2013版中考总复习数学(人教版全国通用)基础讲练第16讲直角三角形(含答案点拨)

合集下载

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。

自学初中数学资料 直角三角形(资料附答案)

自学初中数学资料 直角三角形(资料附答案)

自学资料一、直角三角形【知识探索】1.如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等.(简记为:H.L).【错题精练】例1.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1.0,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+S2+S3+S4=______.【解答】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=1.21,S3+S4=1.44,∴S1+S2+S3+S4=2.44.第1页共41页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训故填:2.44.【答案】2.44例2.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,将边AB沿AE翻折,使点B落在BC上的点D处,再将边AC沿AF翻折,使点C落在AD延长线上的点C′处,两条折痕与斜边BC分别交于点E,F,则线段C′F的长为()A. 85B. √32C. 35D. 45【解答】解:∵Rt△ABC中,∠BAC=90°,AB=6,AC=8,∴BC=10,∵将边AB沿AE翻折,使点B落在BC上的点D处,∴∠AEC=∠AEB,∠BAE=∠DAE,∵∠BED=180°,∴∠CEA=90°,即CE⊥AE,∵S△ABC=12AB×AC=12AE×BC,∴AE=4.8,在Rt△ACE中,CE=√AC2−AE2=6.4,∵将边AC沿AF翻折,使点C落在AD延长线上的点C′处,∴CF=C'F,∠CAF=∠C'AF,∵∠BAE+∠DAE+∠CAF+∠C'AF=∠BAC=90°,∴∠EAF=45°,且CE⊥AE,∴∠EAF=∠EFA=45°,∴AE=EF=4.8,∵CF=CE-EF=6.4-4.8=1.6,∴C'F=1.6=85,故选:A.【答案】A第2页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例3.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.【答案】解:(1)Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=22,AE=AC-EC=2-BD=2-(22-2)=4-22,③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.第3页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训由等腰三角形的三线合一可知:AE=CE=12AC=1.例4.△ABC是⊙O的内接三角形;(1)如图1,若BC=4√2,AC=7,∠ACB=45°,求⊙O的半径.(2)如图2,若AB=7,BC=5,AC=8,求∠C的度数及⊙O的半径.(3)如图3,△ABC是⊙O的内接三角形,BE是AC边上的高,连结BO.①请证明:∠CBE=∠ABO;②若AB=7,BC=6,AC=8,请求出⊙O的半径.【答案】解:(1)作直径BD,BH⊥AC于H,连结AD,如图1,在Rt△BCH中,CH=BH=√22BC=√22•4√2=4,∴AH=AC-CH=7-4=3,在Rt△ABH中,AB=√AH2+BH2=5,∵BD为直径,∴∠BAD=90°,第4页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∵∠D=∠ACB=45°,∴△ABD为等腰直角三角形,∴BD=√2AB=5√2,∴⊙O的半径为5√22;(2)作直径BD,BH⊥AC于H,连结AD,如图2,设CH=a,BH=b,则AH=AC-CH=8-a,在Rt△BCH中,a2+b2=52①,在Rt△BAH中,(8-a)2+b2=72②,①-②得-64+16a=-24,解得a=52,在Rt△BCH中,∵BC=5,CH=52,∴∠CBH=30°,∴∠C=60°,∵BD为直径,∴∠BAD=90°,∵∠D=∠ACB=60°,∴AD=√33AB=7√33,∴BD=2AD=14√33∴⊙O的半径为7√33;(3)①证明:作直径BD,连结AD,如图3,∵BE⊥AC,∴∠CBE+∠C=90°,∵BD为直径,∴∠BAD=90°,∴∠D+∠ABD=90°,∵∠D=∠ACB,∴∠CBE=∠ABO;②设CE=a,BE=b,则AE=AC-CE=8-a,在Rt△BCE中,a2+b2=62①,第5页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训在Rt△BAE中,(8-a)2+b2=72②,①-②得-64+16a=-13,解得a=5116,在Rt△BCE中,∵BC=6,CE=5116,∴BE=√BC2−CE2=21√1516,∵∠CBE=∠ABD,∴Rt△ABD∽Rt△EBC,∴BDBC =AB BE,∴BD=6×721√1516=32√1515,∴⊙O的半径为16√1515.例5.如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的度数;(2)若CD=4√2,AE=2,求圆O的半径.【答案】解:(1)∵CD⊥AB,∠A=48°,∴∠ADE=42°.∴∠AOC=2∠ADE=84°,∴∠OCE=90°-84°=6°;(2)解:因为AB是圆O的直径,且CD⊥AB于点E,所以CE=12CE=12×4√2=2√2,在Rt△OCE中,OC2=CE2+OE2,设圆O的半径为r,则OC=r,OE=OA-AE=r-2,所以r2=(2√2)2+(r-2)2,解得:r=3.所以圆O的半径为3.第6页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例6.如图,点D在半圆O上,半径OB=√61,AD=10,点C在弧BD上移动,连接AC,H是AC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是()A. 5B. 6C. 7D. 8【解答】解:如图,取AD的中点M,连接BD,HM,BM.∵DH⊥AC,∴∠AHD=90°,∴点H在以M为圆心,MD为半径的⊙M上,∴当M、H、B共线时,BH的值最小,∵AB是直径,∴∠ADB=90°,∴BD=√(2√61)2−102=12,BM=√BD2+DM2=√122+52=13,∴BH的最小值为BM-MH=13-5=8.故选:D.【答案】D例7.如图所示,P、Q分别是Rt△ABC两直角边AB、AC上两点,M为斜边BC的中点,且PM⊥QM,MD⊥AB于点D,ME⊥AC于点E.求证:(1)△MPD∽△MQE;(2)AD•PD=AE•EQ:(3)PB2+QC2=PM2+QM2.【答案】证明:(1)∵MD⊥AB于点D,ME⊥AC,∠A=90°,∴∠MDP=∠MEA=∠A=90°,∴四边形ADME是矩形,∴AD=EM,AE=DM,∠DME=90°,∵PM⊥QM,第7页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训∴∠PMQ=90°,∴∠DMP=∠EMQ,∴△MPD∽△MQE;(2)∵△MPD∽△MQE,∴PDEQ =DMEM,∵AD=EM,AE=DM,∴PDEQ =AEAD,∴AD•PD=AE•EQ;(3)如图,以M点为中心,△MCQ顺时针旋转180°至△MBN,∴△MCQ≌△MBN,∴BN=QC,MN=MQ,∠MBN=∠C,连接PN,PQ,∵PM⊥QM,∴PM垂直平分NQ,∴PN=PQ,∵△ABC是直角三角形,BC是斜边,∴∠ABC+∠C=90°,∴∠ABC+∠MBN=90°,即△PBN是直角三角形,根据勾股定理可得,PN2=PB2+BN2,∴PQ2=PB2+QC2,∵PQ2=PM2+QM2,∴PB2+QC2=PM2+QM2.例8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为()cm2.A. 3cm2B. 4cm2C. 7cm2D. 49cm2第8页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故选:D.【答案】D例9.如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=20°,那么∠DCE的度数是______.【解答】解:∵点E是Rt△ABD的斜边AB的中点,AB,∴ED=EB=12∴∠EDB=∠DBA=20°,∴∠DEA=∠EDB+∠DBA=40°,∵点E是Rt△ABC的斜边AB的中点,AC=BC,AB,CE⊥AB,∴EC=12∴∠DEC=130°,ED=EC,∴∠DCE=25°,故答案为:25°.【答案】25°例10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值.第9页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=12EF=12AP.当AP⊥BC时,AP的最小值即为直角三角形ABC斜边上的高125,∴AM的最小值是65.例11.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为______.【解答】解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,第10页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴∠B=60°,BC=12AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.【答案】2例12.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【答案】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=√3r,BC=2√3r则圆柱型唇膏和纸盒的体积之比为:πr2ℎ′√34(2√3r)2ℎ′=√39π(若设△ABC的边长为a,则圆柱型唇膏和纸盒的体积比为112πa2ℎ′√34a2ℎ′=√39π)(2)易拉罐总体积和纸箱容积的比:l2r•b2r•πr2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1∴第二种包装的空间利用率大.例13.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【答案】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=12AD,在RT△ABC中,∵M是AC中点,∴BM=12AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=12AC=1,∴BN=√2例14.如图,点D为线段AB延长线上一点,△ABC和△BDE分别是以AB,BD为斜边的等腰直角三角形.连接CE并延长,交AD的延长线于F,△ABC的外接圆圆O交CF与点M.若AB=6,BD=2.(1)求CE长度;(2)证明:AC2=CM•CF;【答案】解:(1)∵△ABC 和△BDE 等腰直角三角形,AB=6,BD=2.∴BC=√22AB=3√2,BE=√22BD=√2,∠ABC=∠EBD=45°,∴∠CBE=90°,∴CE=√CB 2+BE 2=2√5;(2)证明:连接AM ,则∠AMC=∠ABC=∠CAF=45°,∵∠ACM=∠FCA∴△ACM ∽△FCA ,∴AC CF =CM AC ,∴AC 2=CM•CF ;(3)∵∠ABC=∠BDE ,∴DE ∥BC ,∴△EDF ∽△CBF ,∴DF BF =DE BC =EF CF ,∴EF EF+CE =DF BD+DF =√23√2=13,∴BF=3,CF=3√5,∵BF•AF=FM•CF ,∴FM=9√55, ∴CM=3√5-9√55=6√55.例15.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC ,直线AB 交x 轴于点P .若△ABC 与△A'B'C'关于点P 成中心对称,则点A'的坐标为______.【解答】解:如图:点B,C的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC,得AB=2√2,∠ABD=45°,∴BD=AD=2,A(4,3),设AB的解析式为y=kx+b,将A,B点坐标代入,得{2k+b=14k+b=3,解得{k=1b=−1,AB的解析式为y=x-1,当y=0时,x=1,即P(1,0),由中点坐标公式,得x A′=2x P-x A=2-4=-2,y A′=2y A′-y A=0-3=-3,A′(-2,-3).故答案为:(-2,-3).【答案】(-2,-3)例16.Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为______.【解答】解:①以A为直角顶点,向外作等腰直角三角形DAC,∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°,又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2×√2=√2,2在Rt△BAC中,BC=√22+22=2√2,∴BD=√BE2+DE2=√(2√2+√2)2+(√2)2=2√5;③以AC为斜边,向外作等腰直角三角形ADC,∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=ACsin45°=2×√2=√2,2又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°,又∵在Rt△ABC中,BC=√22+22=2√2,∴BD=√BC2+CD2=√(2√2)2+(√2)2=√10.故BD的长等于4或2√5或√10.【答案】4或2√5或√10【举一反三】1.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=4√3,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B'DE的位置,B'D交AB于点F.若△AB'F为直角三角形,则AE的长为______.【解答】解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=12BC=2√3,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴BFBC =BDAB,即BF4√3=2√38,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3-x),②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=12B′E=12(8-x),EH=√3B′H=√32(8-x),在Rt△AEH中,∵EH2+AH2=AE2,∴[√32(8-x)]2+[4+12(8-x)]2=x2,解得:x=285,综上所述,满足条件的AE的值为6或285.故答案为:6或285.【答案】6或2852.如图,已知∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,正方形BCMN,正方形CAFG,连接EF,GM,设△AEF,△CGM的面积分别为S1,S2,则下列结论正确的是()A. S1=S2B. S1<S2C. S1>S2D. S1≤S2【解答】解:过E作ER⊥AF,交FA的延长线于R,设△ABC的三边BC,AC,AB的长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∵AE=AB,∠ARE=∠ACB=90°,∠EAR=∠CAB,∴△AER≌△ABC,∴ER=BC=a,而FA=b,1∵CG=b ,CM=a ,∴S 2=12ab ,∴S 1=S 2,故选:A .【答案】A3.如图,在△AOB 中,已知∠AOB=90°,AO=3,BO=4.将△AOB 绕顶点O 按顺时针方向旋转α(0°<α<90°)到△A 1OB 1处,此时线段OB 1与边AB 的交点为点D ,则在旋转过程中,线段B 1D 长的最大值为( )A. 4.5B. 5C. 125D. 85【解答】解:因为OB 1的长度是定值,所以当OD 最短即可OD ⊥AB 时,B 1D 长的取最大值.∵如图,在△AOB 中,已知∠AOB=90°,AO=3,BO=4,∴AB=√OA 2+OB 2=√32+42=5,则12OA•OB=12AB•OD ,OD=OA•OB AB =3×45=125. 由旋转的性质知:OB 1=OB=4,∴B 1D=OB 1-OD=4-125=85.即线段B 1D 长的最大值为85.【答案】D4.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:PD=PF;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.