第一章_有理数复习资料[基础知识]
第一章 有理数复习资料
一、【正负数】 有理数的分类:★☆▲_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
[基础练习] 1☆把下列各数填在相应额大括号内: 1,-0.1,-789,25,0,-20,-3.14,-590,6/7 ·正整数集{ …};·正有理数集{ …};·负有理数集{ …} ·负整数集{ …};·自然数集{ …};·正分数集{ …} ·负分数集{ …}2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义 是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、【数轴】 规定了 、 、 的直线,叫数轴[基础练习]1☆如图所示的图形为四位同学画的数轴,其中正确的是( )2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 03下列语句中正确的是( ) A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、★ ①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的 距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A .-5, B.-4 C.-3 D.-2三、【相反数】的概念像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a 相反数的相关性质:1、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
人教版数学上七年级第一单元复习资料
第一单元《有理数》知识要点梳理正数和负数以前学过的0以外的数前面加上负号“-”的数叫做负数。
大于0的数叫做正数。
数0既不是也不是,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示量。
有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
统称为有理数。
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
(3)根据实际问题可以确定一个单位长度所代表的量。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
相反数:•定义:相反数;0的相反数还是0;•若有a,b两个数,且a=-b,则a,b互为相反数。
•性质:a+b=1 ,a=-b ⇔ a,b互为相反数。
注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;0的相反数还是0负数的相反数是正数,正数的相反数是负数倒数:若a,b两个数都不等于0,且ab=1,则a,b互为倒数。
ab=1 ⇔ a,b互为倒数。
0没有倒数,负数的倒数还是负数,正数的倒数还是正数。
1.若a≠0,则a的倒数为。
2.带分数,小数求倒数,要先把带分数化为假分数,小数化为分数,再求倒数。
注意:相反数等于本身的数是0倒数等于本身的数是。
绝对值等于本身的数是。
平方等于本身的数是。
立方等于本身的数是。
绝对值:1.定义:数a表示的点与原点的距离叫a的绝对值,记作|a|。
①互为相反数的两个数的绝对值。
②|a|≥0,当|a|=0时,a只能为0.即绝对值的非负性。
补:几个非负数之和为0 ,则每个非负数都是0.即若|a|+|b|=0,则a=0,b=0.注意:若|a|=b,则b=a或b=-aa2=4,则a=2或-2数轴上点A所对应的数是-3,那么与点A相距4个单位长度的点所表示的数是-7或1有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;•(3)一个数与0相加,仍得这个数.加法运算定律:•(1)加法的交换律:a+b=b+a ;•(2)加法的结合律:(a+b)+c=a+(b+c).有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b). 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.符号的判定:多重符号的化简,有理数的连乘符号的判断,看负号,若负号的个数为奇数,则结果为负数,若负号的个数为偶数,则结果为正数。
人教版七年级数学上册第一章有理数全章知识点总结归纳
人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数1) 大于的数为正数。
2) 在正数前面加上负号“-”的数为负数。
3) 数既不是正数也不是负数,是正数与负数的分界。
4) 在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数1) 凡能写成分数形式的数,都是有理数,整数和分数统称有理数。
注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数:正整数、正分数。
负有理数:负整数、负分数。
零。
3) 自然数:和正整数;a>:a是正数;a<:a是负数;a≥0:a是正数或是非负数;a≤0:a是负数或是非正数。
3、数轴1) 用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:在直线上任取一个点表示数,这个点叫做原点;通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴的三要素:原点、正方向、单位长度。
