最新测试系统的动态特性

合集下载

3 测试系统的基本特性 (动态识别、不失真)

3    测试系统的基本特性 (动态识别、不失真)

ξ
ζ = ζ = ζ = ζ = ζ = ζ =
0 .0 5 0 .1 0 0 .1 5 0 .2 5 0 .5 0 1 .0 0
3
η = ω /ω
n
位移共 振频率
ω r = ω n 1 − 2ζ
2
精确求法:
A(ω r ) 1 = 2 A(0) 2ζ 1 − 2ζ
ωn ζ
测 试 系 统 动 态 特 性 的 识 别
利用半功率法求
ζ
ω 2-ω1 ζ= 2ω n
适合阻尼比较小。
测 (二)阶跃响应法 试 系 统 阶跃响应法是以阶跃信号作为测试 动 态 系统的输入,通过对系统输出响应的测 特 试,从中计算出系统的动态特性参数。 性 的 这种方法实质上是一种瞬态响应法。即 识 别 通过研究瞬态阶段输出与输入之间的关
系找到系统的动态特性参数。
u (t )
t
y u (t ) = 1 − e
动 态 传 递 特 性 的 时 域 描 述
结论:一阶系统在单位阶跃激励下稳态输出 的理论误差为零,并且,进入稳态的时间
t→∞。但是,当t =4τ时,y(4τ)=0.982;误
差小于2%;当t =5τ时,y(5τ)=0.993,误差小 于1%。所以对于一阶系统来说,时间常数τ越小 越好。
3.3.3 测试系统动态特性参数的识别
频率响应法是以一组频率可调的标准正弦信号作为 系统的输入,通过对系统输出幅值和相位的测试,获得 系统的动态特性参数。
测 试 系 统 动 态 特 性 的 识 别
系统特性识别试验原理框图
测 试 系 统 动 态 特 性 的 识 别
一阶系统
A(ω ) =
A( ϖ) 1.0 0.8 0.6 0.4 0.2 0 0.707

测试系统的动态响应特性ppt课件

测试系统的动态响应特性ppt课件
第四章、测试系统的基本特性
第三节 测试系统的动态响应特性
无论复杂度如何,把测量装置作为一个系统 来看待。问题简化为处理输入量x(t)、系统传输 特性h(t)和输出y(t)三者之间的关系。
x(t)
h(t)
y(t)
输入量
系统特性
输出
PPT学习交流
1
第三节 测试系统的动态响应特性
测试系统的动态特性 :是指输入量随时间变化时, 其输出随输入而变化的关系
PPT学习交流
15
3.3 测试系统的动态响应特性
小结:
系统特性在时域可以用脉冲响应函数 h( t )
来描述,
在频域可以用频率响应函数 来描述,
H()
在复数域可以用传递函数 来描述
H(s)
PPT学习交流
16
3.3 测试系统的动态响应特性
四、环节的串联和并联
串联 :由两个传递函数分别为 H1(s) 和 H2(s) 的 环节经串联后组成的测试系统
PPT学习交流
7
3.3 测试系统的动态响应特性---频响函数
频响函数:直观的反映了测试系统对不同频率成分输 入信号的扭曲情况。
A
PPT学习交流
8
3.3 测试系统的动态响应特性---频响函数
频响函数的测量(正弦波法)
依据:频率保持性

x(t)=Acos(ωt+φx)

y(t)=Bcos(ωt+φy)
令 H(s) 中 s 的实部为零,即 s=jω ,便可以求 得频率响应函数 H(ω)
在测得输入 x(t) 和输出 y(t) 后,由其傅里叶
变换 X(S) 和 Y(S) 可求得频率响应函数 H(ω)
A ( )H (j )RH (e j )[2 ]Im H (j )[2]

