2020-2021南京市初一数学上期末第一次模拟试卷含答案
2020-2021南京市七年级数学上期末模拟试卷(及答案)
2020-2021南京市七年级数学上期末模拟试卷(及答案)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个B .两个C .三个D .四个3.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A .x+1=2(x ﹣2) B .x+3=2(x ﹣1) C .x+1=2(x ﹣3) D .1112x x +-=+ 4.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+D .222233m x m x ⎛⎫--=-+ ⎪⎝⎭5.有理数a ,b 在数轴上的位置如图所示,则下列代数式值是负数的是( )A .+a bB .ab -C .-a bD .a b -+6.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=7.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A.①②B.①③C.②③D.①②③8.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④9.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()A.4cm B.5cm C.6cm D.7cm10.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b11.关于的方程的解为正整数,则整数的值为()A.2B.3C.1或2D.2或312.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个二、填空题13.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.14.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元.15.一个角的余角比这个角的12多30°,则这个角的补角度数是__________.16.-3的倒数是___________ 17.计算7a2b﹣5ba2=_____.18.若代数式45x -与36x -的值互为相反数,则x 的值为____________. 19.若()2320m n -++=,则m+2n 的值是______。
2020-2021七年级数学上期末一模试卷含答案 (3)
2020-2021七年级数学上期末一模试卷含答案 (3)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个 3.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .+3mB .﹣3mC .+13m D .﹣5m 4.下列说法错误的是( ) A .2-的相反数是2B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是05.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元 6.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a ,b (a >b ),则a -b 等于( )A .9B .10C .11D .127.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A .九折B .八五折C .八折D .七五折8.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4 9.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( )A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 2015 10.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( )A .2个B .3个C .4个D .5个11.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)12.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( ) A .3 B .9 C .7 D .1二、填空题13.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有8个小圆,第2个图形有14个小圆,第3个图形有22个小圆,依此规律,第7个图形的小圆个数是__________.14.-3的倒数是___________15.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.16.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____.17.一个角的补角比它的余角的3倍少20°,这个角的度数是________18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.如图,将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后个数是7,第4行最后一个数是10,…依此类推,第20行第2个数是_____,第_____行最后一个数是2020.20.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.三、解答题21.化简与求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷2x ,其中x=5,y=﹣6.22.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.23.解方程(1)2(4)3(1)x x x --=-(2)1-314x -=32x + 24.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示; 商场 优惠方案甲全场按标价的六折销售 乙 单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?25.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;∠表示,故本选项正确;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,αC、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D 、因为顶点B 处有4个角,所以这4个角均不能用∠B 表示,故本选项错误. 故选:B .【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.C解析:C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.B解析:B【解析】【分析】根据正数和负数表示相反意义的量,可得答案.【详解】水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作-3m , 故选B .【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.4.D解析:D【解析】试题分析:﹣2的相反数是2,A 正确;3的倒数是13,B 正确; (﹣3)﹣(﹣5)=﹣3+5=2,C 正确;﹣11,0,4这三个数中最小的数是﹣11,D 错误,故选D .考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.5.B【解析】【分析】设该服装标价为x 元,根据售价﹣进价=利润列出方程,解出即可.【详解】设该服装标价为x 元,由题意,得0.6x ﹣200=200×20%, 解得:x=400.故选B .【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.6.C解析:C【解析】【分析】设白色的部分面积为x ,由题意可知a=36-x ,b=25-x ,根据整式的运算即可求出答案.【详解】设白色部分的面积为x ,∴a+x=36,b+x=25,∴a=36-x ,b=25-x ,∴a-b=36-x-(25-x )=11,故选:C .【点睛】本题考查整式的运算,解题的关键是熟练设白色的部分面积为x ,从而列出式子,本题属于基础题型.7.A解析:A【解析】【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。
2020-2021南京市南京市行知实验中学 七年级数学上期末一模试题附答案
2020-2021南京市南京市行知实验中学 七年级数学上期末一模试题附答案一、选择题1.下列图形中,能用ABC ∠,B ,α∠表示同一个角的是( )A .B .C .D .2.将7760000用科学记数法表示为( ) A .57.7610⨯ B .67.7610⨯ C .677.610⨯ D .77.7610⨯ 3.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .34.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个5.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是06.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .7.下列结论正确的是( )A .c>a>bB .1b >1c C .|a|<|b|D .abc>08.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元9.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 10.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时B .2小时20分C .2小时24分D .2小时40分11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )64的展开式中第三项的系数为( ) A .2016B .2017C .2018D .201912.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3yD .由,得3(y+1)=2y+6二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n 个图有____颗棋子(用含n 的代数式示).14.若关于x 的一元一次方程12018x-2=3x+k 的解为x=-5,则关于y 的一元一次方程12018(2y+1)-5=6y+k 的解y=________. 15.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________16.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.17.如图,若输入的值为3-,则输出的结果为____________.18.﹣225ab π是_____次单项式,系数是_____.19.用科学记数法表示24万____________. 20.化简:()()423a b a b ---=_________.三、解答题21.如下图时用黑色的正六边形和白色的正方形按照一定的规律组合而成的两色图案(1)当黑色的正六边形的块数为1时,有6块白色的正方形配套;当黑色的正六边形块数为2时,有11块白色的正方形配套;则当黑色的正六边形块数为3,10时,分别写出白色的正方形配套块数;(2)当白色的正方形块数为201时,求黑色的正六边形的块数.(3)组成白色的正方形的块数能否为100,如果能,求出黑色的正六边形的块数,如果不能,请说明理由 22.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.23.探索练习:某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票是每张8元,学生票是每张5元,筹得票款6950元.问成人票与学生票各售出多少张?24.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元. (1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为 元.25.某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示. 【详解】A 、因为顶点B 处有2个角,所以这2个角均不能用∠B 表示,故本选项错误;B 、因为顶点B 处只有1个角,所以这个角能用∠ABC ,∠B ,α∠表示,故本选项正确;C 、因为顶点B 处有3个角,所以这3个角均不能用∠B 表示,故本选项错误;D 、因为顶点B 处有4个角,所以这4个角均不能用∠B 表示,故本选项错误. 故选:B . 【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.B解析:B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.A解析:A 【解析】 【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可. 【详解】把3x =代入方程834x ax -=-得: 8-9=3a-4 解得:a=1 故选:A . 【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.4.C解析:C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 5.D解析:D 【解析】试题分析:﹣2的相反数是2,A 正确; 3的倒数是13,B 正确; (﹣3)﹣(﹣5)=﹣3+5=2,C 正确;﹣11,0,4这三个数中最小的数是﹣11,D 错误, 故选D .