【答案】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,∵AB是⊙O的直径,DE⊥AB,∴∠ADB=∠AED=90°,∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,∴∠ADE=∠DBA,∴∠DAC=∠ADE,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠DFA+∠DAC=90°,又∵∠ADE=∠DAP,∴∠PDF=∠PFD,∴PD=PF;(3)解:连接CD,∵∠CBD=∠DBA,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.5.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=1BC.2(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.【答案】(1)解:连接OB和OC;∵OE⊥BC,∴BE=CE;BC,∵OE=12∴∠BOC=90°,∴∠BAC=45°;(2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD,∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴四边形AFHG是正方形;(3)解:由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102;解得,x1=12,x2=-2(不合题意,舍去);∴AD=12.6.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为______cm2.【解答】解:如右图所示,根据勾股定理可知,S正方形2+S正方形3=S正方形1,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形3,∴S正方形C+S正方形D+S正方形A+S正方形B=S正方形1=122=144.故答案是144.【答案】1447.已知△ABC是等腰直角三角形,∠A=90°,AB=√2,点D位于边BC的中点上,点E在AB上,点F 在AC上,∠EDF=45°.(1)求证:∠DFC=∠EDB;(2)求证:CF•BE=1;(3)当BE=1时,求△FCD的面积.【答案】(1)证明:∵∠EDF=45°,∴∠EDB+∠FDC=135°,∵∠B=∠C=45°,∴∠DFC+∠FDC=135°,∴∠BDE=∠DFC;(2)证明:∵∠B=∠C,∠BED=∠FDC,∴△BDE∽△CFD,∴BDFC =BECD,∴CF•BE=BD•CD=1,(3)解:∵△ABC是等腰直角三角形,∠A=90°,AB=√2,∴BC=2,∵点D位于边BC的中点上,∴BD=DC=BE=1,∠B=∠C=45°,∴∠BDE=67.5°,∠EDF=45°,∴∠FDC=∠DFC=67.5°,CF=CD=1,∴DC边上的高是√22,∴S△CDF=12×1×√22=√24.8.如图,在矩形ABCD中,BC=8,CD=6,E为AD上一点,将△ABE沿BE折叠,点A恰好落在对角线BD上的点F处,则折线BE的长为()A. 2√5B. 3√3C. 3√5D. 6√3【解答】解:在Rt△BCD中,利用勾股定理得BD=10,设AE=x,则EF=x,DE=8-x,在Rt△DEF中,∵BF=AB=6,∴DF=10-6=4.则(8-x)2=x2+42,解得x=3,在Rt△ABE中,BE=√AB2+AE2=√32+62=3√5.故选:C.【答案】C9.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若CF=6,AC=AF+2,则四边形BDFG的周长为()A. 9.5B. 10C. 12.5D. 20【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,AC,∴BD=DF=12∴四边形BGFD是菱形,设AF=x,则AC=x+2,FC=6,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即x2+62=(2+x)2,解得:x=8,故AC=10,故四边形BDFG的周长=4BD=2×10=20.故选:D.【答案】D10.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E,CE=√5,CD=2.(1)求直径BC的长;(2)求弦AB的长.【答案】解:(1)∵BC是半圆O的直径,∴∠BDC=90°,由CE=√5,CD=2,得DE=1,∵△ADE∽△BCE,∴ADBC =DECE,∴BC=2√5.(2)∵△ABE∽△DCE,∴AEAB =DEDC=12,设AE=x,∵AB2+AC2=BC2,∴(x+√5)2+(2x)2=(2√5)2,解得:x=−2√5±8√510,∵x>0,∴x=35√5,∴AB=2x=65√5.11.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB 于点D,则CD̂的长为()A. 16π B. 13πC. 23π D. 2√33π【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴CD̂的长为60π×2180=2π3, 故选:C .【答案】C12.如图,△ABC 中,∠C=90°,CA=CB ,E 、F 分别为CA 、CB 上一点,CE=CF ,M 、N 分别为AF 、BE 的中点.求证:AE=√2MN .【答案】证明:如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG=12AE ,NG ∥AE ,MG=12BF ,MG ∥BF ,∵CE=CF ,∠C=90°,∴AE=BF ,∠MGN=∠C=90°,∴MG=NG ,∴△MNG 是等腰直角三角形,∴NG=√22MN ,∴AE=2NG=NG=√22×2MN=√2MN ,即AE=√2MN .13.如图,在Rt △ABC 中,∠ACB=90°,AB=10,AC=6,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为______.【解答】解:①如图1中,当∠EDB=90°,四边形ACDE是正方形,此时CD=AC=6,∵BC=√AB2−AC2=8,∴BD=BC-CD=8-6=2,∵tan∠ABC=DFBD =AC BC,∴DF2=6 8,∴DF=32.②如图2中,当∠DEB=90°时,AC=AE=6,则BE=4,设CD=DE=x,在Rt△BDE中,(8-x)2=x2+42,∴x=3,综上所述,满足条件的DF的值为3或32.故答案为3或32.【答案】3或3214.在Rt△ABC中,AB=5,BC=3,则斜边中线长为______.【解答】解:在Rt△ABC中,AB=5,BC=3,①AB为斜边时,斜边中线长为12AB=2.5;②AB和BC为直角边长时,由勾股定理得:斜边长=√52+32=√34,则斜边中线长为12AC=√342;故答案为:2.5或√342.【答案】2.5或√34215.已知如图,Rt△ABC中,∠ACB=90°,E是斜边AB的中点,D是线段AC延长线上的一点,连结DB、DE,DE与BC交于点G.给出下列结论:①若AD=BD,则AC•AD=AE•AB;②若AB=BD,则DG=2GE;③若CD=BE,则∠A=2∠ADE.其中正确的是()A. ①②B. ①③C. ②③D. ①②③【解答】解:①∵AD=BD,E是斜边AB的中点,∴DE⊥AB,又∠ACB=90°,∠A=∠A,∴△AED∽△ACB,∴ACAE =ABAD,即AC•AD=AE•AB,①正确;②∵AB=BD,∠ACB=90°,∴BC是△ABD的中线,又DE是△ABD的中线,∴点G是△ABD的重心,∴DG=2GE,②正确;③连接CE,∵∠ACB=90°,E是斜边AB的中点,∴EC=EA=EB,∴∠A=∠ECA,CD=CE,∴∠CDE=∠CED,∵∠ECA=∠CDE+∠CED=2∠ADE,∴∠A=2∠ADE,③正确;故选:D.【答案】D16.已知:Rt△ABC中,∠B=90°,AB=4,BC=3,点M、N分别在边AB、AC上,将△AMN沿直线MN折叠,点A落在点P处,且点P在射线CB上,当△PNC为直角三角形时,PN的长为______.【解答】解:在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=√32+42=5,设AN=PN=x,则CN=5=x①当∠NPC=90°时,如图1,∵∠NPC=∠B=90°,∠C=∠C,∴△NPC ∽△ABC ,∴PN AB =CNAC ,∴x 4=5−x 5, x=209,即PN=209;②当∠PNC=90°时,如图2,∵∠PNC=∠ABC=90°,∠C=∠C∴△NPC ∽△ABC ,∴PN AB =NC AC ,∴x 4=5−x 3, x=207,即PN=207;综上,PN 的长为209或207.故答案为:209或207.【答案】209或207.1.勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-aS四边形ADCB=S△ADC+S△ABC=-12b2+12abS四边形ADCB=S△ADB+S△BCD=12c2+12a(b-a)∴12b2+12ab=12c2+12a(b-a)化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明如图(2)中∠DAB=90°,求证:a2+b2=c2【答案】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b-a),∴12ab+12b2+12ab=12ab+12c2+12a(b-a),∴a2+b2=c2.2.如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=13AB,AF=13AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S3=2S2B. S1+S3=4S2C. S1=S3=S2D. S2=13(S1+S3)【解答】解:∵在Rt△ABC中,AE=13AB,AF=13AC,∴AE=12BE,AF=12CF,EF2=AE2+AF2,∴EF2=14BE2+14CF2.∴12π•14EF2=18π•(14BE2+14CF2),即S2=14(S1+S3).∴S1+S3=4S2.故选:B.【答案】B3.如图,沿折痕AE叠矩形ABCD的一边,使点D落在BC边上的点F处,若AB=8,且△ABF的面积为24,求EC的长.【答案】解:∵S△ABF=24,AB=8,∴BF=6.∴AF=10=AD.∴FC=4.设EC=x,则EF=DE=8-x.根据勾股定理,得CF2+CE2=EF2即16+x2=(8-x)2,∴x=3.即EC=3.4.如图,已知⊙O的半径为5,弦AB、CD所对的圆心角分别是∠AOB,∠COD,且∠AOB与∠COD互补,弦CD=8,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3【解答】解:解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−82=6,故选:A.【答案】A5.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. 95B. 125C. 185D. 365【解答】解:在Rt△ABC中,∵AC=3,BC=4,∴AB=√32+42=5.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,∵S△ABC=12AC•BC=12AB•CM,且AC=3,BC=4,AB=5,∴CM=125,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+(125)2,解得:AM=95,∴AE=2AM=185.故选:C.【答案】C6.如图,已知平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF交于H,BF、AD的延长线交于G,下面结论正确的是()①DB=√2BE;②∠A=∠BHE;③连CG,则四边形BCGD为平行四边形;④AD2+DH2=2DC2.A. ①②③④B. ①②③C. ①②④D. ②③④【解答】解:∵∠BDE=45°,DE⊥BC,∴DB=√2BE,BE=DE.∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°.∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC,∴∠BHE=∠C,BH=CD,EH=EC,∵▱ABCD中,∴AD=BC,∠A=∠C,∴∠A=∠BHE,∴AD2+DH2=BC2+DH2=(BE+EC)2+(DE-HE)2=(BE+HE)2+(BE-HE)2=2BE2+2HE2=2(BE2+HE2)=2BH2=2DC2,∴正确的有①②④.故选:C.【答案】C7.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若FG=5,CF=6,则四边形BDFG的面积为______.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,AC,∴BD=DF=12∴四边形BDFG是菱形,过点B作BH⊥AG于点H,∵四边形BDFG是菱形,∴GF=DF=5,∵∠BEF=∠EFH=∠BHF=90°,∴四边形BHFE是矩形,∴BH=EF=1CF=3,2∴S菱形BDFG=GF•BH=15.故答案为:15.【答案】158.已知△ABC中,∠BAC=60°,D是线段BC上一个动点,以AD为直径画⊙O分别交AB,AC于E、F.(1)如图1,若AD=4,求EF的长;(2)如图2,若∠ABC=45°,AB=2√2,求EF的最小值.【答案】解:(1)作直径EP,连结PF,如图1,∵EP为⊙O的直径,∴∠EFP=90°,∵∠P=∠EAF=60°,∴∠PEF=30°,∴PF=12PE,EF=√3PF=√32EP,∵EP=AD=4,∴EF=√32×4=2√3;(2)∵EF=√32EP=√32AD,∴当AD最小时,EF最小,当AD⊥BC时,AD最小,如图2,∵∠ABC=45°,AB=2√2,∴AD=√2AB=2,2∴EF=√3×2=√3,2即EF的最小值为√3.9.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,求BD的长.【答案】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.10.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB 上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连结CD交AB于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是()A. 一直减小B. 一直不变C. 先变大后变小D. 先变小后变大【解答】解:连接OC,OD,PD,CQ.设PC=x,OP=y.延长CP 与圆交于点F,∵PC⊥AB,QD⊥AB,∴∠CPO=∠OQD=90°,∵PC=OQ,OC=OD,∴Rt△OPC≌Rt△DQO,∴Rt△OPC≌Rt△DQO,∴∠FOD=90°,∴∠PCE=45°,∴OP=DQ=y,∴△CEP与△DEQ的面积和为S=(x2+y2)÷2=OD2÷2=12.5.故选:B.【答案】B11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.【答案】(1)证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵AĈ=AĈ,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=53或x=-3(不合题意,舍去),∴OA=2x+1=2×53+1=133,即⊙O的半径为133.12.如图,在△ABC中,∠ACB=90∘,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28∘,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax−b2=0的一个根吗?说明理由.②若AD=EC,求ab的值.【解答】(1)解:∵∠ACB=90∘,∠A=28∘,∴∠B=62∘,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90∘−∠BCD=31∘;(2)解:①由勾股定理得,AB=√AC2+BC2=√a2+b2,∴AD=√a2+b2−a,解方程x2+2ax−b2=0得,x=−2a±√4a2+4b22=±√a2+b2−a,∴线段AD的长是方程x2+2ax−b2=0的一个根;②∵AD=AE,∴AE=EC=b2,由勾股定理得,a2+b2=(12b+a)2,整理得,ab =34.【答案】(1)∠ACD=31∘;(2)①线段AD的长是方程x2+2ax−b2=0的一个根;②ab =34.13.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC非学科培训∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°-2y,∠E=∠CAE=x,∴∠BAE=180°-∠B-∠E=2y-x,∴∠DAE=∠BAE-∠BAD=2y-x-y=y-x,∠BAC=∠BAE-∠CAE=2y-x-x=2y-2x,∴∠DAE=12∠BAC.第41页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训。

