或﹣7【考点】13:数轴.【分析】符合条件的点有两个,一个在﹣5点的左边,一个在﹣5点的右边,且都到﹣5点的距离都等于2,得出算式﹣5﹣2和﹣5+2,求出即可.【解答】解:数轴上距离表示﹣5的点有2个单位的点表示的数是﹣5﹣2=﹣7或﹣5+2=﹣3.故选:D.3.|﹣6|的相反数是()A.6 B.﹣6 C.D.【考点】15:绝对值;14:相反数.【分析】根据相反数的概念即可解答.【解答】解:|﹣6|=6,6的相反数是﹣6,故选:B4.下列各数中,最小的数是()A.5 B.﹣3 C.0 D.2【考点】18:有理数大小比较.【分析】根据有理数大小比较的法则解答即可.【解答】解:﹣3<0<2<5,则最小的数是﹣3,故选:B.5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.6.下列说法错误的是()A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【考点】1H:近似数和有效数字;1K:科学记数法—原数.【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】解:A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D选项的说法正确.故选B.7.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab【考点】34:同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.8.一个多项式加上3y2﹣2y﹣5得到多项式5y3﹣4y﹣6,则原来的多项式为()A.5y3+3y2+2y﹣1 B.5y3﹣3y2﹣2y﹣6 C.5y3+3y2﹣2y﹣1 D.5y3﹣3y2﹣2y﹣1【考点】44:整式的加减.【分析】根据题意:已知和与其中一个加数,求另一个加数.列式表示另一个加数,再计算.【解答】解:(5y3﹣4y﹣6)﹣(3y2﹣2y﹣5)=5y3﹣3y2﹣2y﹣1.故选D.二、填空题(本大题共7小题,每小题3分,共21分)9.2016的相反数是﹣2016.【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2016的相反数是﹣2016.故答案为:﹣2016.10.若|a﹣2|+|b+3|=0,则a﹣b的值为5.【考点】16:非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,代入计算即可.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则a﹣b=5,故答案为:5.11.绝对值大于2且小于5的所有整数的和是0.【考点】15:绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.12.如果|a﹣1|+(b+2)2=0,则(a+b)2016的值是1.【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2016=1,故答案为:1.13.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【考点】33:代数式求值.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.14.在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣(y2﹣8y+4).【考点】36:去括号与添括号.【分析】根据添括号的法则括号前为负号,括号内各项改变符号,即可得出答案.【解答】解:x2﹣y2+8y﹣4=x2﹣(y2﹣8y+4).故答案为:y2﹣8y+4.15.若mn=m+3,则2mn+3m﹣5mn+10=1.【考点】45:整式的加减—化简求值.【分析】原式合并后,将已知等式代入计算即可求出值.【解答】解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m﹣9+3m+10=1,故答案为:1三、解答题(本大题共8小题,共65分)16.把下列各数填在相应的大括号里:1,﹣,8.9,﹣7,,﹣3.2,+1 008,﹣0.06,28,﹣9.正整数集合:{ 1,+1008,28,…};负整数集合:{ ﹣7,﹣9,…};正分数集合:{ 8.9,,…};负分数集合:{ ,﹣3.2,﹣0.06,…}.【考点】12:有理数.【分析】利用正整数,负整数,正分数,以及负分数的定义判断即可得到结果.【解答】解:正整数集合:{1,+1008,28,…};负整数集合:{﹣7,﹣9,…};正分数集合:{8.9,,…};负分数集合:{,﹣3.2,﹣0.06,…}.17.画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:1,﹣2,3,﹣4,1.6,3,﹣2,0.【考点】18:有理数大小比较;13:数轴.【分析】先在数轴上表示出来,再根据右边的数总比左边的数大,即可得出答案.【解答】解:根据题意画图如下:用“>”连接起来:3>3>1.6>1>0>﹣2>﹣2>﹣4.18.计算:(1)﹣3+(+5)﹣(+4)(2)(﹣2)×3﹣(﹣8)÷(﹣2)2(3)(﹣+)×(﹣60)(4)﹣12﹣(﹣10)÷×2+(﹣4)2.【考点】1G:有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣3+5﹣4=﹣7+5=﹣2;(2)原式=﹣6﹣(﹣8)÷4=﹣6﹣(﹣2)=﹣6+2=﹣4;(3)原式=﹣45+70﹣30=﹣5;(4)原式=﹣1﹣(﹣10)×2×2+16=﹣1﹣(﹣40)+16﹣1+40+16=55.19.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?【考点】1B:有理数的加减混合运算;11:正数和负数.【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【解答】解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了4辆.20.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为0.5cm,课桌的高度为85cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离(85+0.5x)cm(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.【考点】33:代数式求值.【分析】(1)让高摞书距离地面的距离减去低摞书距离地面的距离后除以3即为每本数的高度;让低摞书的高度减去3本书的高度即为课桌的高度;(2)高出地面的距离=课桌的高度+x本书的高度,把相关数值代入即可;(3)把x=55﹣18代入(2)得到的代数式求值即可.【解答】解:(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;课桌的高度为:86.5﹣3×0.5=85cm.故答案为:0.5;85;(2)∵x本书的高度为0.5x,课桌的高度为85,∴高出地面的距离为85+0.5x(cm).故答案为:(85+0.5x)cm;(3)当x=55﹣18=37时,85+0.5x=103.5cm.故余下的数学课本高出地面的距离是103.5cm.21.多项式﹣2+x m﹣1y+x m﹣3﹣nx2y m﹣3是关于x,y的四次三项式.(1)求m和n的值;(2)将这个多项式按字母x降幂顺序排列.【考点】43:多项式.【分析】(1)根据多项式为四次多项式,求出m与n的值即可;(2)把多项式按字母x降幂顺序排列即可.【解答】解:(1)由多项式﹣2+x m﹣1y+x m﹣3﹣nx2y m﹣3是关于x,y的四次三项式,得到n=0,m﹣1=3,解得:m=4,n=0;(2)根据(1)得:x3y+x﹣2.22.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.【考点】45:整式的加减—化简求值.【分析】本题要先去括号再合并同类项,对原代数式进行化简,然后把x,y的值代入计算即可.【解答】解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]=3x2﹣6xy﹣(3x2+2xy)=3x2﹣6xy﹣3x2﹣2xy=﹣8xy当时原式=﹣8×(﹣)×(﹣3)=﹣12.23.对于多项式(n﹣1)x m+2﹣3x2+2x(其中m是大于﹣2的整数).(1)若n=2,且该多项式是关于x的三次三项式,求m的值;(2)若该多项式是关于x的二次单项式,求m,n的值;(3)若该多项式是关于x的二次二项式,则m,n要满足什么条件?【考点】43:多项式;42:单项式.【分析】(1)利用多项式的定义,得出x的次数进而得出答案;(2)利用多项式的定义,得出x的次数与系数进而得出答案;(3)利用多项式的定义,得出x的次数与系数进而得出答案.【解答】解:(1)当n=2,且该多项式是关于x的三次三项式,故原式=x m+2﹣3x2+2x,m+2=3,解得:m=1,故m的值为:1;(2)若该多项式是关于x的二次单项式,则m+2=1,n﹣1=﹣2,解得:m=﹣1,n=﹣1;(3)若该多项式是关于x的二次二项式,①n﹣1=0,m为任意实数.则m,n要满足的条件是:n=1,m为任意实数;②当m=﹣1时,n≠﹣1,③m=0时,n≠4.2018年8月1日。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

2018年新人教版数学初一上册期中考试试卷含答案

2018年新人教版数学初一上册期中考试试卷含答案

2018—2019学年上学期期中考试七年级数学试卷
(本试题满分120分,考试时间120分钟)
题号
一二三四五六总分
得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1. 下面几何体的截面图可能是圆的是()
A. 正方体
B. 圆锥
C. 长方体
D.
棱柱2. 相反数是最大负整数的数是
() A. 1 B. -1 C. 0 D.2
3. 下列图形经过折叠不能围成棱柱的是
( ) A
B C D 4. 已知15a ,则a 的值为()
A.6
B.-4
C.-6或4
D.6或-4
5. 数轴上与-3的距离等于2个单位的点表示的数是
() A.0和2 B. -1和-3 C. -1和-5 D. -2和2
6. 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若
第一次输入3,并将显示的结果第二次输入,则此时显示的结果是(
)A. 3 B.1
2 C.2
3 D. -3
二、填空题(本大题共6小题,每小题3分,共18分.)
7. 比较大小:0________-2 (
填“>”“<”或“=”) 8. 代数式2x 系数是________,代数式c b a 323的系数是__ _,次数是_______.
9. 某风力发电站每天能发电约
74850000度,该数据用科学记数法表示为
度. 10. a 米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第
4次后剩下的小棒长_______________米.。