考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.6.D解析:D 【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A 、B 选项错误;该正方体若按选项C 展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C 不符合题意. 故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.7.B解析:B 【解析】 【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案. 【详解】解:由图可知1,01,1a b c <-<<> ∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确;1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B . 【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.8.B解析:B 【解析】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B . 点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.9.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.10.C解析:C 【解析】 【分析】设停电x 小时.等量关系为:1-粗蜡烛x 小时的工作量=2×(1-细蜡烛x 小时的工作量),把相关数值代入即可求解. 【详解】解:设停电x 小时.由题意得:1﹣14x =2×(1﹣13x ), 解得:x =2.4.解析:A【解析】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n−2)+(n−1),∴(a+b)64第三项系数为1+2+3+…+63=2016,故选A.点睛:此题考查了规律型-数字的变化类,考查学生通过观察、分析、归纳发现其中的规律,并应用发现的规律解决实际问题的能力.12.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题13.n(n+2)﹣1【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系找到规律利用规律求解即可【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×解析:[n(n+2)﹣1].【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×5﹣1=14个黑棋子;第4图有4×6﹣1=23个黑棋子;第5图有5×7﹣1=34个黑棋子…图n有n(n+2)﹣1个黑棋子.故答案为:34;[n(n+2)﹣1].【点睛】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.-3【解析】【分析】先把x=-5代入x-2=3x+k求出k的值再把k代入(2y+1)-5=6y+k解方程求出y值即可【详解】∵关于x的一元一次方程x-2=3x+k的解为x=-5∴-2=-15+k解得解析:-3【解析】【分析】先把x=-5代入12018x-2=3x+k求出k的值,再把k代入12018(2y+1)-5=6y+k,解方程求出y值即可.【详解】∵关于x的一元一次方程12018x-2=3x+k的解为x=-5,∴52018-2=-15+k,解得k=122013 2018,∴12018(2y+1)-5=6y+1220132018,解得y=-3.故答案为-3【点睛】本题考查了一元一次方程的解及解一元一次方程,使等式两边成立的未知数的值叫做方程的解,熟练掌握一元一次方程的解法是解题关键.15.122【解析】【分析】根据题意可以分别求得a1a2a3a4从而可以发现这组数据的特点三个一循环从而可以求得a2019的值【详解】解:由题意可得a1=52+1= 26a2=(2+6)2+1=65a3=(解析:122【解析】【分析】根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=122,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019= a3=122,故答案为:122.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.16.40°【解析】解:由角的和差得:∠AOC=∠AOD-∠COD=140°-90°=50°由余角的性质得:∠COB=90°-∠AOC=90°-50°=40°故答案为:40°解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.17.1【解析】【分析】把-3代入程序中计算判断结果比0小将结果代入程序中计算直到使其结果大于0再输出即可【详解】把-3代入程序中得:把-2代入程序中得:则最后输出结果为1故答案为:1【点睛】本题考查有理解析:1【解析】【分析】把-3代入程序中计算,判断结果比0小,将结果代入程序中计算,直到使其结果大于0,再输出即可.【详解】⨯==<,把-3代入程序中,得:()-33+7-9+7-20⨯==>,把-2代入程序中,得:()-23+7-6+710则最后输出结果为1.故答案为:1【点睛】本题考查有理数的混合运算,熟练掌握各运算法则是解题的关键.18.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数由此可得答案【详解】是三次单项式系数是故答案为:三【点睛】本题考查了单项式的知识掌握单项式系数及次 解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 19.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数解析:52.410⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】24万5240000 2.410==⨯故答案为:52.410⨯【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.20.2a-b 【解析】【分析】直接利用整式的加减运算法则计算得出答案【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b 故答案为:2a-b 【点睛】本题考查整式的加减运算正确掌握相关运解析:2a-b .【解析】【分析】直接利用整式的加减运算法则计算得出答案.【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b .故答案为: 2a-b .【点睛】本题考查整式的加减运算,正确掌握相关运算法则是解题关键.三、解答题21.(1)16;51;(2)40;(3)成白色的正方形的块数不能为100,理由见解析【解析】【分析】(1)第一副图为黑1,白6,第二幅图黑色增加1,白色增加5,第三幅图黑色增加1,白色增加5,由此可知黑色为3,10时白色的配套数量;(2)由(1)可知白色的增加规律为51n +,其中n 为黑色正六边形的数量,根据关系式求出黑色即可;(3)根据关系式判断即可.【详解】(1)观察图形可知:每增加1块黑色正六边形,配套白色正方形增加5个,当黑色的正六边形块数为3,白色正方形为16,当黑色的正六边形块数为10,白色正方形为51;故答案为:16,51;(2)观察可知每增加1块黑色正六边形,配套白色正方形增加5个故第n 个图案中有51n +个正方形,当51201n +=时,40n =;故答案为:黑色的正六边形的块数为40;(3)当51100n +=时,n 无法取整数,故白色正方形无法为100.【点睛】本题考查了图形的变化规律,解题时必须仔细观察规律,通过归纳得出结论.注意由特殊到一般的分析方法,此题的规律为:第n 个图案中有51n +个正方形.22.222x y +,19【解析】试题分析:先去括号,合并同类项,然后代入求值即可.试题解析:解:原式=22233223x xy x y xy --++=222x y +当1x =-,3y =时,原式=22(1)23-+⨯=19.23.成人票售出650张,学生票各售出350张.【解析】【分析】此题基本的数量关系是:①成人票张数+学生票张数=1000张,②成人票票款+学生票票款=6950,利用①设未知数,另一个用x 表示,利用②列方程解答即可.【详解】设成人票售出x 张,学生票各售出(1000﹣x )张,根据题意列方程得:8x +5(1000﹣x )=6950,解得:x =650,1000﹣x =350(张).答:成人票售出650张,学生票各售出350张.【点睛】此题考l 利用一元一次方程解应用题,理清题里蕴含的数量关系:①成人票张数+学生票张数=1000张,②成人票票款+学生票票款=6950.24.(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.【解析】【分析】(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元.根据买钢笔30支,毛笔45支,共用了1755元建立方程,求出其解即可;(2)①根据第一问的结论设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105−y )支,求出方程的解不是整数则说明算错了;②设单价为21元的钢笔为z 支,单价为25元的毛笔则为(105−y )支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.【详解】解:(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x =21,∴毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解之得:y =44.5 (不符合题意).∴陈老师肯定搞错了.②设单价为21元的钢笔为z 支,签字笔的单价为a 元,则根据题意,得21z+25(105﹣z)=2447﹣a.∴4z=178+a,∵a、z都是整数,∴178+a应被4整除,∴a为偶数,又因为a为小于10元的整数,∴a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为2元或6元.【点睛】本题考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用及二元一次不定方程的运用,在解答时根据题意等量关系建立方程是关键.25.780个【解析】【分析】首先设原计划每小时生产x个零件,然后根据零件总数量的关系列出一元一次方程,从而得出x的值,然后得出生产零件的总数.【详解】解:设原计划每小时生产x个零件,则后来每小时生产(x+5)个零件,根据题意可得:26x=24(x+5)-60解得:x=30则26x=26×30=780(个)答:原计划生产780个零件.【点睛】本题考查一元一次方程的应用.。
2020-2021南京市南京市宁海中学 七年级数学上期末第一次模拟试题附答案
解:设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,依题意得:2x-6=3(x-6)
解得:x=12
∴2x=24
故:甲现在24岁,乙现在12岁.
故答案为:24,12
【点睛】
本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.
17.1【解析】【分析】●用a表示把x=1代入方程得到一个关于a的方程解方程求得a的值【详解】●用a表示把x=1代入方程得1=1﹣解得:a=1故答案为:1【点睛】本题考查了方程的解的定义方程的解就是能使方
16.12【解析】【分析】设乙现在的年龄是x岁则甲的现在的年龄是:2x岁根据6年前甲的年龄是乙的3倍可列方程求解【详解】解:设乙现在的年龄是x岁则甲的现在的年龄是:2x岁依题意得:2x-6=3(x-6)解
解析:12
【解析】
【分析】
设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,根据6年前,甲的年龄是乙的3倍,可列方程求解.
(1)出租车的速度为_____千米/小时;
(2)小明家到西安北站有多少千米?
23.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.
(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是与,与,与;
(2)若设长方体的宽为xcm,则长方体的长为cm,高为cm;(用含x的式子表示)
解析:D
【解析】
解:A.B、C的变形均符合等式的基本性质,D项a不能为0,不一定成立.故选D.
12.C
解析:C
【解析】
【分析】
首先把3x﹣6化成3(x﹣2),然后把x﹣2=6代入,求出算式的值是多3x﹣6
南京市鼓楼区2020-2021学年七年级上学期期末数学试题(含答案)
(2)过点 ,画 的垂线 .
(3)过点 ,画 的垂线 .
(4)请直接写出 、 的位置关系.
【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)平行.
22.如图 是由一些大小相同的小正方体组合成的简单几何体.
请在图 的方格纸中分别画出它的主视图、左视图和俯视图.
保持小正方体的个数不变,只改变小正方体的位置,搭一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有______种不同的搭法.
【答案】(1)见解析(2)2
23.已知:如图, 是直线 上一点, 是 的平分线, 与 互余.求证: 与 互补.
请将下面的证明过程补充完整;
证明: 是直线 上一点,
已知:如图2,在平面内,∠AOM=10°,∠MON=20°
(1)若有两条射线 , 的位置如图3所示,且 , ,则在这两条射线中,与射线OA关于∠MON内含对称的射线是_____________
(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;
【答案】58
16.线段 ,在直线 上截取线段 , 为线段 的中点, 为线段 的中点,那么线段 的长为______.
【答案】6或12
三、解答题
17.计算
(1)
(2)
【答案】(1)-6;(2)
18.解方程
(1) ;
(2) .
【答案】(1) ;(2)x=1
19.先化简,再求值: ,其中 , .