2013中考数学解直角三角形(答案)

2013中考数学解直角三角形(答案)

DABCEF新思维教育一对一个性化教案授课日期: 2013 年 1月 日学生姓名 教师姓名 授课时段年 级 初三学 科数学课 型一对一教学内容解直角三角形在实际问题中的运用 教 学 重、难点要点一:锐角三角函数的基本概念1.(·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干?2.(綦江中考)如图,在矩形A B C D 中,E 是BC 边上的点,A E B C =,D F AE ⊥,垂足为F ,连接D E .(1)求证:A B E △D F A ≌△;(2)如果10A D A B =,=6,求sin E D F ∠的值.AOBEC D3、(宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.4、(肇庆中考)在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.5、(·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B D A C =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(·钦州中考)sin30°的值为( )A .32B .22C .12D .332.(长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .(21),B .(12),C .(211)+,D .(121)+,3.(定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .83米 C .833米 D .433米4.宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( )A.︒50 B.︒60 C.︒70 D.︒80 5.(毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫-⎪⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭, C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(襄樊中考)计算:2cos 45tan 60cos 30+ 等于( )(A )1 (B )2 (C )2 (D )3 三、解答题11.(·黄石中考)计算:3-1+(2π-1)0-33tan30°-tan45°12.(崇左中考)计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.13.(义乌中考)计算:33sin 602cos 458-+要点三、解直角三角形在实际问题中的运用1.(庆阳中考)如图(1),一扇窗户打开后用窗钩AB可将其固定.如图(2)是如图(1)中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(3 1.7≈,结果精确到整数)2.(郴州中考)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB的高度为1.5米,测得仰角 为30°,点B到电灯杆底端N的距离BN为10米,求路灯的高度MN是多少米?(取2=1.414,3=1.732,结果保留两位小数)3、(眉山中考)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B到C处的距离。

初中数学中考一轮复习第4章几何初步知识与三角形第16课时直角三角形中考演练(含答案)

初中数学中考一轮复习第4章几何初步知识与三角形第16课时直角三角形中考演练(含答案)

第16课时 直角三角形1.如图,将两个完全相同的Rt△ACB和Rt△A'C'B'拼在一起,其中点A'与点B重合,点C'在边AB上,连接B'C,若∠ABC=∠A'B'C'=30°,AC=A'C'=2,则B'C的长为( )A.27B.47C.23D.432.如图,一块直角三角板的60°的顶点A与直角顶点C分别在平行线FD,GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为( )A.60°B.45°C.30°D.25°3.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图①,②(图②为图①的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(注:尺、寸是我国古代计量单位,1米=3尺,1尺=10寸),则AB的长是( )图①图②A.50.5寸B.52寸C.101寸D.104寸4.如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为 .5.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D.已知BC=8,AC=6,则线段CD 的长为( )A.10B.5C .245D .1256.已知直角三角形纸片的两直角边长分别为6,8,现将△ABC 折叠,如图,使点A 与点B 重合,折痕为DE ,则CE BC 的值是( )A .247B .73C .724D .137.如图,在△ABC 中,∠ACB=90°,D 为AB 中点,连接DC 并延长到点E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F.若AB=12,则BF 的长为( )A.7B.8C.10D.168.将一个有45°角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为 cm.9.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为 .10.如图所示,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB,BCS△ABC;③△DEF是等腰直角三角形;④当∠EDF在于点E,F,给出以下结论:①AE=BF;②S四边形BEDF=12△ABC内绕顶点D旋转时(点E不与点A,B重合),∠BFE=∠CDF,上述结论始终成立的有 个.参考答案1.A2.C3..C4.1005..C6.C7.D8.629.2410.4。

2013年全国中考数学试题分类汇编_解直角三角形解读

2013年全国中考数学试题分类汇编_解直角三角形解读

2013年全国中考数学试题分类汇编解直角三角形(2013•郴州)我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).,即==5=5+20+5=25+5(25+5(2013•衡阳)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位),=20×,+1.5+1.5(2013,娄底)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A 、B 两个探测点探测到C 处有生命迹象. 已知A 、B 两点相距4米,探测线与地面的夹角分别是30︒和45︒,试确定生命所在点C 的深度.(精确到0.1 1.41≈ 1.73≈)(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)=15×=55(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠P AB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50),≈=,≈=2(2013•巴中)2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B 相距4米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据≈1.41,≈1.73)CD,=,=﹣≈3.5(2013,成都)如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为______100____米.(2013•达州)钓鱼岛自古以来就是中国领土。

2013版中考总复习数学(人教版 全国通用)基础讲练 第15讲 等腰三角形(含答案点拨)

2013版中考总复习数学(人教版 全国通用)基础讲练 第15讲 等腰三角形(含答案点拨)

