2018最新人教版七年级数学上册期中考试试卷及答案
2018年秋人教版(江西)七年级数学(上)期中检测卷(含答案)
期中检测卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( )A .2B .-2C .4D .-4 3.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53 D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( )A .0B .1C .7D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50 二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.2018年1月4日,在萍乡市第十五届人民代表大会第三次会议报告中指出,去年我市城镇居民人均可支配收入为33080元,33080用科学记数法可表示为________.9.五次单项式(k -3)x |k |y 2的系数为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13; (2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a ; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.四、(本大题共3小题,每小题8分,共24分)18.对于有理数a,b,定义一种新运算“”,规定:a b=|a|-|b|-|a-b|.(1)计算(-2)的值;(2)当a,b在数轴上的位置如图所示时,化简a b.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;……(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=________;(3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.3.308×104 9.-6 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由题意可知该多项式最高次数项为3次,分如下两种情况:当n +2=3时,n =1,∴原多项式为4x 3-5x +6,符合题意,∴n 3-2n +3=13-2×1+3=2;(3分)当2-n =3时,n =-1,∴原多项式为4x -5x 3+6,符合题意,∴n 3-2n +3=(-1)3-2×(-1)+3=4.(5分)综上所述,代数式n 3-2n +3的值为2或4.(6分)18.解:(1)根据题中的新定义知,原式=|-2|-|3|-|-2-3|=2-3-5=-6.(4分) (2)由a ,b 在数轴上的位置,可得a >0,b <0,a -b >0,则a b =|a |-|b |-|a -b |=a +b -a +b =2b .(8分)19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:(1)如图所示:(3分)(2)C、A两村的距离为3-(-2)=5(km).答:C村距离A村5km.(5分)(3)|-2|+|-3|+|+8|+|-3|=16(km).答:邮递员共骑行了16km.(8分)21.解:(1)3(3分)(2)①-3(6分)②由题意可得,A、B两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A、B两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a+2.4)万人.(2分)(2)10月3日游客人数最多,人数为(a+2.8)万人.(4分)(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2.(6分)当a=2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分)23.解:(1)102(3分)(2)(n+2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分) 。
【期中试卷】人教版2018年 七年级数学上册 期中模拟试卷(含答案)
2018年七年级数学上册期中模拟试卷一、选择题:1.根据近三年的统计显示,新昌大佛寺旅游景点的旅游人次呈逐年增长趋势,预计2016年能达到9690000人次,将9690000用科学记数法表示为()A.0.969×107B.9.69×107C.9.69×106D.969×1042.下列说法中正确的是( )A.0不是单项式B.是单项式C.πx2y的次数是4 D.x﹣是整式3.下列等式变形错误的是( )A.若x﹣1=3,则x=4 B.若x﹣1=x,则x﹣1=2xC.若x﹣3=y﹣3,则x﹣y=0 D.若3x+4=2x,则3x﹣2x=﹣44.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=15.若等式﹣2□(﹣2)=4成立,则“□”内的运算符号是()A.+ B.﹣C.×D.÷6.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0 B.﹣m<﹣n C.|m|﹣|n|>0 D.2+m<2+n7.下列说法正确的是( )A.没有最小的正数B.﹣a表示负数C.符号相反两个数互为相反数D.一个数的绝对值一定是正数8.当x=2时,代数式ax3+bx+1的值为3,那么当x=-2时,代数式ax3+bx+1的值是( )A.1 B.-1 C.3 D.29.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为( )A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2C.3x2﹣y2﹣3z2D.3x2﹣5y2+z210.已知代数式x﹣2y的值是5,则代数式﹣3x+6y+1的值是( )A.16 B.﹣14 C.14 D.﹣1611.某商人卖出两件商品,一件赚了15%,另一件赔了15%,卖出价都是1955元/每件,在这次买卖中商人是()A.不赔不赚B.赚90元C.赔90元D.赚了100元12.根据图中箭头的指向规律,从2 017到2 018再到2 019,箭头的方向是下列选项中的 ( )二、填空题:13.﹣1.5的相反数的倒数是.14.单项式的系数是.15.如果关于x的方程是一元一次方程,那么m= .16.已知m是系数,关于x、y的两个多项式mx2-2x+y与-3x2+2x+3y的差中不含二次项,则代数式m2+3m-1的值为17.已知有理数a, b, c在数轴上的位置如图所示,则化简代数式∣b-c∣-∣c-a∣+∣b-a∣= .18.正整数按如图的规律排列.请写出第20行,第21列的数字.三、解答题:19.计算:3×(﹣4)+18÷(﹣6) 20.计算:21.化简:-4ab+8-2b2-9ab-8 22.化简:3a2b-[2ab2-2(-a2b+4ab2)]-5ab223.解方程:2(x﹣3)﹣(3x﹣1)=1 24.解方程:25.某检修站,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.(1)分别计算收工时,甲、乙两组各在A地的哪一边,分别距A地多远?(2)若每千米汽车耗油a升,求出发到收工时两组各耗油多少升?26.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.27.我们定义一种新运算:a*b=a2﹣b+ab.例如:1*3=12﹣2+1×2=1(1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值.28.已知:A=3a2-4ab,B=a2+2ab.(1)求A-2B;(2)若|2a+1|+(2-b)2=0,求A-2B的值.29.已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?参考答案1.C.2.D;3.B;4.C;5.D.6.A;7.B.8.B.9.B.10.C;11.C.12.D.13.答案为:2/3.14.答案是:﹣.15.答案为:m=116.答案为:-1;17.答案为:0;18.答案为:420;19.原式=-15;20.原式=21.原式=-13ab-2b2;22.原式=a2b+ab2,23.x=﹣6;24.25.解:(1)因为(+15)+(-2)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-5)+(+6)=39. 所以收工时,甲组在A地的东边,且距A地39千米。
2018年新人教版数学初一上册期中考试试卷含答案
2018—2019学年上学期期中考试七年级数学试卷
(本试题满分120分,考试时间120分钟)
题号
一二三四五六总分
得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1. 下面几何体的截面图可能是圆的是()
A. 正方体
B. 圆锥
C. 长方体
D.
棱柱2. 相反数是最大负整数的数是
() A. 1 B. -1 C. 0 D.2
3. 下列图形经过折叠不能围成棱柱的是
( ) A
B C D 4. 已知15a ,则a 的值为()
A.6
B.-4
C.-6或4
D.6或-4
5. 数轴上与-3的距离等于2个单位的点表示的数是
() A.0和2 B. -1和-3 C. -1和-5 D. -2和2
6. 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若
第一次输入3,并将显示的结果第二次输入,则此时显示的结果是(
)A. 3 B.1
2 C.2
3 D. -3
二、填空题(本大题共6小题,每小题3分,共18分.)
7. 比较大小:0________-2 (
填“>”“<”或“=”) 8. 代数式2x 系数是________,代数式c b a 323的系数是__ _,次数是_______.
9. 某风力发电站每天能发电约
74850000度,该数据用科学记数法表示为
度. 10. a 米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第
4次后剩下的小棒长_______________米.。
2018最新人教版初中数学精品试题专项整理:七年级数学上期中试题含答案(13)
江苏省2017-2018学年七年级数学上学期期中测试试题(试卷共4页总分:150分时间:120分钟)一、选择题(本题共10小题,每题3分,共30分) 1.如果+10%表示增加10%,那么-3%表示A. 减少3%B. 增加3%C.增加10%D. 减少6% 2.下列各数中,是负数的是 A .)9(--B .)9(+-C .|-9|D .2)9(-3.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米. 将2 500 000科学记数法表示为A. 70.2510⨯B. 72.510⨯C. 62.510⨯D. 52510⨯ 4.下列运算中,结果正确的是 A .4+5ab =9ab B .66xy x y -= C .22330a b ba -=D .34712517x x x +=5.下列方程中是一元一次方程的是 A. 43=+y x B. 252=x C. 132=+x x D. 321=-x 6.下列各组是同类项的一组是 A .xy 2与-x 212y B .3x 2y 与-4x 2yzC .a 3与b 3D .–2a 3b 与21ba 3 7.解为2x =-的方程是A.240x -=B.5362x += C.()()3235x x x ---= D.275462x x --=-8.减去m 3-等于5352--m m 的式子是A.)1(52-m B.5652--m m C.)1(52+m D.)565(2-+-m m 9.方程的解为自然数,则整数等于A.1,3B. 0,1C. ,D. 1,3±±10、1x 、2x 、3x 、…20x 是20个由1,0,-1组成的数,且满足下列两个等式:123204x x x x ++++=L ①,222212320(1)(1)(1)(1)32x x x x -+-+-+-=L ②, 则这列数中1的个数为:A .8B .10C .12D . 14二、填空题(本题共8小题,每题3分,共24分) 11.4-的相反数是.12.若22(1)20,a b a ++-==那么. 13.若2x +y =3,则4+4x +2y =.14.多项式化简后223368x kxy y xy --+-不含xy 项,则k =.15.已知22514227ax x x x a ++=-+是关于x 的一元一次方程,则其解是_________. 16.代数式154m +与15()4m -互为相反数,则m = ______ .17.有三个互不相等的整数a ,b ,c ,如果abc =4,那么a +b +c = ______ .18.我们知道:31=3;32=9;33=27;34=81;35=243;36=729…,仔细观察上述规律:20173的末位数字应为.三、解答题(本大题共10小题,共96分) 19.计算:(本题10分)(1))18(12--(2)421110.52(3)3⎡⎤⨯⨯--⎣⎦--(-)20.化简:(本题10分)(1)22222323xy xy y x y x -++-(2))32(3)23(4)(5b a b a b a -+--+21.解方程:(本题12分)(1)()63635x x -+=--;(3)2123148y y ---= 22.(本题8分)把下列各数在数轴上表示出来,并用“<”号连接1,3,0,(2.5),5-+----23.(本题8分)已知m 、n 是系数,且y xy mx +-22与y nxy x 3232++的差中不含二次项,求3m n +的值。
2017-2018学年最新人教版七年级数学(上册)期中测试卷及答案