3.3 测试系统的动态响应特性

3.3 测试系统的动态响应特性
令 H(s) 中 s 的实部为零,即 s=jω ,便可以求 得频率响应函数 H(ω) 在测得输入 x(t) 和输出 y(t) 后,由其傅里叶 变换 X(S) 和 Y(S) 可求得频率响应函数 H(ω)
A( ) H ( j ) Re[ H ( j )] Im[ H ( j )]
2
2
H ( s)
3.3 测试系统的动态响应特性
佳木斯大学机械工程学院
四、环节的串联和并联
串联 :由两个传递函数分别为 H1 ( s ) 和 H 2 ( s ) 环节经串联后组成的测试系统 的
其传递函数为
Y ( S ) Z ( s) Y ( s) H ( s) H1 ( s) H 2 ( s) X ( S ) X ( s) Z ( s)
幅值误差=10.64%
400 2 0.4 800 28o arct an 2 400 1 800
400 1 800
2
1 400 2 4 0.4 800
2 2
1.18
A(ω)—ω曲线(幅频特性曲线)
A
3.3 测试系统的动态响应特性
佳木斯大学机械工程学院
相位差φ也是频率ω的函数 相频特性φ(ω):定常线性系统在简谐信号的激励 下,稳态输出信号与输入信号的相角差 Φ(ω)—ω曲线(相频特性曲线)

3.3 测试系统的动态响应特性
佳木斯大学机械工程学院
频率响应函数 H(ω) Y ( ) H ( ) A( )e j ( ) X ( )
第四章、测试系统的基本特性
佳木斯大学机械工程学院
第三节 测试系统的动态响应特性
无论复杂度如何,把测量装置作为一个系统 来看待。问题简化为处理输入量 x(t) 、系统传输 特性h(t)和输出y(t)三者之间的关系。

第二章测试系统的基本特性动态特性

第二章测试系统的基本特性动态特性

第2章 测试系统的基本特性
2. 频率响应函数 (Frequency response function)
以 s j 代入H(s)得:
H
(
j)
Y( X(
j) j)
bm ( an (
j)m j)n
bm1( j)m1 b1( j) b0 an1( j)n1 a1( j) a0
频率响应函数是传递函数的特例。
工程测试与信号处理
第2章 测试系统的基本特性
测试系统的动态特性
动态特性:输入量随时间作快速变化时,测试系统
的输出随输入而变化的关系。
输入(重量)
输出(弹簧位移)
在对动态物理量弹簧进行测试时,测试系统的输
出变化x(t是) 否能真(线实性地比例反特映性)输入变化y(,t) 则取决于测 试系统的动态(a)响线应性弹特簧性的比。例特性
华中科技大学武昌分校自动化系
12

工程测试与信号处理
第2章 测试系统的基本特性
频率H响( j应函) 数 1 1 j H它( j的) 幅 j频1、j相1 频11特(1性1)的2(为j 1):2(
1 H((S))2
)2
1
S
1
它A的(幅)频=、H(相j频 )特性的为:1 A()= H(j) 1 1 ()2
华中科技大学武昌分校自动化系
15
工程测试与信号处理
第2章 测试系统的基本特性
例 用一个一阶系统作100Hz正弦信号测量。(1)如果
要求限制振幅误差在-5%以内,则时间常数 应取多
少?(2)若用具有该时间常数的同一系统作50Hz信号的 测试,此时的振幅误差和相角差各是多少?
A1 A0 1 A( )
华中科技大学武昌分校自动化系

3.测试系统的动态特性

3.测试系统的动态特性

2
e
n t
1 2
④ >1时,系统退化为两个一阶系统的串联,此时输 出无振荡,但需较长时间才能到达稳态。 ⑤ =0.6~0.8时,系统可以以较短时间(大约(5~7)/n )进入偏离稳态不到2% ~5%的范围内,且系统超调量 小于 10%。因此,二阶测试系统的阻尼比通常选择为 : =0.6~0.8。 = 0.707为最佳阻尼比。
20 L()(dB) 0
-20dB/dec
一 阶 系 统
()()
-20 -40 0.11
0
-45 -90º
0.2 1
1/
10 1