【答案】
20.某超市计划购进甲、乙两种商品共 件,这两种商品的进价、售价如下表:
(1)中国队 场胜场中只有一场以 取胜,请将中国队的总积分填在表格中,
2020-2021初一数学上期末第一次模拟试题(附答案) (4)
2020-2021初一数学上期末第一次模拟试题(附答案) (4)一、选择题1.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在()A.16号B.18号C.20号D.22号2.下面的说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等3.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x元,则根据题意列出方程正确的是()A.0.8×(1+40%)x=15B.0.8×(1+40%)x﹣x=15C.0.8×40%x=15D.0.8×40%x﹣x=154.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A.350元B.400元C.450元D.500元5.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC 的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm6.用一个平面去截一个正方体,截面不可能是()A.梯形B.五边形C.六边形D.七边形7.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×1078.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.63B.70C.96D.1059.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2B.2或2.25C.2.5D.2或2.510.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )64的展开式中第三项的系数为( ) A .2016B .2017C .2018D .201911.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A .3B .9C .7D .112.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3yD .由,得3(y+1)=2y+6二、填空题13.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.14.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________. 15.若13a+与273a -互为相反数,则a=________.16.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.17.若当x =1时,多项式12ax 3﹣3bx +4的值是7,则当x =﹣1时,这个多项式的值为_____.18.如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n ∠BOC ,∠BOD =1n∠AOB ,则∠DOE =_____°.(用含n 的代数式表示)19.已知整式32(1)7(3)2m n x x m x ---++-是关于x 的二次二项式,则关于y 的方程(33)5n m y my -=--的解为_____.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.计算:32112(3)4⎡⎤--⨯--⎣⎦ 22.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是 与 , 与 , 与 ; (2)若设长方体的宽为xcm ,则长方体的长为 cm ,高为 cm ;(用含x 的(3)求这种长方体包装盒的体积.23.如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出A B中点M所对应的数;(2)现有一只电子蚂蚊P从B点出发,以6单位秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数.(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.24.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?25.已知方程3(x﹣1)=4x﹣5与关于x的方程232x a x a---=x﹣1有相同的解,求a的值.【参考答案】***试卷处理标记,请不要删除1.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.2.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.3.B解析:B【解析】【分析】首先设这种服装每件的成本价是x元,根据题意可得等量关系:进价×(1+40%)×8折-进价=利润15元,根据等量关系列出方程即可.【详解】设这种服装每件的成本价是x元,由题意得:4.B解析:B【解析】设该服装标价为x 元,根据售价﹣进价=利润列出方程,解出即可. 【详解】设该服装标价为x 元,由题意,得0.6x ﹣200=200×20%, 解得:x=400. 故选B . 【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.D解析:D 【解析】 【分析】先根据题意画出图形,再利用线段的中点定义求解即可. 【详解】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =-=-==. 故选:D . 【点睛】本题考查的知识点是与线段中点有关的计算,根据题意画出正确的图形是解此题的关键.6.D解析:D 【解析】 【分析】正方体总共六个面,截面最多为六边形。
2020-2021南京市七年级数学上期末一模试卷(及答案)
2020-2021南京市七年级数学上期末一模试卷(及答案)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.若﹣x 3y a 与x b y 是同类项,则a+b 的值为( ) A .2 B .3 C .4 D .5 3.下列各式的值一定为正数的是( )A .(a +2)2B .|a ﹣1|C .a +1000D .a 2+14.8×(1+40%)x ﹣x =15 故选:B . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.5.下列计算正确的是( ) A .2a +3b =5ab B .2a 2+3a 2=5a 4 C .2a 2b +3a 2b =5a 2b D .2a 2﹣3a 2=﹣a6.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( ) A .不赚不亏B .赚8元C .亏8元D .赚15元7.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折B .八五折C .八折D .七五折8.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( ) A .2个B .3个C .4个D .5个9.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时B .2小时20分C .2小时24分D .2小时40分10.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是( )A.63B.70C.96D.10511.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④12.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=12AB C.AE=34AB D.AD=12CB二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n个图有____颗棋子(用含n的代数式示).14.已知﹣5a2m b和3a4b3﹣n是同类项,则12m﹣n的值是_____.15.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x为_____.16.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n17.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论: ①可能是锐角三角形;②可能是钝角三角形; ③可能是长方形;④可能是梯形. 其中正确结论的是______(填序号).18.已知关于x 的一元一次方程1999(x +1)﹣3=2(x +1)+b 的解为x =9,那么关于y 的一元一次方程1999y ﹣3=2y +b 的解y =_____. 19.如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第n 个图案中正三角形的个数是__________.20.已知整式32(1)7(3)2m n x x m x ---++-是关于x 的二次二项式,则关于y 的方程(33)5n m y my -=--的解为_____.三、解答题21.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值-1-0.500.51 1.5(单位:千克)箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)若苹果每千克售价4元,则这15箱苹果可卖多少元?22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出A B中点M所对应的数;(2)现有一只电子蚂蚊P从B点出发,以6单位秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数.(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.24.如图,平面上有射线AP和点B,C,请用尺规按下列要求作图:(1)连接AB,并在射线AP上截取AD=AB;(2)连接BC、BD,并延长BC到E,使BE=BD.(3)在(2)的基础上,取BE中点F,若BD=6,BC=4,求CF的值.25.如图,已知∠AOC=90°,∠COD比∠DOA大28°,OB是∠AOC的平分线,求∠BOD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;∠表示,故本选项正确;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,αC、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.C解析:C【解析】试题分析:已知﹣x3y a与x b y是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C.考点:同类项.3.D解析:D【解析】【分析】直接利用偶次方以及绝对值的性质分别分析得出答案.A.(a+2)2≥0,不合题意;B.|a﹣1|≥0,不合题意;C.a+1000,无法确定符号,不合题意;D.a2+1一定为正数,符合题意.故选:D.【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.4.无5.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.6.C解析:C【解析】试题分析:设盈利的进价是x元,则x+25%x=60,x=48.设亏损的进价是y元,则y-25%y=60,y=80.60+60-48-80=-8,∴亏了8元.故选C.考点:一元一次方程的应用.7.A解析:A【解析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可. 【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x⨯=+ 解得:x=9.答:该商品的打9折出售。
2020-2021南京郑和外国语学校七年级数学上期末第一次模拟试题(带答案)
10.A
解析:A
【解析】
【分析】
通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系,据此列出方程即可.
∴BD=10-3-3=4cm.
故答案选:A.
【点睛】
本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.
二、填空题
13.【解析】【分析】按照定义式发现规律首尾两两组合相加剩下中间的最后再求和即可【详解】====故答案为:【点睛】本题考查了定义新运算在有理数的混合运算中的应用读懂定义发现规律是解题的关键
A.95元B.90元C.85元D.80元
10.轮船沿江从 港顺流行驶到 港,比从 港返回 港少用3小时,若船速为26千米/时,水速为2千米/时,求 港和 港相距多少千米.设 港和 港相距 千米.根据题意,可列出的方程是().
A. B.
C. D.
11.观察下列算式,用你所发现的规律得出22015的末位数字是()
则点M对应的数为:m+21﹣m=21;
当点N与点M重合时,
同理可得,点M对应的数为﹣3,
故答案为:21或﹣3.
【点睛】
此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.