第15讲等腰三角形考纲要求命题趋势1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.4.掌握角平分线的性质及判定.等腰三角形的概念、性质、判定是中考的重点内容,在选择题、填空题、解答题中均有出现;等边三角形、线段的垂直平分线及角的平分线在中考中也经常考查.知识梳理一、等腰三角形1.等腰三角形的有关概念及分类有两边相等的三角形叫做等腰三角形,三边相等的三角形叫做等边三角形,也叫做正三角形;等腰三角形分为腰和底______的等腰三角形和______三角形.2.等腰三角形的性质(1)等腰三角形的两个底角相等(简称为“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);(3)等腰三角形是轴对称图形.3.等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”).二、等边三角形的性质与判定1.等边三角形的性质(1)等边三角形的内角相等,且都等于________;(2)等边三角形的三条边都________.2.等边三角形的判定(1)________相等的三角形是等边三角形;(2)________相等的三角形是等边三角形;(3)有一个角为________的等腰三角形是等边三角形.三、线段的垂直平分线1.概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫________.2.性质:线段垂直平分线上的点到这条线段两个端点的距离________.3.判定:到一条线段的两个端点__________的点在线段的垂直平分线上,线段的垂直平分线可以看作是到线段两端点距离相等的点的集合.四、角的平分线1.性质:角平分线上的点到角的两边的距离________.2.判定:角的内部到角的两边距离相等的点在角的______上,角的平分线可以看作是到角的两边距离相等的点的集合.自主测试1.等腰三角形的周长为14,其中一边长为4,那么,它的底边长为__________.2.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=5,AC=4,则D点到AB的距离是__________.3.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.4.等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为() A.8 B.10C.8或10 D.不能确定考点一、等腰三角形的性质与判定【例1】已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图甲,若点O在边BC上,求证:AB=AC;解:(1)证明:过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC,∴∠B=∠C,从而AB=AC.(2)证明:过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF.在Rt△OEB和Rt△OFC中,∵OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF.又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC.(3)不一定成立.当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图.方法总结1.要证明一个三角形为等腰三角形,须证明这个三角形的两条边相等或两个角相等,两种方法往往都需要证明三角形全等.2.若三角形中出现了高线、中线或角平分线,有时可以延长某些线段,构造出等腰三角形,然后用“三线合一”性质去处理.触类旁通1 如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.考点二、等边三角形的性质与判定【例2】(1)如图甲,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小.(2)如图乙,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.分析:解决等边三角形问题时,要充分利用等边三角形三边相等、三个角都等于60°的性质.全等是解决这类问题最常见的方法.解:(1)如图甲.图甲∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理,∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图乙.图乙∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8-∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠5-∠5=∠2,∴∠AEB=60°.方法总结1.等边三角形的各边相等,各角相等,所以常利用其证明三角形全等或线段及角相等.2.等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心.(四心合一)触类旁通2 已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.考点三、线段的垂直平分线【例3】如图,△ABC的周长为30 cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4 cm,则△ABD的周长是()A.22 cm B.20 cm C.18 cm D.15 cm解析:由题意可知DE为AC的垂直平分线,所以AD=CD,AC=2AE=8 cm.因为△ABC 的周长为30 cm,所以AB+BC+AC=30 cm,所以AB+BC=22 cm.所以△ABD的周长为AB+BD+AD=AB+BC=22 cm.答案:A方法总结1.线段垂直平分线的性质有两个:(1)线段垂直平分线上的点到线段两个端点的距离相等;(2)线段垂直平分线垂直、平分这条线段.2.线段垂直平分线的性质定理在中考中常以选择题、填空题的形式出现,且常与三角形的周长结合命题.触类旁通3 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.考点四、角的平分线【例4】如图,已知CD⊥AB于点D,BE⊥AC于点E,且CD,BE相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.证明:(1)∵∠1=∠2,CD⊥AB,BE⊥AC,∴OE=OD.∵∠3=∠4,∠CEO=∠BDO=90°,∴△OEC≌△ODB.∴OB=OC.(2)∵∠3=∠4,∠CEO=∠BDO=90°,OB=OC,∴△OEC≌△ODB.∴OE=OD.∵CD⊥AB,BE⊥AC,∴OA平分∠CAB.∴∠1=∠2.方法总结在解决有关角平分线的问题时通常做法是过角平分线上一点作角的两边的垂线.触类旁通4 如图,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP1.(2012贵州铜仁)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.92.(2012江西南昌)若等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°3.(2012浙江宁波)如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.4.(2012广东广州)如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为________.求证:(1)△ABD≌△ACD;(2)BE=CE.1.如图,坐标平面内有一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.52.如图所示,A,B,C分别表示三个村庄,AB=1 000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB的交点3.在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.64.如图,P,Q是△ABC边BC上的两点,且QC=AP=AQ=BP=PQ,则∠BAC=()A.125°B.130°C.90°D.120°5.如图,在△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂线交BC于点E,则△ADE的周长等于__________.6.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF =DE,则∠E=__________度.7.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是__________.8.如图所示,在△ABC中,D,E分别是边AC,AB上的点,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情况);(2)选择第(1)小题中的一种情况,证明△ABC是等腰三角形.参考答案导学必备知识自主测试1.4或6如果腰长为4,则底边长为14-2×4=6;如果底边长为4,则两腰分别为5,5.2.3∵在Rt△ADC中,CD=AD2-AC2=3,∴D点到AB的距离=CD=3.3.8或10或3104.B解方程x-6x+8=0得x1=2,x2=4,当腰为2时,2+2=4(舍去),当腰为4时,周长为4+4+2=10.探究考点方法触类旁通1.证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠D =∠C =90°.在Rt △ACB 和Rt △BDA 中,AB =BA ,AC =BD , ∴△ACB ≌△BDA (HL). ∴BC =AD .(2)由△ACB ≌△BDA 得∠CAB =∠DBA . ∴△OAB 是等腰三角形.触类旁通2.证明:(1)∵BF =AC ,AB =AE ,∴F A =EC . ∵△DEF 是等边三角形,∴EF =DE . 又∵AE =CD ,∴△AEF ≌△CDE .(2)由△AEF ≌△CDE ,得∠FEA =∠EDC .∵∠BCA =∠EDC +∠DEC =∠FEA +∠DEC =∠DEF ,△DEF 是等边三角形, ∴∠DEF =60°,∴∠BCA =60°. 同理可得∠BAC =60°. ∴△ABC 中,AB =BC . ∴△ABC 是等边三角形.触类旁通3.解:∵AD 平分∠CAB ,∴∠CAD =∠BAD . ∵DE 垂直平分AB ,∴AD =BD ,∠B =∠BAD . ∴∠CAD =∠BAD =∠B . ∵在Rt △ABC 中,∠C =90°, ∴∠CAD +∠DAE +∠B =90°. ∴∠B =30°. 触类旁通4.D 品鉴经典考题1.D ∵∠ABC ,∠ACB 的平分线相交于点E , ∴∠MBE =∠EBC ,∠ECN =∠ECB .∵MN ∥BC ,∴∠EBC =∠MEB ,∠NEC =∠ECB ,∴∠MBE =∠MEB ,∠NEC =∠ECN ,∴BM =ME ,EN =CN . ∴MN =ME +EN ,即MN =BM +CN . ∵BM +CN =9,∴MN =9,故选D. 2.B 因为等腰三角形的顶角为80°,所以底角=(180°-80°)÷2=50°. 3.40 ∵AB =BC ,∴∠ACB =∠BAC . ∵∠ACD =110°,∴∠ACB =∠BAC =70°,∴∠B =∠40°. ∵AE ∥BD ,∴∠EAB =∠B =40°.4.2 在等边三角形ABC 中,AB =6,∴BC =AB =6.∵BC =3BD ,∴BD =13BC =2.∵△ABD 绕点A 旋转后得到△ACE ,∴△ABD ≌△ACE ,∴CE =BD =2. 5.证明:∵AE 平分∠DAC ,∴∠1=∠2.∵AE ∥BC ,∴∠1=∠B ,∠2=∠C ,∴∠B =∠C , ∴AB =AC .6.证明:(1)在△ABD 和△ACD 中, ∵D 是BC 的中点,⎭⎪⎬⎪⎫∴BD =CD ∵AB =AC AD =AD⇒△ABC ≌△ACD (SSS). (2)由(1)知△ABD ≌△ACD ,∴∠BAD =∠CAD , 即∠BAE =∠CAE .在△ABE 和△ACE 中,⎭⎪⎬⎪⎫AB =AC∠BAE =∠CAD AE =AE ⇒△ABE ≌△ACE (SAS).∴BE =CE .研习预测试题1.C 因为x 轴负半轴有一个点,x 轴正半轴有三个点,所以符合条件的动点P 的个数为4.2.A3.A ∵BF 平分∠ABC ,如图,∴∠ABF =∠CBF . ∵CF 平分∠ACB , ∴∠ACF =∠BCF . ∵DF ∥BC ,∴∠DFB =∠CBF ,∠EFC =∠BCF . ∴∠ABF =∠DFB ,∠ACF =∠EFC . ∴BD =DF ,EF =CE .∴DE =DF +EF =BD +CE =9. 4.D5.8 因为△ADE 的周长=AD +DE +AE =BD +DE +EC =8. 6.157.52<x <5 由三角形的三边关系得⎩⎪⎨⎪⎧10-2x <2x ,10-2x >0, 解得52<x <5.8.解:(1)①③;②③. (2)①③.证明:∵∠EBO =∠DCO ,∠EOB =∠DOC ,BE =CD , ∴△BEO ≌△CDO .∴OB =OC .∴∠OBC =∠OCB .∴∠EBO +∠OBC =∠DCO +∠OCB , 即∠ABC =∠ACB .∴AB =AC . ∴△ABC 为等腰三角形.。

中考数学一轮复习第16课时解直角三角形导学案+习题43.doc

中考数学一轮复习第16课时解直角三角形导学案+习题43.doc

学校班级姓名CAbacB【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第16课时 解直角三角形班级: 姓名:学习目标:1.能利用直角三角形的边边关系、边角关系解直角三角形。

2.能结合仰角、俯角、坡度等知识,运用锐角三角函数解决与直角三角形有关的实际问题 重难点:运用锐角三角函数解决与直角三角形有关的实际问题 学习过程 一.知识梳理 直角三角形的边角关系1.在Rt ABC 中,90C A B C ∠︒∠∠∠=,,,的对边分别为.a b c ,, (1)三边之间的关系: ; (2)两个锐角之间的关系: ; (3)边角之间的关系:sinA = ,cosA = ,tanA = ,2.解直角三角形的应用(1)仰角、俯角:如图①,在测量时,视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.(2)坡度(坡比)、坡角:如图②,坡面的高度h 和 的比叫做坡度(或坡比),即=tan =i hlα,坡面与水平面的夹角α叫做坡角. 二、典型例题1.三角函数的实际应用(1)(2017山东滨州)如图,在△ABC 中,30AC BC ABC ⊥∠︒,=,点D 是CB 延长线上的一点,且BD BA =,则tan DAC ∠的值为( )A .2+3B .23C .3+3D .33(2)(2017包头)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且2FC BF=,连接AE,EF.若23AB AD==,,则cos AEF∠的值是.(3)(中考指要例2)(2016梧州)如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:906054200300A ABD CBD AB m BC m∠=︒∠=︒∠=︒==,,,,.请你计算出这片水田的面积.(参考数据:540.809540.58854 1.376 1.732sin cos tan︒≈︒≈︒≈≈,,,)2.解直角三角形的应用(1)(2017益阳)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,CAB∠=α,则拉线BC的长度为()(A D B、、在同一条直线上)A.sinhαB.coshαC.tanhαD.coshα⋅(2)(2017山西)如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得正前方小岛C的αACD B俯角为30°,面向小岛方向继续飞行10km 到达B 处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).(3)(中考指要例1)(2016贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 =1.414,3 =1.732)三、中考预测(2017淮安)A B ,两地被大山阻隔,若要从A 地到B 地,只能沿着如图所示的公路先从A 地到C地,再由C 地到B 地.现计划开凿隧道A B ,两地直线贯通,经测量得:304520CAB CBA AC km ∠=︒∠=︒=,,,求隧道开通后与隧道开通前相比,从A 地到B 地的路程将缩短多少?(结果精确到0.1km 2≈1.4143≈1.732)四、反思总结1.本节课你复习了哪些内容?2.通过本节课的学习,你还有哪些困难?五、达标检测1.(2017泰州)小明沿着坡度3i =:50m ,则小明沿垂直方向 升高了 m .2.(2014•孝感)如图,在ABCD 中,对角线AC BD 、相交成的锐角为α,若AC a BD b ==,,则ABCD 的面积是( )A .1sin 2ab a B .sin ab a C .1cos 2ab a D .cos ab a 3.(2017黑龙江)ABC 中,12,39,B=30AB AC ==∠°,则ABC 的面积是4.(中考指要第8题)(2016上海)如图,在Rt ABC 中,903ACB AC BC ∠=︒==,,点D 在边AC 上,且2AD CD DE AB =⊥,,垂足为点E ,联结CE ,求: (1)线段BE 的长; (2)ECB ∠的余切值.5.(中考指要第9题)(2017乌鲁木齐)一艘渔船位于港口A 的北偏东60°方向,距离港口20海里B 处,它沿北偏西37°方向航行至C 处突然出现故障,在C 处等待救援,B C ,之间的距离为10海里,救援船从港口A 出发20分钟到达C 处,求救援的艇的航行速度.(370.6370.83 1.732sin cos ︒≈︒≈≈,,,结果取整数)中考数学知识点代数式 一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

中考第一轮复习_第16课时_解直角三角形(含答案)

中考第一轮复习_第16课时_解直角三角形(含答案)

精品教案_第十六课时 解直角三角形基础知识回放考点1 勾股定理及逆定理1.勾股定理:直角三角形两直角边a ,b 的___①____等于斜边c 的___②____,即222c b a =+。

2.勾股定理的逆定理:如果三角形三边长a ,b ,c 有这样的关系:222c b a =+,那么这个三角形是________③____三角形。

温馨提示:利用勾股定理时,要注意求的是直角边还是斜边,前都用减法,而后者用加法,如没有确定告诉的,还有讨论。

另外,在解题时,通常勾股定理与其逆定理同时应用,即先判定出是直角三角形,然后再利用勾股定理解此三角形。

考点2 锐角三角函数1.在R t △ABC 中,若∠A 、∠B 、∠C 的对边分别是a 、b 、c 且∠C=90°。

(1)SinA=c a A =∠斜边的对边,叫做∠A 的正弦,(2)CosA=c b A =∠斜边的邻边,叫做∠A 的余弦,(3)tanA=ba A A =∠∠的邻边的对边,叫做∠A 的正切,温馨提示:若所给的边不能直接求出想要求的三角函数,则可先通过勾股定理求出第三边,然后在利用定义求出相应地三角函数。

2.特殊角的三角函数值温馨提示:在忘记某个角的特殊值时,可自己动手推导,即可设出某一边的长为1或2等简单数字,然后再利用直角三角形中特殊角与边的关系,再结合勾股定理,推导出三边的长度,然后在利用三角函数的定义得出各个特殊角的三角函数值。

3.(1)互余角三角函数间的关系,如果∠A +∠B=90°,那么SinA=CosB ,CosA=SinB 。

(2)同角三角函数的关系:A Cos A Sin 22+=1,tanA=CosASinA 。

(3)当0°≤α≤90°时,有0≤Sin α≤1,0≤Cos α≤1,tan α≥0。

锐角的正弦值与正切值都随角度的增大而____④_____,而锐角的余弦值都随角度的增大而_______⑤______。

第16讲 三角形的概念及性质(课件)中考数学一轮复习(全国通用)