1 0.1
1/
10
1

一阶系统的时间常数越小越好。 不失真测试的频率上限fmax是由 A( ) A0 1 100% 1 100% 2 A0 误差要求决定的。 1 2fmax
2 1.8 1.6 1.4 1.2
y(t) 1
=0.2 =0.4 =0.6 =0.8
0.8 0.6 0.4 0.2 0 tp 5 10 15 t
欠阻尼二阶系统单位阶跃响应曲线
=1
y( t ) 1
e n t 1 2
sin( d t )
0 1
② 二阶系统(0< ξ <1)瞬态输出分量为振幅等于
k 0

系统的响应y(t)即为这些脉冲依次作用的结果。
若系统脉冲响应函数h(t)已知,则在上述一系列脉冲作 用下,系统在 t 时刻的响应可表示为:
y( t ) x( k ) h( t k ) x ( k ) h( t k )
k 0 k 0

第三章测试系统特性3-动态特性

第三章测试系统特性3-动态特性

2)传递函数
3)频率响应函数 4)阶跃响应函数等
航海学院
传感器与测试技术
第3章 测试系统的特性
1、动态特性的数学描述
1)线性微分方程 微分方程是最基本的数学模型,求解微分方程, 就可得到系统的动态特性。
对于一个复杂的测试系统和复杂的测试信号,
求解微分方程比较困难,甚至成为不可能。为此, 根据数学理论,不求解微分方程,而应用拉普拉斯 变换求出传递函数、频率响应函数等来描述动态特 性。
dy(t ) y (t ) Sx(t ) dt
取S=1
1 H ( s) s 1
H ( j ) 1 j 1
A( )
1 1 ( )
2
() arctg( )
航海学院
传感器与测试技术
第3章 测试系统的特性
幅 频 和 相 频 曲 线
伯 德 图
H ( j) Y ( j) / X ( j) 或 H () Y () / X ()
当系统的初始条件为零时,对微分方程进行傅 立叶变换,可得频率响应函数为
Y ( j ) bm ( j ) m bm1 ( j ) m1 b1 ( j ) b0 H ( j ) X ( j ) an ( j ) n an 1 ( j ) n 1 a1 ( j ) a0
频率响应特性
模A()反映了线性时不变系统在正弦信号激励 下,其稳态输出与输入的幅值比随频率的变化, 称为系统的幅频特性; 幅角()反映了稳态输出与输入的相位差随频 率的变化,称为系统的相频特性。
航海学院
传感器与测试技术
第3章 测试系统的特性
频率响应特性的图形描述: 直观地反映了测试系统对不同频率成分输入信号 的扭曲情况——输出与输入的差异。

3-2 测试系统的特性-静态与动态特性1

3-2 测试系统的特性-静态与动态特性1

3.3 测试系统的动态特性
机械工程测试技术
h (t )
M 超调量
时域性能指标
允许误差 ±Δ
1.0 h(∞) 0.9 h(∞ )
td
0 .5 h(∞)
延 时 时 间
0.05或0.02
0.1 h(∞) 0
t r 上升 时间 t p 峰值时间 t s 调整时间
t
3.3 测试系统的动态特性
机械工程测试技术
本课程中研究的测试系统都是定常线性系统,可以 用常系数线性微分方程来描述该系统以及输入x(t)和 输出y(t)间的关系。
对于一个线性系统如何更有效的描述 装置的特性与输出、输入的关系?
利用微分方程来描述有许多不便。如果通过拉氏变换 建立与其相应的“传递函数”,通过傅氏变换建立与 其相应的“频率特性函数”,就可更简单、有效地描 述装置的动态特性和输出与输入之间的关系。
0.5
1
1.5
2
2.5
0
0.5
1
1.5 (c)
2
2.5
3
3 t
叠加特性示例
3.3 测试系统的动态特性
机械工程测试技术
b)比例性 常数倍输入所得的输出等于原输入所得输出的常 数倍,即 若 x(t) → y(t) , 则 kx(t) → ky(t)
10 5
20 10 mm 0 -10
0 0.5 1 1.5 (a) 2 2.5 3
y
Y ( s ) bm s m bm 1 s m 1 b1 s b0 H ( s) X ( s) an s n an 1 s n1 a1 s a0
H(s)与输入及系统的初始状态无关,只表达测试 系统的传输特性。对于具体系统,H(s)不会因输 入变化而不同,但对于任一具体输入都能确定地 给出相应的、不同的输出。