2017-2018学年七年级(上)期中数学试卷一、选择题:(每小题只有一个答案是正确的,每小题2分,本大题有10小题共20分)1.- 3的倒数是()A . - 3 B. 3 C.-丄D. y2 •下列运算有错误的是()A . 8-(- 2)=10B . - 5+(-土)=10C . (- 5)+ (+3)=- 8D . - 1 X(-丄)=JL=33. 预计下届世博会将吸引约69 000 000人次参观.将69 000 000用科学记数法表示正确的是()A . 0.69X 108B . 6.9X 106C . 6.9X 107D . 69X 1064. 有理数a、b在数轴上的表示如图所示,那么()- •---------- «---- • --------- »b0 aA . - b> aB . - a v bC . b > aD . | a| > | b|5. 下面计算正确的是( )A . 3x2- X2=3B . 3a2+2a3=5a5C . 3+X=3XD . - 0.25ab丄ba=06. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是( )3 7 CA . 6B . 5C . 4D . 37. 若原产量为n吨,增产30%后的产量为( )A . 30%n 吨B . (1 - 30%) n 吨C . (1+30%) n 吨D. (n+30%)吨&下列去括号错误的是( )A . 2X2-(X - 3y) =2X2- x+3y丄 2 2 J. 2 2B . — X + ( 3y - 2xy) =〔x - 3y +2xyC . a2+ (- a+1) =a2- a+1D. -( b - 2a)- (- a2+b2) = - b+2a+a2- b29.下列说法错误的是( )A . 2X2- 3xy - 1是二次三项式B . - X+1不是单项式2? 2C.—亍兀耳y的系数是-乓口D . - 22xab2的次数是610 .已知多项式X2+3X=3,可求得另一个多项式3X2+9X - 4的值为( )A . 3B . 4C . 5D . 6二、填空题:(本大题共8小题,每小题2分,共16分)11 .如果把收入30元记作+30元,那么支出20元可记作12•-丄的相反数是一;倒数是一13.比较大小:- 9 - 13 (填'”或号)14•用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是__________ .15. _______________________________________________ 若单项式-3a m b3与4a2b n是同类项,贝V m+n= _________________________________________ •16•若a与b互为相反数,c与d互为倒数,则(a+b) 3- 3(cd) 2015= _____________ .17.已知|a+1|=0, b2=4,贝U a+b= ______ .18•用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要三•解答题:(本大题共64分)19•在数轴上表示下列各数:0,- 4,专■,- 2, | - 5| , -(- 1),并用号连接.-5 -4 -3-2-10 1 2 3 4 5?20・耐心算一算(同学们,请你注意解题格式,一定要写出解题步骤哦!(1)- 20+ (- 14)-( - 18)- 13(3)- 24-〒X [5-( - 3) 2] •21.化简:(1)12x - 20x+10x(2) 2 (2a- 3b)- 3 (2b- 3a)(3)- 5m2n+2 - 2mn+6m2n+3mn - 3.22•某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月工作人数不一定相等,实际每月生产量与计划量相比情况如表(增加为正,减少为负)月份一二三四五六增减(辆) +3 - 2 - 1 +4 +2 - 5①生产量最多的一月比生产量最少的一月多生产多少辆?②半年内总产量是多少?比计划增加了还是减少了,增加或减少多少?23. 先化简,再求值:- 5ab+2[3ab-( 4ab2+丄ab) ] - 5ab2,其中(a+2) 2+| b -f-1 =0 .24. 已知A=2x 2- 9x - 11, B=3x2- 6x+4.求(1) A - B ;(2)±A+2B.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费 1.8 元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x 千米.(1)用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13 千米多一点,请问他乘坐哪种车较合算?26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+--+52015的值.2分,本大题有10小题共20分)2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题只有一个答案是正确的,每小题1 •- 3的倒数是()A • - 3B • 3 C.—丄D •寺【考点】倒数.【分析】根据倒数的定义可得-3的倒数是-丿-•3【解答】解:-3的倒数是-寺•故选:C •2 •下列运算有错误的是()A • 8 -( - 2)=10B • - 5+(-丄)=10C • (- 5)+ (+3)= - 8D . - 1 X(-丄)=JL =3【考点】有理数的混合运算•【分析】原式各项计算得到结果,即可做出判断•【解答】解:A、原式=8+2=10,正确;B、原式=-5X(- 2)=10,正确;C、原式=-5+3= - 2,错误;D、原式=丄,正确•故选C3•预计下届世博会将吸引约69 000 000人次参观•将69 000 000用科学记数法表示正确的是()A • 0.69X 108B • 6.9X 106C • 6.9x 107D . 69X 106【考点】科学记数法一表示较大的数•【分析】科学记数法的表示形式为a x 10n的形式,其中1 w|a v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将69 000 000用科学记数法表示为: 6.9X 107•故选:C •4•有理数a、b在数轴上的表示如图所示,那么()- • ---------- «--- •--------- ►b0 aA • - b> aB • - a v bC . b> a D. | a| >| b|【考点】数轴.【分析】根据图中所给数轴,判断a、b之间的关系,分析所给选项是否正确.【解答】解:由图可知,b v O v a且|b| > | a| ,所以,—b> a, —a>b,A、- b> a,故本选项正确;B、正确表示应为:-a> b,故本选项错误;C、正确表示应为:b v a,故本选项错误;D、正确表示应为:| a| v | b|,故本选项错误.故选A .5. 下面计算正确的是()A . 3x2—X2=3B. 3a2+2a3=5a5C. 3+X=3X D . —0.25ab丄ba=O【考点】整式的加减.【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3X2—X2=2X2M 3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与X不可相加,故C错误;1 “ &D、-0.25ab+—ba=0,故D 正确.故选:D.6. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是()3 7 CA . 6 B. 5 C. 4 D. 3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.2【解答】解:式子X2+2,二—,-5X, 0,符合整式的定义,都是整式;-+4,二-这两个式子的分母中都含有字母,不是整式.a c故整式共有4个.故选:C.7. 若原产量为n吨,增产30%后的产量为()A . 30%n 吨B . (1 —30%)n 吨C. (1 +30%)n 吨D. (n+30%)吨【考点】代数式.【分析】根据增产量=原产量x(1+增长率)作答.【解答】解:原产量为n吨,增产30%后的产量为(1+30%)n吨,故选C.&下列去括号错误的是( )2 2A . 2X—( X—3y) =2X—x+3y--x 2 - 3y 2+2xyC. a 2+ (- a+1) =a 2- a+1D. -( b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2 【考点】去括号与添括号.【分析】利用去括号法则:如果括号外的因数是正数, 的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反, 进而判断得出即可.【解答】 解:A 、2x 2-( x - 3y ) =2x 2- x+3y ,正确,不合题意; 丄x 2+ (3y 2 - 2xy )」-x 2+3y 2 - 2xy ,故原式错误,符合题意; a 2+ (- a+1) =a 2- a+1,正确,不合题意;-(b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2,正确,不合题意; 故选:B . 9.下列说法错误的是( )A . 2x 2- 3xy - 1是二次三项式B . - x+1不是单项式 C.—寻兀K /的系数是 J 二rD .- 22xab 2的次数是6【考点】多项式;单项式.【分析】根据单项式和多项式的概念及性质判断各个选项即可. 【解答】 解:A 、2x 2- 3xy - 1是二次三项式,故本选项不符合题意; B 、- x+1不是单项式,故本选项不符合题意; 9 ? 7c 、一亍兀xy 的系数是-宁■飞,故本选项不符合题意; D 、 - 22xab 2的次数是4故本选项符合题意. 故选D . 10.已知多项式x 2+3x=3,可求得另一个多项式 3x 2+9x - 4的值为( )A . 3B . 4C . 5D . 6【考点】代数式求值.【分析】 先把3x 2+9x - 4变形为3 (x 2+3x )- 4,然后把x 2+3x=3整体代入计算即可. 【解答】解:I x 2+3x=3,3x 2+9x - 4=3 (x 2+3x ) - 4=3 X 3 - 4=9 - 4=5 . 故选:C .二、填空题:(本大题共8小题,每小题2分,共16分) 11 .如果把收入 30元记作+30元,那么支出20元可记作 -20元 .【考点】 正数和负数.【分析】答题时首先知道正负数的含义, 在用正负数表示向指定方向变化的量时, 通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数. 【解答】解:由收入为正数,则支出为负数,故收入 30元记作+30元,那么支出20元可记作-20元.x 2+ ( 3y 2- 2xy )=去括号后原括号内各项的符号与原来 B 、 C 、【解答】解:-5丄的相反数是罕倒数是一13•比较大小:-9 > - 13 (填、”或号) 【考点】有理数大小比较.【分析】有理数大小比较的法则: ①正数都大于0;②负数都小于0;③正数大于一切负 数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 -9 >- 13. 故答案为:〉.14•用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是 1.894 .【考点】 近似数和有效数字.【分析】 精确到哪一位,即对下一位的数字进行四舍五入.【解答】 解:用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是1.894 . 故答案为:1.894.15. 若单项式-3a m b 3与4a 2b n 是同类项,贝V m+n= 5 .【考点】同类项.【分析】根据同类项的定义解答.【解答】 解:•••单项式-3a m b 3与4a 2b n 是同类项, m=2 , n=3 , m+n=2+3=5. 故答案为5.16. 若a 与b 互为相反数,c 与d 互为倒数,则(a+b ) 3- 3 (cd ) 2015= - 3 . 【考点】代数式求值.【分析】 根据a 与b 互为相反数,c 与d 互为倒数,可以得到: a+b=0, cd=1 .代入求值即可求解.【解答】 解:••• a 与b 互为相反数,c 与d 互为倒数, .a+b=0, cd=1.•••( a+b ) 3 - 3 (cd ) 2015=0 - 3 x 仁-3.故答案是:-3.17. 已知 |a+1|=0, b 2=4,贝U a+b= 1 或- 3 .【考点】绝对值.1112.- 5丄的相反数是2 -【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数, 可得一个数的相反数;根据乘积为1的两个数互为倒数,可得一个数的倒数.一;倒数是II —'【分析】根据绝对值和平方根,即可解答.【解答】解:••• | a+1|=0, b 2=4, a= — 1, b= ± 2, a+b=—1+2=1 或 a+b= — 1 — 2=— 3, 1 或—3.18.用火柴棒按如图所示的方式摆图形, 按照这样的规律继续摆下去,第n 个图形需要 5n+1【分析】仔细观察发现每增加一个正六边形其火柴根数增加 5根,将此规律用代数式表示出来即可.【解答】解:由图可知: 图形标号(1 )的火柴棒根数为 6; 图形标号(2 )的火柴棒根数为11; 图形标号(3)的火柴棒根数为16;由该搭建方式可得出规律:图形标号每增加 1,火柴棒的个数增加 5,所以可以得出规律:搭第 n 个图形需要火柴根数为: 6+5 ( n — 1) =5n+1,故答案为:5n+1.三•解答题:(本大题共64分) 19.在数轴上表示下列各数: 0,- 4,「二,-2, | — 5| , — (— 1),并用号连接.-5 -4 -3 -2-16 1 1 3 4 5?【考点】 有理数大小比较;数轴;绝对值.【分析】根据数轴是表示数的一条直线, 可把数在数轴上表示出来, 根据数轴上的点表示的 数右边的总比左边的大,可得答案.【解答】解:20. 耐心算一算(同学们,请你注意解题格式, (1) — 20+ (— 14) — (— 18)— 13 (2) - 4雜寻匚乂(- 30) (3) - 24-卜[5-( - 3) 2].—4v — 2<0V — (— 1) <定要写出解题步骤哦!根火柴棒(用含n 的代数式表示)【考点】 有理数的混合运算.【分析】(1)首先对式子进行化简,然后正、负数分别相加,然后把所得结果相加即可;(2)首先计算乘法、除法,然后进行加减即可; (3) 首先计算乘方,然后计算括号里面的式子,最后进行加减即可.【解答】 解:(1)原式=-20 - 14+18 - 13= - 20 - 14- 13+18=- 47+18= - 29;(3)原式=-16-^^X( 5 - 9) = - 16- 21. 化简: (1) 12x - 20x+10x (2) 2 (2a- 3b )- 3 (2b - 3a ) (3) - 5m 2n+2 - 2mn+6m 2n+3mn - 3. 【考点】整式的加减. 【分析】(1)先去括号,然后合并同类项; (2 )先去括号,然后合并同类项; (3 )直接合并同类项即可. 【解答】 解:(1)原式=(12 -20+10) x=2x ; (2) 原式=4a — 6b — 6b+9a =12a - 12b ; (3) 原式=(-5+6) m 2n+ (- 2+3) mn - 3+2 2 =m n+mn — 1. 