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.254.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣16.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.18.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是.12.若单项式5x4y和25x n y m是同类项,则m+n的值为.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为.14.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是.15.化简|π﹣4|+|3﹣π|=.16.计算:﹣5÷×5=(﹣1)2000﹣02011+(﹣1)2012=.17.单项式的系数是,次数是.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.【考点】相反数.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.【考点】有理数的混合运算.【分析】A、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;B、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算;C、根据有理数的乘方法则计算即可求解;D、从左往右依次计算即可求解.【解答】解:A、﹣(﹣1)2+(﹣1)=﹣1﹣1=﹣2,故选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故选项错误;C、﹣(﹣2)3=8,故选项正确;D、﹣+(﹣)﹣1=﹣1﹣1=﹣2,故选项错误.故选:C,3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.25【考点】绝对值.【分析】根据绝对值的定义解答.【解答】解:绝对值是5的数,原点左边是﹣5,原点右边是5,∴这个数是±5.故选A.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.5.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣1【考点】数轴;有理数大小比较.【分析】根据数轴上的点表示数的方法得到数轴上表示﹣2的点与表示+2的点的距离是4;数轴上原点表示的数是0;所有的有理数都可以在数轴上表示出来;﹣1是最大的负整数.【解答】解:A、数轴上表示﹣2的点与表示+2的点的距离是4,所以A选项错误,符合题意;B、数轴上原点表示的数是0,所以B选项正确,不符合题意;C、所有的有理数都可以在数轴上表示出来,所以C选项正确,不符合题意;D、﹣1是最大的负整数,所以D选项正确,不符合题意.故选A.6.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:B.7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.1【考点】整式的混合运算;绝对值.【分析】由于a≠0,那么应该分两种情况讨论:①a>0;②a<0,然后分别计算即可.【解答】解:∵a≠0,①当a>0时,(a﹣|a|)÷2a=(a﹣a)÷2a=0;②当a<0时,(a﹣|a|)÷2a=(a+a)÷2a=1.故选A.8.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元【考点】列代数式.【分析】总价格=足球数×足球单价+篮球数×篮球单价,把相关数值代入即可.【解答】解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选C.9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.【考点】数轴;有理数的加法;有理数的减法;有理数的乘法;有理数的除法.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后根据有理数的加、减、乘、除运算进行符号判断即可.【解答】解:根据题意,a<0且|a|<1,b>且|b|>1,∴A、a+b是正数,故本选项正确;B、a﹣b=a+(﹣b),是负数,故本选项错误;C、ab是负数,故本选项错误;D、是负数,故本选项错误.故选A.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.【考点】规律型:数字的变化类.【分析】分别求出a2,a3,a4,a5的值,不难发现每3个数为一组依次进行循环,用2011除以3,余数是几,则与第几个数相同.【解答】解:∵a1=2,∴a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,a5=1﹣=,…依此类推,每3个数为一组进行循环,2011÷3=670…1,∴a2011=a1=2.故答案为:2.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是﹣3p.【考点】列代数式.【分析】根据题意可以列出相应的代数式,本题得以解决.【解答】解:p的3倍的相反数是﹣3p,故答案为:﹣3p.12.若单项式5x4y和25x n y m是同类项,则m+n的值为5.【考点】同类项.【分析】根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.【解答】解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为﹣7或1.【考点】数轴.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:当点A在﹣3的左侧时,则﹣3﹣4=﹣7;当点A在﹣3的右侧时,则﹣3+4=1.则A点表示的数为﹣7或1.故答案为:﹣7或114.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是13.【考点】代数式求值.【分析】把代数式1+3a2﹣6a变形为3(a2﹣2a)+1,然后把a2﹣2a=4整体代入计算即可.【解答】解:∵1+3a2﹣6a=3(a2﹣2a)+1,而a2﹣2a=4,∴1+3a2﹣6a=3×4+1=13.故答案为13.15.化简|π﹣4|+|3﹣π|=1.【考点】绝对值.【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.16.计算:﹣5÷×5=﹣125(﹣1)2000﹣02011+(﹣1)2012=2.【考点】有理数的混合运算.【分析】(1)乘除运算时,从左往右进行计算;(2)先计算乘方运算,再算加减运算即可得到结果.【解答】解:(1)﹣5÷×5,=﹣5×5×5,=﹣125;(2)(﹣1)2000﹣02011+(﹣1)2012,=1﹣0+1,=2.17.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).【考点】规律型:图形的变化类.【分析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.【解答】解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是8℃.【考点】正数和负数.【分析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣3)=5+3=8℃.故答案为:8℃.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f=n﹣1,f()=n(n为整数),再计算即可.【解答】解:由规律得:f(n)=n﹣1,f(1n)=n(n为整数),∴f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.【考点】有理数的混合运算.【分析】(1)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(2)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(3)先把除法化为乘法,再根据乘法分配律进行计算;(4)先计算乘方,再计算加减,注意﹣32=﹣9.【解答】解:(1)﹣14﹣×[2﹣(﹣3)2],=﹣1﹣×[2﹣9],=﹣1﹣×(﹣7),=;(2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2,=﹣64+3×4﹣6,=﹣64+12﹣54,=﹣52﹣54,=﹣106;(3)(﹣+﹣+)÷,=﹣+×60﹣×60+×60,=﹣45+50﹣35+12,=﹣80+62,=﹣18;(4)﹣32﹣(﹣2)2+1,=﹣9﹣4+1,=﹣13+1,=﹣12.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减;合并同类项;去括号与添括号.【分析】(1)先去括号,再合并即可;(2)先去括号,再合并.【解答】解:(1)(3a﹣2)﹣3(a﹣5)=3a﹣2﹣3a+15=13;(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2y﹣3xy2﹣2xy2﹣4x2y=﹣2x2y﹣5xy2,当x=,y=﹣2时,原式=1﹣10=﹣9.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.【考点】非负数的性质:绝对值;非负数的性质:偶次方;代数式求值.【分析】先根据互为相反数的和等于0列式,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,∵|a+2|≥0,(b﹣3)2≥0,∴|a+2|=0,(b﹣3)2=0,a+2=0,b﹣3=0,解得a=﹣2,b=3,∴a b+3(a﹣b),=(﹣2)3+3(﹣2﹣3),=﹣8﹣15,=﹣23.故答案为:﹣23.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产599辆;(2)产量最多的一天比产量最少的一天多生产26辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数.【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【解答】解:(1)前三天生产的辆数是20×3+(5﹣2﹣4)=599(辆).答案是:599;(2)16﹣(﹣10)=16+10=26(辆),故答案是26;(3)这一周多生产的总辆数是5﹣2﹣4+13﹣10+16﹣9=9(辆).1400×7+9×15=9800+135=9935(元).答:该厂工人这一周的工资是9935元.27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=﹣(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据连续整数的乘积的倒数等于倒数差可得;(2)利用(1)中所得规律裂项求解可得;(3)根据=(﹣)裂项求和可得.【解答】解:(1)=﹣,故答案为:﹣;(2)①原式=1﹣+﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;;(3)原式=(﹣+﹣+﹣+…+﹣)=×(﹣)=×=,故答案为:.2017年5月4日。