测试系统动态特性

测试系统动态特性

高效数据处理
采用高效的数据处理算法和架构,确保测试数据的准确性和实时性。
提高测试系统的稳定性
冗余设计
关键部件采用冗余设计,提高系统的可靠性和稳定性。
自适应调整
根据测试过程中的实际情况,自动调整系统的参数和性能, 确保测试结果的准确性。
故障诊断与恢复
具备故障诊断和恢复功能,能够在系统出现故障时快速定位 并恢复。
降低测试系统的噪声
噪声抑制技术
采用先进的噪声抑制技术,降低测试系统内部和外部噪声的影响。
滤波算法
应用合适的滤波算法对测试数据进行处理,去除噪声干扰,提高测 试结果的准确性。
环境控制
对测试环境进行严格的控制,减少环境因素对测试结果的干扰。
06 结论
研究成果总结
测试系统的动态特性对于确 保其稳定性和可靠性至关重
激振试验的优点在于可以人为控制激励信号的频率、幅值和波形等参数, 以便于对系统的不同动态特性进深入研究。
激振试验的局限性在于它只能模拟特定条件下的动态特性,无法完全模拟 实际运行中的复杂情况。
振动台试验
01
振动台试验是一种利用振动台 模拟实际运行中的振动环境, 对测试对象进行振动试验的方 法。
02
测试系统动态特性
目 录
• 引言 • 测试系统动态特性概述 • 测试系统动态特性分析方法 • 测试系统动态特性测试技术 • 测试系统动态特性优化与改进 • 结论
01 引言
目的和背景
确定测试系统的性能指标
通过对测试系统的动态特性进行评估,可以了解测试系统的性能指标,如响应时间、稳定性、可 靠性等。
动态特性对于故障诊断和预测具有重要意义
通过对测试系统的动态特性进行分析,可以及时发现系统潜在的问题和故障,并对其进行诊断和预测。 这对于预防故障发生、减少系统维护成本和提高系统可靠性具有重要意义。

第二章测量系统的动态特性——0316

第二章测量系统的动态特性——0316

Hs
Y s X s
bmsm bm1sm1 b1s b0 ansn an1sn1 a1s a0
分母中的s的幂次n代表系统微分方程的阶数。
优点:表示了传感器本身特性,与输入输出无关,可通
过实验求得。
系统
输 x(t) h(t) y(t) 输 入 X(s) H(s) Y(s) 出
2020/8/1
第一节 测量系统在瞬变参数测量中的动态特性
随着科学技术的发展,对非稳态参数及瞬变过程的 测试已日趋重要。如测量内燃机在燃烧过程中气缸内气 体压力、汽轮机压气机过渡工况时的气体流动等,都要 对一些迅速变化的物理量进行测定,因此,要求测试仪 器或系统应具有较高的动态响应特性。
动态特性表示测试系统的输入信号从一个稳定状态 突然变化到另一稳定状态时,其输出信号的跟踪能力。
2020/8/1
热能与动力测试技术 第二章 测量系统的动态特性
10
第一节 测量系统在瞬变参数测量中的动态特性 一、动态特性的数学描述
拉普拉斯变换的性质
线性组合定理 微分定理 积分定理
若F1(s) L[ f1 t ],F2 s L[ f2 t ]L 则[af1(t) bf2 t ] aF1(s) bF2 s
测量系统的动态特性通常用常系数线性常微分方程 来描述:
an
d n yt
dtn
an1
d n1 yt
dt n 1
a1
dyt
dt
a0
y t
bm
d
m xt
dtm
bm1
d m1xt
dt m 1
b1
dxt
dt
b0 xt
2020/8/1
特点:概念清晰,输入-输出关系明了,可区分 暂态响应和稳态响应,但求解方程困难。