第16讲 三角形的概念及性质(课件)中考数学一轮复习(全国通用)
三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短.
考点二 三角形的重要线段
1. 三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由
三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.
2. 常见三角形的高:
3. 当已知三角形两边的中点时,可考虑运用三角形中位线定理,得到相应线段的
同步联想,其他几何图形在什么情
况下会转化成该考点的知识考察.
第二部分
知识建构
稿定PPT
稿定PPT,海量素材持续更
新,上千款模板选择总有一
款适合你
第三部分
考点精讲
Hale Waihona Puke 考点一 三角形的相关概念三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所构成的图形叫做三角形.
三角形的表示:用符号“Δ”表示,顶点是A、B、C的三角形记作“ΔABC”,读作“三角形ABC”.
基础.所以,在中考中,与其它几何
图形结合考察的几率比较大,特别
是全等三角形的性质和判定的综合
应用.考生在复习该考点时,不仅要
➢ 探索并证明三角形的内角和定理.掌握它的推论: 熟悉掌握其本身的性质和应用,还
三角形的外角等于与它不相邻的两个内角的和. 要注重转化思想在题目中的应用,
三角形的性质
➢ 证明三角形的任意两边之和大于第三边.
连接三角形两边中点的线段叫做三角形
∵DE是∆ABC的中位线
的中位线
∴AD=DB AE=EC
1
2
DE= BC DE∥BC
考点二 三角形的重要线段
概念
三角形
重心 三条中
线交点
图形
性质
1)重心到顶点的距离与重心到对边中点的距离之比为2:1。

2013年中考数学专题复习 解直角三角形

2013年中考数学专题复习 解直角三角形

2013年数学中考专题复习 解直角三角形一、选择题:1.(2008年湖北省咸宁市)在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( ) A.14CD .42.(2008恩施自治州)在Rt △ABC 中,∠C=90°,若AC=2BC,则tanA 的值是( )A.21 B.2 C.55 D.253.(威海市)在△ABC 中,∠C =90°,tanA =31,则sinB =( D )A .1010 B .32 C .43 D .101034.(2008年湘潭) 已知A B C ∆中,AC=4,BC=3,AB=5,则sin A =( )A. 35B.45C. 53D.345.(2008年内江市) 如图,在R t ABC △中,90C = ∠,三边分别为a b c ,,,则c os A等于( )A .a cB .a bC .b aD .b c6(2008年自贡市)已知α为锐角,且cot (90°-α)=3,则α的度数为( )A .30°B .60°C .45°D .75°7.(2008年湖州市)如图,已知直角三角形ABC 中,斜边A B 的长为m ,40B ∠=,则直角边B C 的长是( B ) A .sin 40mB .cos 40mC .tan 40mD .tan 40m8.(2008年自贡市)如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,BC=1,则BB’的长为( )AC Bac bA .4B .33 C .332 D .3349.(2008年桂林市)1、如图,在Rt△ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )A 333、 B、 C、 D 10.(2008年•南宁市)如图1,正三角形的内切圆半径为1,那么三角形的边长为:(A )2 (B )32 (C )3 (D )3图111.(2008年龙岩市)已知α为锐角,则m=sin α+cos α的值( )A .m >1B .m=1C .m <1D .m≥112.(2008襄樊市)在正方形网格中,△ABC 的位置如图2所示,则cos ∠B 的值为( )A .12B 2C 2D 313.(2008年益阳) 如图2,AC 是电杆AB 的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC 的长为 A.︒526sin 米 B.︒526tan 米C. 6·cos52°米D.︒526cos 米14.(08河南试验区)直角三角形在正方形网格纸中的位置如图所示,则cos α的值是(D )A.43 B.34 C.53 D.54ABC┐图2BCDA第14题图(第9题)15.(2008年武汉市) 如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A.250mB.D.m.16.(2008年泰安市)直角三角形纸片的两直角边长分别为6,8,现将A B C △如图那样折叠,使点A 与点B 重合,折痕为D E ,则tan C B E ∠的值是( ) A .247B .3C .724D .1317.(2008年聊城市)如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( ) A .4.5m B .4.6mC .6mD .8m18.(2008嘉兴市)如图,正方形A B C D 中,E 是B C 边上一点,以E 为圆心、E C 为半径的半圆与以A 为圆心,A B 为半径的圆弧外切,则sin E A B ∠的值为( ) A .43B .34C .45D .35二、填空题:1.(2008黄冈市)计算:cos 45°=________2.(2008年南昌市)计算:1sin 60cos 302-=.3.(2008年沈阳市)如图所示,某河堤的横断面是梯形A B C D ,BC AD ∥,迎水坡A B第8题图68CEAB(第8题)AOB东北长13米,且12tan 5B A E ∠=,则河堤的高B E 为 米.4.(2008年龙岩市)如图,在Rt△ABC 中,∠CAB=90°,AD 是∠CAB 的平分线,tanB=21,则CD∶DB= .5.(2008年宁波市)课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成35 时,测得旗杆A B 在地面上的投影B C 长为23.5米,则旗杆A B 的高度约是 米(精确到0.1米)6.(2008襄樊市)如图8,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部B 点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为 米(结果保留根号). 7.(威海市)如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示)8.(2008年泰安市)若等腰梯形A B C D 的上、下底之和为4,并且两条对角线所夹锐角为60,则该等腰梯形的面积为 (结果保留根号的形式).9.(2008年聊城市)为支援四川灾区,绿野橡胶篷布厂承接了一批活动房式帐篷的生产任务,蓬面使用的是PVC 双面涂塑蓬布,帐蓬的外部结构和规格尺寸如图所示(帐蓬顶(第10题图)(第17题)C(第16题)部两个斜面的坡度相同,顶部最高点到地面的距离为2.65米).制作一顶这样的帐蓬,至少需要 平方米的PVC 双面涂塑蓬布(帐蓬的门、窗都需要蓬布.接缝等忽略不计,计算结果精确到1平方米).三、解答题:1. (2008年郴州市)计算:21()2sin 3032--+︒+-2.(2008嘉兴市)计算:1tan 45-+.3、计算:12008453+--1()()4.(2008年义乌市)(16045-+答案:6045-+=222-+ =2.55.(2008年泰州市)21.计算:01)41.12(45tan 32)31(-++---.6.(08年宁夏回族自治区)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.第17题图7.(2008年双柏县)根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .求所测之处河AB 的宽度.(o o osin68≈0.93,cos68≈0.37,tan68≈2.48)8.(2008年义乌市) 如图,小明用一块有一个锐角为小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)9.(2008年安徽省)小明站在A 处放风筝,风筝飞到C 处时的线长为20米,这时测得∠CBD=60°,若牵引底端B 离地面1.5米,求此时风筝离地面高度。

人教版初中数学中考复习一轮复习——直角三角形(课件)

人教版初中数学中考复习一轮复习——直角三角形(课件)

1 2 3 3,.5 2

∴1 AC BD 7
2
,2
∴ 13 BD 7
∴BD 7 1,3 13
真题演练:
8.(2020·安顺)如图, ABC 中,点 E 在边 AC 上, EB EA , A 2CBE ,CD 垂
直于 BE 的延长线于点 D , BD 8 , AC 11 ,则边 BC 的长为 4 5 .
A.1
B.2
C.3
D.4
真题演练:
4.(2021·襄阳)我国古代数学著作《九章算术》中记载了一个问题:
“今有池方一丈,葭(jia)生其中,出水一尺,引葭赴岸,适与岸齐.问
水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一水池,
水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出
第 15 题图
真题演练:
9. (2020·包头)8、如图,在 Rt ABC 中,ACB 90 ,D 是 AB 的中点, BE CD ,交
A CD 的延长线于点 E.若 AC 2, BC 2 2 ,则 BE 的长为( )
A E
D
C A. 2 6
3
B
B. 6 2
C. 3
D. 2
真题演练:
10(2021•资阳)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个

如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是
(2)勾股定理的逆定理:

直角三角形.
真题演练:
1.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方
形的面积为 100.
真题演练:
2.(2020•河北16/26)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉 斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重 复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取 的三块纸片的面积分别是( )

中考数学考点总动员:专题(43)直角三角形(含答案)

中考数学考点总动员:专题(43)直角三角形(含答案)