22. 某汽车厂计划半年内每月生产汽车 20辆,由于另有任务,每月工作人数不一定相等, 实际每月生产量与计划量相比情况如表(增加为正,减少为负) 月份 一二 三 四 五 六 增减(辆) +3 - 2 - 1 +4 +2 - 5 ① 生产量最多的一月比生产量最少的一月多生产多少辆? ② 半年内总产量是多少?比计划增加了还是减少了,增加或减少多少? 【考点】 正数和负数. 【分析】①利用表中的最大数减去最小的数即可; ② 半年内的计划总产量是 20X 6=120辆,然后求得六个月中的增减的总和即可判断. 【解答】 解:①生产量最多的一月比生产量最少的一月多生产 4 -( - 5) =9 (辆); ② 总产量是:20 X 6+ (3 - 2 - 1+4+2 - 5) =121 (辆), 3 - 2 - 1+4+2 - 5=1 (辆). 答:半年内总产量是 121辆,比计划增加了 1辆. 23. 先化简,再求值:- 5ab+2[3ab -( 4ab 2+丄 ab ) ] - 5ab 2,其中(a+2) 2+| b -f _ | =0 . 【考点】整式的加减一化简求值;非负数的性质:绝对值;非负数的性质:偶次方. 【分析】原式去括号合并得到最简结果, 利用非负数的性质求出 a 与b 的值,代入计算即可(2)原式=-4X -^ —X 30= - 6 - 20=- 26; 3(—4) = - 16+2= - 14.求出值.【解答】解:•••(a+2)2+|b-二|=0,“a= - 2, r则原式=-5ab+6ab- 8ab2- ab- 5ab2= - 13ab2亠二2 •2 224. 已知A=2x - 9x - 11, B=3x - 6x+4.求(1) A - B ;(2)」-A+2B.【考点】整式的加减.【分析】(1)根据A=2x 2- 9x - 11, B=3x2- 6x+4,可以求得 A - B的值;(2)根据A=2x2- 9x - 11, B=3x2- 6x+4,可以求得|".|A+2B的值.【解答】解:(1)T A=2x 2- 9x - 11, B=3x 2- 6x+4,••• A - B=2x2- 9x - 11 - 3x2+6x - 4=-x2- 3x - 15;(2 )T A=2x 2- 9x- 11, B=3x 2- 6x+4,1 十•二 +=二(2x2- 9x - 11) +2 (3x2- 6x+4)=x2- 4.5x - 5.5+6x2- 12x+8=7x2- 16.5x+2.5.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.8元(不足1 千米按1千米收费)•某人到该市出差,需要乘坐的路程为x千米.(1 )用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算?【考点】列代数式;代数式求值.【分析】(1)分0v x w 3和x >3两种情况分别写出对应的代数式;(2)分别求得x=13时,各自的费用,然后进行比较即可.【解答】解:(1)甲:①当O v x w 3时10元;②当x > 3 时10+1.2 ( x - 3)乙:①当O v x w 3时8元②当x > 3 时8+1.8 ( x - 3)(2)当乘坐的路程为13千米多一点,即x =14时甲的费用23.2元,乙的费用27.8元,应乘甲种车.26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+-+52015的值.【考点】规律型:数字的变化类.【分析】仔细阅读题目中示例,找出其中规律,求解本题.【解答】解:令S=1+5+52+53+-+52015,贝廿5S=5+52+53+54+ - +52016,••• 5S - S=52016- 1,2016 年9 月15 日。
【期中试卷】人教版2018年 七年级数学上册 期中模拟试卷(含答案)
2018年 七年级数学上册 期中模拟试卷一、选择题:1.4月14日日本熊本县发生6.2级地震,据NHK 报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为( ) A .2.36×108B .2.36×109C .2.36×1010D .2.36×10112.下列方程中,一元一次方程的有( )个。
①2x -3y=6 ②x 2-5x+6=0 ③3(x -2)=1-2x ④3x -2(6-x) A .1B .2C .3D .43.小华作业本中有四道计算题:①0﹣(﹣5)=﹣5 ;②(﹣3)+(﹣9)=﹣12(﹣)=﹣④;(﹣36)÷(﹣9)=﹣4.其中他做对的题的个数是( ) A .1个B .2个C .3个D .4个4.用-a 表示的数一定是( )A .负数B .负整数C .正数或负数D .以上结论都不对5.若数轴上的点A .B 分别于有理数a 、b 对应,则下列关系正确的是( )A .a <bB .﹣a <bC .|a|<|b|D .﹣a >﹣b6.已知2x 3y 2和﹣x 3m y 2是同类项,则式子4m ﹣24的值是( )A .20B .﹣20C .28D .﹣287.下列说法中,正确的个数有 ( )A .0个B .1个C .2个D .3个8.若7﹣2x和5﹣x的值互为相反数,则x的值为( )A.4 B.2 C.﹣12 D.﹣79.若※是新规定的运算符号,设a*b=ab+ab+b,则在2*x=-16中,x的值( )A.-8 B.6 C.8 D.-610.设有理数a、b在数轴上对应的位置如图,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b11.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A.B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A.B之间C.介于B、C之间D.在C的右边12.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n个图案需几根火柴棒()A.2+7n B.8+7n C.7n+1 D.4+7n二、填空题:13.单项式7πa2b3的次数是.14.关于x的方程(k﹣4)x|k|﹣3+1=0是一元一次方程,则k的值是.15.已知x=-3是关于x的方程3x -2k=1的解,则k的值是.16.已知多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,则k的值是.17.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第n个三角形数是.三、计算题:19.计算:20.计算:21.化简:3(2x2-xy)-4(x2-xy+3) 22.化简:5(a2b﹣3ab2)﹣2(a2b﹣7ab2)23.解方程:4x-3(20-x)= 3 24.解方程:四、解答题:25.自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(3)根据记录的数据可知该厂本周实际生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?26.对于有理数a、b,定义运算:“⊗”,a⊗b=ab﹣a﹣b﹣2.(1)计算:(﹣2)⊗3的值;(2)比较4⊗(﹣2)与(﹣2)⊗4的大小.27.某农户去年承包荒山若干亩,投资7800 元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8 人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收入?(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少?(纯收入=总收入﹣总支出,该农户采用了(2)中较好的出售方式出售)28.如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式a﹣2b的值.29.阅读材料:求1+2+22+23+…+22013的值.解:设S=1+2+22+ (22013)将等式两边同时乘以2得:2S=2+22+ (22014)将下式减去上式得:2S﹣S=22014﹣1,即S=1+2+22+…+22013=22014﹣1.请你按照此法计算:(1)1+2+22+…+210(2)1+3+32+33+…+3n(其中n为正整数).参考答案1.C.2.A3.B.4.D5.C6.B7.A8.B9.D.10.C;11.D.12.C.13.答案为:5.14.答案为:﹣4.15.答案为:-516.答案为:1.17.答案为:231.18.答案为:.19.原式=1620.原式=-85;21.原式=2x2+xy-1222.原式=5a2b-15ab2-2a2b+14ab2=3a2b-ab2;23.x=9;24.25.解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×15=84675元,故该厂工人这一周的工资总额是84675元.26.(1)(﹣2)⊗3=(﹣2)×3﹣(﹣2)﹣3﹣2=﹣6+2﹣3﹣2=﹣9;(2)4⊗(﹣2)=4×(﹣2)﹣4﹣(﹣2)﹣2=﹣8﹣4+2﹣2=﹣12,(﹣2)⊗4=(﹣2)×4﹣(﹣2)﹣4﹣2=﹣8+2﹣4﹣2=﹣12,所以,4⊗(﹣2)=(﹣2)⊗4.27.解:(1)将这批水果拉到市场上出售收入为18000a﹣×8×25﹣×100=18000a﹣3600﹣1800=18000a﹣5400(元)在果园直接出售收入为18000b元;(2)当a=1.3时,市场收入为18000a﹣5400=18000×1.3﹣5400=18000(元).当b=1.1时,果园收入为18000b=18000×1.1=19800(元)因18000<19800,所以应选择在果园直接出售;(3)因为今年的纯收入为19800﹣7800=12000,×100%=25%,所以增长率为25%.28.解:∵代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,∴(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)=(2﹣2b)x2+(a+3)x﹣6y+7,2﹣2b=0,a+3=0,∴b=1,a=﹣3,∴a﹣2b=﹣3﹣2=﹣5.29.解:(1)设S=1+2+22+...+210,两边乘以2得:2S=2+22+ (211)两式相减得:2S﹣S=S=211﹣1,则原式=211﹣1;(2)设S=1+3+32+33+…+3n,两边乘以3得:3S=3+32+33+…+3n+1,两式相减得:3S﹣S=3n+1﹣1,即S=,则原式=.。
2018年七年级上学期数学期中检测试卷(含答案和解释)-文档资料
2018年七年级上学期数学期中检测试卷(含答案和解释)又到了一年一度的期中考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2018年七年级上学期数学期中检测试卷,希望可以帮助到大家!一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018 ,0中,正数有()A. 1个B. 2个C. 3个D. 4个2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=93.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A. a1B. b1C. a﹣1D. b04.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 45.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 46.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=117.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是38.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a1 0.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是,的倒数为.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为米/秒.13.比较大小:﹣5 2,﹣﹣ .14.若3a2﹣a﹣2=0,则5+2a﹣6a2=.15.若|a|=8,|b|=5,且a+b0,那么a﹣b=.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + =(直接写出答案).18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为.三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有块,当黑砖n=2时,白砖有块,当黑砖n=3时,白砖有块.(2)第n个图案中,白色地砖共块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC(,),BD(,),C(+1,);(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a=;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018,0中,正数有()A. 1个B. 2个C. 3个D. 4个考点:正数和负数.分析:根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答:解:﹣(﹣ )= 是正数,﹣42是负数,﹣|﹣9|=﹣9是负数,是正数,(﹣1)2018=1是正数,0既不是正数也不是负数,2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=9 考点:有理数的乘方.分析:根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答:解:因为﹣32=﹣9;(﹣3)2=9;﹣32=﹣9;﹣(﹣3)2=﹣9,所以A、B、D都错误,正确的是C.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A.a1B. b1C. a﹣1D. b0考点:有理数大小比较;数轴.分析:首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答:解:根据数轴可以得到:a0A、a1,选项错误;B、b1,选项错误;C、a﹣1,故选项正确;4.