测试系统的动态特征

测试系统的动态特征
9
组合系统的传递函数
(1)串联系统
H(s)
X(s)
Z(s)
Y(s)
H1(s)
H2(s)
H (s) = H1 (s) H 2 (s)
10
(2)并联系统
X(s)
H(s)
Y1(s)
H1(s)
Y(s)
H2(s)
Y2(s)
n
∑ H (s) = H i (s) i =1
(3)反馈系统
X1(s) +
Y(s) HA(s)
拉普拉斯变换(简称拉氏变换)为
∫ L( f (t)) = F (s) = ∞f (t)e d -st 0
s — 复变量(复频率),s = σ + jω
f(t)— F(s)的原函数 F(s) — f(t)的象函数
F(s)=L[f(t)]
6
(2)传递函数(Transfer function)
定义传递函数是输出信号与输入信号之比。
测试系统的动态特征
第一节 测量系统在瞬变参数测量中的动态特性 第二节 测量系统的动态响应 第三节 测量系统的动态标定
1
第一节 测量系统在瞬变参数测量中的动态特性
传感器
调理电路
数据采集系统
CPU
现代测试系统方框图
测量系统的基本特性:测量系统与其输入、输出的关系。
显示
分类
静态特性 输入信号x(t)不随时间变化 动态特性 输入信号x(t) 随时间变化
➢ 不说明被描述系统的物理结构,不论是电路 结构还是机械结构,只要动态特性相似均可 用 同一类传递函数来描述。
➢ 传递函数的分母取决于系统的结构(输入方 式、被测量及测点布置等)
热能与动力机械测试技术

第二章 测量系统的动态特性

第二章 测量系统的动态特性

传递函数以测量装置本身的参数表示出输入与输出之间的 关系,所以它将包含- 着联系输入量与输出量所必须的单位。
1. 测量系统在瞬变参数测量中的动态特性
当测量系统包 含多个子系统:
H (s ) { H 1 (s ),H 2 (s )L H n (s )}
传递函数结构
(1)串联环节; (2)并联环节; (3)反馈联接。
-
1. 测量系统在瞬变参数测量中的动态特性
(1)串联环节
H(s)
X(s)
Z(s)
H1(s)
H2(s)
两个环节串联
H (s) Y (s) X (s)
Y(s)
Z (s)H 2(s)
X (s)
H 1(s)X (s)H 2(s) X (s)
H 1(s)H 2(s)
由n个环节组成的串联 系统,其传递函数为:
3.测量系统的动态特性如何表示?如何研究动 态特性的评价?
4.如何知道现有的测量系统的动态特性。
-
输入
广义控制系统
控制器
控制对象
输出
输出
测量系统 测量系统 测量系统
输出
有反馈的测量系统
测量系统
控制器
子测量系统
-
输入 输入
1. 测量系统在瞬变参数测量中的动态特性
静态测量、静态响应特性
静态测量:测量时,测试装置的输入、输出信号不随 时间而变化;
外界干扰 温 湿 压 冲 振 电磁 度 度 力 击 动 场场
输入 x
检测系统
输入 y = f(x)
摩 间 松 迟 蠕 变老 擦 隙 动 滞 变 形化
误差因素
-
1. 测量系统在瞬变参数测量中的动态特性
动态测量系统 — 例 零阶系统:电位计、电子示波器