3) 画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
4、相反数1) 只有符号不同的两个数叫做互为相反数。
注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。
2、设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a。
第一章 有理数全章系统复习资料
第一章有理数全章系统复习资料1.1 正数与负数一、必记概念:1. 像-3、-2、-0.5这样的数(即在以前学过的数前面加”-“号负号的数)叫做。
2. 像3、2、0.5这样的数(即以前学过的的数)叫做,有时在前面也加上,如+3、+2。
3. 一个数前面的叫做它的符号。
4. 0既,也。
5. 在实际生活中,常常用正数和负数表示具有意义的量。
如果上升10米记作+10米,那么下降5米记作。
二、练习:(一)判断题:1. 在小学学过的数前面添上“-”号,就是负数。
()2. 一个物体可以左右移动,设向左移动为正,那么向右移动3米记作3米。
()(二)选择题:3. 下列结论中错误的是()A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数4. 下列说法中正确的是()A. 正数都带“+”号B. 不带“+”号的数都是负数C. 小学数学中学过的数都可以看作正数D. 小学数学中学过的数中除零以外,都可以看作是正数(三)填空题:5. 如果顺时针旋转30°记作-30°,那么逆时针旋转45°记作。
6. 某人向东走5米,又回头向西走5米,此人实际距原地米。
7. 如果中午以后的2小时记作+2小时,那么+2小时前3小时应记作。
8. 观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。
(1) 2、-3、4、-5、6、、、、…(2) 1、2、3、5、8、、、、…(四)解答题:9. “一个数前面加‘-’,它一定是负数”对吗?1.2 有理数1.2.1 有理数一、必记概念:1. 正整数、零和负整数统称为;正分数和负分数统称为;和统称为有理数。
2. 把一些数放在一起,就组成一个数的,简称数集。
3. 零和正数统称为,零和负数统称为。
4. 正整数和零统称为,又统称为;零和负整数统称为。
二、练习:(一)把下列各数填在相应的集合中:8、-1、-0.4、35、0、13-、6、9、317-、114、-19正数集合:﹛…﹜负数集合:﹛…﹜整数集合:﹛…﹜分数集合:﹛…﹜非正数集合:﹛…﹜非负数集合:﹛…﹜非正整数集合:﹛…﹜非负整数集合:﹛…﹜(二)判断题:1. 一个有理数不是正数就是分数。
人教版七年级数学上册第一章有理数全章总复习
知识清单
2.有理数的减法
(1)法则:减去一个数等于加上这个数的__相___反__数___;
(2)字母表示:a-b=a+___(_-_b_)____. 3.有理数的乘法 (1)法则:两数相乘,同号得__正__,异号得__负__,并把绝对值 __相__乘___;任何数与0相乘仍得__0__; (2) 几个不为0的有理数相乘,积的符号由_负__因__数___的个数决 定,当_负___因__数__有奇数个时,积为_负___,当_负__因___数__有偶数个 时,积为_正___;
知识清单
7有理数的混合运算的运算顺序 先算__乘__方___,再算__乘__除____,最后算__加__减____;如果有括号,就 先算_括__号__里__面___的____.
正整数), n的值比原数的整数位数少1. 解:(1)2800万 =28000000 =2.8×107
(2)1600亿 =1600000பைடு நூலகம்0000 =1.6×1011 (3)731000000 =7.31×108
例题讲解
例4按括号内的要求,用四舍五入法对下列各数取近似数: (1). 5.95(精确到0.1); (2). 32.3(精确到个位); (3). 1.645(精确到0.01); (4). 1.0725(精确到千分位).
3
3
8
正数集合 +8, 0.5,
20%, 5 , ┉8
负数集合
-3,1 2 ,
1 3
,-3.314,
-12 ┉
分数集合
1
2 3
,
1 3
,
0.5,-3.14,
20%, ┉
5, 8
自然数集合 0,+8, ┉
课堂练习
浙教版七年级(上册)数学知识点复习资料全
D
C
6、从2开始,连续的偶数相加,它们和的情况如下表: 加数的个数n S 1 2 = 1×2 2 2+4 = 6 = 2×3 3 2+4+6 = 12 = 3×4 4 2+4+6+8 = 20 = 4×5 5 2+4+6+8+10 = 30 = 5×6 〔1若n=8时,则 S的值为_____________. 〔2根据表中的规律猜想:用n的式子表示S的公式为: S=2+4+6+8+…+2n=____________. 〔3根据上题的规律计算2+4+6+8+10+…+2010+2012 的值.
,
结论:被开方数的小数点向左移动两位,它的算术平方根的小数 点就向左移动一位;反之,被开方数的小数点向右移动两位,它的算术平方根的小数点就向右移动一位.
5、实数的分类
①按定义分类
②按正负性质分类
注意:〔1每一个实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数.即实数与数轴上的点一一对应.〔2在数轴上表示的两个实数,右边的数比左边的数大.