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 4考点:实数.分析:先根据整数和分数统称有理数,找出有理数,再计算个数.解答:解:根据题意,﹣,0,是有理数,共2个.5.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 4考点:一元一次方程的定义.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值. 解答:解:根据题意,得,6.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=11考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答:解:把x=1代入方程6n+4x=7x﹣3m中7.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是3考点:单项式.专题:推理填空题.分析:根据单项式系数及次数的定义进行解答即可.解答:解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣ ;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.8.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.考点:同类项;单项式.专题:探究型.分析:根据同类项的定义对四个选项进行逐一解答即可. 解答:解:A、中,所含字母相同,相同字母的指数不相等,这两个单项式不是同类项,故本选项错误;B、∵0.5a2b与0.5a2c中,所含字母不相同,这两个单项式不是同类项,故本选项错误;C、∵3abc与3ab中,所含字母不相同,这两个单项式不是同类项,故本选项错误;D、∵ 中所含字母相同,相同字母的指数相等,9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a考点:列代数式.分析:用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是 5 ,的倒数为﹣ .考点:倒数;相反数.分析:根据相反数及倒数的定义,即可得出答案.解答:解:﹣5的相反数是5,﹣的倒数是﹣ .12.太阳光的速度是300 000 000米/秒,用科学记数法表示为 3108 米/秒.考点:科学记数法表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:将300 000 000用科学记数法表示为3108. 13.比较大小:﹣5 2,﹣﹣ .考点:有理数大小比较.分析:根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答:解:﹣52,14.若3a2﹣a﹣2=0,则5+2a﹣6a2= 1 .考点:代数式求值.专题:整体思想.分析:先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.解答:解;∵3a2﹣a﹣2=0,3a2﹣a=2,15.若|a|=8,|b|=5,且a+b0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,a=8,b=∵a+b0,a=8,b=5.当a=8,b=5时,a﹣b=3;16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.考点:列代数式;加权平均数.分析:根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + = 0 (直接写出答案).考点:有理数的加减混合运算.专题:新定义.分析:根据题中的新定义化简,计算即可得到结果.解答:解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为 1或﹣5 .考点:数轴.分析:根据数轴上到一点距离相等的点有两个,可得答案. 解答:解:|1﹣(﹣2)|=3|﹣5﹣(﹣2)|=3,三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.考点:有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答:解:(1)原式=﹣3+9+5=11;(2)原式=1(﹣48)﹣ (﹣48)+ (﹣48)=﹣48+8﹣36=﹣76;(3)原式=16(﹣8)﹣=﹣2﹣=﹣2 ;20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).考点:整式的加减.专题:计算题.分析:各式去括号合并即可得到结果.解答:解:(1)原式=3b+5a﹣2a+4b=3a+7b;21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .考点:解一元一次方程.专题:计算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4;(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有 10 块,当黑砖n=3时,白砖有 14 块.(2)第n个图案中,白色地砖共 4n+2 块.考点:规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(1﹣1)=6,第2个图里有白色地砖6+4(2﹣1)=10,第3个图里有白色地砖6+4(3﹣1)=14;(2)第n个图里有白色地砖6+4(n﹣1)=4n+2.解答:解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油? 考点:整式的加减.专题:计算题.分析: (1)便民超市中午过后一共卖出的食用油=原有的食用油﹣上午卖出的+中午休息时又购进的食用油﹣剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答:解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油; (2)当x=5时,6x2﹣18x=652﹣185=150﹣90=60(桶),25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?考点:正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答:解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油822=164升,26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC( +3 , +4 ),BD( +3 ,﹣2 ),C D (+1,﹣2 );(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.考点:有理数的加减混合运算;正数和负数;坐标确定位置. 分析: (1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答:解:(1)AC(+3,+4);BD(+3,﹣2);CD(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:AB表示为:(1,4),BC记为(2,0)CD 记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为 a与1﹣a ;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点:一元一次方程的应用;列代数式;整式的加减.分析: (1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a ﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.解答:解:(1)∵长为1,宽为a的长方形纸片(第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,1﹣a=2a﹣1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;②当1﹣a2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;这篇2018年七年级上学期数学期中检测试卷的内容,希望会对各位同学带来很大的帮助。
2018年秋人教版七年级数学上学期期中测评试题及答案
2018年秋人教版七年级数学上学期期中测评试题及答案(时间90分钟,满分120分)一、选择题(每小题3分,共30分)1.下列说法正确的是(A)A.分数都是有理数B.-a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数2.按某种标准把多项式进行分类时,3x3-4和a2b+ab2+1属于同一类,则下列多项式也属于此类的是(D)A.x2-2B.3x2+2xy4C.m2+2mn+n2D.abc-13.给出下列式子:0,3a,π,,1,3a2+1,-+y.其中单项式的个数是(A)A.5B.1C.2D.34.下列计算正确的是(B)A.74-22÷70=70÷70=1B.6÷(2×3)=6÷6=1C.2×32=(2×3)2=62=36D.(-50)÷2×=-50÷=-50×=-1255.有理数a,b在数轴上对应点的位置如图所示,则a,b的大小关系是(B)A.a<bB.a>bC.a=bD.无法确定6.(2016·安徽模拟)以下各数中,填入□中能使×□=-2成立的是(C)A.-1B.2C.4D.-47.当x=2时,多项式ax3+bx+1的值为6,那么当x=-2时,这个多项式的值是(B)A.1B.-4C.6D.-58.钓鱼岛是中国的固有领土,位于中国东海,面积约为4 400 000 m2,数据4 400 000用科学记数法表示为(A)A.4.4×106B.44×105C.4×106D.0.44×1079.某同学做了一道数学题:“已知两个多项式为A,B,B=3x-2y,求A-B的值.”他误将“A-B”看成了“A+B”,结果求出的答案是x-y,那么原来的A-B的值应该是(B)A.4x-3yB.-5x+3yC.-2x+yD.2x-y10.导学号19054085已知m-n=100,x+y=-1,则代数式(n+x)-(m-y)的值是(D)A.99B.101C.-99D.-101二、填空题(每小题4分,共24分)11.某种零件,标明要求是Φ:20±0.02 mm(Φ表示直径).经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).12.若单项式ax2y n+1与-ax m y4的差仍是单项式,则m-2n=-4.13.计算:=-14.14.计算:3a-(2a-b)=a+b.15.导学号19054086点a,b在数轴上对应点的位置如图所示,化简式子|a-b|+|a+b|的结果是-2a.16.若关于a,b的多项式(a2+2ab-b2)-(a2+mab+2b2)中不含ab项,则m=2.三、解答题(共66分)17.(6分)如图,在数轴上有两个点A,B,回答下列问题:(1)将点A向左平移个单位长度后,表示的数是什么?(2)将点B向右平移3个单位长度后,表示的数是什么?(3)将点B作怎样的平移表示的数与点A表示的数互为相反数?因为点A表示的数为-1,所以将点A向左平移个单位长度后表示-1;(2)因为点B表示的数为2,所以将点B向右平移3个单位长度后表示5;(3)因为点A表示的数为-1,点B表示的数为2,所以将点B向左平移1个单位长度后表示的数与点A表示的数互为相反数.18.(6分)计算下列各题:(1)3×(-2)+(-14)÷7;(2)×(-30);(3)-14+(-2)3×-(-32)-|-1-5|.原式=-6-2=-8;(2)原式=-10+25+18=33;(3)原式=-1+4+9-6=6.19.(8分)化简求值:(-4x2+2x-8)-,其中x=.=-x2+x-2-x+1=-x2-1,将x=代入得-x2-1=-.故原式的值为-.20.(8分)已知a x b2与-3a5b y+1是同类项,求多项式(5x2-3y2 016)-3(x2-y2 016)-(-y2 016)的值.a x b2与-3a5b y+1是同类项,所以x=5,y+1=2,所以y=1.原式=5x2-3y2016-3x2+3y2016+y2016=2x2+y2016.当x=5,y=1时,原式=2×52+12016=51.21.导学号19054087(8分)某房间窗户如图所示.其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).(1)装饰物所占的面积是多少?(2)窗户中能射进阳光的部分的面积是多少?装饰物的面积正好等于一个半径为a 的圆的面积,即ππa 2;(2)ab-πa 2. 22.导学号19054088(8分)从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)样品的平均质量比标准质量多还是少?多或少几克? (2)若标准质量为450克,则抽样检测的总质量是多少克?-5)×1+(-2)×4+0×3+1×4+3×5+6×3)]÷20=1.2(克).答:样品的平均质量比标准质量多,多1.2克.(2)20×450+[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3)]=9 024(克). 答:若标准质量为450克,则抽样检测的总质量是9 024克.23.导学号19054089(10分)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为a n.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为,第4项是.(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到=q,=q,=q,…,=q.所以a2=a1·q,a3=a2·q=(a1·q)·q=a1·q2,a4=a3·q=(a1·q2)·q=a1·q3,…由此可得a n=(用a1和q的式子表示).(3)若一等比数列的公比q=2,第2项是10,请求出它的第1项与第4项.24;(2)a1·q n-1;(3)因为等比数列的公比q=2,第2项为10,所以a1==5,a4=a1·q3=5×23=40.24.导学号19054090(12分)已知数轴上有A,B,C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示点P到点A和点C的距离:P A=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C 点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为2个单位长度?如果能,请求出此时点P 表示的数;如果不能,请说明理由.t34-t(2)设点Q运动的时间为x秒.当P点在Q点右侧,且Q点还没有追上P点时,3x+2=14+x,解得x=6,所以此时点P表示的数为-4;当P点在Q点左侧,且Q点还未到达点C时,3x-2=14+x,解得x=8,所以此时点P表示的数为-2;当Q点到达C点返回且P点在Q点左侧时,14+x+2+3x-34=34,解得x=13,所以此时点P表示的数为3;当Q点到达C点返回且P点在Q点右侧时,14+x-2+3x-34=34,解得x=14,所以此时点P表示的数为4.综上所述,P,Q两点间的距离可以为2个单位长度,此时点P表示的数为-4,-2,3,4.。