新课标人教版2018-2019学年七年级(上)名校联考期中数学试卷附答案

新课标人教版2018-2019学年七年级(上)名校联考期中数学试卷附答案

2018-2019学年七年级(上)名校联考期中数学试卷一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.2x﹣6B.x﹣1=0C.2x+y=25D.=12.x=2是下列方程()的解.A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=03.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=b,那么a﹣m=b﹣mC.如果a=b,那么=D.如果3x=6y﹣1,那么x=2y﹣14.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°5.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)6.如图,由AD∥BC可以得到的是()A.∠1=∠2B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25B.3x+20=4x﹣25C.3x﹣20=4x﹣25D.3x+20=4x+259.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是岁.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要小时.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2()∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥()∴∠3=∠1()∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.参考答案一.选择题(每题3分,共30分)BDDDC CBBCD11.3.12.180°.13.1.14.70°.15..16.135°.1714岁.18.20°或140°.①如图,延长ED交AB于G,∵DE∥BC,∴∠FGD=∠B=100°,又∵∠EDF=120°,∴∠DFB=120°﹣100°=20°;②如图,过F作FG∥BC,∵DE∥BC,∴FG∥DE,∴∠D+∠DFG=180°,∠B+∠BFG=180°,又∵∠ABC=100°,∠EDF=120°,∴∠BFG=80°,∠DFG=60°,∴∠DFB=140°,193020.70解:如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,21.解:(1)2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8;(2)3(3y﹣2)=24﹣4(2y﹣1),9y﹣6=24﹣8y+4,9y+8y=24+4+6,17y=34,y=2.22.解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.23.解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.24.证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.26.解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.27.解:(1)过C作CE∥MN,∴∠1=∠MAC,∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC,∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP,∴CE∥PQ,∴MN∥PQ;(2)过B作BR∥AG,∵AG∥CH,∴BR∥HF,∴∠BEG=∠EBR,∠RBF+∠CFB=180°,∵∠EBF=90°,∴∠BEG=∠EBR=90°﹣∠RBF,∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),∴∠CFB﹣∠BEG=90°;(3)过E作ES∥MN,∵MN∥PQ,∴ES∥PQ,∴∠NAE=∠AES,∠QBE=∠EBC,∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP,∴∠CAE=∠AES,∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,∴∠QBE=∠EBC,∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∵∠ACB=60°,∴∠AEB=150°,∴∠BEG=30°,∵∠CFB﹣∠BEG=90°,∴∠CFB=120°.。

2018年秋人教版七年级数学上学期期中测评试题及答案

2018年秋人教版七年级数学上学期期中测评试题及答案

2018年秋人教版七年级数学上学期期中测评试题及答案(时间90分钟,满分120分)一、选择题(每小题3分,共30分)1.下列说法正确的是(A)A.分数都是有理数B.-a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数2.按某种标准把多项式进行分类时,3x3-4和a2b+ab2+1属于同一类,则下列多项式也属于此类的是(D)A.x2-2B.3x2+2xy4C.m2+2mn+n2D.abc-13.给出下列式子:0,3a,π,,1,3a2+1,-+y.其中单项式的个数是(A)A.5B.1C.2D.34.下列计算正确的是(B)A.74-22÷70=70÷70=1B.6÷(2×3)=6÷6=1C.2×32=(2×3)2=62=36D.(-50)÷2×=-50÷=-50×=-1255.有理数a,b在数轴上对应点的位置如图所示,则a,b的大小关系是(B)A.a<bB.a>bC.a=bD.无法确定6.(2016·安徽模拟)以下各数中,填入□中能使×□=-2成立的是(C)A.-1B.2C.4D.-47.当x=2时,多项式ax3+bx+1的值为6,那么当x=-2时,这个多项式的值是(B)A.1B.-4C.6D.-58.钓鱼岛是中国的固有领土,位于中国东海,面积约为4 400 000 m2,数据4 400 000用科学记数法表示为(A)A.4.4×106B.44×105C.4×106D.0.44×1079.某同学做了一道数学题:“已知两个多项式为A,B,B=3x-2y,求A-B的值.”他误将“A-B”看成了“A+B”,结果求出的答案是x-y,那么原来的A-B的值应该是(B)A.4x-3yB.-5x+3yC.-2x+yD.2x-y10.导学号19054085已知m-n=100,x+y=-1,则代数式(n+x)-(m-y)的值是(D)A.99B.101C.-99D.-101二、填空题(每小题4分,共24分)11.某种零件,标明要求是Φ:20±0.02 mm(Φ表示直径).经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).12.若单项式ax2y n+1与-ax m y4的差仍是单项式,则m-2n=-4.13.计算:=-14.14.计算:3a-(2a-b)=a+b.15.导学号19054086点a,b在数轴上对应点的位置如图所示,化简式子|a-b|+|a+b|的结果是-2a.16.若关于a,b的多项式(a2+2ab-b2)-(a2+mab+2b2)中不含ab项,则m=2.三、解答题(共66分)17.(6分)如图,在数轴上有两个点A,B,回答下列问题:(1)将点A向左平移个单位长度后,表示的数是什么?(2)将点B向右平移3个单位长度后,表示的数是什么?(3)将点B作怎样的平移表示的数与点A表示的数互为相反数?因为点A表示的数为-1,所以将点A向左平移个单位长度后表示-1;(2)因为点B表示的数为2,所以将点B向右平移3个单位长度后表示5;(3)因为点A表示的数为-1,点B表示的数为2,所以将点B向左平移1个单位长度后表示的数与点A表示的数互为相反数.18.(6分)计算下列各题:(1)3×(-2)+(-14)÷7;(2)×(-30);(3)-14+(-2)3×-(-32)-|-1-5|.原式=-6-2=-8;(2)原式=-10+25+18=33;(3)原式=-1+4+9-6=6.19.(8分)化简求值:(-4x2+2x-8)-,其中x=.=-x2+x-2-x+1=-x2-1,将x=代入得-x2-1=-.故原式的值为-.20.(8分)已知a x b2与-3a5b y+1是同类项,求多项式(5x2-3y2 016)-3(x2-y2 016)-(-y2 016)的值.a x b2与-3a5b y+1是同类项,所以x=5,y+1=2,所以y=1.原式=5x2-3y2016-3x2+3y2016+y2016=2x2+y2016.当x=5,y=1时,原式=2×52+12016=51.21.导学号19054087(8分)某房间窗户如图所示.其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).(1)装饰物所占的面积是多少?(2)窗户中能射进阳光的部分的面积是多少?装饰物的面积正好等于一个半径为a 的圆的面积,即ππa 2;(2)ab-πa 2. 22.导学号19054088(8分)从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)样品的平均质量比标准质量多还是少?多或少几克? (2)若标准质量为450克,则抽样检测的总质量是多少克?-5)×1+(-2)×4+0×3+1×4+3×5+6×3)]÷20=1.2(克).答:样品的平均质量比标准质量多,多1.2克.(2)20×450+[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3)]=9 024(克). 答:若标准质量为450克,则抽样检测的总质量是9 024克.23.导学号19054089(10分)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为a n.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为,第4项是.(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到=q,=q,=q,…,=q.所以a2=a1·q,a3=a2·q=(a1·q)·q=a1·q2,a4=a3·q=(a1·q2)·q=a1·q3,…由此可得a n=(用a1和q的式子表示).(3)若一等比数列的公比q=2,第2项是10,请求出它的第1项与第4项.24;(2)a1·q n-1;(3)因为等比数列的公比q=2,第2项为10,所以a1==5,a4=a1·q3=5×23=40.24.导学号19054090(12分)已知数轴上有A,B,C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示点P到点A和点C的距离:P A=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C 点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为2个单位长度?如果能,请求出此时点P 表示的数;如果不能,请说明理由.t34-t(2)设点Q运动的时间为x秒.当P点在Q点右侧,且Q点还没有追上P点时,3x+2=14+x,解得x=6,所以此时点P表示的数为-4;当P点在Q点左侧,且Q点还未到达点C时,3x-2=14+x,解得x=8,所以此时点P表示的数为-2;当Q点到达C点返回且P点在Q点左侧时,14+x+2+3x-34=34,解得x=13,所以此时点P表示的数为3;当Q点到达C点返回且P点在Q点右侧时,14+x-2+3x-34=34,解得x=14,所以此时点P表示的数为4.综上所述,P,Q两点间的距离可以为2个单位长度,此时点P表示的数为-4,-2,3,4.。