A
B
4、下列说法,正确是〔 A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D、零既是负数又是正数
A
1、下列各对数中,互为相反数是〔 A、2和
B、0.5和
C、
和2 D、
和
D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,XX开往北京的某一直快列车的车次号可能是〔 A、20 B、119 C、120 D、319
第一章《有理数》复习总结
第一章《有理数》复习总结有理数是整数和分数的统称,包括正数、负数和零。
有理数可以表示为p/q的形式,其中p和q都是整数,且q不等于0。
p称为分子,q称为分母。
1.有理数的大小比较:(1)对于同号的有理数,绝对值越大,数值越大;(2)对于异号的有理数,正数大于负数,绝对值越小,数值越大。
2.有理数的加减乘除:(1)加法:拆分有理数,按照整数部分和小数部分相加;(2)减法:将减数变为相反数,再进行加法运算;(3)乘法:分别计算分子和分母的乘积,然后化简;(4)除法:将除数变为倒数,再进行乘法运算。
3.有理数的约分和化简:(1)约分:将分子和分母同时除以最大公因数,使得分数不可再约分;(2)化简:将带有分数线的有理数化为最简形式。
4.有理数的绝对值:(1)正数的绝对值是其本身;(2)负数的绝对值是其相反数;(3)零的绝对值是零。
5.有理数的相反数:(1)正数的相反数是负数;(2)负数的相反数是正数;(3)零的相反数是零。
6.计算混合数的值:(1)将整数部分和小数部分分开,分别计算;(2)将结果相加或相减,得到最终的结果。
7.有理数的乘方:(1)有理数的整数次方,将底数连乘或连除相应次数;(2)底数是分数,将底数化为整数的形式进行计算。
8.有理数的乘法逆元:(1)有理数的乘法逆元是其倒数;(2)除零外,任意非零有理数的乘法逆元存在。
9.有理数的混合运算:(1)先进行括号内的运算,再进行乘除法运算,最后进行加减法运算;(2)若有多个加法或减法运算,按照从左到右的顺序进行。
10.有理数在坐标轴上的表示:(1)正数表示点在原点的右侧;(2)负数表示点在原点的左侧;(3)零表示点在原点。
有理数在数学中有着广泛的应用,比如在数轴上定位、计算中的加减乘除、分数和小数的运算等。
学好有理数不仅需要掌握各种运算规则和性质,还需要大量的练习和实践。
通过不断的练习和思考,可以提高解决实际问题的能力,培养思维和逻辑思维能力。
总之,有理数作为数学的一个重要概念,是我们平日生活中接触最多的数的形式。
七上数学第一章《有理数》知识点总结
七上数学第一章《有理数》知识点总结七年级数学第一章《有理数》知识点总结(填空版)一、有理数的定义及正负表示1.有理数是可以表示为两个整数比例的数,包括分数、整数和零。
2.正数是大于零的有理数,用“+”表示。
3.负数是小于零的有理数,用“-”表示。
4.有理数可用数轴表示,数轴上0点表示整数0。
二、有理数的比较和排列1.对于两个不相等的有理数a和b,如果a>b,则称a大于b;如果a<b,则称a小于b。
2.两个有理数的大小可以通过将它们表示为相同分母的分数进行比较。
3.可使用数轴来比较和排列有理数。
4.有理数可以按从小到大或从大到小的顺序排列。
三、有理数的加法和减法1.有理数的加法遵循结合律和交换律,即(a+b)+c=a+(b+c)和a+b=b+a。
2.有理数的减法可以转化为加法,即a-b=a+(-b)。
3.加法的逆元是相反数,即a+(-a)=0。
四、有理数的乘法和除法1.有理数的乘法遵循结合律和交换律,即(a×b)×c=a×(b×c)和a×b=b×a。
2.有理数的除法可以转化为乘法,即a÷b=a×(1/b)。
3.乘法的逆元是倒数,即a×(1/a)=1(a≠0)。
五、有理数的四则运算1.有理数的加法和减法可以结合在一起进行。
2.有理数的乘法和除法可以结合在一起进行。
3.在进行多项式的运算时,可以按照先乘除后加减的顺序进行。
六、有理数的绝对值1.有理数a的绝对值用,a,表示,a,≥0。
2.正数的绝对值等于它本身,即,a,=a(a>0)。
3.负数的绝对值等于它相反数的绝对值,即,a,=-a(a<0)。
七、有理数的倒数1.非零有理数a的倒数用1/a表示。
2.有理数a的倒数乘以自己等于1,即a×(1/a)=1(a≠0)。
八、乘方运算1.有理数的乘方运算是指将有理数自身连乘多次的运算。
2.有理数的零次方等于1,即a^0=1(a≠0)。
(完整版)初中数学第一章有理数知识点归纳总结
- 1 - 第一章有理数
思维路径:
有理数数轴运算
(数)(形)
1.有理数:
(1)凡能写成)0p q ,p (p q
为整数且分数形式的数,都是有理数,整数和分数统称有理数.