15.【解析】解:CD=DB﹣BC=7﹣4=3cmAC=2CD=2×3=6cm故答案为6
【详解】
∵单项式2x3y2m与-3xny2的差仍是单项式,
2020-2021学年江苏省南京市七年级(上)期末数学试卷(含解析)
2020-2021学年江苏省南京市七年级(上)期末数学试卷(考试时间:90分钟满分:100分)一、选择题(每小题2分,共16分)1.﹣2021的倒数为()A.B.C.﹣2021 D.20212.下列合并同类项结果正确的是()A.2a2﹣a2=2 B.2a2+a=2a3C.2xy﹣xy=xy D.2x3+3x3=5x63.若3x=4y(y≠0),则()A.3x+4y=0 B.=C.3x+y=4y+x D.6x﹣8y=04.下列各组数中,不相等的一组数是()A.(﹣2)3和﹣23B.(﹣2)4和﹣24C.(﹣2)2和22D.|﹣2|3和|2|35.如图正方体纸盒,展开后可以得到()A.B.C.D.6.商场销售某品牌冰箱,若按标价的八折销售,每件可获利200元,其利润率为10%,若按标价的九折销售,每件可获利()A.475元B.875元C.562.5元D.750元7.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.8.若M=3x2+5x+2,N=4x2+5x+3,则M与N的大小关系是()A.M<N B.M>N C.M≤N D.不能确定二、填空题(每题2分,共20分)9.比﹣1小2的数是.10.太阳的直径大约是1 392 000千米,将1 392 000用科学记数法表示为.11.﹣的系数是,2x+3xy2﹣1的次数是.12.已知∠α=32°,则∠α的补角为度.13.若关于x的方程2k+3x=4与x+2=0的解相同,则k的值为.14.如图,将三角形沿虚线剪去一个角,剩下的四边形周长小于原三角形的周长,理由是.15.若a2+3a=﹣5,则2﹣2a2﹣6a的值为.16.如图,将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,且∠AFM=∠EFM,则∠AFM=°.17.如图,若数轴上的有理数a,b满足|a+2b|﹣|a﹣b|=|a|,则=.18.如图,∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,下列结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.所有正确结论的序号是.三、解答题(共64分)19.(8分)计算:(1)(+﹣)÷(﹣);(2)(﹣2)3×(﹣2+6)﹣|﹣4|.20.(5分)先化简,再求值:3(2a2b﹣4ab2)﹣(﹣3ab2+6a2b),其中a=1,b=﹣.21.(8分)解下列方程:(1)﹣2(x+1)=6x;(2)﹣=1.22.(6分)如图,已知平面上三个点A,B,C,按要求完成下列画图:(要求保留作图痕迹)(1)作射线AB和直线AC;(2)连接CB并延长CB至点D,使BD=2CB;(3)点E为直线AC上一点,连接BE,请画出使得EA+EB+EC最小的点E的位置.23.(5分)如图是由一些棱长都为1的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.24.(8分)如图,O为直线AB上一点,∠AOC与∠AOD互补,OM、ON分别是∠AOC、∠AOD的平分线.(1)根据题意,补全下列说理过程:因为∠AOC与∠AOD互补,所以∠AOC+∠AOD=180°.又因为∠AOC+∠=180°,根据,所以∠=∠.(2)若∠MOC=72°,求∠AON的度数.25.(8分)学校组织植树活动,已知在甲处植树的有6人,在乙处植树的有10人,在丙处植树的有8人,现调来若干人去支援,使在甲、乙、丙三处植树的总人数之比为2:3:4.设支援后在甲处植树的总人数有2x人.(1)根据信息填表:甲处乙处丙处支援后的总人数2x支援的人数2x﹣6(2)已知支援丙处的人数是支援乙处的人数的2倍,求支援甲、乙、丙三处各有多少人?26.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.27.(8分)以下是两张不同类型火车的车票(“D××××次”表示动车,“G××××次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是向而行(填“相”或“同”).(2)已知该列动车和高铁的平均速度分别为200km/h、300km/h,两列火车的长度不计.①通过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到2h,求A、B两地之间的距离.②在①中测算的数据基础上,已知A、B两地途中依次设有5个站点P1、P2、P3、P4、P5,且AP1=P1P2=P2P3=P3P4=P4P5=P5B,动车每个站点都停靠,高铁只停靠P2、P4两个站点,两列火车在每个停靠站点都停留5min.求该列高铁追上动车的时刻.1.A.2.C.3.D.4.B.5.A.6.A.7.C.8.A.9.﹣3.10.1.392×106.11.﹣,3.12.148.13.5.14.两点之间,线段最短.15.12.16.36.17.﹣.18.①②④.19.(1)﹣8;(2)﹣36.20.﹣8.21.(1)x=﹣;(2)x=﹣.22.解:(1)射线AB,直线AC如图所示.(2)线段BD如图所示.(3)如图,点E即为所求.23.解:(1)如图所示:(2)3.24.解:(1)因为∠AOC与∠AOD互补,所以∠AOC+∠AOD=180°.又因为∠AOC+∠BOC=180°,根据同角的补角相等,所以∠AOD=∠BOC,故答案为:BOC;同角的补角相等;BOC;(2)∵OM是∠AOC的平分线.∴∠AOC=2∠MOC=2×72°=144°,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣144°=36°,∵ON是∠AOD的平分线.∴∠AON=∠AOD=18°.25.解:(1)依题意得:乙处支援后的总人数:3x,志愿人数:3x﹣10;丙处支援后的总人数:8x,志愿人数为:4x﹣8.故答案是:甲处乙处丙处支援后的总人数5x 3x 4x支援的人数5x﹣6 3x﹣10 2x﹣8(2)依题意得:4x﹣5=2(3x﹣10)解得x=5,所以2x﹣6=6,3x﹣10=8,答:支援甲、乙、丙处各有3人,16人.26.解:(1)当m=4时,BC=4,又∵AB=8,∴AC=4+6=10,又M为AC中点,∴AM=MC=4,∴BM=AB﹣AM,=6﹣5=4;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.27.同.(2)①设A、B两地之间的距离为xkm,根据题意得:﹣=3,解得:x=1800.答:A、B两地之间的距离是1800km.②每个相邻站点距离为1800÷6=300(km),动车到每一站所花时间为300÷200×60=90(分钟),高铁到每一站所花时间为300÷300×60=60(分钟).∵60÷(90﹣60)=5,∴高铁在P1站、P2站之间追上动车.设高铁经过t小时之后追上动车.由题意可列方程:300t=(t+4﹣)×200,解得:t=.∴高铁在3:00出发,经过,追上动车.答:该列高铁追上动车的时刻为8点50。
2020-2021学年江苏省南京市七年级(上)期末数学试卷(含解析)
2020-2021学年江苏省南京市七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共16.0分)1.下列语句中正确的是()A. 0既没有倒数又没有相反数B. 倒数等于本身的数只有±1C. 相反数等于本身的数有无数个D. 绝对值等于本身的数有有限个2.已知−5a m b3和28a2b n是同类项,则m−n的值是()A. 5B. −5C. 1D. −13.下列去括号正确的是()A. a−(b−c)=a−b−cB. x2−2(12x−1)=x2−x+2C. x2−2(−3x+1)=x2+6x+2D. x2−(−3x+1)=x2+3x+14.如图,已知直线AB、CD相交于点O,OE⊥CD,∠1=55°,求∠AOC的度数()A. 30°B. 35°C. 40°D. 45°5.小明在写作业时不慎将墨水滴在数轴上,根据图的数值,判断墨迹盖住的整数共有()A. 11个B. 10个C. 9个D. 8个6.松雷中学甲班人数比乙班人数的23多6人,如果从乙班调4人到甲班,则两班人数正好一样多,求这两班的人数,若设乙班的人数为x人,依题意,所列方程正确的是()A. x−23x=6 B. x−4=23x+6C. x−(23x+6)=4 D. x−4=(23x+6)+47.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.8. 下列几何体中,主视图为如图的是( )A.B.C.D.二、填空题(本大题共11小题,共22.0分)9. 把数轴上(如图所示)表示的三个数(a,b ,c)用“>”连接起来.10. 已知地球上海洋面积约为316000000km 2,316000000这个数用科学记数法可表示为______ .11. 一本书有a 页,张方同学第一天读全书的13,第二天读余下的23,请用含a 的代数式表示尚未读的页数是______ ,如果全书共180页,那么这本书张方同学还有______ 页没有读.12. 若一个角的余角比这个角的补角的一半还少24°,则这个角的度数为______.13.某果园去年的产值是x万元,今年的产值比去年增加5%,今年的产值是______万元.14.单项式−5x2y22的系数是______.15.已知长方形的长2a米,宽(a−2b)米,则长方形的长比宽多16.如图,已知∠BOC在∠AOB的内部,∠AOB与∠BOC互余,OD平分∠AOB,∠AOD=40°,则∠DOC=______.17.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图所示的是一个根据北京的地理位置设计的圭表,其中,立柱AC的高为a,已知冬至时北京的正午日光的入射角∠ABC为30°,则立柱根部与圭表的冬至线的距离即BC的长)为______(用含a的代数式表示)18.有一组单项式依次为x22,x34,x48,x516,…,根据它们的规律,第8个单项式为______.19.已知有理数a≠1,我们把11−a 为a的差倒数,如:2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12如果a1=−2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+⋯+a100的值是______三、计算题(本大题共3小题,共25.0分)20.计算:(−3)3÷(−9)+22×(4+1).21.解方程:(1)6x−7=4x+5;(2)4x+13−2x−16=1.22.(1)如图1,用含a的代数式表示图中阴影部分的面积;(2)如图2,比较阴影部分和空白部分面积的大小.四、解答题(本大题共5小题,共37.0分)23.(1)计算:(−0.25)2015⋅(−4)2016⋅(1−0.5632)0(2)先化简,再求值:[(x+2y)(x−2y)−(x+4y)2]÷4y,其中x=5,y=2.24.【现场学习】现有一个只能直接画31°角的模板,小英同学用这个模板画出了25°的角,他的画法是这样的:(1)如图1,用模板画出∠AOB=31°;(2)如图2,再继续画出∠BOC=31°;(3)如图3,再继续依次画出3个31°的角;(4)如图4,画出射线OA的反向延长线OG,则∠FOG就是所画的25°的角.【尝试实验】请你也用这个模板画出6°的角,并标明相关角度,指明结果.【实践探究】利用这个模板可以画出12°的角吗?如果不可以,说出结论即可;如果可以,请你画出这个角,并说明理由.25.如图,△ABC中,AB=BC.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB,且BM交AC于点D;(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若BC=6,BD=4,求线段AC的长.26.如图,点C为线段AB上一点,若线段AC=12cm,AC:CB=3:2,D、E两点分别为AC、AB的中点,求DE的长.27.用短除法求出下列各组数的最大公因数和最小公倍数.(1)42和63;(2)8和20.答案和解析1.【答案】B【解析】解:A、0没有倒数有相反数,故错误;B、正确;C、相反数等于本身的数有1个,是0,故错误;D、绝对值等于本身的数是0和正数,故错误;故选:B.根据相反数、倒数、绝对值的定义,即可解答.本题考查了相反数、倒数、绝对值的定义,解决本题的关键是熟记相反数、倒数、绝对值的定义.2.【答案】D【解析】解:∵−5a m b3和28a2b n是同类项,∴m=2,n=3,∴m−n=2−3=−1.故选:D.根据同类项的定义得出m=2,n=3,再代所求式子入,即可得出答案.本题考查了同类项的定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,是同类项.3.【答案】B【解析】解:A、a−(b−c)=a−b+c,错误,故本选项不符合题意;x−1)=x2−x+2,正确,故本选项符合题意;B、x2−2(12C、x2−2(−3x+1)=x2+6x−2,错误,故本选项不符合题意;D、x22+3x−1,错误,故本选项不符合题意;故选:B.根据去括号法则逐个判断即可.本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.4.【答案】B【解析】解:∵OE⊥CD,∴∠EOD=∠EOC=90°,又∵∠1=55°,∴∠BOD=∠EOD−∠1=90°−55°=35°=∠AOC,∴∠AOC=35°,故选:B.根据垂直的定义和对顶角相等的性质进行解答即可.本题考查垂直的定义,对顶角相等的性质,掌握垂直的意义和对顶角相等是解决问题的前提.5.