2018最新人教版七年级数学上册期中考试试卷与答案
2018 年七年级数学上册期中综合评价卷一、选择题(每小题 3 分,共 33 分)1 71、在 -22、+10、-3、 2、 0、4、5、 -1 中,负数有( )A、1个B、2 个C、3个D、4个2、下列说法不正确的是( )A、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数B、所有的有理数都有相反数C、正数和负数互为相反数D、在一个有理数前添加“-”号就得到它的相反数3、| -2 | 的相反数是()1 1A、-2B、-2C、2D、24、如果 ab<0 且 a>b,那么一定有()A、a>0,b>0B、 a>0,b<0C、a<0,b>0D、 a<0,b<05、如果 a2=(-3)2,那么 a 等于()A、3B、-3C、9D、±36、23表示()A、2×2×2B、2×3C、3×3D、2+2+27、近似数 4.50 所表示的真值 a 的取值范围是()A、4.495≤a<4.505B、4040≤a<4.60C、4.495≤a≤4.505D、4.500≤ a<4.50568、如果 | a + 2 | + ( b-1)2 = 0,那么( a + b)2009的值是()A、- 2009B、2009C、- 1D、19、下列说法正确的是()A、- 2 不是单项式B、- a 表示负数3ab aC、5的系数是 3D、x + x + 1 不是多项式10、已知一个数的平方等于它的绝对值,这样的数共有()A、1 个B、2 个C、3 个D、4 个111、下面用数学语言叙述代数式 a - b ,其中表达不正确的是()fpg专业资料整理A、比 a 的倒数小 b 的数B、1 除以 a 的商与 b 的相反数的差C、1 除以 a 的商与 b 的相反数的和D、b 与 a 的倒数的差的相反数二、填空题(每小题 3 分,共 30 分)x12、若 x<0,则| x | = 。
2018最新人教版初中数学精品试题专项整理:七年级数学上期中试题含答案(14)
江苏省2017-2018学年七年级数学上学期期中试题(考试时间:120分钟满分:150分)一、选择题(请把答案填在下面的表格中,每题3分,共30分) 1.下列各数:0,|2|-,(2)--,23-,12-,其中非负数有( )个. A .4 B .3C .2D .12.下列正确的是( )A.绝对值等于本身的是正数. B 倒数等于本身的1,-1,0. C.平方等于本身的数是1. D.相反数等于本身的数是0. 3.计算(-1)÷52×(-125)的结果是( ) A.-1 B.1 C.5 D.16254.若233m x y -与42n x y 是同类项,则m n -的值是( ). A .0B .1C .1-D .2-5.一辆汽车a 秒行驶6m米,则它2分钟行驶( ). A .3m米 B .10m a 米 C .20ma米D .120ma米 6.下列运算正确的是( ).A.3x 2+2x 3=5x 5B . 2x 2+3x 2=5x 2C . 2x 2+3x 2=5x 4D . 2x 2+3x 3= 6x 57.两堆棋子,将第一堆的3个棋子移动到第二堆之后,现在第二堆的棋子数是第一堆的3倍,设第一堆原有m 个棋子,则第二堆的棋子原有( )个. A .3mB .33m -C .33m + D .312m -8.解方程2.03.02.05.005.022.004.0=--+xx 时,下列变形正确的是( )A. 2003255224=--+x x B.203255224=--+x x C. 23255224=--+x x D. 2.03255224=--+x x9.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n 元()m n >的价格进了同样的60包茶叶,如果以每包2m n+元的价格卖出这种茶叶,那么这家商店( ). A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定10.用“●”“■”“▲”分别表示三种不同的物体,如图2-1-1所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为 ( )AA.2B.3C.4D. 5 二、填空题:(每题3分,共27分)11. 若2|2|(y 1)0x -=++,则x y =__________.12.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,这个数用科学记数法表示为__________万人.13.多项式222123a b a b ab--是__________次__________项式,次数最高的项是__________. 14.关于x 的方程(2k + 1)x + 3 = 0是一元一次方程, 则k 取值范围________.15.将连续的偶数2,4,6,8,10,L 排成如下的数表,将如图所示的十字框上下左右移动,若框住的五个数字之和是330,则框中最小的数是__________.16.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是秒.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2015= .18.对于任意的有理数a ,b ,定义新运算:21a b ab =※+,如(3)42(3)4123-=⨯-⨯=-※+.计算:3(5)-=※__________.19.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a ≠0时,有唯一解x=a b;(2)当a=0,b=0时有无数解;(3)当a=0,b ≠0时无解.请你根据以上知识作答:已知关于x 的方程3x +a=2x-61(x -6)无解,则a 的值是 .启东市长江中学2017-2018第一学期期中考试七年级数学答题卷一、选择题(请把答案填在下面的表格中,每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:(每题3分,共27分) 11、 12、 13、 14、 15、 16、 17、 18、 19、 三、解答题:(78分)20.计算题(每小题3分,共12分) ( 38 + 16 - 34 )×(—24)322(1)5[3(2)]-⨯÷-+-21.(共8分)解方程:2114135x x -+=-130.40.6(3)(7)35y y y --=--22.(6分) 画出数轴,在数轴上表示下列各数,并用“<”连接:5+ ,5.3-,21,211-,4,0,5.2)()()()(74-674-41.2-74-.593-×+××()2014322321-+--⨯-七年级( )班,姓名_________学号_________ 试场号__________ca b23.(10分)①有理数a 、b 、c 在数轴上的对应点如图,化简代数式:c b a c b a b a -+--++-②已知()0212=-++b a ,求(a +b)2016+a2017.24.一家商店将某种服装按成本价提40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?25.(本题8分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④;L ;如此下去. (1)按图示规律填写下表:图① ② ③ ④ ⑤ L正方形个数 1 4 7 L(2)按照这种方式剪下去,求第n 个图中有多少个正方形. (3)按照这种方式剪下去,求第200个图中有多少个正方形. (4)按照这种方式剪下去,求第几个图中有2017个正方形.26.(本题10分)某单位在准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有(10)a a >人,分别求出参加甲乙旅行社所需的费用是多少元? (2)假如这个单位现组织包括管理员工在内的共15名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.27.(12分) 请先阅读下列一组内容,然后解答问题:因为:111111111111,,12223233434910910=-=-=-⋯=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯ )10191()........4131()3121()211(-+-+-+-=10191........41313121211-+-+-+-=1911010=-=问题: 1.计算: ① 111112233420042005+++⋯+⨯⨯⨯⨯; ②11111335574951+++⋯+⨯⨯⨯⨯2. 解方程: 12x ⨯+23x ⨯+ …… +20052006x ⨯=2005.座位号28.(本题12分)小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:加数的个数n 连续偶数的和S1 212=⨯2 24623==⨯+ 32461234==⨯++ 4 24682045==⨯+++ 52468103056==⨯++++请你根据表中提供的规律解答下列问题:(1)如果8n =时,那么S 的值为__________.(2)根据表中的规律猜想:用n 的代数式表示S ,则24682S n ==L ++++__________. (3)利用上题的猜想结果,计算30030230420102012L +++++的值(要有计算过程).。
2018年人教版初一数学上册期中试卷及答案
2018年人教版初一数学上册期中试卷及答案2018-201年七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.数轴上与表示2的点距离等于3个单位长度的点表示的数是()A.或5B.﹣1或5 C.﹣1或﹣5D.﹣2或5 2.|﹣2|的倒数是()A.B.C.2D.﹣23.下列式子中,正确的是()A.5﹣|﹣5|=10(﹣22)=44.我国国土面积约960万平方千米,用科学记数法可表示为()平方千米.B.(﹣1)99=﹣99C.﹣102=(﹣10)×(﹣10)D.﹣A.96×105B.960×104C.9.6×107D.9.6×1065.下列各对数中,数值相等的是()A.23和32B.(﹣2)2和﹣22C.2和|﹣2|D.()2和6.下列各式中,不是同类项的是()A.x2y和x2yB.﹣ab和baC.﹣abcx2和﹣x2abcD.x2y和xy37.下列语句中错误的选项是()A.数字也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣8.组成多项式2x2﹣3x﹣5的各项是()A.2x2,3x,5B.2,﹣3,﹣5C.2x2,﹣3x,﹣5D.2x2﹣3x﹣59.已知:(b+3)2+|a﹣2|=0,则ba的值为()A.﹣9B.9C.﹣6D.610.b在数轴上的对应的位置如图所示,有理数a、则下列各式中正确的是()第1页(共15页)A.a+b<B.a+b>C.a﹣b=0D.a﹣b>二、填空题:(每题3分,共24分)11.南通市某天上午的温度是5℃,中午又上升了3℃,下战书因为冷氛围南下,到夜间又降落了9℃,则这天夜间的温度是℃.12.﹣的相反数是;绝对值是.13.若﹣3amb3与4a2bn是同类项,则3m﹣2n=.14.已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月日点.15.矩形的周长为30,若一边长用字母x透露表现,则此矩形的面积是.16.在,﹣1,|﹣2|,﹣(﹣3),5,3.8,﹣1,,(﹣3)2,﹣42中,正整数的个数是个.17.单项式﹣的系数是,次数是.18.如图是一个数值转换机,若输入的x为﹣5,则输出的成效是.3、解答题(要写出解答步骤.共46分)19.如图所示的几何体是由相同的小正方体搭成的,请画出它的主视图、左视图和俯视图.20.计算(1)12﹣(﹣16)+(﹣4)﹣5(2)1÷(﹣1)+÷(﹣4)×(﹣2010)第2页(共15页)(3)﹣2﹣|﹣3|+(﹣2)2(4)﹣22+(﹣33)×(﹣)3﹣12÷(﹣2)2.21.按请求完成下列各题(1)化简:3a+(﹣8a+2)﹣3(3a﹣4).(2)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.22.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式透露表现广场空隙的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).23.某自行车厂计整齐周出产自行车1400辆,均匀每天出产200辆,但因为各种缘故原由,实践每天出产量与计划量相比有出入.下表是某周的出产情况(超产记为正、减产记为负):星期增减一+5二﹣2三﹣4四+13五﹣10六+16日﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多出产自行车几何辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?第3页(共15页)一、选择题(每题3分,共30分)1.数轴上与表示2的点距离等于3个单位长度的点表示的数是()A.或5B.﹣1或5 C.﹣1或﹣5D.﹣2或5 【考点】数轴.【阐发】按照题意得出两种情况,当点在透露表现2的点的右侧时,当点在透露表现2的点的左侧时,划分求出便可.【解答】解:当点在表示2的点的右边时,表示的数是2+3=5,当点在表示2的点的左边时,表示的数是2﹣3=﹣1.故选:B.2.|﹣2|的倒数是()A.B.C.2D.﹣2【考点】倒数;绝对值.【分析】先求绝对值,然后按照倒数的定义求解即可.【解答】解:|﹣2|=2,2的倒数是.应选:A.3.下列式子中,正确的是()A.5﹣|﹣5|=10(﹣22)=4【考点】有理数的乘方;绝对值.