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

2018人教版七年级数学上册期中考试试卷

2018人教版七年级数学上册期中考试试卷

-七年级数学上册期中测试试卷一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.12-的绝对值是( ). A. 12 B.12- C.2 D. -22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).A.1.68×104mB.16.8×103 mC.0.168×104mD.1.68×103m 3.如果收入15元记作+15元,那么支出20元记作( )元. A.+5 B.+20 C.-5 D.-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ). A.3个 B.4个 C.5个 D.6个 5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ). A..1p q = B.1qp= C. 0p q += D. 0p q -= 6.下列变形中, 不正确的是( ).A. a +(b +c -d)=a +b +c -dB. a -(b -c +d)=a -b +c -dC. a -b -(c -d)=a -b -c -dD. a +b -(-c -d)=a +b +c +d7.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).A. b -a>0B. a -b>0 0 D. a +b>0 8.按括要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( ).A.1022.01(精确到0.01)B.1.0×103(保留2个有效数字)C.1020(精确到十位)D.1022.010(精确到千分位)9.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( ). A.x=-x+4 B.x=-x+(-4) C.x=-x-(-4) D.x-(-x )=4 10. 下列等式变形:①若a b =,则a b x x =;②若a b x x =,则a b =;③若47a b =,则74a b =;④若74a b =,则47a b =.其中一定正确的个数是( ). A.1个 B.2个 C.3个 D.4个二、填一填, 看看谁仔细(本大题共8小题, 每小题3分, 共24分)11.写出一个比12-小的整数: . 12.方程5-3x=8的解是 .13.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高________m . 14.若多项式y x 232+的值是-10,则多项式10462++y x 的值为 .15.单项式322yx -的系数是吗,次数是你n ,则mn 为 .16.十一国庆节期间,吴家山某眼镜店开展优 惠学生配镜的活动,某款式眼镜的广告如图,请你 为广告牌补上原价.17.如果a 、b 互为相反数,x 、y 互为倒数,m =1,则m xy b a =-+274的值是 . 18.那么,当输入数据为8时,输出的数据为 .三、 解一解, 试试谁更棒(本大题共9小题,共72分) 19.(本题9分)计算 (1)13(1)(48)64-+⨯- (2)4)2(2)1(310÷-+⨯- (3)()()[])2(5322-÷---20.(本题6分)化简(1) 323722+-++a a a a (2) ()()y x xy x y x 22252----21. (本题5分)先化简,再求知:()()13152322+--+-x x x x ,其中x=10.22.(本题6分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座? 解:23.(本题6分)某公司1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元. 这个公司去年总的盈亏情况如何?解:24. (本题8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比. (1)等比数列5、-15、45、…的第4项是_________.(2分)(2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===。

2018年初一数学上册期中试卷及答案

2018年初一数学上册期中试卷及答案

2018年初一数学上册期中试卷及答案2018年初一数学上册期中试卷及答案——201年上学期阶段测试初一数学试卷本试卷满分共100分,考试用时120分钟。

一、选择题(每题3分,共3×8=24分)1.下列各数中,是负数的是()。

A。

(9) B。

(9) C。

| -9 | D。

(9)22.下列式子中不是整式的是()。

A。

23x B。

a2b C。

12x5y D。

03.单项式的系数和次数分别是()。

A。

3 B。

-,3 C。

,3 D。

2,24.昆明长水国际机场总投资230.87亿元人民币,距市中心直线距离约24.5公里,海拔2102米,规划目标为近期满足2020年旅客吞吐量3800万人次。

这个吞吐量用科学计数法可以表示为()。

A。

3.8×10人次 B。

38×10人次 C。

3.8×10人次 D。

380×10人次5.下列计算正确的是()。

A。

m(2n)m2n B。

(m n)mn m n mnC。

mn(mn3) 3 D。

m(2m n)m n6.下列说法正确的是()。

A。

0.600有4个有效数字 B。

5.7万精确到0.1C。

6.610精确到千分位 D。

2.708×10有5个有效数字7.a、b为有理数,它们在数轴上的对应点的位置如图所示,把a、-a、b、-b按照从小到大的顺序排序是()。

A。

-b﹤-a﹤a﹤b B。

-a﹤-b﹤a﹤bC。

-b﹤a﹤-a﹤b D。

-b﹤b﹤-a﹤a8.以下说法正确的有()。

1) 不是正数的数一定是负数;2) C表示没有温度;3) XXX的体重增长了-2 XXX表示XXX的体重减少2 kg;4) 数轴上离原点越远,数就越小;5) 多项式xy2x5是四次三项式。

A。

2个 B。

3个 C。

4个 D。

5个二、填空题(每空2分,共2×12=24分)9.-9的相反数是9,0.3的倒数是10/3.10.倒数等于本身的数是1和1,绝对值等于本身的数是1和 1.11.比较大小:①2(2)0,②-0.5- 3.3nm+4x9y2n是同类项,那么m=0,n=3.12.如果2xy与-3ab同号,则xy与ab的符号相同。

人教版2018-2019学年七年级上册期中数学考试题及答案

人教版2018-2019学年七年级上册期中数学考试题及答案

2019-2019学年七年级上册期中数学试卷一、选择题:1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米2.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5 B.6 C.7 D.83.给出下列判断:①单项式的系数是5;②是二次三项式;③多项式-3a2b+7a2b2-2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A.1个 B.2个 C.3个 D.4个4.若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对5.明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( )A.1.25×105B.1.25×106C.1.25×107D.1.25×1086.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.两个互为相反数的有理数相乘,积为( )A.正数B.负数C.零D.负数或零9.下列运算中结果正确的是()A.3a+2b=5abB.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1D.3x2+2x=5x310.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:。

人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案

人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案

人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案2018-201年度第一学期期中考试七年级数学试卷一、选择题(每题3分,共30分)1、下列各对数中,互为相反数的是(-3)和(3)。

2、下列运算中,正确的是(5a2b-5ba2=5ab(a-b))。

3、过度包装既浪费资源又污染环境。

据测算,如果全国每年减少的二氧化碳吨数用科学记数法表示为(2×104),即2乘以10的4次方。

4、一个多项式与x2-2x+1的和是3x-2,则这个多项式为(x2-5x+3)。

5、按照一定规律排列的个数为(10)。

6、有理数a、b、c在数轴上位置如图,则|c-a|-|a+b|-|b-c|的值为(2a-2c+2b)。

7、如图,在长方形ABCD中,放入6个长度相同的小长方形,BH=6cm,设小长方形的宽QE=xcm则图形BQEFGH的周长为(24+2x)cm。

8、某班组每天需生产50个零件才能在规定时间内完成一批零件的生产任务,实际上该班组每天比计划多生产10个零件,结果比规定时间提前3天并超额生产120个零件,若该班组需完成零件的生产任务为x个,则根据题意得规定的时间为(x-1)/60天。

9、下列去括号或添括号正确的有(3)个,分别是①、②、③。

10、XXX在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为(-1009)。

二、填空题(每题3分,共18分)11、3的相反数的倒数是-1/3.12、有六张卡片,正面分别写有六个数字,背面分别写有六个字母。

将卡片正面的数字由大到小排列,然后将卡片翻转,卡片上的字母组成的单词是什么。

13、数轴上点M表示有理数-2,将点M向右平移1个单位长度到达点N,点E到点N的距离为4,那么点E表示的有理数为-1.14、用[a]表示不大于a的最大整数,例如:[1.5]=1,[-2.3]=-3,则[-5.2]+[-0.3]+[2.2]=-4.15、某校七年级四个班的学生在植树节这天共义务植树(6a-3b)棵,七(1)班植树a棵,七(2)班植树的棵数比七(1)的两倍少b棵,七(3)班植树的棵数比七(2)班的一半多1棵,那么七(4)班的植树棵数为(6a-9b-1)棵。

人教部编版七年级数学上册期中考试题 (10)

人教部编版七年级数学上册期中考试题 (10)