【答案】C【解析】解:如图所示:被墨迹盖住的整数有:−6,−5,−4,−3,−2,1,2,3,4共9个.故选C.根据题意画出数轴,找出墨迹盖住的整数即可.本题考查的是数轴,根据题意利用数形结合求解是解答此题的关键.6.【答案】Dx+6)人,【解析】解:设乙班的人数为x人,那么甲班有(23x+6)+4.根据题意,得x−4=(23故选:D.设乙班的人数为x人,根据“从乙班调4人到甲班,则两班人数正好一样多”列出方程即可.本题考查了由实际问题抽象一元一次方程,解决问题的关键是读懂题意,找到所求的量的等量关系列出方程.7.【答案】B【解析】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.本题主要考查的是几何体的展开图,明确含有田字形和凹字形的图形不能折成正方体是解题的关键.8.【答案】C【解析】解:A、主视图为长方形,故本选项错误;B、主视图为长方形,故本选项错误;C、主视图为正方形,故本选项正确;D、主视图为长方形,故本选项错误.故选C.找到从正面看所得到的图形,作出判断即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9.【答案】解:把数轴上(如图所示)表示的三个数(a,b,c)用“>”连接起来为:c>a>b.【解析】在数轴上,右边的点所表示的数比左边的点表示的数要大,依此即可求解.本题考查了有理数的大小比较:在数轴上,右边的点所表示的数比左边的点表示的数要大.10.【答案】3.16×108【解析】【分析】本题考查了科学记数法−表示较大的数:用a×10n(1≤a<10,n为整数)表示较大数的方法叫科学记数法.根据科学记数法定义得到316000000这个数用科学记数法可表示3.16×108.【解答】解:316000000=3.16×108.故答案为3.16×108.a;4011.【答案】29【解析】解:尚未读的页数是a−13a−(a−13a)×23=29a,这本书张方同学还有180×29=40页没有读.故答案为:29a;40.根据题意表示出两天读过的页数,即可表示出没有读完的页数.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.12.【答案】48°【解析】解:设这个角的度数为x度,根据题意,得:90−x=12(180−x)−24解得x=48.答:这个角的度数为48°.设这个角的度数为x度,则余角是(90−x)度,补角是(180−x)度,根据个角的余角比这个角的补角的一半还少24°即可列方程求解.此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.13.【答案】1.05x【解析】解:根据题意知,今年的产值是(1+5%)x=1.05x万元,故答案为:1.05x.今年的产值等于去年的产值加上增产的产值,由此列出代数式即可.此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.14.【答案】−52【解析】解:单项式−5x2y22的系数是:−52.故答案为:−52.直接利用单项式的系数确定方法分析得出答案.此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.15.【答案】解:长为2a米,宽为(a−2b)米所以长比宽多:2a−(a−2b)∵2a−(a−2b)=2a−a+2b=a+2b故答案为:(a+2b)米.【解析】本题考查了根据实际问题列代数式和去括号与合并同类项的法则的应用,属于能力提高类题目,难度中等,在本题的解题过程中,能够熟练的应用去括号法则和合并同类项法则进行代数式的化简是解题关键点.16.【答案】30【解析】解:∵OD平分∠AOB,∠AOD=40°,∴∠BOD=40°,∴∠AOB=80°,∴∠BOC=90°−80°=10°,∴∠DOC=40°−10°=30°,故答案为30°.根据角平分线和余角的定义解答.本题考查了余角的定义和角平分线的定义,灵活运用方可解答.17.【答案】√3a【解析】解:由题意可得,立柱根部与圭表的冬至线的距离为:ACtan∠ABC =√33=√3a,故答案为:√3a.根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.18.【答案】x928【解析】解:一组单项式依次为:x 22,x 34,x 48,x 516,…, 根据它们的规律,第n 个单项式为:x n+12n ,∴第8个单项式为x 928, 故答案为:x 928. 根据它们的规律得出第n 个单项式为x n+12n ,据此可得答案.本题考查了规律型−数字的变化类,解决本题的关键是观察数字的变化寻找规律. 19.【答案】−7.5【解析】解:∵a 1=−2,∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2, ∴这个数列以−2,13,32,依次循环,且−2+13+32=−16,∵100÷3=33…1,∴a 1+a 2+⋯+a 100=33×(−16))−2=−152=−7.5,故答案为−7.5.求出数列的前4个数,从而得出这个数列以−2,13,32,依次循环,且−2+13+32=−16,再求出这100个数中有多少个周期,从而得出答案.本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 20.【答案】解:(−3)3÷(−9)+22×(4+1)=(−27)÷(−9)+4×5=3+20=23.【解析】根据有理数的乘除法和加法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 21.【答案】解:(1)移项合并得:2x =12,解得:x =6;(2)去分母得:8x +2−2x +1=6,移项合并得:6x=3,解得:x=0.5.【解析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,即可求出解.22.【答案】解:(1)图中阴影部分的面积S=a2−π(a2)2=a2−πa24.(2)∵S阴影=a2−4×π(a4)2=a2−πa24,S空白=πa24,∴S阴影−S空白=a2−πa24=(1−π2)a2<0,∴阴影部分面积小于空白部分面积.【解析】(1)用正方形的面积减去圆的面积列出算式,整理可得;(2)阴影部分面积=正方形的面积−4×小圆的面积,空白部分的面积=4×小圆的面积,将所得两式相减,把所得结果与0比较即可得.本题主要考查列代数式,解题的关键是根据图形得到计算面积的等量关系及代数式的书写规范,有理数大小比较的方法.23.【答案】解:(1)原式=[(−0.25)×(−4)]2015×(−4)×1=−4;(2)[(x+2y)(x−2y)−(x+4y)2]÷4y=[x2−4y2−x2−8xy−16y2]÷4y=(−20y2−8xy)÷4y=−5y−2x,当x=5,y=2时,原式=−5×2−2×5=−20.【解析】(1)先根据积的乘方、零指数幂进行计算,再求出即可;(2)先算乘法,再合并同类项,算除法,最后代入求出即可.本题考查了整式的混合运算和零指数幂的应用,能灵活运用法则进行化简是解此题的关键.24.【答案】解:【尝试实验】如图1.【实践探究】如图2.理由:从∠AOB=31°开始,顺次画∠BOC=31°,…,∠MON=31°,共12个31°角,合计372°.而372°−360°=12°,所以∠AON=12°.【解析】【尝试实验】再以OF为边,画∠FOH=31°,即可得到∠GOH=6°;【实践探究】从∠AOB=31°开始,顺次画∠BOC=31°…,∠MON=31°,共12个31°角合计372°,根据372°−360°=12°,可得∠AON=12°.此题主要考查了复杂作图,关键是根据角度的大小确定出画多少个31°的角.25.【答案】解:(1)如图,BM为所作;(2)AB=BC=6,∵∠ABD=∠ACB,而∠BAD=∠CAB,∴△ABD∽△ACB,∴ABAC =BDBC,即6AC=46,∴AC=9.【解析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB;(2)证明△ABD∽△ACB,然后利用相似比可计算出AC的长.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.26.【答案】解:由AC=12cm,AC:CB=3:2,得CB=8cm,由线段的和差,得BA=AC+BC=12+8=20cm,由D、E两点分别为AC、AB的中点,得AD=0.5AC=6cm,AE=0.5AB=10cm,由线段的和差,得DE=AE−AD=10−6=4cm.【解析】根据AC:CB=3:2,可得CB的长,根据线段的和差,可得AB的长,根据线段中点的性质,可得AD、AE的长,再根据线段的和差,可得答案.本题考查了两点间的距离,利用了线段的和差,线段中点的性质.27.【答案】解:(1)∵42=3×2×7,63=3×3×7,∴42和63的最大公因数是3×7=21,最小公倍数是3×7×2×3=126.(2)∵8,=2×2×2,20=2×2×5,∴8和20的最大公因数是2×2=4,最小公倍数是2×2×2×5=40.【解析】根据最大公因数和最小公倍数的概念进行计算.熟练掌握求数的最大公因数和最小公倍数的方法.。
2020-2021七年级数学上期末第一次模拟试卷含答案 (5)
2020-2021七年级数学上期末第一次模拟试卷含答案 (5)一、选择题1.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个B .2个C .3个D .4个 2.下列各式的值一定为正数的是( )A .(a +2)2B .|a ﹣1|C .a +1000D .a 2+1 3.8×(1+40%)x ﹣x =15故选:B .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.4.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-4 5.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 6.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A .0个B .1个C .2个D .3个7.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣2018 8.用一个平面去截一个正方体,截面不可能是( )A .梯形B .五边形C .六边形D .七边形 9.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A.16cm B.24cm C.28cm D.32cm10.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.180°C.160°D.120°11.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为()A.2小时B.2小时20分C.2小时24分D.2小时40分12.已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是()A.2B.94C.3D.92二、填空题13.如图,若输入的值为3-,则输出的结果为____________.14.在时刻10:10时,时钟上的时针与分针间的夹角是.15.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x-,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.16.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入33⨯的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m所表示的数是______.17.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.18.若关于x 的方程(a ﹣3)x |a |﹣2+8=0是一元一次方程,则a =_____19.点A 、B 、C 在同一条数轴上,且点A 表示的数为﹣18,点B 表示的数为﹣2.若BC =14AB ,则点C 表示的数为_____. 20.如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第n 个图案中正三角形的个数是__________.三、解答题21.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是am 2,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3m 2,则水稻种植面积比玉米种植面积大多少m 2?(用含a 的式子表示)22.如图,平面上有射线AP 和点B ,C ,请用尺规按下列要求作图:(1)连接AB ,并在射线AP 上截取AD =AB ;(2)连接BC 、BD ,并延长BC 到E ,使BE =BD .(3)在(2)的基础上,取BE 中点F ,若BD =6,BC =4,求CF 的值.23.如图,AB 与CD 相交于O ,OE 平分∠AOC ,OF ⊥AB 于O ,OG ⊥OE 于O ,若∠BOD=40°,求∠AOE 和∠FOG 的度数.24.如图,已知∠AOC =90°,∠COD 比∠DOA 大28°,OB 是∠AOC 的平分线,求∠BOD 的度数.25.先化简再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣3,y=﹣2.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:①3a+2b无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a−33a=23a,∴原式计算错误,故此选项符合题意;⑤∵a⩽0,−|a|=a,∴原式计算错误,故此选项符合题意;故选D2.D解析:D【解析】【分析】直接利用偶次方以及绝对值的性质分别分析得出答案.【详解】A.(a+2)2≥0,不合题意;B.|a﹣1|≥0,不合题意;C.a+1000,无法确定符号,不合题意;D.a2+1一定为正数,符合题意.故选:D.【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.3.无解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x 2-3x =4,所以3x 2-9x =12,所以3x 2-9x +8=12+8=20.故选A .【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.5.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.6.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,7.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.8.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。