▲注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;
(2)有理数的分类: ①负分数负整数
负有理数零正分数正整数正有理数有理数②负分数
正分数
分数负整数
零
正整数
整数有理数(3)自然数 0和正整数;
a >0 a 是正数;
a <0 a 是负数;
a ≥0 a 是正数或0 a 是非负数;▲
a ≤ 0 a 是负数或0 a 是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:。
七年级第一章有理数知识点总结
一、有理数概念及性质
1.什么是有理数
有理数是形式上存在分数表示,或者可以等价转化为分数表示的自然数,整数,分数及其各自的正负数的数的总称。
2.有理数的性质
(1)有理数的封闭性:有理数组成的集合,是一个封闭的集合,它满足交换律,结合律,分配律,有界律以及加减乘除定律。
(2)有理数的可比较性:有理数可以相互比较大小。
(3)有理数的可折叠性:有理数可以折叠为一个更小的数,而且当两个有理数可以折叠时,它们可以折叠到一个相同的因数上。
二、有理数的加减法
(1)有理数的加法
有理数的加法只要把两个加数的分母约到相同,然后将相同的分母下的分子相加即可。
(2)有理数的减法
有理数的减法只要把两个减数的分母约到相同,然后将相同的分母下的分子相减即可。
三、有理数的乘法
有理数的乘法是把两个乘数的分子相乘,分母也相乘,得到的结果是两个乘数的乘积。
四、有理数的除法
有理数的除法是把被除数的分母乘以除数的分子,分子乘以除数的分母,得到的结果是两个数的商。
五、有理数的最简形式
有理数的最简形式,即最简分数,是指把一个分数的分子和分母都约分到最简形式,使得同时存在它们的最大公约数。
六、有理数的基本运算。
第一章有理数知识点
第一章有理数一、有理数的分类____ __________ ____ 有理数______ ______ 有理数__________ _____ ___________ _______ ______________二、与有理数相关的概念1、数轴①三要素:_________________________________②作用:__________________________________________________________________2、相反数①定义:_________________________________②在数轴上特点:_________________________________③性质:_________________________________3、倒数①定义:_________________________________②性质:_________________________________4、绝对值①定义:_________________________________②性质:_________________________________③反之:_________________________________5、等于本身的数①相反数等于本身的数是:______②倒数等于本身的数是:______③绝对值等于本身的数是:______④绝对值等于它的相反数的数是:______⑤平方等于本身的数是:______⑥立方等于本身的数是:______6、科学记数法与近似数例:①1380000用科学记数法________②138亿用科学记数法__________③近似数0.3080精确到____位,④近似数2.50×104精确到___位,⑤2.9632精确到十分位:____精确到百分位:___⑥将139738精确到千位:_______精确到万位:_______ 例:①(+5)+(+8)=②(-5)+(-3)=③(-10)+(+6)=④(-23)+43=⑤(-432)+()432+=⑥(-4)+0=2、减法运算(____________________)例:①8-(-8)= ⑦16-47=②0-8= ⑧3221-③- 8-8= ⑨-3.8-7=④-8-(-8)= ⑩-3.8+7=⑤8-8=⑥0-(-8)=加减混合运算例:(-20)+(+3)-(-5)-(+7)方法一:===(-20)+(+3)-(-5)-(+7)方法二:= 读作:______________ =看作:______________= 法则:_____________=练习:-4.7-(-8.9)+7.5+(-6)3、乘法运算法则①________________________②________________________③________________________例:①6×(-9)= ②(-6)×(-1)=③⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛⨯⨯-9165523)3()④998532)21(⨯⨯⨯-4、除法运算(_____________________)①6÷(-2)= ②(-6)÷(-1)= ③)511(5.2)85(-÷÷- ④(-7)×5-90÷(-15)5、乘方运算① 定义:_____________________ ② 法则:___________________________________________例:①23=②(-2)3= ③(-2)4= ④ -23= ⑤ -24=⑥332⎪⎭⎫⎝⎛-=⑦=-⨯-20042003)5.0()2(__________;(-2)100+(-2)101= .