江苏省南通市2017-2018学年七年级数学上学期期中测试试题(试卷共4页 总分:150分 时间:120分钟)一、选择题(本题共10小题,每题3分,共30分)1.如果+10%表示增加10%,那么-3%表示A. 减少3%B. 增加3%C.增加10%D. 减少6%2.下列各数中,是负数的是A .)9(--B .)9(+-C .|-9|D .2)9(-3.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000科学记数法表示为A. 70.2510⨯B. 72.510⨯C. 62.510⨯D. 52510⨯4.下列运算中,结果正确的是A .4+5ab =9abB .66xy x y -=C .22330a b ba -=D .34712517x x x +=5.下列方程中是一元一次方程的是A. 43=+y xB. 252=xC. 132=+x xD. 321=-x6.下列各组是同类项的一组是A .xy 2与-x 212yB .3x 2y 与-4x 2yzC .a 3与b 3D .–2a 3b 与21ba 37.解为2x =-的方程是A.240x -=B.5362x +=C.()()3235x x x ---=D.275462x x --=-8.减去m 3-等于5352--m m 的式子是A.)1(52-mB.5652--m mC.)1(52+mD.)565(2-+-m m9.方程 的解为自然数,则整数 等于A.1,3B. 0,11,3±±10、 1x 、2x 、3x 、…20x 是20个由1,0,-1组成的数,且满足下列两个等式:123204x x x x ++++=①, 222212320(1)(1)(1)(1)32x x x x -+-+-+-=②, 则这列数中1的个数为:A .8B .10C .12D . 14二、填空题(本题共8小题,每题3分,共24分)11.4-的相反数是 .12.若22(1)20,a b a ++-==那么 .13.若2x +y =3,则4+4x +2y = .14.多项式化简后223368x kxy y xy --+-不含xy 项,则k = .15.已知22514227ax x x x a ++=-+是关于x 的一元一次方程,则其解是_________.16.代数式154m +与15()4m -互为相反数,则m = ______ .17.有三个互不相等的整数a ,b ,c ,如果abc =4,那么a +b +c = ______ .18.我们知道:31=3;32=9;33=27;34=81;35=243;36=729…,仔细观察上述规律: 20173的末位数字应为 .三、解答题(本大题共10小题,共96分)19.计算:(本题10分)(1) )18(12-- (2) 421110.52(3)3⎡⎤⨯⨯--⎣⎦--(-)20.化简:(本题10分)(1)22222323xy xy y x y x -++- (2))32(3)23(4)(5b a b a b a -+--+21.解方程:(本题12分)(1)()63635x x -+=--;(3)2123148y y ---= 22.(本题8分)把下列各数在数轴上表示出来,并用“<”号连接1,3,0,(2.5),5-+----23.(本题8分)已知m 、n 是系数,且y xy mx +-22与y nxy x 3232++的差中不含二次项,求3m n+的值。

2017-2018学年最新人教版七年级 数学(上册)期中测试卷及答案

2017-2018学年最新人教版七年级    数学(上册)期中测试卷及答案
26.求1+2+22+23+…+22015的值,可令S=1+2+22+23+…+22015,则 2S=2+22+23+24+…+22016,因此2S﹣S=22016﹣1.仿照以上推理,计 算出1+5+52+53+…+52015的值.
2016-2017学年七年级(上)期中数学试卷
参考答案与试题解析
7.若原产量为n吨,增产30%后的产量为( ) A.30%n吨 B.(1﹣30%)n吨 C.(1+30%)n吨 D.(n+30%) 吨 【考点】代数式. 【分析】根据增产量=原产量×(1+增长率)作答. 【解答】解:原产量为n吨,增产30%后的产量为(1+30%)n吨, 故选C. 8.下列去括号错误的是( )
A.2x2﹣3xy﹣1是二次三项式 B.﹣x+1不是单项式
C.
的系数是
D.﹣22xab2的次数是6
【考点】多项式;单项式. 【分析】根据单项式和多项式的概念及性质判断各个选项即可.
【解答】解:A、2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;
B、﹣x+1不是单项式,故本选项不符合题意; C、
的系数是
【解答】解:∵x2+3x=3, ∴3x2+9x﹣4=3(x2+3x)﹣4=3×3﹣4=9﹣4=5.
故选:C. 二、填空题:(本大题共8小题,每小题2分,共16分)
11.如果把收入30元记作+30元,那么支出20元可记作 ﹣20元 . 【考点】正数和负数. 【分析】答题时首先知道正负数的含义,在用正负数表示向指定方向变 化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的 相反方向变化的量规定为负数. 【解答】解:由收入为正数,则支出为负数,故收入30元记作+30元, 那么支出20元可记作﹣20元. 12.﹣5

2018-2018初一数学上册期中试卷(带答案)

2018-2018初一数学上册期中试卷(带答案)

2018-2018初一数学上册期中试卷(带答案)第一篇:2018-2018初一数学上册期中试卷(带答案)2018-2018初一数学上册期中试卷(带答案)距离期中考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初一学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇2018-2018初一数学上册期中试卷吧!一、精心选一选(本大题共10小题,每题3分,共30分)1.方程5(x-1)=5的解是()A.x=1B.x=2C.x=3D.x=42.下列关于单项式一的说法中,正确的是()A.系数是-,次数是4B.系数是-,次数是3C.系数是-5,次数是4D.系数是-5,次数是33.甲、乙、丙三地的海拔高度分别为20m、-15m和-10m,那么最高的地方比最低的地方高()A.5m B.10m C.25m D.35m4.根据国家安排,今年江苏省保障性安居工程计划建设106800套,106800用科学记数学法可表示为()A.1068102B.10.68104C.1.068105D.0.10681065.两个数的商是正数,下面判断中正确的是()A.和是正数B.差是正数C.积是正数D.以上都不对6.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A与点D表示的数分别是()A.2,2B.4 , 1C.5 , 1D.6 , 27.若A、B都是五次多项式,则A-B一定是()A.四次多项式B.五次多项式C.十次多项式D.不高于五次的多项式 8.下列计算中正确的是()A.6a-5a=1B.5x-6x=11xC.m2-m=mD.x3+6x3=7x3.已知(x-1)3=ax3+bx2+cx+d.,则a+b+c+d的值为()A.1B.0C.1D.2 0.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右340m~380m之间树与灯的排列顺序是()二、细心填一填(本大题共9小题13空,每空2分,共26分)11.-2的绝对值是,相反数是12.当x= 时,代数式的值是0.已知多项式2x2-4x的值为10,则多项式x22x+6的值为.13.若4x4yn+ 1与-5xmy2的和仍为单项式,则m=,n=.14.方程x+a=2的解与方程2x+3=-5的解相同,则a=15.已知|a-2|+(b+1)2=0,则(a+b)2018=16.如图所示的运算程序中,若开始输入的x的值为10,我们发现第一次输出的结果为5,第二次输出的结果为8,则第10次输出的结果为17.请写出一个方程的解是2的一元一次方程:.18.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.19.已知a= |x5|+|x2|+ |x+3|,求当x= 时,a有最小值为三、认真答一答(本大题共7小题,共44分)20.计算:(本题共2小题,每题3分,共6分)(1)-23+(-37)-(-12)+45;(2)(-6)2.21.解方程:(本题共2小题,每题3分,共6分)(1)2(2x+1)=1-5(x-2);(2)-=122.(本题5分)已知,(1)求的值;(结果用x、y表示)(2)当与互为相反数时,求(1)中代数式的值.23.(本题5分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5-2-4+13-10+16-9(1)产量最多的一天比产量最少的一天多生产(2)根据记录可知前三天共生产(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?24.(本题7分)世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米.(1)若设展厅的正方形边长为x米,用含x的代数式表示核心筒的正方形边长为米.(2)若设核心筒的正方形边长为y 米,求该模型的平面图外框大正方形的周长及每个休息厅的图形周长.(用含y的代数式表示)(3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。

人教部编版七年级数学上册期中考试题 (1)

人教部编版七年级数学上册期中考试题 (1)