【阐发】按照绝对值的性质,有理数的乘方对各选项阐发判断后使用排除法求解.【解答】解:A、5﹣|﹣5|=5﹣5=0,故本选项错误;B、(﹣1)99=﹣1,故本选项错误;C、﹣102=﹣10×10,故本选项错误;第4页(共15页)B.(﹣1)99=﹣99C.﹣102=(﹣10)×(﹣10)D.﹣D、﹣(﹣22)=﹣(﹣4)=4,故本选项精确.故选D.4.我国国土面积约960万平方千米,用科学记数法可透露表现为()平方千米.A.96×105B.960×104C.9.6×107D.9.6×106【考点】科学记数法—透露表现较大的数.【阐发】科学记数法就是将一个数字透露表现成a×10的n次幂的形式,其中1≤|a|<10,n透露表现整数.n为整数位数减1,即从左侧第一名开始,在首位非零的背面加上小数点,再乘以10的n次幂.【解答】解:960万用科学记数法表示为9.6×106.应选D.5.下列各对数中,数值相称的是()A.23和32B.(﹣2)2和﹣22C.2和|﹣2|D.()2和【考点】有理数的乘方.【分析】根据有理数的乘方的定义对各选项分别进行计算即可进行判断.【解答】解:A、23=8,32=9,不相等,故本选项错误;B、(﹣2)2=4,﹣22=﹣4,不相等,故本选项错误;C、2和|﹣2|=2相等,故本选项正确;D、()2=,应选C.6.下列各式中,不是同类项的是()A.x2y和x2yB.﹣ab和baC.﹣abcx2和﹣x2abc【考点】同类项.【阐发】按照同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:A字母相同,且相同的字母的指数也相同,故A是同类项;第5页(共15页)=,不相等,故本选项错误.D.x2y和xy3B字母相同,且相同的字母的指数也相同,故B是同类项;C字母相同,且相同的字母的指数也相同,故C是同类项;D相同字母的指数不同,故D不是同类项;故选:D.7.下列语句中错误的选项是()A.数字也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【阐发】按照单项式系数、次数的界说来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单唯一个数字也是单项式.【解答】解:零丁的一个数字也是单项式,故A精确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D精确.故选B.8.组成多项式2x2﹣3x﹣5的各项是()A.2x2,3x,5B.2,﹣3,﹣5【考点】多项式.【阐发】按照多项式项的概念解答.【解答】解:多项式2x2﹣3x﹣5的各项是:2x2、﹣3x、﹣5.应选C.9.已知:(b+3)2+|a﹣2|=0,则ba的值为()A.﹣9B.9C.2x2,﹣3x,﹣5D.2x2﹣3x﹣5C.﹣6D.6第6页(共15页)【考点】非负数的性质:偶次方;非负数的性质:绝对值.【阐发】按照非负数的性质列式求出a、b的值,然后代入代数式进行计较便可得解.【解答】解:根据题意得,b+3=0,a﹣2=0,解得a=2,b=﹣3,所以,ba=(﹣3)2=9.故选B.10.b在数轴上的对应的位置如图所示,有理数a、则下列各式中精确的选项是()A.a+b<B.a+b>C.a﹣b=0D.a﹣b>【考点】数轴.【分析】首先根据数轴确定a,b的符号和大小,再根据有理数的运算法则进行分析判断.【解答】解:由数轴,得a<<b,|a|>|b|.A、根据异号两数相加,取绝对值较大的数的符号,则a+b<,符合题意;B、根据异号两数相加,取绝对值较大的数的符号,则a+b<,不符合题意;C、较小的数减去较大的数,则差一定小于,则a﹣b<,不符合题意;D、较小的数减去较大的数,则差一定小于,则a﹣b<,不符合题意.故选A.二、填空题:(每题3分,共24分)11.南通市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是﹣1℃.【考点】有理数的加减混合运算.【分析】根据上升为正,下降为负,列式计算即可.【解答】解:依题意列式为:5+3+(﹣9)=5+3﹣9=8﹣9=﹣1(℃).所以这天夜间的温度是﹣1℃.故答案为:﹣1.第7页(共15页)12.﹣的相反数是;绝对值是.【考点】相反数;绝对值.【阐发】按照只要符号分歧的两个数互为相反数,可得一个数的相反数,按照负数的绝对值是它的相反数,可得答案.【解答】解:﹣的相反数是;绝对值是,故答案为:,.13.若﹣3amb3与4a2bn是同类项,则3m﹣2n=.【考点】同类项.【阐发】按照同类项的界说间接可得到m、n的值.【解答】解:∵单项式﹣2a2bm与单项式3anb是同类项,∴m=2,n=3.∴3m﹣2n=3×2﹣2×3=0故答案为:.14.已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月20日18点.【考点】有理数的减法.=﹣6,【阐发】由题意得8﹣14=8+(﹣14)则应是芝加哥时间20日[24+(﹣6)]点.【解答】解:根据题意得,8﹣14=8+(﹣14)=﹣6,24+(﹣6)=18.故答案为20;18.15.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是x(15﹣x).【考点】列代数式.【分析】根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积第8页(共15页)公式便可求解.【解答】解:∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).故答案为:x(15﹣x).16.在,﹣1,|﹣2|,﹣(﹣3),5,3.8,﹣1,,(﹣3)2,﹣42中,正整数的个数是4个.【考点】有理数;相反数;绝对值.【分析】根据大于零的整数是正整数,可得答案.【解答】解:不是正整数,3.8不是整数,﹣1是负分数,是分数,﹣42=﹣16是负整数,|﹣2|=2是正整数,﹣(﹣3)=3是正整数,5是正整数,(﹣3)2=9是正整数,故答案为:4.17.单项式﹣【考点】单项式.【分析】根据单项式的系数和次数的概念求解.【解答】解:单项式﹣故答案为:﹣第9页(共15页)的系数是﹣,次数是3.的系数为﹣,次数为3.,3.18.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21.【考点】有理数的乘法.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的成效是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.三、解答题(要写出解答步骤.共46分)19.如图所示的几何体是由相同的小正方体搭成的,请画出它的主视图、左视图和俯视图.【考点】作图﹣三视图.【分析】根据:从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1,画出三视图即可.【解答】解:三视图如下,第10页(共15页)20.计较(1)12﹣(﹣16)+(﹣4)﹣5(2)1÷(﹣1)+÷(﹣4)×(﹣2010)(3)﹣2﹣|﹣3|+(﹣2)2(4)﹣22+(﹣33)×(﹣)3﹣12÷(﹣2)2.【考点】有理数的混合运算.【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘法和除法,然后计算加法即可.(3)第一计较乘方,然后从左向右依次计较便可.(4)首先计算乘方和乘除法,然后计算加减法即可.【解答】解:(1)12﹣(﹣16)+(﹣4)﹣5=28﹣4﹣5=19(2)1÷(﹣1)+÷(﹣4)×(﹣2010)=﹣1+=﹣1(3)﹣2﹣|﹣3|+(﹣2)2=﹣2﹣3+4=﹣1(4)﹣22+(﹣33)×(﹣)3﹣12÷(﹣2)2=﹣4+(﹣27)×(﹣=﹣4+8﹣3=121.按请求完成下列各题第11页(共15页))﹣3(1)化简:3a+(﹣8a+2)﹣3(3a﹣4).(2)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.【考点】整式的加减—化简求值.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=3a﹣8a+2﹣9a+12=﹣14a+14;(2)原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=时,原式=﹣.22.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式透露表现广场空隙的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).【考点】列代数式;代数式求值.【阐发】(1)观察可得空隙的面积=长方形的面积﹣圆的面积,把相关数值代入便可;(2)把所给数值代入(1)得到的代数式求值即可.【解答】解:(1)空隙的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,空地的面积=400×100﹣π×102=﹣100π(平方米).23.某自行车厂计整齐周出产自行车1400辆,均匀每天出产200辆,但因为各种缘故原由,实践每天出产量与计划量相比有出入.下表是某周的出产情况(超产第12页(共15页)记为正、减产记为负):星期增减一+5二﹣2三﹣4四+13五﹣10六+16日﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多出产自行车几何辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【考点】有理数的加法.【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实践出产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多出产自行车16﹣(﹣10)=26辆;(4)这一周的人为总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=元,故该厂工人这一周的人为总额是元.第13页(共15页)第14页(共15页)。
人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案
人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案2018-201年度第一学期期中考试七年级数学试卷一、选择题(每题3分,共30分)1、下列各对数中,互为相反数的是(-3)和(3)。
2、下列运算中,正确的是(5a2b-5ba2=5ab(a-b))。
3、过度包装既浪费资源又污染环境。
据测算,如果全国每年减少的二氧化碳吨数用科学记数法表示为(2×104),即2乘以10的4次方。
4、一个多项式与x2-2x+1的和是3x-2,则这个多项式为(x2-5x+3)。
5、按照一定规律排列的个数为(10)。
6、有理数a、b、c在数轴上位置如图,则|c-a|-|a+b|-|b-c|的值为(2a-2c+2b)。
7、如图,在长方形ABCD中,放入6个长度相同的小长方形,BH=6cm,设小长方形的宽QE=xcm则图形BQEFGH的周长为(24+2x)cm。
8、某班组每天需生产50个零件才能在规定时间内完成一批零件的生产任务,实际上该班组每天比计划多生产10个零件,结果比规定时间提前3天并超额生产120个零件,若该班组需完成零件的生产任务为x个,则根据题意得规定的时间为(x-1)/60天。
9、下列去括号或添括号正确的有(3)个,分别是①、②、③。
10、XXX在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为(-1009)。
二、填空题(每题3分,共18分)11、3的相反数的倒数是-1/3.12、有六张卡片,正面分别写有六个数字,背面分别写有六个字母。
将卡片正面的数字由大到小排列,然后将卡片翻转,卡片上的字母组成的单词是什么。
13、数轴上点M表示有理数-2,将点M向右平移1个单位长度到达点N,点E到点N的距离为4,那么点E表示的有理数为-1.14、用[a]表示不大于a的最大整数,例如:[1.5]=1,[-2.3]=-3,则[-5.2]+[-0.3]+[2.2]=-4.15、某校七年级四个班的学生在植树节这天共义务植树(6a-3b)棵,七(1)班植树a棵,七(2)班植树的棵数比七(1)的两倍少b棵,七(3)班植树的棵数比七(2)班的一半多1棵,那么七(4)班的植树棵数为(6a-9b-1)棵。
2018人教版七年级上册数学期中考试试卷(含答案).docx
2018 人教版七年级上册数学期中考试试卷(含答案)题号一二三总分得分一、填得圆圆满满(每小题 3 分,共 30 分)1. -1- ( -3 ) =。
2. -0.5 的绝对值是,相反数是,倒数是。
xy23.单项式 2 的系数是,次数是。
4.若逆时针旋转 90o记作 +1,则 -2 表示。
y5. 如果、互为相反数,x 、互为倒数,那么( a+b)-xy+a 2-b 2=。
a b y x6. 在数轴上,点 A表示数 -1,距 A点 2.5 个单位长度的点表示的数是。
7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8 万元。
将这个数字用科学计数法表示并保留三个有效数字为元。
8. 长方形的长是a米,宽比长的2倍少b米,则宽为米。
9.若m、 n 满足m2(n 3)2=0,则n m__________.10. 某厂 10 月份的产值是125 万元,比 3 月份的产值的为 x 万元,则可列出的方程为二、做出你的选择(每小题 3 分,共 30 分)11.如果向东走2km记作 +2km,那么- 3km 表示(A. 向东走 3kmB.向南走3kmC.向西走3km3 倍少 13 万元,若设).D. 向北走 3km3 月份的产值12.下列说法正确的是( C )1A.x 的系数为 0B.a是一项式C.1是单项式D.-4x系数是 413.下列各组数中是同类项的是()A.4 x和 4yB.4 xy2和 4xyC.4xy2和-8x2y D.-4xy2和4y2x14.下列各组数中,互为相反数的有()①( 2)和 2② ( 1)2和 12③ 23和32④ ( 2)3和 23A. ④B. ①②C. ①②③D. ①②④15. 若 a+b<0,ab<0, 则下列说法正确的是()A.a 、b 同号B.a、 b 异号且负数的绝对值较大C.a 、b 异号且正数的绝对值较大D. 以上均有可能16. 下列计算正确的是()A.4x-9x+6x=-xB.xy-2xy=3xy321 1C.x -x =xD.2 a-2 a=017. 数轴上的点 M 对应 第2页,共 6页的数是- 2,那么将点 M 向右移动 4 个单位长度,此时点 M 表示的数是( )A. -6B. 2C.- 6 或 2D.都不正确18.若 x 的相反数是 3,y5,则 x+y 的值为().A. - 8B. 2C. 8或- 2D. - 8 或 219.若 3x=6,2y=4 则 5x+4y的值为()A.18B.15C.9D. 620. 若 -3xy 2m 与 5x 2n-3 y 8的和是单项式,则 m 、n 的值分别是()A. =2, n =2B. =4, =1C. =4, n =2D.=2,n =3mm nmm三、用心解答(共 60 分)21. ( 16分)计算(1) -26-(-15)(2) (+7)+(-4)-(-3)-1411(3) (-3)×3 ÷( -2 )×( -2)(4) -(3-5)+3 2× (-3)22. 解方程(本题 8 分)(1) x+3x= - 12( 2) 3x+7=32- 2x23.( 6分)将下列各数在数上表示出来,并用“ <” 接:-2 2, -(-1),0 ,3,-2.524.( 6分)若a是最小的数,b是最大的整数。