⑧(-2)100比(-2)99大( )A 、2B 、-2C 、299D 、3×299四、混合运算1、(-10)÷551⨯⎪⎭⎫⎝⎛-2、()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--3、 18-6÷(-2)×∣-41∣4、 4×(-3)2-13+(-12 )-|-43|.5、-22 -(1-51×0.2)÷(-2)36、 -4- [-5+(0.2×31-1)÷(-152)]7、51)2(423⨯-÷-8、[]2)4(231)5.01(-+⨯÷--9、)411()2(32)53()5(23-⨯-÷+-⨯- 10、|97|-÷2)4(31)5132(-⨯--11、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--12、25.0)61(215)322()2(24--⨯+-÷-13、)6712743(-+×(-60) 14、)1279543(+--÷(-361) 15、(-361)÷)1279543(+--16、75.04.34353.075.053.1⨯-⨯+⨯-17、())793258(90)793258()35(79325855-⨯--⨯--⨯- 18、531711172511⨯+⨯ 简便19、)9(181799-⨯简便 20、)9(18190-⨯简便五、典型例题1、1--的相反数是______,138⎛⎫-- ⎪⎝⎭的倒数是_____. 2、a 、b 互为相反数,那么(a+b-1)+(ba-1)=______3、若a=-a ,那么a=_______4、m 、n 互为倒数,求代数式mn 2-n-3的值.5、已知|a|=7,|b|=3,求a+b 的值变式1、离原点距离是7的数是______.变式2、已知|1|x += 4,2(2)4y +=,求x y +的值。
初一数学上册第一章有理数总复习资料
第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。
有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。
在数的研究上它起着重要的作用。
它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。
但要注意数轴上的所有点并不是都有有理数和它对应。
借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。
零的相反数是零。
互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。
有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
对于任何有理数a,都有≥0。
4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。
有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。
7、近似数与有效数字:近似数:一个与实际数很接近的数,称为近似数;有效数字:从左边第一个不为0的数字起,到精确到的数位止,这些数字都是这个数的有效数字。
(1)有效数字越多,近似数就越精确;(2)由四舍五入得到的近似数0.003206,左边第一个不是零的数是3,最后一位四舍五入所得到的数是6,从3到6中间的所有的数字是3、2、0、6,左边的三0个不算,但2和6之间的0要算,这个近似数有4个有效数字。
二、有理数的运算法则1、同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。
第一章 有理数知识点
第一章有理数一、正数和负数1、负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2、具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3、 0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二、有理数的概念及分类1、整数和分数统称为有理数。
通常有两种分类:⑴按有理数的意义分类⑵按正、负来分正整数整数 0 正有理数正分数有理数有理数 0 (0不能忽视)负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数2、数轴1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。
2.数轴的画法:①画一条水平的直线;②在直线的适当位置选取一点作为原点,并用0表示这点;③确定向右为正方向,用箭头表示出来;④选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,…;从原点向左,每隔一个单位长度取一点,依次为-1,-2,-3,…。
如图1所示。
3.数轴上点的移动规律 左减右加4.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
人教版第一章有理数知识点归纳
第一章有理数知识点归纳1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义。
1.2有理数 1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法 1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变。
(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数复习资料[基础知识]