专题43 直角三角形聚焦考点☆温习理解一、直角三角形1.定义有一个角是直角的三角形叫作直角三角形2.性质(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.3.判定(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.二、勾股定理及逆定理1. 勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2;2. 勾股定理的逆定理如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.三、直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,除了有一般三角形全等的判定方法,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)四、互逆命题、互逆定理1.互逆命题如果一个命题的题设和结论是另一个命题的结论和题设,我们把风这两个命题叫做互逆命题.把其中一个叫做原命题,那么另一个叫做它的逆命题.2.互逆定理若一个定理的逆命题是正确的,那么它就是这个定理的逆定理,称这两个定理为互逆定理.名师点睛☆典例分类考点典例一、直角三角形的判定【例1】下列四组线段中,可以构成直角三角形的是( )A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3【答案】B.考点:勾股定理的逆定理.【举一反三】(舟山一中期中)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.3、4、5 B.2、3、4 C.1、2、3 D.4、5、6【答案】A.【解析】试题分析:选项A,32+52=25=52;选项B, 22+32=≠42;选项C, 12+22≠32;选项D, 42+52≠62.根据勾股定理的逆定理可得只有选项A能够成直角三角形,故答案选A.考点:勾股定理的逆定理.考点典例二、直角三角形的性质【例2】如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为.【答案】45°.考点:1.等腰三角形的性质;2.三角形内角和定理;3.方程思想的应用.【举一反三】在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°【答案】D.【解析】试题分析:根据直角三角形两锐角互余列式计算即可得解:∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°﹣60°=30°.故选D.考点:直角三角形两锐角的关系.考点典例三、直角三角形斜边上的中线【例3】如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,2则它的周长为()A B.1 C2 D3【答案】D考点:勾股定理;直角三角形斜边上的中线.【点睛】本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.【举一反三】(2015.山东枣庄,第15题,4分)如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,DE=5,则CD=________.【答案】【解析】【试题分析】因为CD⊥AB,所以△ADC是直角三角形,E为AC的中点,所以AC=2DE=10,由勾股定理可得AD=8.考点:直角三角形的性质考点典例四、命题【例3】下列命题中,是真命题的是( )A.等腰三角形都相似 B.等边三角形都相似C.锐角三角形都相似 D.直角三角形都相似【答案】B.【解析】试题分析:根据相似三角形的判定,只有等边三角形的内角都相等,为60°,从而都相似. 故选B.考点:1. 命题和定理;2.相似三角形的判定;3. 等边三角形的性质.【点睛】本题考查了轴对称的性质,解直角三角形,等腰直角三角形的判定与性质,正方形的判定与性质,熟记性质是解题的关键,设出边长为1可使求解过程更容易理解.【举一反三】下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短【答案】【解析】试题分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.考点:命题与定理.课时作业☆能力提升一、选择题1. (2015.北京市,第6题,3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M、C两点间的距离为( )A0.5km B.0.6km C.0.9km D.1.2km 【答案】D . 【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得MC=1.2km .故选D . 考点:直角三角形斜边上的中线等于斜边的一半2. (2015·湖北黄冈,6题,3分)如图,在△ABC 中,∠C =Rt ∠,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( ) A .6 B .36 C .9 D .33【答案】C .考点:1.含30度角的直角三角形;2.线段垂直平分线的性质.3.(2015·辽宁大连)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B ,AD=5,则BC 的长为( )A.3-1B.3+1C.5-1D.5+1 【答案】D【解析】试题分析:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD ,所以∠B=∠BAD ,所以BD=AD=5,所以BC=5+1,故选D. 考点:解直角三角形.4.(2015资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB . CD .【答案】A . 【解析】试题分析:如图:∵高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,∴A ′D =5cm ,BD =12﹣3+AE =12cm ,∴将容器侧面展开,作A 关于EF 的对称点A ′,连接A ′B ,则A ′B 即为最短距离,A ′B (Cm ).故选A .考点:平面展开-最短路径问题.5.(2015眉山)如图,在Rt △ABC 中,∠B =900,∠A =300,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD .若BD =l ,则AC 的长是( ) A .32 B .2 C .34 D .4【答案】A.【解析】试题分析:在Rt△ABC中,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠ACD=∠A=30°,∴∠DCB=60°﹣30°=30°,在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,∴CD=2BD=2,2,由勾股定理得:BC Rt△ABC中,∠B=90°,∠A=30°,BC AC=2BC=3故选A.考点:1.含30度角的直角三角形;2.线段垂直平分线的性质;3.勾股定理.6.(2015乐山)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A B D【答案】D.考点:1.锐角三角函数的定义;2.勾股定理;3.勾股定理的逆定理;4.网格型.二、填空题7.(2015成都)如图,在平行四边形ABCD中,AB AD=4,将平行四边形ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为________.【答案】3.【解析】试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,由勾股定理得3AE=.故答案为:3.考点:1.翻折变换(折叠问题);2.勾股定理;3.平行四边形的性质.8.(2015内江)在△ABC中,∠B=30°,AB=12,AC=6,则BC= .【答案】考点:1.含30度角的直角三角形;2.勾股定理.9.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC 边上的点B′处,则BE的长为.【答案】32.【解析】试题分析:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC4.由折叠的性质得:BE=BE′,AB=AB′,设BE=x,则B′E=x,CE=4﹣x,B′C=AC﹣AB′=AC﹣AB=2,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+22=(4﹣x)2,解得:x=32.∴BE的长为32.考点:1. 折叠的性质;2.勾股定理;3.方程思想的应用.10. (2015·黑龙江省黑河市、齐齐哈尔市、大兴安岭)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD CD的长为.【答案】2或2或3.【解析】试题分析:分三种情况:①如图1,∠A为钝角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD∴ADAB=2,∴AC=2,∴CD=2+②如图2,∠A为锐角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD AD AB=2,∴AC=2,∴CD=2,③如图3,BA=BC,∵BD⊥AC,∴AD=CD,在R t△ABD中,∵BD=1,tan∠ABD∴AD=,∴CD综上所述;CD的长为:2或22+2考点:1.解直角三角形;2.等腰三角形的性质;3.勾股定理.11.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=【答案】1.5.考点:翻折变换(折叠问题).12.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B= °.【答案】45.【解析】试题分析:∵m∥n,∠2=70º,∴∠BAn=70°.∵∠1=25º,∴∠BAC=45°.∵∠C=90°,∴∠B=45°.考点:1.平行线的性质;2.直角三角形两锐角的关系.13.(2015·湖北黄冈,14题,3分)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的cm.面积为__________2【答案】126或66. 【解析】试题分析:当∠B 为锐角时(如图1),在Rt △ABD 中,BD cm ,在Rt △ADC中,CD cm ,∴BC =21,∴S △ABC =12BC ·AD =12×21×12=126cm 2;当∠B 为钝角时(如图2),在Rt △ABD 中,BD cm ,在Rt △ADC 中,CD cm ,∴BC =CD ﹣BD =16﹣5=11cm ,∴S △ABC =12BC ·AD =12×11×12=66cm 2, 故答案为:126或66.考点:1.勾股定理;2.分类讨论. 三、解答题14.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上. (1)计算22AB BC +的值等于 ;(2)请在如图所示的网格中,用无刻度...的直尺,画出一个以AB 为一边的矩形,使矩形的面积等于22AB BC +,并简要说明画图方法(不要求证明) .【答案】(1)11;(2)作图如下,分别以AC 、BC 、AB 为一边作正方形ACED ,正方形BCNM ,正方形ABHF ;延长DE 交MN 于点Q ,连接QC ,平移QC 至AG ,BP 位置,直线GP 分别交AF ,BH 于点T ,S ,则四边形ABST 即为所求.【解析】试题分析:(1)直接利用勾股定理计算:2222AC BC 311+=+=.(2)首先分别以AC 、BC 、AB 为一边作正方形ACED ,正方形BCNM ,正方形ABHF ;进而得出答案. 考点:1.作图(应用与设计作图);2.网格问题;3.勾股定理. 15.(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE. 填空:①∠AEB 的度数为 ;②线段AD 和BE 之间的数量关系是 . (2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=900, 点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE. 请判断∠AEB 的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由. (3)解决问题如图3,在正方形ABCD 中,若点P 满足PD=1,且∠BPD=900,请直接写出点A 到BP 的距离.【答案】(1)①60;②AD=BE;(2)∠AEB=900;AE=2CM+BE ,理由见解析;(3)12或12.(2)同(1)可证△ACD≌△BCE,再由等腰直角三角形的性质可得结论∠AEB=900;AE=2CM+BE. (3)∵PD =1,∠BPD=900,∴BP 是以点D 为圆心、以1为半径的OD 的切线,点P 为切点. 第一种情况:如图①,过点A 作AP 的垂线,交BP 于点P /, 可证△APD≌△AP /B ,PD=P /B=1,12PP /=12(PB-BP /第二种情况如图②,可得AM=12PP /=12(PB+BP /试题解析:(1)①60;②AD=BE. (2)∠AEB=900;AE=2CM+BE. 理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 900, ∴AC=BC,CD=CE , ∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE. ∴△ACD≌△BCE(SAS ). ∴AD = BE, ∠BEC=∠ADC=1350.∴∠AEB=∠BEC-∠CED=1350-450=900. 在等腰直角三角形DCE 中,CM 为斜边DE 上的高, ∴CM= DM= ME. ∴DE=2CM .∴AE=DE+AD=2CM+BE.(3考点:1. 等边三角形和等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理;4.切线的判定和性质;5.分类思想的应用.16.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【答案】(1)30°;(2)4.考点:1.等边三角形的判定与性质;2.平行的性质;3.含30度角的直角三角形的性质.。

【备考2014 志鸿优化设计】2013版中考数学总复习 基础讲练 第16讲 直角三角形(含答案点拨)

【备考2014 志鸿优化设计】2013版中考数学总复习 基础讲练 第16讲 直角三角形(含答案点拨)