第2部分_测量系统的静态与动态特性

第2部分_测量系统的静态与动态特性
出现粗大误差的原因是由于在测量时仪器操作的错误,或读数 错误,或计算出现明显的错误等。粗大误差一般是由于测量者 粗心大意、实验条件突变造成的。
系统误差
在相同的测量条件下,多次测量同一物理量,误差不变或按 一定规律变化着,这样的误差称为系统误差。按误差的变化 规律可分为恒值误差和变值误差。变值误差又分为线性误差、 周期性误差和复杂规律变化的误差。
参考直线的选用方案
①端点连线 将静态特性曲线上的对应于测量范围 上、下限的两点的连线作为工作直线;
Y(t)
端点连 线
0
X(t)
②端点平移线 平行于端点连线,且与实际静态特性 (常取平均特性为准)的最大正偏差和最大负偏差的 绝对值相等的直线;
Y(t)
X(t)
③最小二乘直线 直线方程的形式为 yˆ a bx
②确定仪器或测量系统的静态特性指标; ③消除系统误差,改善仪器或测量系统的正确度
测量系统的静态特性可以用一个多项式方程表示,即
y a0 a1x a2 x2
称为测量系统的静态数学模型
工作曲线:方程 y a0 a1x a2 x2 称之为工作曲线或
静态特性曲线。实际工作中,一般用标定过程中静态平均特 性曲线来描述。
第二部分 测试系统的静态与动 态特性
静态特性:被测量处于稳定状态或缓慢变化状态时,反映测试 系统的输出值和输入值之间关系的特性。
动态特性:反映测试系统对随时间变化的输入量的响应特性。
①测试系统的静态特性与误差分析 ②测试系统的主要静态性能指标及计算 ③测量系统的动态特性 ④测量系统的动态性能指标
2.1测试系统的静态特性与误差分析
一、误差的分类
按误差的表达形式可分为绝对误差和相对误差;按误差出现的 规律可分为系统误差、随机误差、粗大误差(过失误差);按 误差产生的原因可分为原理误差、构造误差和使用误差

测试系统的动态特性

测试系统的动态特性

X
s 1
– K b0 静态灵敏度 a0
– a1 时间常数
a0
在工程实际中,一个忽略了质量的 单自由度振动系统,在施于A点的 外力f(t)作用下,其运动方程为
一阶系统的微分方程通式为:
dy( t ) y( t ) Kx( t )
dt
K b0 a0
a1
a0
一阶系统的传递函数为:sY( s ) Y( s ) KX( s )
• 描述系统动态特性更为广泛的函数是传递函数。
• 传递函数的定义:x(t)、y(t)及其各阶导数的初始值为零, 系统输出信号的拉普拉斯变换(拉氏变换)与输入信号的拉 氏变换之比,记为 H (s)
H(s) Y (s) X (s)
式中Y (s) 为输出信号的拉氏变换 Y (s) y(t)estdt 0 X (s) 为输入信号的拉氏变换 X (s) x(t)estdt 0 s j, 0, 复频率
环节的串联和并联
• 串联:
n
H(S) Hi(S)
i 1
• 并联:
n
H(S) Hi(S) i 1
2.3.5 常见测试系统
• 系统阶次由输出量最高微分阶次确定。最常见的测 试系统可概括为零阶系统、一阶系统、二阶系统。
• 零阶系统(Zero-order system)
– 数学表述
a0 y b0 x
Y2 (s) X (s)
A( )
Y1( ) X ( )
Y2 (s) X (s)
H ( j ) A( ) Y2 (s)
X (s)
稳态过程频响函 瞬态过程传递函


重要结论
• 频响函数的含义是一系统对输入与输出皆为正 弦信号传递关系的描述。它反映了系统稳态输 出与输入之间的关系,也称为正弦传递函数。

测试系统的特性

测试系统的特性

是测量系统对被测量的最小变化量的反应能力。它用测量系统 输出的最小变化量所对应的最小的可测出的输入量来表示。

最小检测量愈小,表示测量系统或传感器检测微量的能力愈高
由于传感器的最小检测量易受噪声的影响,一般用相当于噪声 电平若干倍的被测量为最小检测量,用公式表示为

CN M S

式中,M——最小检测量; C——系数(一般取1~5); N——噪声电平;S——传感器的灵敏度
1.
y a1 x
3
理想线性
2k 1
2. 3. 4.
y a1x a3 x a2k 1x
y a1x a2 x2 a3 x3 an xn y a1x a2 x2 a4 x4 a2k x2k