2017-2018学年广东省河源市和平县七年级(上)期中数学试卷一、选择题:本题共12个小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项符合题目要求.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.下列图形的名称按从左到右的顺序依次是()A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体C.棱柱、球、正方体、长方体D.棱柱、圆锥、四棱柱、长方体3.数轴上有A,B,C,D四个点,其中哪个点表示的数为1()A.点A B.点B C.点C D.点D4.下列各组式子中是同类项的是()A.4x与﹣4y B.4y与﹣4xy C.4xy2与﹣4x2y D.﹣4xy2与4y2x5.冬季我国某城市某日最高气温为3℃,最低温度为﹣13℃,则该市这天的温差是()A.13℃B.14℃C.15℃D.16℃6.下面几何体的截面图可能是圆的是()A.圆锥B.正方体C.长方体D.棱柱7.下列图形经过折叠不能围成棱柱的是()A.B. C. D.8.下列说法中,正确的是()A.不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式9.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.10.下列说法中:(1)一个数,如果不是正数,必定就是负数;(2)整数与分数统称为有理数;(3)如果两个数的绝对值相等,那么这两个数相等;(4)符号不同的两个数互为相反数.其中正确的有()A.1个B.2个C.3个D.4个11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个12.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d二、填空题:本大题共6小题,每小题3分,共18分)13.流星划过天空时留下一道明亮的光线,用数学知识解释为.14.﹣2的相反数为,﹣2的倒数为,|﹣|= .15.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).16.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.17.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是.18.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为.三、解答题:本题共7小题,共58分,解答应写出文字说明,过程或演算步骤.)19.由数轴回答下列问题(Ⅰ)A,B,C,D,E各表示什么数?(Ⅱ)用“<“把这些数连接起来.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.21.(1)12﹣(﹣18)+(﹣12)﹣15(2)(﹣+)×(﹣24)(3)(﹣)×1÷(﹣1)(4)(﹣2)3×(﹣)﹣(﹣3)22.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.23.司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3、回答下列问题:(Ⅰ)记录中“+8”表示什么意思?(Ⅱ)收工时小王在A地的哪边?距A地多少千米?(Ⅲ)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?24.陈老师和学生做一个猜数游戏,他让学生按照如下步骤进行计算:①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2;②把a乘以2,再加上30,把所得的和除以2;③把①所得的结果减去②所得的结果,这个差即为最后的结果.陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a.学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31.请完成(Ⅰ)由①可列代数式,由②可列代数式,由③可知最后结果为;(用含a的式子表示)(Ⅱ)学生小明计算的结果是120,你能猜出他最初想的两位数是多少吗?(Ⅲ)请用自己的语言解释陈老师猜数的方法.25.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(Ⅰ)有4张桌子,用第一种摆设方式,可以坐人;用第二种摆设方式,可以坐人;(Ⅱ)有n张桌子,用第一种摆设方式可以坐人;用第二种摆设方式,可以坐人(用含有n 的代数式表示);(Ⅲ)一天中午,餐厅要接待120位顾客共同就餐,但餐厅中只有30张这样的长方形桌子可用,且每6张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?2017-2018学年广东省河源市和平县七年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共12个小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项符合题目要求.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.2.下列图形的名称按从左到右的顺序依次是()A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体C.棱柱、球、正方体、长方体D.棱柱、圆锥、四棱柱、长方体【考点】I1:认识立体图形.【分析】根据圆柱,球,正方体、长方体的构造特点即可求解.【解答】解:观察图形可知,图形的名称按从左到右的顺序依次是圆柱、球、正方体、长方体.故选:B.3.数轴上有A,B,C,D四个点,其中哪个点表示的数为1()A.点A B.点B C.点C D.点D【考点】13:数轴.【分析】根据数轴上点与实数的对应关系即可解答.【解答】解:由数轴知,点C表示数1,故选C.4.下列各组式子中是同类项的是()A.4x与﹣4y B.4y与﹣4xy C.4xy2与﹣4x2y D.﹣4xy2与4y2x【考点】34:同类项.【分析】根据同类项的定义进行解答即可.【解答】解:A、4x与﹣4y不是同类项,故本选项错误;B、4y与﹣4xy不是同类项,故本选项错误;C、4xy2与﹣4x2y不是同类项,故本选项错误;D、﹣4xy2与4y2x是同类项,故本选项正确;故选D.5.冬季我国某城市某日最高气温为3℃,最低温度为﹣13℃,则该市这天的温差是()A.13℃B.14℃C.15℃D.16℃【考点】1A:有理数的减法.【分析】根据有理数的减法法则,减去一个数等于加上这个数的相反数,可得答案.【解答】解:∵我国某城市某日最高气温为3℃,最低温度为﹣13℃,∴该市这天的温差是:3﹣(13)=16℃.故选:D.6.下面几何体的截面图可能是圆的是()A.圆锥B.正方体C.长方体D.棱柱【考点】I9:截一个几何体.【分析】根据圆锥、正方体、长方体、棱柱的形状分析即可.【解答】解:正方体、长方体和棱柱的截面都不可能有弧度,所以截面不可能是圆,而圆锥只要截面与底面平行,截得的就是圆.故选A.7.下列图形经过折叠不能围成棱柱的是()A.B. C. D.【考点】I7:展开图折叠成几何体.【分析】由平面图形的折叠及棱柱的展开图解题.【解答】解:A可以围成四棱柱,C可以围成五棱柱,D可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:B.8.下列说法中,正确的是()A.不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】41:整式;42:单项式;43:多项式.【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣的系数是﹣,次数是3,错误;C、3是单项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C9.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.【考点】1G:有理数的混合运算.【分析】按照规定的运算方法改为有理数的混合运算计算即可.【解答】解:2⊗(﹣3)==6.故选:A.10.下列说法中:(1)一个数,如果不是正数,必定就是负数;(2)整数与分数统称为有理数;(3)如果两个数的绝对值相等,那么这两个数相等;(4)符号不同的两个数互为相反数.其中正确的有()A.1个B.2个C.3个D.4个【考点】12:有理数;14:相反数;15:绝对值.【分析】根据有理数的定义及其分类标准,和绝对值、相反数的意义进行辨析即可.【解答】解:(1)一个数,如果不是正数,必定就是负数不对,还有可能是0;(2)整数与分数统称为有理数正确;(3)如果两个数的绝对值相等,那么这两个数可能相等也可能互为相反数,(4)符号不同的两个数不一定互为相反数,如、+5与﹣3;综上所述只有一个正确;故答案为A.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个【考点】U3:由三视图判断几何体.【分析】根据题目中的三视图可以得到这个展台有几个正方体组成,从而可以解答本题.【解答】解:由三视图可知,这个展台前面第一排一个正方体,后面三个,左面竖直两个,右面一个,故选B.12.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d【考点】36:去括号与添括号.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判断即可.【解答】解:A、a+(b+c﹣d)=a+b+c﹣d,故本选项正确;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故本选项正确;C、a﹣b﹣(c﹣d)=a﹣b﹣c+d,故本选项错误;D、a+b﹣(﹣c﹣d)=a+b+c+d,故本选项正确;故选C.二、填空题:本大题共6小题,每小题3分,共18分)13.流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线..【考点】I2:点、线、面、体.【分析】根据点动成线进行回答.【解答】解:流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线.故答案为:点动成线.14.﹣2的相反数为 2 ,﹣2的倒数为﹣,|﹣|= .【考点】17:倒数;14:相反数;15:绝对值.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数,根据负数的绝对值是它的相反数,可得一个负数的绝对值.【解答】解:﹣2的相反数为2,﹣2的倒数为﹣,|﹣|=.故答案为:2,﹣,.15.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回(50﹣3a)元(用含a的代数式表示).【考点】32:列代数式.【分析】利用单价×质量=应付的钱;用50元减去应付的钱等于剩余的钱即为应找回的钱.【解答】解:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50﹣3a)元.故答案为:(50﹣3a).16.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.17.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是强.【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴与“建”字所在面相对的面的字是强.故答案为:强.18.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为 5 .【考点】33:代数式求值.【分析】根据题意求出x2﹣4x的值,原式前两项提取2变形后,将x2﹣4x的值代入计算即可求出值.【解答】解:∵x2﹣4x﹣2=3,即x2﹣4x=5,∴原式=2(x2﹣4x)﹣5=10﹣5=5.故答案为:5.三、解答题:本题共7小题,共58分,解答应写出文字说明,过程或演算步骤.)19.由数轴回答下列问题(Ⅰ)A,B,C,D,E各表示什么数?(Ⅱ)用“<“把这些数连接起来.【考点】18:有理数大小比较;13:数轴.【分析】(I)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(II)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(I)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(II)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】U4:作图﹣三视图.【分析】主视图有4列,每列小正方形数目分别为1,3,1,1;左视图有3列,每列小正方形数目分别为3,1,1;俯视图有4列,每行小正方形数目分别为1,3,1,1.【解答】解:如图所示:.21.(1)12﹣(﹣18)+(﹣12)﹣15(2)(﹣+)×(﹣24)(3)(﹣)×1÷(﹣1)(4)(﹣2)3×(﹣)﹣(﹣3)【考点】1G:有理数的混合运算.【分析】(1)解法统一成加法计算即可;(2)利用乘方分配律计算即可;(3)根据有理数乘除混合运算法则计算即可;(4)先乘方,再乘除,最后算加减即可;【解答】解:(1)12﹣(﹣18)+(﹣12)﹣15=12+18﹣12﹣15=30﹣27=3(2)(﹣+)×(﹣24)=×24﹣×24=9﹣14=﹣5(3)(﹣)×1÷(﹣1)=﹣××(﹣)=(4)(﹣2)3×(﹣)﹣(﹣3)=﹣8×(﹣)+3=722.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【考点】44:整式的加减.【分析】(1)根据题意确定出所挡的二次三项式即可;(2)把x的值代入计算即可求出值.【解答】解:(1)所挡的二次三项式为x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣1时,原式=1+8+4=13.23.司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3、回答下列问题:(Ⅰ)记录中“+8”表示什么意思?(Ⅱ)收工时小王在A地的哪边?距A地多少千米?(Ⅲ)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【考点】11:正数和负数.【分析】(Ⅰ)根据约定向东为正,向西为负即可求解;(Ⅱ)根据有理数的加法,可得答案;(Ⅲ)根据单位耗油量乘以行驶路程,可得耗油量.【解答】解:(Ⅰ)记录中“+8”表示小王向东走了8千米;(Ⅱ)8+(﹣9)+7+(﹣2)+5+(﹣10)+7+(﹣3)=3(千米),答:收工时小王在A地的东边,距A地3千米;(Ⅲ)0.2×(8+|﹣9|+7+|﹣2|+5+|﹣10|+7+|﹣3|)=0.2×51=10.2(升),答:从A地出发到收工时,共耗油10.2升.24.陈老师和学生做一个猜数游戏,他让学生按照如下步骤进行计算:①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2;②把a乘以2,再加上30,把所得的和除以2;③把①所得的结果减去②所得的结果,这个差即为最后的结果.陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a.学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31.请完成(Ⅰ)由①可列代数式4a+18 ,由②可列代数式a+15 ,由③可知最后结果为3a+3 ;(用含a的式子表示)(Ⅱ)学生小明计算的结果是120,你能猜出他最初想的两位数是多少吗?(Ⅲ)请用自己的语言解释陈老师猜数的方法.【考点】32:列代数式.【分析】(1)根据①②步骤列出代数式,做差后即可得出结论;(2)结合(1)可知3a+3=120,解之即可得出结论;(3)根据最后结果为3a+3,写出求a的过程即可.【解答】解:(1)由题意可知,第①步运算的结果为:2(2a+9)=4a+18;第②步运算的结果为:(2a+30)=a+15;第③步运算的为:(4a+18)﹣(a+15)=3a+3,故答案为:4a+18;a+15;3a+3;(2)∵最后结果为120,∴3a+3=120,解得:a=39.答:小明最初想的两位数是39.(3)陈老师猜数的方法是:将学生所得的最后结果减去3,再除以3.25.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(Ⅰ)有4张桌子,用第一种摆设方式,可以坐18 人;用第二种摆设方式,可以坐12 人;(Ⅱ)有n张桌子,用第一种摆设方式可以坐4n+2 人;用第二种摆设方式,可以坐2n+4 人(用含有n 的代数式表示);(Ⅲ)一天中午,餐厅要接待120位顾客共同就餐,但餐厅中只有30张这样的长方形桌子可用,且每6张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?【考点】38:规律型:图形的变化类.【分析】(Ⅰ)旁边2人除外,每张桌可以坐4人,由此即可解决问题;(Ⅱ)旁边4人除外,每张桌可以坐2人,由此即可解决问题;(Ⅲ)分别求出两种情形坐的人数,即可判断;【解答】解:(Ⅰ)有4张桌子,用第一种摆设方式,可以坐4×4+2=18人;用第二种摆设方式,可以坐4×2+4=12人;(Ⅱ)有n张桌子,用第一种摆设方式可以坐4n+2人;用第二种摆设方式,可以坐2n+4(用含有n的代数式表示);(Ⅲ)选择第一种方式.理由如下;第一种方式:6张桌子可以坐4×6+2=26(人),30张桌子可以拼5张大桌子,一共可以坐26×5=130(人).第二种方式:6张桌子可以坐2×6+4=16(人),30张桌子可以拼5张大桌子,一共可以坐16×5=80(人).又130>120>80,所以选择第一种方式.故答案为:18,12,4n+2,2n+4.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ) A.16 B.π6 C.π8 D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