一、【正负数】 有理数的分类:★☆▲
【基础练习】 1☆把下列各数填在相应额大括号内:
1,-0.1,—789,25,0,—20,—3.14,—590,6/7
·正整数集{ …};·正有理数集{ …};·负有理数集{ …} ·负整数集{ …};·自然数集{ …};·正分数集{ …} ·负分数集{ …}
2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义 是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、【数轴】 规定了 、 、 的直线,叫数轴。
【基础练习】
1☆如图所示的图形为四位同学画的数轴,其中正确的是( )
2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,—|—2|, —4.5, 1, 0
3下列语句中正确的是( ) A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数
D所有有理数都可以用数轴上的点表示出来
4、★ ①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的 距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示
的数是( ) A .-5
, B.-4 C.-3 D.-2
有
理
数
有理数
·有理数加减法法则· ——口诀记法
(1) 同号就加,取相同的符号。
(2) 异号就减,大的减小的,谁大取
谁的符号。
三、【相反数的概念】
像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a 。
相反数的相关性质:
1、相反数的几何意义:
表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
2、互为相反数的两个数,和为0。
【基础练习】
1、☆-5的相反数是 ;-(-8)的相反数是 ;- [+(-6)]=
0的相反数是 ; a 的相反数是 ;2
1
-的相反数的倒数是__ 2、☆若a 和b 是互为相反数,则a +b =( ) A. —2a B .2b C. 0 D. 任意有理数 3、★(1)如果a =-13,那么-a =______; (2)如果-a =-5.4,那么a =______; (3)如果-x =-6,那么x =______; (4)-x =9,那么x =______;
4、★★已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是( ) A .负数; B.正数; C.负数或零; D.非负数 四、【绝对值】一般地,数轴上表示数a 的点与原点 的 叫做数a 的绝对值,记作∣a ∣. 一个正数的绝对值是 ; 一个负数的绝对值是它的 ; 0的绝对值是 . 【基础练习】
1、☆—2的绝对值表示它离开原点的距离是 个单位,记作 。
2、☆ |—8|= 。
—|—5|= 。
绝对值等于4的数是______。
3、☆绝对值等于其相反数的数一定是( ) A .负数 B .正数 C .负数或零 D .正数或零
4、★7=x ,则______=x ; 7=-x ,则______=x 。
5、★如果a a 22-=-,则a 的取值范围是( )
【任一个有理数a 的绝值】用式子表示就是: (1)当a 是正数(即a >0)时,∣a ∣= ;
(2)当a 是负数(即a <0)时,∣a ∣= ; (3)当a =0时,∣a ∣= .
A .a >O
B .a ≥O
C .a ≤O
D .a <O . 6、★★如果3>a ,则______3=-a ,______3=-a . 7、★★绝对值不大于11的整数有( ) A .11个 B .12个 C .22个 D .23个 五、【有理数的运算】 ·求几个相同因数的积的运算,叫做有理数的乘方。
即:a n =aa …a(有n 个a)
]六、【科学记数法】【近似数及有效数字】
·把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有 一位的数),叫做科学记数法.
·对一个近似数,从左边第一个不是0的数字起,到末位数字止, 所有的数字都称为这个近似数的有效数字。
【基础练习】
1、☆用科学记数数表示:1305000000= ;
2、☆ 水星和太阳的平均距离约为57900000 km 用科学记 数法表示为 .
3、★ 120万用科学记数法应写成 ; 2.4万的原数是 .
4、★. 近似数3.5万精确到 位,有 个有效数字.
5、★近似数0.4062精确到 ,有 个有效数字.
6、★5.47×105
精确到 位,有 个有效数字 7、★.3.4030×105保留两个有效数字是 ,精确到千位是
8、★★用四舍五入法求30951的近似值(要求保留三个有效数字)结果是
·“奇负偶正”的应用·
1、如下符号的化简(指负号的个数与结果符号的关系),如: -{+[-(-2)]}= -2
2、连乘式的积(指负因数的个数与结果符号的关系),如:
(-1)×(-2)×(-3)×(+4)=-24 (-1)×(-2)×(-3)×(-4)=24
3、负数的乘方(指乘方的指数与结果符号的关系),如:
(-2)3=-8, (-3)2
=9
4、分数的符号法则(指的是分子、分母及分数本身三个符号中,同时改变两个,值不变,但改变一个或三个都改变时,分数的值就变相反了),如:
2
12121-=
-=-;b a b a b a -=-=-
·有理数乘除法法则·
同号得 ,异号得 ,绝对值相乘(除)。