2018-2018初一数学上册期中试卷(带答案)
2018-2018初一数学上册期中试卷(带答案)第一篇:2018-2018初一数学上册期中试卷(带答案)2018-2018初一数学上册期中试卷(带答案)距离期中考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初一学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇2018-2018初一数学上册期中试卷吧!一、精心选一选(本大题共10小题,每题3分,共30分)1.方程5(x-1)=5的解是()A.x=1B.x=2C.x=3D.x=42.下列关于单项式一的说法中,正确的是()A.系数是-,次数是4B.系数是-,次数是3C.系数是-5,次数是4D.系数是-5,次数是33.甲、乙、丙三地的海拔高度分别为20m、-15m和-10m,那么最高的地方比最低的地方高()A.5m B.10m C.25m D.35m4.根据国家安排,今年江苏省保障性安居工程计划建设106800套,106800用科学记数学法可表示为()A.1068102B.10.68104C.1.068105D.0.10681065.两个数的商是正数,下面判断中正确的是()A.和是正数B.差是正数C.积是正数D.以上都不对6.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A与点D表示的数分别是()A.2,2B.4 , 1C.5 , 1D.6 , 27.若A、B都是五次多项式,则A-B一定是()A.四次多项式B.五次多项式C.十次多项式D.不高于五次的多项式 8.下列计算中正确的是()A.6a-5a=1B.5x-6x=11xC.m2-m=mD.x3+6x3=7x3.已知(x-1)3=ax3+bx2+cx+d.,则a+b+c+d的值为()A.1B.0C.1D.2 0.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右340m~380m之间树与灯的排列顺序是()二、细心填一填(本大题共9小题13空,每空2分,共26分)11.-2的绝对值是,相反数是12.当x= 时,代数式的值是0.已知多项式2x2-4x的值为10,则多项式x22x+6的值为.13.若4x4yn+ 1与-5xmy2的和仍为单项式,则m=,n=.14.方程x+a=2的解与方程2x+3=-5的解相同,则a=15.已知|a-2|+(b+1)2=0,则(a+b)2018=16.如图所示的运算程序中,若开始输入的x的值为10,我们发现第一次输出的结果为5,第二次输出的结果为8,则第10次输出的结果为17.请写出一个方程的解是2的一元一次方程:.18.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.19.已知a= |x5|+|x2|+ |x+3|,求当x= 时,a有最小值为三、认真答一答(本大题共7小题,共44分)20.计算:(本题共2小题,每题3分,共6分)(1)-23+(-37)-(-12)+45;(2)(-6)2.21.解方程:(本题共2小题,每题3分,共6分)(1)2(2x+1)=1-5(x-2);(2)-=122.(本题5分)已知,(1)求的值;(结果用x、y表示)(2)当与互为相反数时,求(1)中代数式的值.23.(本题5分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5-2-4+13-10+16-9(1)产量最多的一天比产量最少的一天多生产(2)根据记录可知前三天共生产(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?24.(本题7分)世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米.(1)若设展厅的正方形边长为x米,用含x的代数式表示核心筒的正方形边长为米.(2)若设核心筒的正方形边长为y 米,求该模型的平面图外框大正方形的周长及每个休息厅的图形周长.(用含y的代数式表示)(3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。
2018-2019学年新人教版七年级数学(上册)期中测试卷及答案
2018-2019学年七年级(上)期中数学试卷一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.2.下列各对式子是同类项的是()A.4x2y与4y2x B.2abc与2abC.与﹣3a D.﹣x3y2与y2x33.如图,下列说法,正确说法的个数是()①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A.0 B.1 C.2 D.34.如图,图中共有()条线段.A.5 B.6 C.7 D.85.如果线段AB=6cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定6.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1 370 000千米,这个路程用科学记数法表示为()A.13.7×104千米B.13.7×105千米C.1.37×105千米D.1.37×106千米7.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2 C.3x2﹣y2﹣3z2 D.3x2﹣5y2+z28.下列计算正确的是()A.3a﹣a=2 B.﹣42=﹣16 C.3a+b=3ab D.﹣5﹣2=﹣39.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.14410.观察点阵图的规律,第10个图的小黑点的个数应该是()A.41 B.40 C.51 D.50二、填空题11.代数式﹣的系数是,次数是.12.若5x2y m与4x n+m﹣1y的和是单项式,则代数式m2﹣n的值是.13.若|a+5|+(b﹣2)2=0,则(a+b)2010=.14.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.15.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)16.已知代数式x﹣2y的值是3,则代数式15﹣2x+4y的值是.三、解答题17.已知:如图,A,B,C在同一条线段上,M是线段AC的中点,N是线段BC 的中点,且AM=5cm,CN=3cm.求线段AB的长.18.计算(1)3x2﹣3(x2﹣2x+1)+4;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1);(3)(+﹣)×(﹣24)(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3.19.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.20.如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.21.先画简,再求值:(1)2a+3(a2﹣b)﹣2(2a2+a﹣b),其中a=,b=﹣2;(2)(m﹣5n+4mn)﹣2(2m﹣4n+6mn),其中m﹣n=4,mn=﹣3.22.已知a,b,c在数轴上的位置如图所示,求|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|的值.23.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?24.探究题.用棋子摆成的“T”字形图如图所示:(1)填写表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:四个方格形成的“田”字的,不能组成正方体,A错;出现“U”字的,不能组成正方体,B错;以横行上的方格从上往下看:C选项组成正方体.故选:C.2.下列各对式子是同类项的是()A.4x2y与4y2x B.2abc与2abC.与﹣3a D.﹣x3y2与y2x3【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.【解答】解:A、所含相同字母的指数不相同不是同类项.B、所含字母不相同不是同类项.C、所含相同字母的指数不相同不是同类项.D、所含字母相同,相同字母的指数也相同,是同类项.故选D.3.如图,下列说法,正确说法的个数是()①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A.0 B.1 C.2 D.3【考点】直线、射线、线段.【分析】根据直线、射线及线段的定义及特点结合图形即可解答.【解答】解:①直线AB和直线BA是同一条直线,正确;②射线AB与射线BA是同一条射线的顶点不同,故错误;③线段AB和线段BA是同一条线段,正确;④每一个点对应两个射线,图中有4条射线,故错误.综上可得①③正确.故选C.4.如图,图中共有()条线段.A.5 B.6 C.7 D.8【考点】直线、射线、线段.【分析】根据图形结合线段定义得出线段有AB、AD、AC、BD、DC、BC,即可得出答案.【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.5.如果线段AB=6cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定【考点】两点间的距离.【分析】分两种情况:C在AB之间,有AC=AB﹣BC;C不在AB之间,有AC=AB+BC,分别得出A,C两点间的距离.【解答】解:C在AB之间,有AC=AB﹣BC=6﹣3=3cm;C不在AB之间,有AC=AB+BC=6+3=9cm.故A,C两点间的距离是大于等于3cm且小于等于9cm,故选D.6.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1 370 000千米,这个路程用科学记数法表示为()A.13.7×104千米B.13.7×105千米C.1.37×105千米D.1.37×106千米【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.所以1 370 000的n=6.【解答】解:1 370 000=1.37×106.故选D.7.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2 C.3x2﹣y2﹣3z2 D.3x2﹣5y2+z2【考点】整式的加减.【分析】由于A+B+C=0,则C=﹣A﹣B,代入A和B的多项式即可求得C.【解答】解:由于多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C=﹣A﹣B=﹣(x2+2y2﹣z2)﹣(﹣4x2+3y2+2z2)=﹣x2﹣2y2+z2+4x2﹣3y2﹣2z2=3x2﹣5y2﹣z2.故选B.8.下列计算正确的是()A.3a﹣a=2 B.﹣42=﹣16 C.3a+b=3ab D.﹣5﹣2=﹣3【考点】合并同类项;有理数的混合运算.【分析】根据有理数运算法则以及合并同类项法则即可判断.【解答】解:(A)3a﹣a=2a,故A错误;(C)3a与b不是同类项,故C错误;(D)﹣5﹣2=﹣7,故D错误;故选(B)9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.10.观察点阵图的规律,第10个图的小黑点的个数应该是()A.41 B.40 C.51 D.50【考点】规律型:图形的变化类.【分析】根据题意得出第n个图形中小黑点个数为1+4n个,据此可得.【解答】解:∵第1个图形中小黑点个数为1+4×1=5个,第2个图形中小黑点个数为1+4×2=9个,第3个图形中小黑点个数为1+4×3=13个,…∴第10个图形中小黑点个数为1+4×10=41个,故选:A.二、填空题11.代数式﹣的系数是﹣π,次数是4.【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:代数式﹣的系数是﹣π,次数是4.故答案为:﹣π,4.12.若5x2y m与4x n+m﹣1y的和是单项式,则代数式m2﹣n的值是﹣1.【考点】同类项;解二元一次方程组.【分析】本题考查同类项的定义,由同类项的定义可先求得m=1和n+m﹣1=2的值,从而求出m2﹣n的值.【解答】解:由同类项的定义可知,m=1,n+m﹣1=2,解,得n=2,m=1,所以m2﹣n=12﹣2=﹣1.13.若|a+5|+(b﹣2)2=0,则(a+b)2010=32010.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+5=0,b﹣2=0,解得a=﹣5,b=2,所以,(a+b)2010=(﹣5+2)2010=32010.故答案为:32010.14.某几何体从三个方向看到的图形分别如图,则该几何体的体积为3π.【考点】由三视图判断几何体.【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆及圆心可判断出此几何体为圆柱.【解答】解:由三视图可得,此几何体为圆柱,所以圆柱的体积为,故答案为:3π15.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于n2+4n.(用n表示,n是正整数)【考点】规律型:图形的变化类.【分析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.【解答】解:第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n个图形:白色正方形n2个,黑色正方形4n个,共有n2+4n个.