在原点附近范围内基 本是线性的
非线性关系
测试系统的静态特性是在静态标准条件下,通过测定静态 特性参数来描述的。

(2 ~ 3) R 100% YFS

Rmax R 100% YFS
产生这种现象的主要原因类似迟滞现象的原因
(5)精确度(精度)

测试仪器测量结果的可靠程度
正确度: 测量结果与真值的偏离程度,系统误差大小的标志 精密度: 测量结果的分散性,随机误差大小的标志 精度: 测量的综合优良程度。 = +
通常精度是以测量误差的相对值来表示 注意: ① 正确度高,系统误差小,但精密度不一定高 ② 传感器与测量仪表的精度等级A为 式中:A —— 测量范围 内允许的最大绝对误差; YFS —— 输出满量 程值。
A A 100% YFS
(6)最小检测量(分辨力)和分辨率

指测试系统能确切反映被测量(输入量)的最低极限量。

测试系统的动态特性

测试系统的动态特性
有时也用信号电压和噪声电压来 表示信噪比,信噪比SNR(以dB为 单位)为
SNR 20 lg Vs Vn
18
案例:物料配重自动测量系统的静态参数测量
灵敏度=△y/△x
回程误差=(hmax/A)×100%
非线性度=B/A×100% 测量范围:
19
第3章、测试系统特性
(三)测试系统的动态特性
测试系统的动态特性是指输入 量随时间变化时,其输出随输入而 变化的关系。
an y n (t) an1 y n1 (t) ...a1 y(t) a0 bm x m (t) bm1x m1 (t) ...b1x(t) b0
一般在工程中使用的测试装置都是线性系统。
5
线性系统性质: an y n (t) an1 y n1 (t) ...a1 y(t) a0
y b0 x Sx a0
静态测量时,测试装置表现出的响应特 性称为静态响应特性。
a)灵敏度
当测试装置的输入x有一增量△x,引起输出y发 生相应变化△y时,定义: S=△y/△x
y
△y △x
x
12
b)非线性度
标定曲线与拟合直线的偏离程度就是非线性度。
=B/A×100% y B
非线性度
y
A
Bi
定度曲线
(ansn an1sn1 a1s a0 )Y (s)
L[ f (n) (t)] sn F (s)
an y n (t) an1 y n1(t) ...a1 y(t) a0 bm xm (t) bm1xm1(t) ...b1x(t) b0
(bm sm bm1sm1 b1s b0 ) X (s) 输出量和输入量的拉普拉斯变换 Y (,s) X (s)
若系统的输入为某一频率的谐波信号,则系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




皆为实变量
输入量
输出量
x
bm S m bm1S m1 b1S b0 an S n an1S n1 a1S a0
y
bm S m bm1S m1 b1S b0 H(s) = an S n an1S n1 a1S a0
对线性时不变系统(线性定常系统)进行分析的理论和方 法最为基础、最成熟,同时其它系统通过某种假设后可近似 作为线性定常系统来处理。一般的测试系统都可视为线性定 常系统,即可以用常微分方程描述的系统。
线性系统的性质:
引起的输出分别为 y1 (t ), y2 (t ) 如输入为 x1 (t ) x2 (t ) 则输出为 y1 (t ) y2 (t )
x1 (t ), x2 (t ) ●叠加性:
x(t ) 引起的输出为 y(t ), 则 ax (t ) 引起的输出为 ay (t ) 。
●比例特性(齐次性):如
●微分特性: dx (t )
引起的输出为 dy (t )
dt
●积分特性: x(t )dt 引起的输出为
0 t
y(t )dt
0
则线性系统的频响函数为:
Y ( ) bm ( j ) bm1 ( j ) b1 ( j ) b0 H ( j ) n n 1 X ( ) an ( j ) an1 ( j ) a1 ( j ) a0
m m1
• 以 s j 代入(1)式,也可以得到频响函数, 说明频率响应函数是传递函数的特例。
– 任何一个具体的输入量和输出量之间的关系都可以写成下列数 学形式
d n y t d n 1 y t dy t an an 1 a1 a0 y t n n 1 dt dt dt d m x t d m1 x t dx t bm bm1 b1 b0 x t m m 1 dt dt dt
– y:输出量;x:输入量;t:时间 –系统的阶次由输出量最高微分阶次n决定。