第16讲 直角三角形考纲要求命题趋势1.了解直角三角形的有关概念,掌握其性质与判定. 2.掌握勾股定理与逆定理,并能用来解决有关问题. 直角三角形是中考考查的热点之一,题型多样,多以简单题和中档难度题出现,主要考查直角三角形的判定和性质的应用,以及运用勾股定理及其逆定理来解决实际问题的能力.知识梳理一、直角三角形的性质1.直角三角形的两锐角________.2.直角三角形中,30°角所对的边等于斜边的________. 3.直角三角形斜边上的中线等于斜边的________.4.勾股定理:直角三角形两直角边的平方和等于斜边的平方. 二、直角三角形的判定1.有一个角等于________的三角形是直角三角形. 2.有两角________的三角形是直角三角形.3.如果三角形一边上的中线等于这边的________,则该三角形是直角三角形.4.勾股定理的逆定理:如果三角形一条边的平方等于另外两条边的________,那么这个三角形是直角三角形.自主测试1.在△ABC 中,若三边BC ,CA ,AB 满足BC :CA :AB =5:12:13,则cos B =( )A .512B .125C .513D .12132.如图,在△ABC 中,DE 是中位线,∠ABC 的平分线交DE 于F ,则△ABF 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形3.下列各组数据分别为三角形的三边长:①2,3,4;②5,12,13;③2,3,4;④m 2-n 2,m 2+n 2,2mn .其中是直角三角形的有( )A .①②B .③④C .①③D .②④考点一、直角三角形的判定【例1】如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 为边BC 上的任一点,DF ⊥AB 于F ,DE ⊥AC 于E ,M 为BC 的中点,试判断△MEF 的形状,并证明你的结论.分析:连接AM ,可得AM =BM ,然后证明△BFM ≌△AEM ,得到FM =ME ,∠EMF =90°.解:△MEF 是等腰直角三角形.连接AM ,∵∠BAC =90°,AM 是斜边BC 的中线, ∴MA =MB =MC ,MA ⊥BC . ∵AB =AC ,∴∠B =∠BAM =∠MAE =45°. ∵DF ⊥AB ,DE ⊥AC ,∴∠AFD =∠AED =∠FAE =90°, ∴四边形DFAE 是矩形,∴FD =EA . 又∵FB =FD ,∴FB =EA , ∴△BFM ≌△AEM (SAS), ∴FM =EM ,∠BMF =∠AME . ∵∠AMF +∠BMF =90°,∴∠EMF =∠AMF +∠AME =90°, ∴△MEF 是等腰直角三角形.方法总结 证明一个三角形是直角三角形的方法比较多,最简捷的方法就是求出一个角等于90°,也可以利用三角形一边上的中线等于这边的一半,或者利用勾股定理的逆定理证得.触类旁通1具备下列条件的△ABC 中,不能成为直角三角形的是( )A .∠A =∠B =12∠C B .∠A =90°-∠CC .∠A +∠B =∠CD .∠A -∠C =90° 考点二、直角三角形的性质【例2】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE .(1)解:图2中△ABE ≌△ACD . 证明如下:∵△ABC 与△AED 均为等腰直角三角形, ∴AB =AC ,AE =AD ,∠BAC =∠EAD =90°. ∴∠BAC +∠CAE =∠EAD +∠CAE , 即∠BAE =∠CAD .又∵AB =AC ,AE =AD , ∴△ABE ≌△ACD .(2)证明:由(1)△ABE ≌△ACD 知∠ACD =∠ABE =45°. 又∠ACB =45°,∴∠BCD =∠ACB +∠ACD =90°,∴DC⊥BE.方法总结直角三角形除具有两锐角互余、两直角边的平方和等于斜边的平方、斜边的中线等于斜边的一半这些性质外,还具有外接圆半径等于斜边的一半,内切圆半径等于两直角边的和与斜边差的一半,它的外心是斜边的中点,垂心是直角顶点等性质.考点三、勾股定理及其逆定理【例3】如图,有一块直角三角形纸片,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.解:设CD长为x cm,由折叠得△ACD≌△AED.∴AE=AC=6 cm,∠AED=∠C=90°,DE=CD=x cm.在Rt△ABC中,AC=6 cm,BC=8 cm,∴AB=AC2+BC2=62+82=10(cm).∴EB=AB-AE=10-6=4(cm),BD=BC-CD=(8-x) cm,在Rt△DEB中,由勾股定理得DE2+BE2=DB2.∴x2+42=(8-x)2,解得x=3.∴CD的长为3 cm.方法总结1.勾股定理主要的用途是已知直角三角形的两边求第三边,当我们只知道直角三角形的一边时,如果可以找到另外两边的关系,也可通过列方程的方法求出另外两条边.2.勾股定理逆定理主要是已知一个三角形的三边,判断三角形是否为直角三角形.触类旁通2如图,在四边形ABCD中,∠A=90°,AB=3,AD=4,CD=13,CB=12,求四边形ABCD的面积.考点四、勾股定理及其逆定理的实际应用【例4】如图所示,铁路上A,B两站(视为直线上两点)相距14 km,C,D为两村庄(可视为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8 km,CB=6 km,现要在铁路上建一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站多少千米处?分析:因为DA⊥AB于A,CB⊥AB于B,在AB上找一点可构成两个直角三角形,我们可想到通过勾股定理列方程进行求解.解:设E站应建在距A站x km处,根据勾股定理有82+x2=62+(14-x)2,解得x=6.所以E站应建在距A站6 km处.方法总结勾股定理及其逆定理的实际应用,是把实际问题转化为数学问题,建立勾股定理或逆定理的数学模型.通过解决数学问题,使实际问题得以解决.触类旁通3有一块直角三角形的绿地,量得两直角边的长分别为6 m ,8 m ,现在要将绿地扩充成等腰三角形,且扩充部分是以8 m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.1.(2012某某某某)在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A .365B .1225C .94D .3342.(2012某某某某)如图,在Rt △ABC 中,∠ACB =90°,AB =10,CD 是AB 边上的中线,则CD 的长是( )A .20B .10C .5D .523.(2012某某某某)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC =90°,AB =3,AC =4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .90B .100C .110D .1214.(2012某某某某)一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M .如果∠ADF =100°,那么∠BMD 为________°.5.(2012某某某某)已知a ,b ,c 是△ABC 的三边长,且满足关系式c 2-a 2-b 2+|a -b |=0,则△ABC 的形状为__________.6.(2012某某)如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求△ABC 的周长.(结果保留根号)1.如图所示,将一个有45度角的三角板的直角顶点放在一X 宽为3 cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,则三角板的最大边的长为( )A .3 cmB .6 cmC .32cmD .62cm2.在△ABC 中,三边长分别为a ,b ,c ,且a +c =2b ,c -a =12b ,则△ABC 是( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形3.一个直角三角形两边的长分别为15,20,则第三边的长是( ) A .57B .25 C .57或25 D .无法确定4.如图,在Rt △ABC 中,以三边AB ,BC ,CA 为直径向外作半圆,设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A .S 1=S 2B .S 1<S 2C .S 1>S 2D .无法确定5.直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE BC的值是( )A .247B .73C .724D .136.如图,在Rt △ABC 中,∠ACB =90°,点D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,若DE =2,CD =25,则BE 的长为__________.7.如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推直到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为__________.8.如图,已知点D 为等腰Rt △ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,求证:ME =BD .参考答案导学必备知识 自主测试1.C ∵BC 2+CA 2=AB 2,∴∠C =90°,∴cos B =BC AB =513. 2.B3.D探究考点方法 触类旁通1.D触类旁通2.解:在Rt △ABD 中,BD =AD 2+AB 2=42+32=5, 在△BCD 中,CD =13,CB =12,BD =5,∴CB 2+BD 2=CD 2.∴∠DBC =90°.∴S 四边形ABCD =S △ABD +S △DBC =12AB ·AD +12BC ·BD =12×3×4+12×12×5=6+30=36.触类旁通3.解:在Rt △ABC 中,AC =8,BC =6,由勾股定理得,AB =AC 2+BC 2=10,扩充部分为Rt △ACD ,扩成等腰三角形ABD ,应分以下三种情况:(1)如图1,当AB =AD =10时,可求得CD =CB =6,故△ABD 的周长为32 m.(2)如图2,当AB =BD =10时,可求得CD =4,由勾股定理得AD =AC 2+CD 2=45,故△ABD 的周长为(20+45) m.(3)如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,由勾股定理得(x -6)2+82=x 2,则x =253,故△ABD 的周长为803m.品鉴经典考题1.A 根据题意画出相应的图形,如图所示:在Rt △ABC 中,AC =9,BC =12,根据勾股定理得:AB =AC 2+BC 2=15. 过点C 作CD ⊥AB ,交AB 于点D ,又S △ABC =12AC ·BC =12AB ·CD ,∴CD =AC ·BC AB =9×1215=365,则点C 到AB 的距离是365.2.C 在Rt △ABC 中,∠ACB =90°,AB =10,CD 是AB 边上的中线,根据直角三角形斜边中线等于斜边的一半,则CD 的长是5.3.C 如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形, 边长AO =AB +AC =3+4=7,所以,KL =3+7=10,LM =4+7=11, 因此,矩形KLMJ 的面积为10×11=110. 故选C.4.85∵∠ADF =100°,∠EDF =30°,∴∠MDB =180°-∠ADF -∠EDF =180°-100°-30°=50°,∴∠BMD =180°-∠B -∠MDB =180°-45°-50°=85°.5.等腰直角三角形 由题意得:c 2-a 2-b 2=0,a -b =0,∴c 2=a 2+b 2,a =b ,则△ABC 的形状为等腰直角三角形.6.解:∵△ABD 是等边三角形, ∴∠B =60°.∵∠BAC =90°,∴∠C =180°-90°-60°=30°, ∴BC =2AB =4.在Rt △ABC 中,由勾股定理得:AC =BC 2-AB 2=42-22=23,∴△ABC 的周长为AC +BC +AB =23+4+2=6+2 3.研习预测试题 1.D2.A 由a +c =2b ,c -a =12b ,可得c =54b ,a =34b ,于是得a 2+b 2=c 2,所以△ABC 是直角三角形.3.C4.A5.C 由折叠性质可知,AE =BE , 设CE 为x ,则BE =8-x .在Rt △BCE 中,62+x 2=(8-x )2,所以x =74.故CE BC =746=724.6.42∵点D 是AB 的中点,∠ACB =90°,DE ⊥AC , ∴CD =12AB ,DE =12BC ,∴AB =45,BC =4.在Rt △ACB 中,AC =AB 2-BC 2=8,∴CE =12AC =4.∵CE =BC =4,∠ACB =90°,∴BE =4 2. 7.312根据题意易知CD =AC =2,AD=DE =(2)2=2,EF =AE =22,AF =FG =22×2=4,AG =42,所以所求图形的面积S =S △ABC +S 梯形ACDE +S 梯形AEFG =12×1×1+12×(2+22)×2+12×(22+42)×22=12+3+12=312.8.证明:(1)在等腰Rt △ABC 中, ∵∠CAD =∠CBD =15°,∴∠BAD =∠ABD =45°-15°=30°. ∴BD =AD .∴△BDC ≌△ADC . ∴∠DCA =∠DCB =45°.由∠BDM =∠ABD +∠BAD =30°+30°=60°, ∠EDC =∠DAC +∠DCA =15°+45°=60°, ∴∠BDM =∠EDC .∴DE 平分∠BDC . (2)如图,连接MC .∵DC =DM ,且∠MDC =60°,∴△MDC 是等边三角形,即CM =CD .又∵∠EMC =180°-∠DMC =180°-60°=120°,∠ADC =180°-∠MDC =180°-60°=120°,∴∠EMC =∠ADC .又∵CE=CA,∴∠DAC=∠CEM=15°.∴△ADC≌△EMC.∴ME=AD=DB.。

中考专题复习导学案16:三角形(含答案)类

中考专题复习导学案16:三角形(含答案)类

中考数学专题练习16《三角形》【知识归纳】一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做(简称)。

2.三角形的中位线三角形的中位线平行于,并且等于.3.三角形的三边关系定理及推论三角形三边关系:任意两边之和第三边;任意两边之差第三边.4、三角形的内角和定理及推论1.三角形内角和:三角形三内角之和等于.2.三角形外角的性质:(1)三角形的一个外角任何一个和它不相邻的内角;(2)三角形的一个外角与它不相邻的两内角之和.1.三角形的分类:(1)按边分:三角形分为和等腰三角形;等腰三角形又分为及 .(2)按角分:三角形直角三角形和斜三角形;斜三角形又分为:和 .【基础检测】1.(•衡阳)正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.132.(•北京)内角和为540°的多边形是()A.B.C.D.3.(•贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40° C.45° D.50°4.(东营市,3,3分(·山东省东营市·3分))如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A.30° B.35° C.40° D.50°5. (·青海西宁·3分)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A .3cm ,4cm ,8cmB .8cm ,7cm ,15cmC .5cm ,5cm ,11cmD .13cm ,12cm ,20cm6.(深圳)如图所示,一个60o 角的三角形纸片,剪去这个600角后,得到 一个四边形,则么21∠+∠的度数为【 】A. 120OB. 180O .C. 240OD. 3000 7.(•梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若△A=75°,则△1+△2=( )【达标检测】图160° 1 2一.选择题1.下列图形中具有稳定性的是()A.正三角形 B.正方形 C.正五边形 D.正六边形2.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°3.(•舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.94.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC5. 如图,△ABC中,D,E分别上边AB,AC的中点,若DE=2,则BC=( )A、2B、3C、4D、56.(•乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°二.填空题7.(·四川内江)将一副直角三角板如图1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为。