故答案为:n2+4n.16.已知代数式x﹣2y的值是3,则代数式15﹣2x+4y的值是9.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,将已知代数式的值代入计算即可求出值.【解答】解:∵x﹣2y=3,∴原式=15﹣2(x﹣2y)=15﹣6=9,故答案为:9三、解答题17.已知:如图,A,B,C在同一条线段上,M是线段AC的中点,N是线段BC 的中点,且AM=5cm,CN=3cm.求线段AB的长.【考点】两点间的距离.【分析】根据线段中点的概念分别求出MC、BN,结合图形计算即可.【解答】解:∵M是线段AC的中点,N是线段BC的中点,∴MC=AM=5cm,BN=CN=3cm,∴AB=AM+MC+CN+NB=16cm.18.计算(1)3x2﹣3(x2﹣2x+1)+4;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1);(3)(+﹣)×(﹣24)(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3.【考点】整式的加减;有理数的混合运算.【分析】(1)(2)去括号、合并同类项即可;(3)利用分配律计算即可;(4)先做括号的运算,再算乘方,然后算乘除,最后算加减.【解答】解:(1)3x2﹣3(x2﹣2x+1)+4=3x2﹣x2+6x﹣3+4=2x2+6x+1;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1)=3a2+4a2﹣8a﹣4﹣6a2+2a﹣2=a2﹣6a﹣6;(3)(+﹣)×(﹣24)=﹣12﹣20+14=﹣18;(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣× [10﹣4]﹣(﹣1)=﹣1﹣1+1=﹣1.19.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.【考点】比较线段的长短.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.20.如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.【考点】合并同类项.【分析】根据合并后不含三次项,二次项,可得含三次项,二次项的系数为零,可得m,k的值,根据乘方的意义,可得答案.【解答】解:由3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,得﹣2+k=0,5+m=0.解得k=2,m=﹣5.m k=(﹣5)2=25.21.先画简,再求值:(1)2a+3(a2﹣b)﹣2(2a2+a﹣b),其中a=,b=﹣2;(2)(m﹣5n+4mn)﹣2(2m﹣4n+6mn),其中m﹣n=4,mn=﹣3.【考点】整式的加减—化简求值.【分析】(1)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=2a+3a2﹣3b﹣4a2﹣2a+b=﹣a2﹣2b,当a=,b=﹣2时,原式=﹣()2﹣2×(﹣2)=;(2)原式=m﹣5n+4mn﹣4m+8n﹣12mn=﹣3(m﹣n)﹣8mn,当m﹣n=4,mn=﹣3时,原式=﹣3×4﹣8×(﹣3)=12.22.已知a,b,c在数轴上的位置如图所示,求|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|的值.【考点】整式的加减—化简求值;数轴;绝对值.【分析】根据点的位置,可得a,b,c的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<0<b<c,|a|>|b|.|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|=﹣(a+b)﹣3(b+c)+2(b﹣a)﹣(c﹣b)=﹣a﹣b﹣3b﹣3c+2b﹣2a﹣c+b=﹣3a﹣b﹣4c.23.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款(40x+3200)元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【考点】代数式求值;列代数式.【分析】(1)方案①需付费为:西装总价钱+20条以外的领带的价钱,方案②需付费为:西装和领带的总价钱×90%;(2)把x=30代入(1)中的两个式子算出结果,比较即可.【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:×0.9=元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.24.探究题.用棋子摆成的“T”字形图如图所示:(1)填写表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)【考点】规律型:图形的变化类.【分析】根据图形中每个图案中棋子的个数,8﹣5=3、11﹣8=3、14﹣11=3可得出规律:每一个图形中棋子的个数比上一个图形中棋子的个数多3,所以第n个图案中,棋子的个数为5+3(n﹣1).【解答】解:由题意可得:摆成第1个“T”字需要5个棋子;摆成第2个“T”字需要8个棋子,8﹣5=3;摆成第3个“T”字需要11个棋子,11﹣8=3;摆成第4个“T”字需要14个棋子,14﹣11=3;…摆成第10个“T”字需要32个棋子;…由此可得出规律:摆成第n个“T”字需要5+3(n﹣1)=3n+2个棋子.(1)填写表:(2)第n个“T”字形图案中棋子的个数为:5+3(n﹣1)=3n+2个棋子;(3)第19个“T”字需要59个棋子,第20个T子需要62个棋子,故第1个图案与第20个图案共有5+62=67个棋子;第2个图案与第19个图案共有8+59=67个棋子;第3个图案第18个图案共有11+56=67个棋子,故前20个“T“字形图形案中棋子的总个数为9×67+32=635个棋子.2017年5月4日。
最新人教版2018年七年级数学上册期中考试题(含答案)
最新人教版2018年七年级数学上册期中考试题(含答案)2018-201年第一学期七年级数学期中试卷时量:120分钟满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本题共12个小题,每小题3分,共36分)1.-2的相反数是()A。
1/2 B。
-2 C。
2/2 D。
22.在数轴上距离原点2个单位长度的点所表示的数是()A。
2 B。
-2 C。
2或-2 D。
1或-13.下列计算正确的是()A。
2x+3y=5xy B。
2a+2a=2a C。
4a-3a=a D。
-2ba+ab=-ab4.下列式子中,成立的是()A。
-2=-2 B。
(-2)=-2 C。
-2/3=2/3 D。
3=3×2/35.用四舍五入按要求对0.分别取近似值,其中错误的是()A。
0.1(精确到0.1)B。
0.06(精确到千分位)C。
0.06(精确到百分位)D。
0.0602(精确到0.0001)6.下列各组中,不是同类项的是()A。
-xy与2yx B。
2ab与ba2 C。
-mn与221 D。
23和327.XXX作业本中有四道计算题:①-(-5)=-5;②(-3)+(-9)=-12;③2/3×9/4=-;④(-36)÷(-9)=-4.其中他做对的题的个数是()A。
1个 B。
2个 C。
3个 D。
4个8.一件衣服的进价为a元,在进价的基础上增加20%定为标价,则标价可表示为()A。
(1-20%)a B。
20%a C。
(1+20%)a D。
a+20%9.下面四个整式中,不能表示图中阴影部分面积的是()A。
(x+3)(x+2)-2x B。
x(x+3)+6x C。
3(x+2)+x D。
x+5x210.若x+x+1的值是8,则4x+4x+9的值是()A。
37 B。
25 C。
32 D。
2911.下列说法正确的是()A。
单项式-2πR的次数是3,系数是-22 B。
单项式-5的系数是3,次数是4 C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年七年级数学上册期中综合评价卷
一、选择题(每小题3分,共33分)
1 7
1、在-2
2、+10、七、2、0、4、5、-1 中,负数有()
A、1个
B、2个
C、3个
D、4个
2、下列说法不正确的是()
A、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数
B、所有的有理数都有相反数
C、正数和负数互为相反数
D、在一个有理数前添加“-”号就得到它的相反数
3、卜2 |的相反数是(
( ) )
A、-1
4、如果ab<0且; 1
B、-2
C、2
a>b,那么一疋有
D、2
A、a>0, b>0
B、a>0, b<0
C、a<0, b>0
D、a<0, b<0
5、如果a2=(-
3)2,
那么a等于( ) A、3 B、-3 C、9D、土3
& 23表示( )
A、2X2X2
B、2X 3
C、3X 3
D、2+2+2
7、近似数4.50所表示的真值a的取值范围是( )
A、4.495W a v 4.505
B、4040< a v 4.60
C、4.495W a< 4.505
D、4.500< a v 4.5056
&如果| a + 2 | + ( b-1f = 0,那么(a + b) 2009的值是( )
A 、-2009
B
2009C、- 1 D、1
9、卜列说法止确的是( )
A 、-2不是单项式
B
、
-a表示负数
C 、3a b
詈的系数是3
D
、
a
x + - + 1不是多项式
X
10、已知一个数的平方等于它的绝对值,这样的数共有(
)
A、1个
B、2个
C、3个
D、4个
1
11、下面用数学语言叙述代数式a - b,其中表达不正确的是(
)
a
A、比a的倒数小b的数
B、1除以a的商与b的相反数的差
C、1除以a的商与b的相反数的和
D、b与a的倒数的差的相反数
二、填空题(每小题3分,共30分)
X
12、__________________________ 若x<0,贝U芮= 。
13、_____________________________________________________ 水位上升30cm 记作+30cm,那么-16cm表示 __________________________________ 。
14、在月球表面,白天,阳光垂直照射的地方温度高达+127C ;夜间,温度
可降至-183 C,则月球表面昼夜的温度差是____________ C。
15、用“ v”“二”或“〉”填空:
(1)- (- 1) _____ - | - 1 (2) - 0.1 _____ -0.01
16、据测试,拧不静的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明
同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学计数法表示为 ___________________________ 。
17、近似数2.30万精确到______ 位,有效数字是___________ ,用科学计数
法表为 ___________ 。
2 a
18、已知| a + 2 | + 3(b +1 ) 2取最小值,则ab + = ___________ 。
19、如图1所示的日历中,任意圈出一竖列相邻的三个数,设中间的一个数
为a,则这三个数之和为 _________ (用含a的代数式表示)。
2
(2)[2 - 5X (- 2 ) 2]宁(-4);
1 3 1 3 2009
(3)[22 - (8 + 6 - 4)X 24]宁5X( - 1 ) 2009
24、去括号,并合并同类项:(每小题5分,共10分)
(1)x - 2( x+1 ) + 3x ;
(2)- (y + x)- (5x - 2y);
25、( 6分)先化简,再求值
已知|a - 4| + ( b+1 ) 2 = 0,求5ab2- [2a2b-(4ab 2-2a2b)]+4a 2b 的值
26、(8分)出租车司机小李某天下午运营全是在东西走向的人民大道上进行
的,如果规定向东为正,向西为负,他这天下午行驶里程如下:(单位:千米) +15, - 3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地时,距下午出车地点是多少千米?
(2)若汽车耗油量为a升/千米,这天下午共耗油多少升
27、(9分)根据如图3所示的数轴,解答下面问题
I I I I I B—D | A I C I I I I*
(71)-6分别写出-A两点所表示的有理数4 5 6 7
(2)请问A、B两点之间的距离是多少?
(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表)< 28、 ( 9分)某种水果第一天以2元的价格卖出a斤,第二天以1.5元的价格卖出b斤,第三天以1.2元的价格卖出c斤,求:
(1)这三天共卖出水果多少斤?
(2)这三天共卖得多少元?
20若x p + 4x3 - qx2 - 2x + 5 是关于五次五项式,贝U -p = _____________ 。
21m、n互为相反数,x、y互为负倒数(乘积为-1的两个数),由(m + n):
-2010-2010xy = __________ 。
三、解答题(每小题5分,共15分)
(1) (+3.5)—1.4)-( 2.5) + (-4.6)
(3)这三天平均售价是多少?并计算当
a=30,b=40, c=45时,平均售价是多少?
参考答案
一、选择题(本题共12小题,每题3分,共33分)
1.C
2.C
3.B
4.B
5.D
6.A
7.A
8.C
9.D 10.C 11.B
二、填空题(本题共10小题,每题3分,共30分)
12. -1
13 下降 16cm 14.310C 15.> <
16.1.4
2.3 X 104
18.4 19.3a 20.-5 21.0
三、解答题(共57分)
23. 计算:(本题共3小题,每题5分,共15分)
24. 去括号并合并同类项:(本题共2小题,每题5分,共10分) (1)2x — 2 (2)y — 6x
25. 先化简再求值(本题共1小题,每题6分,共6分) 9ab 2 36
26. (8 分)(1) 0 (2)118a
27. (9分)(1) A 表示1 B 表示2.5 (2)距离是3.5米 (3)
略
28. (9分)(1) (a + b + c )斤 (2) (2a + 1.5b + 1.2c )元
2a+1.5b+1.2c 一 (3) =58 兀
(1) -5 (2) -3
(3)
X 103 17.百 2 3 0。