2020-2021初一数学上期末一模试卷(带答案)
2020-2021初一数学上期末一模试卷(带答案)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或22.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 4.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<05.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A .x+1=2(x ﹣2) B .x+3=2(x ﹣1) C .x+1=2(x ﹣3)D .1112x x +-=+ 6.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .7.下列计算结果正确的是( ) A .22321x x -= B .224325x x x += C .22330x y yx -= D .44x y xy +=8.用四舍五入按要求对0.06019分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.06(精确到千分位)C .0.06(精确到百分位)D .0.0602(精确到0.0001)9.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米10.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .8 11.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或312.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A .3B .9C .7D .1二、填空题13.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.14.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.15.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.16.如图,若输入的值为3-,则输出的结果为____________.17.已知一个角的补角比这个角的余角的3倍小20︒,则这个角是______度.18.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____19.化简:()()423a b a b ---=_________.20.已知2a ﹣b =﹣2,则6+(4b ﹣8a )的值是_____.三、解答题21.已知a b 、满足2|1|(2)0a a b -+++=,求代数式()221128422a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦的值.22.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是 与 , 与 , 与 ; (2)若设长方体的宽为xcm ,则长方体的长为 cm ,高为 cm ;(用含x 的式子表示)(3)求这种长方体包装盒的体积.23.先化简,再求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣4x 2y ,其中x =﹣1,y =1. 24.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==. 25.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表. 若某户居民1月份用水8m 3,则应收水费:元 2×6+4×(8-6)=20(1)若该户居民2月份用水12.5m 3,则应收水费 元;(2)若该户居民3、4月份共用水20m 3(4月份用水量超过3月份),共交水费64元,则该户居民3,4月份各用水多少立方米?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案. 【详解】∵x 是3-的相反数,y 5=, ∴x=3,y=±5, 当x=3,y=5时,x+y=8, 当x=3,y=-5时,x+y=-2, 故选C. 【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.D解析:D 【解析】 【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可. 【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.3.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C解析:C【解析】【分析】先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.【详解】由数轴可得:a<b<0<c,∴a+b+c<0,故A错误;|a+b|>c,故B错误;|a−c|=|a|+c,故C正确;ab>0 ,故D错误;故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.5.C解析:C【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有13122x x+++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2xx++=-即x+1=2(x−3)故选C. 6.D【解析】 【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1. 【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++=1.故答案选:D. 【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.7.C解析:C 【解析】 【分析】根据合并同类项法则逐一进行计算即可得答案. 【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误 故选:C 【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.8.B解析:B 【解析】A.0.06019≈0.1(精确到0.1),所以A 选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B 选项的说法错误;C.0.06019≈0.06(精确到百分),所以C 选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D 选项的说法正确。
2020-2021初一数学上期末一模试卷带答案 (4)
2020-2021初一数学上期末一模试卷带答案 (4)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( ) A .不赔不赚 B .赚9元C .赔18元D .赚18元3.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a4.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )6.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4 7.用一个平面去截一个正方体,截面不可能是( ) A .梯形B .五边形C .六边形D .七边形8.运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a +2=b +3 B .如果a =b ,那么a -2=b -3 C .如果,那么a =bD .如果a 2=3a ,那么a =39.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A.n B.(5n+3)C.(5n+2)D.(4n+3)10.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b11.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个12.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)64的展开式中第三项的系数为()A.2016B.2017C.2018D.2019二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n个图有____颗棋子(用含n的代数式示).14.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____.15.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块; (2)第n 个图案有白色地面砖______块. 16.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________17.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.18.若312x a +与2415x a +-的和是单项式,则x 的值为____________. 19.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元. 20.若2x ﹣1的值与3﹣4x 的值互为相反数,那么x 的值为_____.三、解答题21.探索规律:将连续的偶2,4,6,8,…,排成如下表:(1)、若将十字框上下左右移动,可框住五位数,设中间的数为x ,用代数式表示十字框中的五个数的和,(2)、若将十字框上下左右移动,可框住五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.如图所示,用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现: (1)第四、第五个“上”字分别需用 和 枚棋子. (2)第n 个“上”字需用 枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?23.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==. 24.某区运动会要印刷秩序册,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)这个区印制多少份秩序册时两个印刷厂费用是相同的;(2)当印制200份、400份秩序册时,选哪个印刷厂所付费用较少;为什么. 25.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,求这个多项式【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;∠表示,故本选项正确;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,αC、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.C解析:C【解析】【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.3.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.解析:D 【解析】 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确. 故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 5.D解析:D 【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.6.C解析:C 【解析】 【分析】由已知的三个图可得到一般的规律,即第n 个图形中三角形的个数是4n ,根据一般规律解题即可. 【详解】解:根据给出的3个图形可以知道: 第1个图形中三角形的个数是4, 第2个图形中三角形的个数是8, 第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n . 故选C . 【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.7.D【解析】【分析】正方体总共六个面,截面最多为六边形。