2018年人教版初一数学上册期中试卷及答案

2018年人教版初一数学上册期中试卷及答案

2018年人教版初一数学上册期中试卷及答案2018-201年七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.数轴上与表示2的点距离等于3个单位长度的点表示的数是()A。

1或5B。

-1或5C。

-1或-5D。

-2或52.| -2 | 的倒数是()A。

B。

C。

2D。

-23.下列式子中,正确的是()A。

5-| -5 | = 10B。

(-22) = 4C。

-99 = -9 × 11D。

-102 = (-10) × (-10)4.我国国土面积约960万平方千米,用科学记数法可表示为()平方千米.A。

96 × 105B。

960 × 104C。

9.6 × 107D。

9.6 × 1065.下列各对数中,数值相等的是()A。

2³和 3²B。

(-2)²和 (-2)²C。

2 和 | -2 |D。

²和6.下列各式中,不是同类项的是()A。

x²y和x²yB。

-ab和baC。

-abcx²和-x²abcD。

x²y和xy³7.下列语句中错误的是()A。

数字也是单项式B。

单项式- a的系数与次数都是1C。

xy是二次单项式D。

-的系数是-8.组成多项式2x²-3x-5的各项是()A。

2x²,3x,5B。

2,-3,-5C。

2x²,-3x,-5D。

2x²-3x-59.已知:(b+3)²+|a-2|=0,则ba的值为()A。

-9B。

9C。

-6D。

610.b在数轴上的对应的位置如图所示,有理数a、则下列各式中正确的是()A。

a+b<0B。

a+b>0C。

a-b=0D。

a-b>0二、填空题:(每题3分,共24分)11.南通市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是-1℃.12.-的相反数是1;绝对值是1.13.若-3amb³与4a²bn是同类项,则3m-2n=5.14.已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月20日18点.15.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是75.16.在-3,-1,| -2 |,-(-3),5,3.8,-1,0,(-3)²,-4²中,正整数的个数是2个.17.单项式-的系数是-1,次数是1.18.如图是一个数值转换机,若输入的x为-5,则输出的结果是-10.三、解答题(要写出解答步骤.共46分)19.如图所示的几何体是由相同的小正方体搭成的,请画出它的主视图、左视图和俯视图.(略)20.计算:(略)1) 12-(-16)-4-52) 1/(-1)+(-4)*(-2010)3) -2-|-3|+(-2)^24) -22-(-33)*(-3)-12/(-2)^2.21.按要求完成下列各题:1) 化简:3a+(-8a+2)-3(3a-4).2) 先化简,再求值:3(x^2y-2xy)-2(x^2y-3xy)-5x^2y,其中x=-1,y=?22.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米。

最新人教版2018年七年级数学上册期中考试题(含答案)

最新人教版2018年七年级数学上册期中考试题(含答案)

最新人教版2018年七年级数学上册期中考试题(含答案)2018-201年第一学期七年级数学期中试卷时量:120分钟满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本题共12个小题,每小题3分,共36分)1.-2的相反数是()A。