RLC电路,如果输入电压是随时间变化的 ur (t ) ,
其输出是随时间变化的电压 uc (t ) 则可建立输入和输出之间的微分方程: duc (t ) di (t ) 1 L Ri (t ) i (t )dt ur (t ), i (t ) C dt C dt
d 2 uc (t ) duc (t ) ur (t ) LC RC uc (t ) 2 dt dt
可见此电路是二阶线性系统,如果电气结构参数R、 L、C在运行过程中不发生变化,则是定常系统。
传递函数(Transfer function)
• 描述系统动态特性更为广泛的函数是传递函数 • 传递函数的定义:x(t)、y(t)及其各阶导数的初始值为零, 系统输出信号的拉普拉斯变换(拉氏变换)与输入信号的拉 氏变换之比,记为 H ( s)

线性系统的输出输入关系为:
d n y (t ) d n 1 y (t ) dy (t ) an an 1 a1 a0 y ( t ) n n 1 dt dt dt d m x (t ) d m 1 x (t ) dx (t ) bm bm 1 b1 b0 x (t ) m m 1 dt dt dt
Y ( s) H ( s) X ( s)
st Y ( s ) y ( t ) e dt 式中 Y ( s ) 为输出信号的拉氏变换 0

X ( s )为输入信号的拉氏变换
s j , 0,
s为拉氏变换算子:
X ( s) x(t )e st dt
0
复频率
3.3.1系统模型的划分

线性系统与非线性系统
线性系统:具有叠加性、比例性的系统

连续时间系统与离散时间系统 连续时间系统:输入、输出均为连续函数.描述系统特 征的为微分方程.
离散时间系统:输入、输出均为离散函数.描述系统特 征的为差分程.

时变系统与时不变系统: 由系统参数是否随时间而变化决
定.
t
dt
●频率保持性:如
x(t ) x0 e
j0t
则 y(t ) y0 e j (0t )
重要结论:
线性系统具有频率保持特性的含义是输入 信号的频率成分通过线性系统后仍保持原 有的频率成分。如果输入是很好的正弦函 数,输出却包含其他频率成分,就可以断 定其他频率成分绝不是输入引起的,它们 或由外界干扰引起,或由装置内部噪声引 起,或输入太大使装置进入非线性区,或 该装置中有明显的非线性环节。
输出信号
非线性系 统特性
如余弦信号通过非线性 系统(二极管),则输 出被整流,其频率成分 被改变。
频率特性
输入信号
测量系统的广义数学模型
测试系统的数学模型是根据相应的物理定律(如牛顿定 律、能量守恒定律、基尔霍夫电路定律等)而得出的一 组将输入和输出联系起来的数学方程式。 常系数线性微分方程(General Differential equation)
• 将此公式两边作傅里叶变换,在变换过程中利用富 里叶变换的微分性质得:
n n 1 Y ( ) a ( j ) a ( j ) a1 ( j ) a0 n 1 n m m1 X ( ) b ( j ) b ( j ) b1 ( j ) b0 m1 m
作为一种数学模型,和其它数学模型一样,装置的 传递函数与测量信号无关,也不能确定装置的物理结构, 只表示测量装置本身在传输和转换测量信号中的特性或 行为方式。
传递函数以测量装置本身的参数表示出输入与输出之 间的关系,所以它将包含着联系输入量与输出量所必须 的单位。
频率响应函数(Frequency response)
相关文档
最新文档