2020-2021初一数学上期末一模试卷(带答案)(1)
2020-2021初一数学上期末一模试卷(带答案)(1)一、选择题1.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°2.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a 3.下列关于多项式5ab 2-2a 2bc-1的说法中,正确的是( ) A .它是三次三项式B .它是四次两项式C .它的最高次项是22a bc -D .它的常数项是14.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是05.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭6.两根木条,一根长20cm ,另一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( ) A .2cm B .4cm C .2cm 或22cm D .4cm 或44cm 7.用一个平面去截一个正方体,截面不可能是( )A .梯形B .五边形C .六边形D .七边形 8.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( )A .2.897×106B .28.94×105C .2.897×108D .0.2897×1079.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)10.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( ) A .2B .2或2.25C .2.5D .2或2.511.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4ACB .CE =12AB C .AE =34AB D .AD =12CB 12.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.14.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____.15.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块; (2)第n 个图案有白色地面砖______块. 16.若25113m n a b -+与-3ab 3-n 的和为单项式,则m+n=_________. 17.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____.18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.某种商品的标价为220元,为了吸引顾客,按九折出售,这时仍要盈利10%,则这种商品的进价是________元.20.点A 、B 、C 在同一条数轴上,且点A 表示的数为﹣18,点B 表示的数为﹣2.若BC =14AB ,则点C 表示的数为_____. 三、解答题21.如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位:秒).(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t 的值;如果不存在,请说明理由.22.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=_______,AQ=_______;(2)当t=2时,求PQ的值;(3)当PQ=12AB时,求t的值.23.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.24.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?25.解方程:(1)3x ﹣2(x ﹣1)=2﹣3(5﹣2x ). (2)33136x x x --=-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】从图形中可看出∠AOC 和∠DOB 相加,再减去∠DOC 即为所求. 【详解】∵∠AOC =∠DOB =90°,∠DOC =28°,∴∠AOB =∠AOC +∠DOB ﹣∠DOC =90°+90°﹣28°=152°. 故选:B . 【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.2.C解析:C 【解析】 【分析】根据合并同类项法则逐一判断即可. 【详解】A .2a 与3b 不是同类项,所以不能合并,故本选项不合题意;B .2a 2+3a 2=5a 2,故本选项不合题意;C .2a 2b +3a 2b =5a 2b ,正确;D .2a 2﹣3a 2=﹣a 2,故本选项不合题意. 故选:C . 【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.C解析:C 【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc -,常数项为-1. 故选C.4.D解析:D 【解析】试题分析:﹣2的相反数是2,A 正确; 3的倒数是13,B 正确; (﹣3)﹣(﹣5)=﹣3+5=2,C 正确;﹣11,0,4这三个数中最小的数是﹣11,D 错误, 故选D .考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.5.D解析:D 【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.6.C解析:C 【解析】 分两种情况: ①如图所示,∵木条AB=20cm ,CD=24cm , E 、F 分别是AB 、BD 的中点,∴BE=12AB=12×20=10cm ,CF=12CD=12×24=12cm , ∴EF=EB+CF=10+12=22cm . 故两根木条中点间距离是22cm . ②如图所示,∵木条AB=20cm ,CD=24cm , E 、F 分别是AB 、BD 的中点,∴BE=12AB=12×20=10cm,CF=12CD=12×24=12cm,∴EF=CF-EB=12-10=2cm.故两根木条中点间距离是2cm.故选C.点睛:根据题意画出图形,由于将木条的一端重合,顺次放在同一条直线上,有两种情况,根据线段中点的定义分别求出两根木条中点间距离.7.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。
2020-2021初一数学上期末一模试卷(及答案)(1)
2020-2021初一数学上期末一模试卷(及答案)(1)一、选择题1.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯2.下面的说法正确的是( ) A .有理数的绝对值一定比0大 B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等3.若x =5是方程ax ﹣8=12的解,则a 的值为( ) A .3B .4C .5D .64.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( ) A .18 B .36C .16或24D .18或365.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -46.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米7.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( ) A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20158.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯9.运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a +2=b +3B .如果a =b ,那么a -2=b -3C.如果,那么a=b D.如果a2=3a,那么a=310.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④11.已知x=y,则下面变形错误的是()A.x+a=y+a B.x-a=y-a C.2x=2y D.x y a a12.已知:式子x﹣2的值为6,则式子3x﹣6的值为()A.9B.12C.18D.24二、填空题13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.14.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.15.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.16.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n的代数式表示).17.如图,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC=_____cm .18.若()2320m n -++=,则m+2n 的值是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021南京市初一数学上期末第一次模拟试卷含答案一、选择题1.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个B .2个C .3个D .4个 2.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<0 3.方程834x ax -=-的解是3x =,则a 的值是( ). A .1B .1-C .3-D .3 4.下列各式的值一定为正数的是( ) A .(a +2)2B .|a ﹣1|C .a +1000D .a 2+1 5.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.01 6.下列计算结果正确的是( ) A .22321x x -= B .224325x x x += C .22330x y yx -= D .44x y xy +=7.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A .0个B .1个C .2个D .3个8.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120°9.下列比较两个有理数的大小正确的是()A.﹣3>﹣1 B.1143>C.510611-<-D.7697->-10.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)64的展开式中第三项的系数为()A.2016B.2017C.2018D.201912.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=12AB C.AE=34AB D.AD=12CB二、填空题13.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高________.14.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块;(2)第n个图案有白色地面砖______块.15.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元.16.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x-,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.17.若当x =1时,多项式12ax 3﹣3bx +4的值是7,则当x =﹣1时,这个多项式的值为_____. 18.﹣225ab π是_____次单项式,系数是_____. 19.若2a +1与212a +互为相反数,则a =_____. 20.某种商品的标价为220元,为了吸引顾客,按九折出售,这时仍要盈利10%,则这种商品的进价是________元.三、解答题21.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车?请解答上述问题.22.如图,公共汽车行驶在笔直的公路上,这条路上有,,,A B C D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,A D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、 下行车的速度均为30千米/小时.()1第一班上行车到B 站、第一班下行车到C 站分别用时多少?()2第一班上行车与第一班下行车发车后多少小时相距9千米?()3一乘客在,B C 两站之间的P 处,刚好遇到上行车,BP x =千米,他从P 处以5千米/小时的速度步行到B 站乘下行车前往A 站办事.①若0.5x =千米,乘客从P 处到达A 站的时间最少要几分钟?②若1x =千米,乘客从P 处到达A 站的时间最少要几分钟?23.