中考数学第16讲直角三角形

中考数学第16讲直角三角形

2019年中考数学(真题+重难点+课后作业)第16讲直角三角形命题点直角三角形1.(2017·河北T11·2分)如图是边长为10cm的正方形铁片,过两个极点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的选项是(A)A BC D52.(2012·河北T26(1)·3分)如图,在△ABC中,AB=13,BC=14,cos∠ABC=13.研究:如图,AH⊥BC于点H,则AH=12,AC=15,△ABC的面积S△ABC=84.重难点直角三角形的有关计算如图,点 D在Rt△ABC的斜边AB上,且AC=6.(1)若AB比BC大2.①求AB的长;②若CD⊥AB于点D,求CD的长;若D是AB的中点,∠A=36°,则∠DCB=54°;若AD=7,DB=11,∠CDB=2∠B,求CD的长.【思路点拨】(1)因为AB比BC大2,AC=6,可采纳勾股定理求AB;利用面积法可求CD;(2)可利用直角三角形两锐角互余及等边平等角,求∠DCB;(3)取斜边的中点E,可得CD=CE.【自主解答】解:(1)①设AB=x,BC=x-2,2 2 2∵AB=BC+AC,x2=(x-2)2+62,解得x=10,即AB=10.11AC·BC6×824②∵2AC·BC=2CD·AB,∴CD=AB=10=5.第1页共1页1取AB的中点E,连结CE.∵AD=7,DB=11,∴AB=AD+DB=7+11=18.1CE=BE=2AB=2×18=9.∴∠B=∠BCE.由三角形的外角性质,得∠CED=∠B+∠BCE=2∠B.∵∠CDB=2∠B,∴∠CDB=∠CED,∴CD=CE=9.【变式训练1】(2018·黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=(C)A.2B.3C.4D.23【变式训练2】(2018·长沙)我国南宋有名数学家秦九韶的著作《数书九章》里记录有这样一道题:“问有沙田一块,有三斜,此中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)A.平方千米B.15平方千米C.75平方千米D.750平方千米【变式训练3】如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN.若MN=2,则OM的长为4.方法指导1.在直角三角形中,勾股定理表现直角三角形三边之间的数目关系;利用勾股定理能够已知两边求第三边;已知一边及其余两边的数目关系求两边;已知三边的数目关系,求三边;在利用勾股定理的逆定理时,注意的是两条较小边的平方和等于最大边的平方时,此三角形是直角三角形.2.求直角三角形斜边上高可考虑利用面积法.3.对于直角三角形有两个重要定理:(1)30°角的直角三角形中,30°角所对的直角边等于斜边的一半,其性质表现直角三角形与等边三角形之间的联系,即等边三角形是由两个同样的30°的直角三角形拼接而成的;直角三角形斜边上中线等于斜边的一半,还能够获得有公共斜边的多个直角三角形,斜边上中点到直角三角形各极点的距离相等.直角三角形斜边上中线把直角三角形分红两个等腰三角形.1.(2018·滨州)在直角三角形中,若勾为3,股为4,则弦为(A)A.5B.6C.7D.82.(2018·贺州)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为(D)第2页共2页A.3 2B.3 3C.6D.623.(2018·常德)如图,已知BD是△ABC的角均分线,ED是BC的垂直均分线,∠BAC=90°,AD=3,则CE的长为(D) A.6B.5C.4D.334.(2018·淄博)如图,在Rt△ABC中,CM均分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN均分∠AMC.若AN=1,则BC的长为(B)A.4B.6C.4 3D.85.(2018·泸州)“赵爽弦图”奇妙地利用面积关系证了然勾股定理,是我国古代数学的骄傲.以下图的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为 b.若ab=8,大正方形的面积为25,则小正方形的边长为(D)A.9B.6C.4D.36.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是(C)7.(2018·泰州)如图,在四边形ABCD中,AC均分∠BAD,∠ACD=∠ABC=90°,E,F分别为AC,CD的中点,∠D=α,则∠BEF的度数为270°-3α(用含α的式子表示).8.(2018·保定模拟)勾股定理神奇而美好,它的证法多样,其奇妙各有不一样,此中的“面积法”给了小聪一灵感,他欣喜地发现,当两个全等的直角三角形如图1或图2摆放时,都能够用“面积法”来证明,下边是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,此中∠DAB=90°,求证:a2+b2=c2.第3页共3页证明:连结 DB ,过点D 作BC 边上的高 DF ,则DF =EC =b -a.1S 四边形ADCB =S △ACD +S △ABC =2b +2ab ,112 1又∵S 四边形ADCB =S △ADB +S △DCB =c +a(b -a),22 21∴ 2b +2ab =2c +2a(b -a).a 2+b 2=c 2.1211请参照上述证法,利用图 2达成下边的证明.将两个全等的直角三角形按图 2所示摆放,此中∠ DAB =90°.求证:a 2+b 2=c 2.1证明:连结 BD ,过点B 作DE 边上的高BF ,则BF =b -a.121S 五边形ACBED =S △ACB +S △ABE +S △ADE =2ab +2b +2ab ,1 1 21 又∵S 五边形ACBED =S △ACB +S △ABD +S △BDE =ab +c +a(b -a),22 211 2 1 1 1 21∴ 2ab +2b + 2ab =2ab +2c+ 2a(b -a).∴a 2+b 2=c 2.9.(2018·扬州)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 均分∠ACD 交AB 于点E ,则以下结论必定建立的是(C)A .BC =ECB .EC =BE C .BC =BED .AE =EC10.(2018·石家庄模拟)如图,已知AB =10,点P 是线段AB 上的动点,以 AP 为边作正六边形 APCDEF ,以PB 为底作等腰△BPN ,连结PD ,DN ,则△PDN 的面积的最大值是(B)A .6325 325 3B.C .73 D.42第 4页共4页提示:连结AD,作NM⊥PB于点M,∵六边形APCDEF是正六边形,∴EF∥AD,DP⊥AB,DP⊥ED,正六边形的每一个内角为120°,∴∠ADE=60°,∴∠ADP=30°,∴PD=3PA,∵DP⊥AB,NM⊥PB,∴PD∥MN,∴PM就是△PDN1111的PD边的高,设PA=x.则PB=10-x,∵在等腰△BPN中,MN⊥PB,∴PM=2PB=2(10-x),∴S△PDN=2PD·PM=2×13(x-5)22532533x×(10-x)=-+,∴△PDN的面积的最大值为.244411.(2018·黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正幸亏杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).12.(2018·天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,19连结DG,则DG的长为.提示:连结DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,1且DE∥AC,BD=BE=EC=2.∵EF⊥AC,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°.∴FC=2EC=1,故EF=223.∴DG=22192-1= 3.∵G为EF的中点,∴EG=DE+EG=.2213.(2018·冀卓模拟)已知,在等腰△ABC中,AB=AC=10,BC=16.若将△ABC的腰不变,底变成12,甲同学说,这两个等腰三角形面积相等;乙同学说,腰不变,底变化,这两个三角形面积必不相等.请对甲、乙两种说法做出判断,并说明原因;(2)已知△ABC底边上高增添x,腰长增添(x-2)时,底却保持不变,请确立x的值;解:(1)甲说法对,乙说法不对.图1图2原因以下:如图1,过点A作AD⊥BC于点D.AB=AC=10,BC=16,∴BD=CD=8,∴AD=6.1∵S△ABC=2BC·AD=48.如图2,作等腰△A′B′C′,A′B′=A′C′=10,B′C′=12,过点A作A′D′⊥B′C′于点D′.A′B′=A′C′=10,B′C′=12,∴B′D′=C′D′=6.∴A′D′=8.第5页共5页1S△A′B′C′=2B′C′·A′D′=48.∴两个等腰三角形面积相等.依题意,得(10+x-2)2=(6+x)2+82,解得x=9.14.如图1,已知在锐角△ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC,DE的中点.求证:MN⊥DE;连结DM,ME,猜想∠A与∠DME之间的关系,并证明猜想;当∠A变成钝角时,如图2,上述(1)(2)中的结论能否都建立,若结论建立,直接回答,不需证明;若结论不建立,说明原因.解:(1)证明:连结DM,ME.∵CD,BE分别是AB,AC边上的高,M是BC的中点,11DM=2BC,ME=2BC.DM=ME.又∵N为DE中点,∴MN⊥DE.在△ABC中,∠ABC+∠ACB=180°-∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°-2∠ABC)+(180°-2∠ACB)=360°-2(∠ABC+∠ACB)=360°-2(180°-∠A)2∠A,∴∠DME=180°-2∠A.结论(1)建立,结论(2)不建立.连结DM,ME.原因以下:在△ABC中,∠ABC+∠ACB=180°-∠A,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC=2(180°-∠A)=360°-2∠A.∴∠DME=180°-(360°-2∠A)=2∠A-180°.15.(2018·湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记录了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学识题是:以下图,在△ABC中,∠ACB=90°,AC+AB=10,BC =3,求AC的长,假如设AC=x,则可列方程为x2+32=(10-x)2.第6页共6页。

人教版中考数学讲本 第四单元 三角形 第16讲 直角三角形

人教版中考数学讲本 第四单元 三角形 第16讲 直角三角形

考点梳理 典例研究
① 解: 证明:∵△ACB和△DCE都是等腰直角三角形, ∴AC=BC,CD=CE, ∠ACB=∠DCE=90°, ∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE, ∴△ACD≌△BCE,∴AD=BE,∠CAD=∠CBE. 设AD,BC相交于点M,AD,BE相交于点N.
考点梳理 典例研究
考点 直角三角形的性质与判定 如图,在△ABC中,CD是AB的中线.
(1)若∠ACB=90°,∠A=30°,BC=26,0°则∠B 4
= 2 ,AB=
,CD=




(2)若∠ACB=90°,AB=10,BC=68,则AC= ; ⁠
考点梳理 典例研究
5 90° 8
考点梳理 典例研究
考点梳理 典例研究
(4)若△ACB和△DCE按如图所示摆放,点D在边AB上,试 探究AD,BD,DE之间的数量关系,并说明理由;
考点梳理 典例研究
(4)解:AD2+BD2=DE2.理由如下: ∵△ACB和△DCE都是等腰直角三角形, ∴AC=BC,CD=CE,∠A=∠ABC=45°, ∠ACB=∠DCE=90°, ∴∠ACB-∠BCD=∠DCE-∠BCD, 即∠ACD=∠BCE, ∴△ACD≌△BCE,∴AD=BE,∠CBE=∠A=45°, ∴∠DBE=∠ABC+∠CBE=90°, ∴BE2+BD2=DE2,∴AD2+BD2=DE2.
考点梳理 典例研究
(2)若AB=4,求线段CF的长.
考点梳理 典例研究
2.如图,在△ABC中,∠ACB=90°,CA=CB,M是AB的中 点,点D在BM上,AE⊥CD,垂足为E,BF⊥CD,交CD的 延长线于点F,连接ME,MF,连接CM,交AE于点G. (1)求证:CE=BF; (2)求证:∠MFE=45°; (3)若DE=6,DF=2,求线段DM长.

人教版初中数学中考复习课件 第16章 解直角三角形(

人教版初中数学中考复习课件  第16章  解直角三角形(

AC=23,则AB的长为 3+√3
.
14.如图-12,将∠AOB放在边长为1的小正方形组
成的网格中,点A,O,B都在格点上,则
tan∠AOB=
1/2
.
三、解答题
15.如图-13,AD是△ABC的中线,tanB=1/3, cosC=√2/2,AC=2.求: (1)BC的长; (2)sin∠ADC的值.
【例2】(2014•广东)如图-3,某数学兴趣小组 想测量一棵树CD的高度,他们先在点A处测得树顶 C的仰角为30°,然后沿AD方向前行10m到达点B, 在B处测得树顶C的仰角为60°(A,B,D三点在同 一直线上).请你根据他们测量的数据计算这棵树 CD的高度.
∵∠CBD=∠A+∠ACB, ∴∠ACB=∠CBD-∠A=60°-30°=30°. ∴∠A=∠ACB. ∴BC=AB=10m. 在Rt△BCD中, CD=BC·sin∠CBD=10×√3/2=5√3(m). 答:这棵树CD的高度为5√3m.
二、填空题
11.已知α ,β 均为锐角,且满足|sinα -1/2|+(
tanβ -1)2=0,则α中,∠ACB=90°,AC=8,
BC=6,CD⊥AB,垂足是D,那么tan∠BCD的值是
3/4
.
13.如图-11,在△ABC中,∠A=30°,∠B=45°,
15.如图-1,过点A作AE⊥BC于点E. ∵cosC=√2/2, ∴∠C=45°. 在Rt△ACE中,CE=AC·cosC=1, ∴AE=CE=1. 在Rt△ABE中,tanB=1/3,即AE/BE=1/3, ∴BE=3AE=3. ∴BC=BE+CE=4.
(2)∵AD是△ABC的中线, ∴CD=1/2BC=2. ∴DE=CD-CE=1. ∵AE⊥BC,DE=AE, ∴∠ADC=45°. ∴sin∠ADC=√2/2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16讲直角三角形
考纲要求命题趋势
1.了解直角三角形的有关概念,掌握其性质与判定.
2.掌握勾股定理与逆定理,并能用来解决有关问题.
直角三角形是中考考查的
热点之一,题型多样,多以简单题和中档难度题出现,主要考查直角三角形的判定和性质的应用,以及运用勾股定理及其逆定理来解决实际问题的能力.
知识梳理
一、直角三角形的性质
1.直角三角形的两锐角________.
2.直角三角形中,30°角所对的边等于斜边的________.
3.直角三角形斜边上的中线等于斜边的________.
4.勾股定理:直角三角形两直角边的平方和等于斜边的平方.
二、直角三角形的判定
1.有一个角等于________的三角形是直角三角形.
2.有两角________的三角形是直角三角形.
3.如果三角形一边上的中线等于这边的________,则该三角形是直角三角形.
4.勾股定理的逆定理:如果三角形一条边的平方等于另外两条边的________,那么这个三角形是直角三角形.
自主测试
1.在△ABC中,若三边BC,CA,AB满足BC:CA:AB=5:12:13,则cos B=()
A.
5
12
B.
12
5
C.
5
13
D.
12
13
2.如图,在△ABC中,DE是中位线,∠ABC的平分线交DE于F,则△ABF一定是()
A.锐角三角形B.直角三角形
C.钝角三角形D.等边三角形
3.下列各组数据分别为三角形的三边长:①2,3,4;②5,12,13;③2,3,4;④m2-n2,m2+n2,2mn.其中是直角三角形的有()
A.①②B.③④C.①③D.②④
考点一、直角三角形的判定
【例1】如图,在△ABC中,AB=AC,∠BAC=90°,点D为边BC上的任一点,DF ⊥AB于F,DE⊥AC于E,M为BC的中点,试判断△MEF的形状,并证明你的结论.。

相关文档
最新文档