1/2 B。

-2 C。

2/2 D。

22.在数轴上距离原点2个单位长度的点所表示的数是()A。

2 B。

-2 C。

2或-2 D。

1或-13.下列计算正确的是()A。

2x+3y=5xy B。

2a+2a=2a C。

4a-3a=a D。

-2ba+ab=-ab4.下列式子中,成立的是()A。

-2=-2 B。

(-2)=-2 C。

-2/3=2/3 D。

3=3×2/35.用四舍五入按要求对0.分别取近似值,其中错误的是()A。

0.1(精确到0.1)B。

0.06(精确到千分位)C。

0.06(精确到百分位)D。

0.0602(精确到0.0001)6.下列各组中,不是同类项的是()A。

-xy与2yx B。

2ab与ba2 C。

-mn与221 D。

23和327.XXX作业本中有四道计算题:①-(-5)=-5;②(-3)+(-9)=-12;③2/3×9/4=-;④(-36)÷(-9)=-4.其中他做对的题的个数是()A。

1个 B。

2个 C。

3个 D。

4个8.一件衣服的进价为a元,在进价的基础上增加20%定为标价,则标价可表示为()A。

(1-20%)a B。

20%a C。

(1+20%)a D。

a+20%9.下面四个整式中,不能表示图中阴影部分面积的是()A。

(x+3)(x+2)-2x B。

x(x+3)+6x C。

3(x+2)+x D。

x+5x210.若x+x+1的值是8,则4x+4x+9的值是()A。

37 B。

25 C。

32 D。

2911.下列说法正确的是()A。

单项式-2πR的次数是3,系数是-22 B。

单项式-5的系数是3,次数是4 C。

2018最新人教版七年级数学上册期中考试试卷与答案

2018最新人教版七年级数学上册期中考试试卷与答案

2018 年七年级数学上册期中综合评价卷一、选择题(每小题 3 分,共 33 分)1 71、在 -22、+10、-3、 2、 0、4、5、 -1 中,负数有( )A、1个B、2 个C、3个D、4个2、下列说法不正确的是( )A、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数B、所有的有理数都有相反数C、正数和负数互为相反数D、在一个有理数前添加“-”号就得到它的相反数3、| -2 | 的相反数是()1 1A、-2B、-2C、2D、24、如果 ab<0 且 a>b,那么一定有()A、a>0,b>0B、 a>0,b<0C、a<0,b>0D、 a<0,b<05、如果 a2=(-3)2,那么 a 等于()A、3B、-3C、9D、±36、23表示()A、2×2×2B、2×3C、3×3D、2+2+27、近似数 4.50 所表示的真值 a 的取值范围是()A、4.495≤a<4.505B、4040≤a<4.60C、4.495≤a≤4.505D、4.500≤ a<4.50568、如果 | a + 2 | + ( b-1)2 = 0,那么( a + b)2009的值是()A、- 2009B、2009C、- 1D、19、下列说法正确的是()A、- 2 不是单项式B、- a 表示负数3ab aC、5的系数是 3D、x + x + 1 不是多项式10、已知一个数的平方等于它的绝对值,这样的数共有()A、1 个B、2 个C、3 个D、4 个111、下面用数学语言叙述代数式 a - b ,其中表达不正确的是()fpg专业资料整理A、比 a 的倒数小 b 的数B、1 除以 a 的商与 b 的相反数的差C、1 除以 a 的商与 b 的相反数的和D、b 与 a 的倒数的差的相反数二、填空题(每小题 3 分,共 30 分)x12、若 x<0,则| x | = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018—2019学年上学期期中考试七年级数学试卷
(本试题满分120分,考试时间120分钟)
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1. 下面几何体的截面图可能是圆的是 ( )
A. 正方体
B. 圆锥
C. 长方体
D. 棱柱 2. 相反数是最大负整数的数是 ( ) A. 1
B. -1
C. 0
D.2
3. 下列图形经过折叠不能围成棱柱的是( )
A B C D 4. 已知15a -=,则a 的值为( )
A.6
B.-4
C.-6或4
D.6或-4 5. 数轴上与-3的距离等于2个单位的点表示的数是 ( ) A.0和2 B. -1和-3 C. -1和-5 D. -2和2
6. 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是( ) A. 3 B.12-
C.2
3
D. -3 二、填空题(本大题共6小题,每小题3分,共18分.) 7. 比较大小:0________-2 (填“>”“<”或“=”) 8. 代数式2x -系数是________,代数式c b a 323
π
-
的系数是__ _,次数是_______.
9. 某风力发电站每天能发电约74850000度,该数据用科学记数法表示 为 度.
10. a 米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第4次后剩下的小棒
长_______________米.
11.如果图中的平面展开图折叠成正方体后,相对面上的两个数互为相反数,则
x y + =__________.
11题图 12题图
12.观察如图中的数列排放顺序,根据其规律猜想: 第10行第8个数应该是
三、解答题(本大题共5小题,每小题6分,共30分) 13.计算或化简:
(1)3
116(2)(4)8
÷-+⨯-
(2)22(212)(1)a a a a -+--+
14. 画出数轴,把下列各数分别在数轴上表示出来,并用“<”连接起来:
21-
,2, 0, 3-,0.5-,)2
1
4(--,22-
15. 已知 ()2
230x x y -++-=,求代数式()()x y x y +- 的值.
16.探索规律:按照如图方式摆放餐桌和椅子.完成问题:
1 2 3
(1)填写下表:
(2)照这样的方式摆下去,写出摆第n 个图形座位的总数; 解:第n 个图形共有座位: 个 17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几
何体的形状图.
四、(本大题共3小题,每小题8分,共24分)
18.某校分为初中部和高中部,做广播操时,两部分别站两个不同的操场上进行,站队时,做到了整齐化一,高中部排成的是一个规范的长方形方阵,每排40人,站有(2)a b 排;初中部站的方阵更特别,排数和每排人数都是5a .
⑴试求该校初中部比高中部多多少学生(用含 a b 、 的代数式表示)? ⑵当a =10,b =2时,试求该学校共有多少学生?
19.张强在南城某房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题: (1)用含x 的代数式表示这所住宅的总面积.
• • • • • •
(2)若铺1平方米地砖平均费用120元,求当x =6时,这套住宅铺地砖总费用为多少元?
20.如图用一边长为16 cm 的正方形纸片,在其四个角上剪掉四个边长相同的小正方形可做成无盖的长方体盒子.若剪掉的小正方形的边长为x cm ,做成的无盖长方体盒子的容积为V 3cm .
⑴ 要使做成的长方体盒子底面周长为48 cm ,那么剪掉的正方形边长为_ cm ;
⑵ 用含x 的式子表示V = ;
⑶填表:观察表格中的结果,你能得到哪些信息?(写出一条)
五、(本大题共2小题,每小题9分,共18分)
21.先化简再求值:已知222244,7A x xy y B x xy y =--=-++ ①求A ﹣3B ; ②若A=﹣1,B= 1
2
时,求226615x xy y -- 的值.
22.某城市按以下规定收取每月煤气费:用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.例如,甲用户5月份用煤气80立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72(元).
(1)设甲用户某月用煤气x 立方米,用含x 的代数式表示甲用户该月的煤气费. 若60x ≤,则费用表示为 ;若60x >,则费用表示为 . (2)若甲用户10月份用去煤气90立方米,求甲用户10月份的煤气费是多少元?
六、(本大题共12分)
23.在学习了有理数的加减法之后,老师讲解了例题-1+2-3+4+……-2017+2018的计算思路为:将
两个加数组合在一起作为一组;其和为1,共有1009组,所以结果为+1009.根据这个思路学生改编了下列几题:
(1)计算:① 1-2+3-4+……+2017-2018=
② 1-3+5-7+……+2017-2019=
(2)蚂蚁在数轴的原点O 处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行
3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位……按照这个规律,第1024次爬行后蚂蚁在数轴什么位置?
参考答案 1-6、BABCCC 7、>
8、-2
6
9、7.485×107 10、
11、-4
12、53
13、
14、
15、
16、
17、
18、
19、
20、
21、
22、
23、。

相关文档
最新文档