在我们的课本第142页“4.4课题学习”中,有包装纸盒的设计制作方法.这里的右图,是设计师为“XX 快递”设计的长方体包装盒的轮廓草图,其中长30CM 、宽20CM 、高18CM ,正面有“快递”字样,上面有“上”字样,棱AB 是上盖的掀开处,棱CD 是粘合处.请你想想,如何制作这个包装盒,然后完善下面的制作步骤.步骤1:在符合尺寸规格的硬纸板上,画出这个长方体的展开图(草图).注意,要预留出黏合处,并适当剪去棱角.步骤2:在你上面画出的展开草图上,标出对应的A 、B 、C 、D 的位置,标出长30CM 、宽20CM 、高18CM 所在线段,并把“上”和“快递”标注在所在面的位置上.步骤3:裁下展开图,折叠并粘好黏合处,得到长方体包装盒.24.如图,AB 与CD 相交于O ,OE 平分∠AOC ,OF ⊥AB 于O ,OG ⊥OE 于O ,若∠BOD=40°,求∠AOE 和∠FOG 的度数.25.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:①3a+2b 无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a ²,∴原式计算错误,故此选项符合题意; ④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D2.C解析:C【分析】先根据数轴确定a .b ,c 的取值范围,再逐一对各选项判定,即可解答.【详解】由数轴可得:a<b<0<c ,∴a+b+c<0,故A 错误;|a+b|>c ,故B 错误;|a−c|=|a|+c ,故C 正确;ab >0 ,故D 错误;故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.3.A解析:A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.4.D解析:D【解析】【分析】直接利用偶次方以及绝对值的性质分别分析得出答案.【详解】A .(a +2)2≥0,不合题意;B .|a ﹣1|≥0,不合题意;C .a +1000,无法确定符号,不合题意;D .a 2+1一定为正数,符合题意.故选:D .【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.5.B【解析】【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9不在该范围之内,∴不合格的是B .故选B .6.C解析:C【解析】【分析】根据合并同类项法则逐一进行计算即可得答案.【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误故选:C【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.7.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C .8.B解析:B【解析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解. 9.D解析:D【解析】【分析】根据负数的绝对值越大,这个数反而越小,可以对A、C、D进行判断;根据同分子分数大小比较的方法进行比较即可作出判断.【详解】A.﹣3<﹣1,所以A选项错误;B.14<13,所以B选项错误;C.﹣56>﹣1011,所以C选项错误;D.﹣79>﹣67,所以D选项正确.故选D.【点睛】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.10.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.11.A解析:A【解析】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n−2)+(n−1),∴(a+b)64第三项系数为1+2+3+…+63=2016,故选A.点睛:此题考查了规律型-数字的变化类,考查学生通过观察、分析、归纳发现其中的规律,并应用发现的规律解决实际问题的能力.12.D解析:D【解析】【分析】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14AB,即可知A、B、C均正确,则可求解【详解】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14 AB,选项A,AC=14AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=12AB,选项正确选项C,AE=3AC⇒AE=34AB,选项正确选项D,因为AD=2AC,CB=3AC,所以2AD CB3,选项错误故选D.【点睛】此题考查的是线段的等分,能理解题中:C,D,E是线段AB的四等分点即为AC=CD=DE=EB=14AB,是解此题的关键二、填空题13.10℃【解析】【分析】用最高温度减去最低温度然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】2-(-8)=2+8=10(℃)故答案为10℃【点睛】本题考查了有理数的减法掌握减去一个数解析:10℃【解析】【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】2-(-8),=2+8,=10(℃).故答案为10℃.【点睛】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.14.18块(4n+2)块【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:61014所以可以发现每一个图形都比它前一个图形多4个白色地砖所以可以得到第n个图案有白色地面砖(4n+2)解析:18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块,第n个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.15.元【解析】【分析】依据题意建立方程求解即可【详解】解:设售货员应标在标签上的价格为x元依据题意70x=90×(1+5)可求得:x=135故价格应为135元考点:一元一次方程的应用解析:元【解析】【分析】依据题意建立方程求解即可.【详解】解:设售货员应标在标签上的价格为x元,依据题意70%x=90×(1+5%)可求得:x=135,故价格应为135元.考点:一元一次方程的应用.16.1【解析】【分析】●用a表示把x=1代入方程得到一个关于a的方程解方程求得a的值【详解】●用a表示把x=1代入方程得1=1﹣解得:a=1故答案为:1【点睛】本题考查了方程的解的定义方程的解就是能使方解析:1【解析】【分析】●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.【详解】●用a表示,把x=1代入方程得1=1﹣15a,解得:a=1.故答案为:1.【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.17.1【解析】【分析】把x=1代入代数式求出ab的关系式再把x=﹣1代入进行计算即可得解【详解】x=1时ax3﹣3bx+4=a﹣3b+4=7解得a﹣3b=3当x=﹣1时ax3﹣3bx+4=﹣a+3b+4解析:1【解析】【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【详解】x=1时,12ax3﹣3bx+4=12a﹣3b+4=7,解得12a﹣3b=3,当x=﹣1时,12ax3﹣3bx+4=﹣12a+3b+4=﹣3+4=1.故答案为:1.【点睛】本题考查了代数式的求值,整体思想的运用是解题的关键.18.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数由此可得答案【详解】是三次单项式系数是故答案为:三【点睛】本题考查了单项式的知识掌握单项式系数及次 解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 19.﹣1【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a =﹣3,解得:a =﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.20.180【解析】【分析】设这种商品的进价是x 元根据题意列出方程即可求出结论【详解】解:设这种商品的进价是x 元根据题意可得220×90=x(1+10)解得:x=180故答案为:180【点睛】此题考查的是解析:180【解析】【分析】设这种商品的进价是x 元,根据题意列出方程即可求出结论.【详解】解:设这种商品的进价是x 元根据题意可得220×90%=x (1+10%)解得:x=180故答案为:180.【点睛】此题考查的是一元一次方程的应用,找到实际问题中的等量关系是解决此题的关键.三、解答题21.有39人,15辆车【解析】【分析】找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x 辆车,则有3(x ﹣2)人,根据题意得:2x +9=3(x ﹣2)解的:x =153(x ﹣2)=39答:有39人,15辆车.【点睛】本题运用了列一元一次方程解应用题的知识点,找准等量关系是解此题的关键.22.(1)第一班上行车到B 站用时16小时,第一班下行车到C 站用时16小时;(2)第一班上行车与第一班下行车发车后110小时或25小时相距9千米;(3)①0.5x =千米,乘客从P 处到达A 站的时间最少要19分钟;②1x =千米,乘客从P 处到达A 站的时间最少要28分钟.【解析】【分析】(1)根据时间=路程÷速度计算即可;(2)设第一班上行车与第一班下行车发车t 小时相距9千米,然后根据相遇前和相遇后分类讨论,分别列出对应个方程即可求出t ;(3)由题意知:同时出发的一对上、下行车的位置关于BC 中点对称,乘客右侧第一辆下行车离C 站也是x 千米,这辆下行车离B 站是()5x -千米①先求出点P 到点B 的时间和乘客右侧第一辆下行车到达B 站的时间,比较即可判断乘客能否乘上右侧第一辆下行车,从而求出乘客从P 处到达A 站的最少时间;②先求出点P 到点B 的时间和乘客右侧第一辆下行车到达B 站的时间,比较即可判断乘客能否乘上右侧第一辆下行车,如不能乘上第一辆车,还需算出能否乘上右侧第二辆下行车,从而求出乘客从P 处到达A 站的最少时间.【详解】解:()1第一班上行车到B 站用时51306=小时, 第一班下行车到C 站用时51306=小时; ()2设第一班上行车与第一班下行车发车t 小时相距9千米.①相遇前:3030915t t ++= . 解得110t = ②相遇后:3030915t t +-= 解得25t = 答:第一班上行车与第一班下行车发车后110小时或25小时相距9千米; (3)由题意知:同时出发的一对上、下行车的位置关于BC 中点对称,乘客右侧第一辆下行车离C 站也是x 千米,这辆下行车离B 站是()5x -千米.①若0.5x =千米,乘客从P 处走到B 站的时间0.51510=(小时), 乘客右侧第一辆下行车到达B 站的时间50.533020-=(小时), 011032<Q ∴乘客能乘上右侧第一辆下行车.311960601920660⎛⎫+⨯=⨯= ⎪⎝⎭(分钟) 答:若0.5x =千米,乘客从P 处到达A 站的时间最少要19分钟.②若1x =千米,乘客从P 处走到B 站的时间15(小时), 乘客右侧第一辆下行车到达B 站的时间5123015-=(小时),51521>Q ∴乘客不能乘上右侧第一辆下行车, 2111556<+Q∴乘客能乘上右侧第二辆下行车.2117606028156615⎛⎫++⨯=⨯= ⎪⎝⎭(分钟) 答:若1x =千米,乘客从P 处到达A 站的时间最少要28分钟.【点睛】此题考查是用代数式表示实际问题:行程问题,掌握行程问题中各个量的关系和分类讨论的数学思想是解决此题的关键.23.步骤1见解析;步骤2见解析;步骤3见解析【解析】【分析】根据要求画出长方体的平面展开图即可.【详解】步骤一:如下图(有多种作图方案,画出一种合理的即可):步骤2:在图中标出对应的A 、B 、C 、D 的位置,标出长30CM 、宽20CM 、高18CM 所在线段,并把“上”和“快递”标注在所在面的位置上.步骤3:按图中所示裁下展开图,折叠并粘好黏合处,即可得到长方体包装盒.【点睛】本题考查作图-应用与设计,几何体的展开图等知识,解题的关键是理解题意,灵活应用所学知识解决问题.24.∠AOE=20°,∠FOG=20°【解析】试题分析:根据对顶角相等得到∠AOC=∠BOD=40°,然后再根据角平分线的定义即可求得∠AOE 的度数,再根据同角的余角相等即可求得∠FOG 的度数.试题解析:∵∠AOC 与∠BOD 是对顶角,∴∠AOC=∠BOD=40°,∵OE 平分∠AOC ,∴∠AOE=12∠AOC=20°, ∵OF ⊥AB ,OG ⊥OE ,∴∠AOF=∠EOG=90°, 即∠AOG 与∠FOG 互余,∠AOG 与∠AOE 互余,∴∠FOG=∠AOE=20°. 【点睛】本题考查了对顶角的性质、角平分线的定义、余角的性质等,在解题时根据对顶角的性质和角平分线,余角的性质进行解答是关键.25.ab 2−3a 2b ;-10【解析】【分析】根据整式乘法的运算法则,去括号后合并同类项,将原式化成最简,将2,1a b ==代入求值即可.【详解】原式222222324322ab a b ab a b ab a b +=--+-222222232432ab ab ab a b a b a b =-+-+-223ab a b =-将2,1a b ==得:2×1²-3×2²×1=-10【点睛】本题考查了整式乘法的化简求值,解决本题的关键是熟练掌握整式运算的顺序,找出同类项将整式化成最简.。